
Formal Support for QVT-Relations with
Coloured Petri Nets

Juan de Lara1 and Esther Guerra2

1 Universidad Autónoma de Madrid (Spain), jdelara@uam.es
2 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es

Abstract. QVT is the OMG standard language for specifying model-
to-model transformations in MDA. Even though it plays a crucial role
in model driven development, there are scarce tools supporting the ex-
ecution of its sublanguage QVT-Relations, and none for its analysis or
verification. In order to alleviate this situation, this paper provides a for-
mal semantics for QVT-Relations through its compilation into Coloured
Petri nets, enabling the execution and validation of QVT specifications.
The theory of Petri nets provides useful techniques to analyse trans-
formations (e.g. reachability, model-checking, boundedness and invari-
ants) and to determine their confluence and termination given a starting
model. We also report on using CPNTools for the execution, debugging,
and analysis of transformations, and on a tool chain to transform QVT-
Relations specifications into the input format of CPNTools.

1 Introduction

Model-to-model transformation consists in translating a model from a source
to a target language. This process is at the core of Model-Driven Engineering
(MDE), where models are used to generate code, test, document and verify
the applications to be built. Among the existing model-to-model transformation
languages, QVT [15] stands out for being the transformation standard proposed
by the OMG in the framework of the Model-Driven Architecture (MDA). QVT
has a hybrid declarative/imperative nature. The declarative part provides a user-
friendly, high-level language called Relations (QVT-R) whose semantics is given
by its compilation into a lower-level language called Core (QVT-C). In its turn,
the imperative part provides a language called Operational mappings (QVT-O).

Despite the popularity of the QVT standard, few tools support the execution
of QVT-R [12, 13], and even less its verification or validation. This fact hinders
its use in industry, where the complexity of models and transformations makes
essential the development of tools and techniques for transformation analysis,
which can be only built on the basis of a formal semantics for the transfor-
mation language. At present, QVT-R is given a semantics in terms of QVT-C,
whose semantics is in its turn semi-formally defined. Thus, the MDE community
would benefit from a clean, formal semantics for QVT-R enabling the analysis
of transformations and serving as a reference for tool builders.



In this sense, Coloured Petri nets (CP-nets or CPNs in short) [8, 9] is a for-
malism for modelling, simulation and analysis of systems in which concurrency,
communication and synchronization are salient features. They extend normal
Petri nets with data types, allowing tokens to carry data. CPNs have developed
a rich body of theoretical results that permit analysing dynamic properties of
the systems, like boundedness (number of tokens a net may have), invariants,
transition persistence (i.e. conflicts) or reachability [8]. Many of these properties
rely on the occurrence graph, a representation of the state space that can be
model checked and used to determine termination and confluence of a trans-
formation relative to a starting model. The CP-nets community has developed
a number of tools – CPNTools [9] being the best known one – with a level of
maturity that makes them usable for industrial projects.

In the present work, we profit from the theory and tools developed for this
formalism by providing a formal semantics for QVT-R in terms of CPNs. This
opens the door to interesting analysis possibilities, and builds a bridge between
the MDE and the Petri nets communities. On the practical side, we leverage
CPNTools for the execution and analysis of QVT transformations, overcoming
the lack of support for QVT-R. The explicit and visual nature of CPN models
allows debugging and validating the transformation execution graphically, while
their executable semantics may serve as a reference implementation for tool
builders. A prototype tool chain, based on the QVT-R parser of MediniQVT [12]
and the code generation facilities of JET, provides automatic translation of QVT-
R specifications, meta-models and models into the input format of CPNTools,
allowing the execution, debugging, verification and validation of transformations.
Paper organization. Sections 2 and 3 introduce QVT-R and CPNs. Section 4
shows the compilation from QVT-R into CPNs. Section 5 presents our supporting
architecture. Section 6 illustrates the use of CPNs for verification and validation
of transformations. Section 7 compares with related research and Section 8 ends
with the conclusions and lines for future work.

2 QVT-Relations

QVT-R is the highest-level of abstraction language of the QVT OMG stan-
dard [15]. It has a declarative nature and a dual graphical and textual syntax.
In this language, a model-to-model transformation is made of relations with two
or more domains (usually two). Domains are described by patterns similar to
object diagrams. When a domain is marked as enforced, the models to which
it is applied may be modified in order to satisfy the relation; whereas if it is
checkonly, they are just inspected to check for disagreements.

Relations may contain when and where clauses. The former express conditions
under which the relation needs to hold. They usually refer to other relations,
to which they pass a number of parameters that appear as variables in the
current relation. Where clauses may call other relations, similar to function calls
in traditional programming. In addition, relations may be top or non-top level.
The execution of a transformation requires that all its top-level relations hold,
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whereas the non-top level ones only need to hold when invoked from the where
section of other relations.

QVT-R uses the check-before-enforce (CBE) semantics [15]. Thus, before cre-
ating new objects, it is checked whether existing ones satisfying the constraints
of the relation can be reused. Transformations may declare keys as unique iden-
tifiers for objects. These are used by the CBE semantics to decide whether to
create a new object. The semantics of QVT-R is given by its compilation into
QVT-C, relying on the synthesis of tracing mechanisms.

For illustrative purposes, we provide a simple transformation from a tiny
subset of UML class diagrams into relational database schemas. The example is
a simplification of the one given in the QVT standard [15]. The meta-models for
the source and target languages are shown in Fig. 1.

Fig. 1. The source and target meta-models.

The QVT-R transformation is shown next. It defines three relations, two
of them being top-level, and an auxiliary function. All relations enforce the
RDBMS domain. The first one checks that for each persistent package in a UML
model, there is a schema with same name (given by the pn String variable).
The second one states that for each persistent class there must be a table with
same name. The when section specifies that this relation has to hold only if
relation PackageToSchema holds for the package and schema to which the class
and table belong. The where clause asks the AttributeToColumn relation to hold
for the class, table and an empty prefix. Finally, the last relation requires that
for each attribute of a class there is a column with a name made of the received
prefix plus the class name. The type of the column is calculated by the auxiliary
function PrimitiveTypeToSqlType.
transformation umlToRdbms(uml:TinyUML, rdbms:TinyRDBMS) {
top relation PackageToSchema { // maps each package to a schema

pn: String;
checkonly domain uml p:Package {name=pn, kind=‘persistent’};
enforce domain rdbms s:Schema {name=pn};
}
top relation ClassToTable { // maps each persistent class to a table

cn, prefix: String;
checkonly domain uml c:Class {namespace=p:Package {},

kind=‘persistent’, name=cn};
enforce domain rdbms t:Table {schema=s:Schema {}, name=cn};
when { PackageToSchema(p, s); }
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where { prefix=‘’; AttributeToColumn(c, t, prefix); }
}
relation AttributeToColumn { // maps an attribute to a column

an, pn, cn, sqltype: String;
checkonly domain uml c:Class {attribute=a:Attribute {name=an, typeAtt=pn}};
enforce domain rdbms t:Table {column=cl:Column {name=cn, typeCol=sqltype}};
primitive domain prefix:String;
where { cn = if (prefix = ‘’) then an else prefix+‘ ’+an endif;

sqltype = PrimitiveTypeToSqlType(pn); }
}
query PrimitiveTypeToSqlType(primitiveType:String):String {

if (primitiveType=‘INTEGER’) then ‘NUMBER’
else if (primitiveType=‘BOOLEAN’) then ‘BOOLEAN’ else ‘VARCHAR’ endif
endif;}

}

3 Coloured Petri Nets

CPNs is a popular formalism for describing concurrent systems, which is both
state and action oriented. Here we give a brief introduction, see [8, 9] for more
details. A CPN model can be seen as a bipartite graph made of two kinds of
nodes: places and transitions. The former represent the states of the net and
are depicted as ovals with the name inside. Transitions model actions and are
depicted as labelled rectangles. Places can be connected to transitions, and tran-
sitions to places, by means of arcs. As an example, Fig. 2 shows to the left a
CPN with three places and one transition (exported from CPNTools). The net
actually models the relation PackageToSchema of the example transformation.
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Fig. 2. Example CPN model: net (left) and colour set declarations (right).

Each place has a data type defining the kind of data it can contain, whose
name is usually depicted next to the place. Data types (called colour sets) are
declared in a language based on Standard ML, called CPN-ML [9]. The lan-
guage allows declaring simple colour sets – like unit, booleans, integers, strings
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and enumerated – and compound ones, like products, records, lists, unions and
subsets. The declarations for the example appear to the right of Fig. 2.

The state of a CPN is called its marking, and consists of a number of tokens
located in the places. Each token contains data according to the colour set of the
place where it is located. Places contain multi-sets of tokens. For the example,
the Package and the TracePackageToSchema places contain one token each. The
former is a record with value {id=1, kind=“persistent”, name=“s1”}, while
the latter is the empty list []. The number of tokens in a place is indicated in
a circle near the place, whereas the cardinality of each token in a multi-set is
shown explicitly before the element value (e.g. 1’[]).

Transitions are the dynamic elements in the net. An incoming arc to a transi-
tion indicates that the transition, if fired, will remove tokens from the connected
places. Similarly, an outgoing place from a transition indicates that firing the
transition will put tokens into the place. The tokens to be added or removed are
given by the arc expressions. Transitions have a guard, shown between brackets,
which is a boolean expression made of variables typed on the colour sets. The
guard in the example checks the membership of a record in the tr ps list.

A binding of one transition is an assignment of values to the variables in the
incoming arcs and the guard. A transition is enabled if there is a valid binding for
it, i.e. if the incoming places have enough tokens to bind the variables appearing
in the incoming arcs, the variables in the guard are bound, and the expression
evaluates to true. In the example, transition PackageToSchema is enabled (and
hence highlighted) because the arc from Package demands one token with value
“persistent” in the field kind (which exists), while the guard demands a token
containing a list without any record whose two fields are equal to p. Hence, the
transition is enabled with the binding b1 = 〈p = 1, pn =“s1”, tr ps = []〉.

An enabled step is a finite, non-empty multi-set of bindings enabling certain
transitions. An enabled step can occur, changing the marking of the enabled
transitions by the multi-set. In this way, the tokens needed to bind the incoming
arcs of the transitions are removed, while tokens are created in the output places
according to the expressions of the outgoing arcs. In our example, the only
enabled step is made of the binding b1 shown before. Firing the transition: (i)
removes one token from Package, but then creates a token with same data there;
(ii) adds one token to Schema with same name and id as the token from Package;
and (iii) removes the token from the trace, but puts it back adding a new record
at the end of the list. Note that firing the transition prevents it from firing again
for the same binding, as the list in the trace place would contain a record making
the guard expression false.

In addition to execution, CPNs have developed a rich body of theoretical
results enabling analysis. Some of them are based on the occurrence graph, which
contains which is a graph representation of the reachable markings [8]. Section 6
will use some CPN analysis techniques to verify QVT-R transformations.

CPNTools offers additional hierarchical and modular modelling capabilities.
A large net can be divided into pages that can be connected by means of Fusion
Places and Substitution Transitions. The latter are transitions that stand for a
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whole page of the net structure. For example, the net in Fig. 2 is represented as
a single transition in Fig. 6, where we only show the interface places (marked In,
Out, or I/O in the subnets). A fusion place is a place that has been equated with
one or more other places, so that the fused places act as a single place with a
single marking. We say that all these places belong to the same Fusion Set. For
example, the place Package in Fig. 2 is the same as the place Package in Fig. 3,
and both belong to the fusion set “Packages”. Thus, these two mechanisms allow
the modelling in different levels of abstraction (with the substitution transitions)
and using multiple views (with the pages and fusion places).

4 Compiling QVT-Relations into CPNs

In this section we describe the compilation of QVT-R specifications into CPNs.
We use the modular capabilities of CPNTools to create: two pages with places
to store the objects of the source and target models; one page for each relation
in the transformation; and a high-level view of the transformation with one
substitution transition for each relation (linked to the corresponding page) and
places depicting the when and where dependencies between relations.

4.1 Compiling the Meta-Models and the Initial Model

The first step is to compile the source and target meta-models into colour sets
declarations. For this purpose, we calculate the transitive closure of the inher-
itance relations in the meta-models so as to copy the attributes and relations
from parent to children classes. Then a record is generated for each class and
association in the meta-models. The record declares one field for each attribute
in the class, plus an additional field id to store a unique object identifier. In
case of an association, the record contains the identifier of the classes in each
association end, as well as the attributes in case of an associative class.

As an example, the declarations for classes Package and Schema were shown
in Fig. 2. As we will see in next subsections, further definitions will be added to
store the traces of the relations, and parameter passing.

Next, we create one place for each created record, and populate it with tokens
representing the model to be transformed. These tokens hold the values of each
object attribute. We split the places of the source and target meta-models in
two different pages to enhance readability. Each place is assigned a fusion set
so that it can be referenced from other pages. Fig. 3 depicts a TinyUML model
to be transformed, and the corresponding generated places and initial marking.
The model contains two classes with equal name (since the meta-model allows
this), having one attribute each with equal name.

4.2 Compiling the Relations

Next, we compile the relations. We restrict to the case with one domain enforced
and the other checkonly, and neglect CBE semantics and keys for the moment.
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Fig. 3. Source model (left). Generated places and initial marking (right).

For each relation, we create a transition with its name in a different page.
For each element in the relations domain, we create a place in the fusion set
corresponding to the type of the element. If the domain is checkonly, the place
is connected to the transition with a self-loop, whereas if it is enforced, the
transition is connected to the place. The arc inscriptions contain variables with
same name as in the QVT relation, binding the different fields of the record. In
checkonly domains we make the following simplification: if the attributes of an
object are not accessed, and the object is connected to another through a link
l, then we do not test if the object is present, but just that there is a link l.

Finally, for each relation we generate a colour set for its trace which contains
the identifiers of all objects appearing in the relation. This conforms to the
standard semantics of the compilation of QVT-R into QVT-C [15]. Moreover,
for each relation, we create one place with type equal to the list of traces of the
relation. The transition inspects this place in order to check that the identifiers
of the objects in the relation are not in the list. This avoids enforcing a relation
more than once for the same binding. When the transition fires, the list of traces
is added a new element with the processed objects. Later, we will also use the
trace for the translation of the when clause.

Fig. 2 showed the transition generated for relation PackageToSchema. The
trace place contains one token with the empty list. The read arc takes such list,
the guard checks that a record with the identifiers of the involved objects is
not present, and the write arc adds the record to the list when the transition
fires. For simplicity, the created schema object is given the same identifier as the
package, but in our implementation an ML function calculates unique identifiers.

4.3 Compiling the Where and When Clauses

After generating one transition per relation, we process the when and where
clauses. The latter usually includes calls to other relations using as parameters
bound objects of the current relation. For this reason, we create a colour set with
fields corresponding to the parameters, and create a place with that type in a
new fusion set. We add an arc from the transition to the place that writes one
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token with the given parameter values when the transition fires. Another place
in the same fusion set is added to the page of the called relation, together with
self-loop arcs.

As an example, Fig. 4 shows the transition generated for relation ClassToTable.
The ParamAttrCol place is used to pass the three parameters to the relation At-
tributeToColumn. The marking shows the situation after firing the transition
once, which creates a table with name c1. The transition remains enabled be-
cause there is a class which has not been processed, so its firing creates a new
table also with name c1. As this does not conform to the CBE semantics, we
will describe the needed modifications to the net in Section 4.5.
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Fig. 4. Generated transition from relation ClassToTable.

The transition for relation AttributeToColumn is shown in Fig. 5, where
the parameters are received from place ParamAttrCol. The parameters are not
deleted from the place as, in general, a relation may need to be enforced more
than once. Should a relation be called with different parameter sets (e.g. 2 pa-
rameters instead of 3), we will have to replicate the transition for each set.
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Fig. 5. Generated transition from relation AttributeToColumn.
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The when clause is handled by querying the trace places. In particular, for
each relation rw appearing in the when clause of a relation r, a self-loop arc read-
ing a token from the trace place of rw is attached to the transition of r. Then, a
guard is added to the transition of r demanding the read token to have a record
with the values given by the actual parameters. Moreover, all arcs adding tokens
to a place of an enforced domain which corresponds to an element passed as pa-
rameter are deleted. As an example, the transition generated from ClassToTable
in Fig. 4 reads the list of traces from place TracePackageSchema, and the guard
checks that the list contains a record indicating that the package and the schema
have already been processed. Moreover, the place corresponding to the schema
is not added tokens as the schema is a parameter in the when clause. In fact,
with our simplified way of assigning object identifiers, we can make the following
optimization: if an object is bound (i.e. present in some relation mentioned in
a when, or comes as a parameter from a where), its attributes are not accessed,
and the object is connected to some other one; then we do not use the place for
the object, but the one for the link. This is why the places for the schema in
Fig. 4 and the table in Fig. 5 are omitted.

4.4 Adding the High-Level View

Finally, we provide a high-level view of the transformation. This contains a
substitution transition for each QVT relation, referring to the page with the
relation details as described in previous sections. The view also shows the places
for the when and where clauses, so as to depict the execution flow and parameter
passing between relations, allowing the identification of dependencies.���� ���� �������	
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Fig. 6. High-level view.

Fig. 6 shows the high-level view for the ex-
ample. The top-level relations are shown with
thicker border. Even though ClassToTable is top-
level, it depends on PackageToSchema as the
latter is referenced in the when clause of the
former. Relation AttributeToColumn is not top-
level, and can only be executed when it receives
a token with the parameters produced by rela-
tion ClassToTable. Note how the comments in
the QVT transformation are visualized in the net.
The marking shows the result of the transforma-
tion, where two tables have been created. Since
the result does not comply with the CBE seman-
tics, we solve this problem in next section.

4.5 Check-Before-Enforce (CBE) Semantics and Keys

The CBE semantics ensures that, if an object matching the constraints in a
relation already exists in an enforced model, such object will not be created. The
keys define when two objects are considered equal. The presented compilation
has not taken this semantics into account. Even though traces avoided enforcing
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a relation more than once for the same objects, we always created objects in the
enforced domain instead of reusing them. Next we consider such semantics.

The idea is to generate several transitions for each relation. All transitions
are mutually exclusive (at most one can fire at any given step), and each try
to reuse increasingly bigger parts of the enforced domain. Hence, we build a
partial order of graphs, the bottom element being the relation parameters (i.e.
no reuse), and the top one the graph equal to the enforced domain (i.e. maximal
reuse). The keys specify which attributes of an object need to be compared in
order to decide whether an object already exists.

The generated transitions should check if some objects are not present. Neg-
ative tests are problematic in CPNs, as the normal arcs test the existence of
tokens, not their absence. As inhibitor arcs are not supported by CPNs, we use
tokens containing lists of records instead of records. Hence, each place in the
enforced domain contains exactly one token, with a list of the objects present in
the model. In this way, testing if an object is not present amounts to ensuring
that the corresponding record is not in the list.

Fig. 7 shows the two transitions generated from PackageToSchema. The left
one creates a new schema if it is not found on the list sch taken from place
AllSchemas, actually checked by the function existsSchema in the transition
guard. The right one is executed if the schema exists and reuses the schema.
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Fig. 7. Two transitions generated from PackageToSchema due to CBE.

The left of Fig. 8 shows the high-level view of the transformation with all
transitions generated by the CBE semantics. The key for the table was its name
and schema, and for the column its name and table. The marking shows some
of the traces after executing the net, where only one table and one column are
created, in conformance with the CBE semantics. The created model can be
inspected in the page corresponding to the target meta-model.

5 Supporting Architecture

We have implemented a prototype to transform QVT-R specifications into the
input format of CPNTools, for the moment without considering CBE semantics.
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Fig. 8. High-level view with CBE semantics (left). Architecture of the solution (right).

The right of Fig. 8 shows its architecture. The engineer specifies the transfor-
mation using the textual format of QVT-R, and the source and target meta-
models in ecore. We have built a code generator that parses these files using the
MediniQVT parser [12], and then generates the input file to CPNTools through
JET templates [10]. We also have developed another generator that, from an xmi
model, generates a marking in a separate file that is read by the CPN model.
In this way, no recompilation of the whole transformation is needed for differ-
ent starting models. Then, the designer can execute the transformation using
CPNTools, as well as to analyse it to find defects as we show in next section.

6 Verification and Validation of Transformations

This section presents some verification and validation techniques that are possi-
ble once the transformation is expressed in CPNs.

6.1 Verification

Many verification techniques for CPNs are based on the computation of the
occurrence graph [8], a graph-based representation of the space of possible mark-
ings. Fig. 9 shows the graph for the example, considering CBE semantics and
taking the starting model of Fig. 3. The graph shows the labels of two arrows,
depicting the executed transition and part of the binding. To the right, the figure
shows the TinyRDBMS models corresponding to nodes 13 and 14 of the graph.
Confluence. A transformation is confluent if it yields a unique result for every
possible starting model. We can investigate confluence by inspecting the ter-
minal nodes of the occurrence graph. As we use lists, having more than one
terminal node does not imply non-confluence: the lists may contain equal ele-
ments but ordered differently. Also, we obtain two different terminal nodes for
models with the same structure, but different object identifiers. Our example
however is non-confluent. The transformation creates one table (as both classes
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have equal name) with one column. Processing the BOOLEAN attribute first
creates a BOOLEAN column (nodes 16 and 13 in the graph), whereas process-
ing the INTEGER first creates a NUMBER column (nodes 15 and 14). This is
so because the key for attributes only considers their name and class but not
its type. Considering also the column type solves this problem. Note however
that CPNs only allows investigating confluence on individual starting models.

3
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6
1:2

10
1:1

14
1:0

8
1:2
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1:1
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1:1

11
2:1

15
1:0

16
1:0

4
1:2

2
1:2

1
0:1
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1:1
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2:1

13
1:0

ClassToTable

<…c=3…>
ClassToTable

<…c=2…>

1:Schema

name=“s1”

3:Table

name=“c1”

5:Column

name=“a1”
typeCol=“BOOLEAN”

1:Schema

name=“s1”

3:Table

name=“c1”

4:Column

name=“a1”
typeCol=“NUMBER”

13

14

Fig. 9. Occurrence graph.

Another source of non-confluence is
attribute computation using queries on
enforced domains. For example, if the
column name is computed as cn=if
(owner.column->size()=1) then ‘ ’+
an else an; we have non-determinism.
This is so because the first column to be
processed would be added a prefix ‘ ’,
and this choice can be non-deterministic.
Furthermore, if the table is added sev-
eral columns, actually adding the prefix
for the first column is wrong. Since QVT-
R is declarative, the expression cn=... is
to be interpreted as an invariant. However
it may yield a different result when eval-
uated during the transformation than at
the end of the transformation. Hence, if there are two columns no attribute should
be added the prefix. Thus, “constructive” operational mechanisms would run
into troubles. In our approach, we forbid attribute computations using queries
on enforced domains.

Termination. This is undecidable for graph and term rewriting systems [4].
QVT-R transformations can be non-terminating due to e.g. a recursive relation
which creates new elements, and passes them to the next step in the recursion
in the where section. If the occurrence graph is finite and has no cycles, then
the transformation always terminates for the given starting model. Our example
transformation is terminating for the given initial model.

Relation Conflicts. Transition persistence allows discovering conflicts between
relations. A transition is persistent if firing it does not disable other enabled
transitions, and weakly persistent if it may disable itself at a different binding.
Hence, if a transition is not persistent, it has conflicts and may lead to a non-
confluent transformation. A conflict in QVT-R may arise if the execution of
some relation depends on a query on an enforced domain, or if a relation A
can be executed if some other B has not (by placing “not B(. . .);” in A’s when
section). In most cases all relations should be non-conflicting, leading to weakly
persistent transitions in the CPN model. In the example, all transitions are
weakly persistent as none disable others but may disable themselves. Persistence
can be efficiently checked using the occurrence graph, and a sufficient condition
for persistence exists by statically checking the underlying uncoloured net [14].
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Boundedness and Invariants. A net is bounded if the number of tokens of
all places remains bounded in all possible executions. This is automated by
CPNTools and is useful to identify sources of non-termination as well as the
maximum number of objects of a certain type that can be created. Invariants are
expressions on the marking that remain true in all reachable states. In a QVT-
R transformation we find two types of invariants: the preservation of elements
in checkonly domains, and maybe the non-creation of some type of element in
enforced domains. Thus, we can check whether for a TinyUML model without
attributes it is an invariant that no column is generated. These invariants are
called synchronization invariants [5] and can be automatically computed.
Model Checking. Reachability analysis can be used to investigate whether
some structure can be produced in the enforced domain, given an initial marking.
This procedure can be automated, as CPNTools allows expressing properties to
be checked on the occurrence graph by means of a CTL-like logic called ASK-
CTL [3]. This logic allows formulating queries about states and state changes
(e.g. the occurrence of certain transitions). This search is useful to check whether
a certain structure is created sometimes or always in each possible result.

For instance, we can ask whether transforming our example model always
produces a BOOLEAN column by using the command eval node INV(POS(NF(
"Has Bool Column", hasColumn))) InitNode, which returns false as we may
obtain a NUMBER column instead. In the previous command, InitNode is the
initial marking, hasColumn is a user-defined function that checks whether a
given marking contains a boolean column, POS(A) demands property A to be
eventually satisfied, and INV(A) demands A to be satisfied in all possible paths.
Checking whether sometimes such column is obtained is done through command
eval node POS(NF("Has Bool Column", hasColumn)) InitNode, which returns
true. Other interesting properties include whether we always or sometimes ob-
tain the same number of columns as attributes (false in both cases), the same
number of tables as classes (false), the same number of schemas as packages
(true) or whether a certain relation is always or sometimes executed.

6.2 Validation with CPNTools

In order to validate a transformation, we can use CPNTools to perform run-to-
completion execution, as well as a step-by-step visual simulation for debugging.
Similar to breakpoints in programming environments, one can set monitors es-
tablishing conditions (e.g. the marking exceeds a certain size, a transition occurs
a certain number of times or a place becomes empty) under which some action is
performed (e.g. pause the execution or write to a file). They can also be used to
encode the OCL constraints of the target language, in order to check if they are
violated. The multi-view and hierarchical features permit visualizing the execu-
tion flow in the high-level page, and checking the created elements in the page
corresponding to the meta-models.

Simulation and verification can be combined using the occurrence graph, as
it can be created incrementally, and visually inspected. Each node can show the
marking, and it is possible to set the net in the state of a given node.
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7 Related Work

There are previous attempts to formalize QVT, such as the one in [7] for QVT-
C. Regarding QVT-R, in [1, 11] the authors formalize it by using rewriting logic
and Maude; however there is no comment about CBE semantics and no discus-
sion on termination or confluence. In [6] the author uses OCL for representing
the static semantics, and Alloy for the dynamics. Although Alloy permits exe-
cution and analysis, no discussion on analysis is given. That approach is similar
to our previous work in [2], where we translated QVT-R into OCL and used
a constraint solver for execution and analysis. In that case, the kind of possi-
ble analyses is different, as they are based on “model finding”. For example,
we tested whether a transformation is satisfiable, or whether a source model
produces a valid target model (i.e. conformant to the meta-models and their in-
tegrity constraints). In our approach with CPNs, the validity of the target model
has to be checked by loading and validating the model in the modelling tool, or
by setting CPN monitors. However, CPNs allow the visual step-by-step execu-
tion and debugging of the transformation, which is not possible with constraint
solvers. Other approaches like [16] use CPNs for transformations, but they have
their own language, not QVT, and do not provide analysis techniques.

On the other hand, there are few tools for QVT-R. We can mention Me-
diniQVT [12] and ModelMorf [13], but none of them provide analysis capabil-
ities. Thus, we can see our work as a “low-cost” implementation of a QVT-R
engine allowing both execution and analysis.

8 Conclusions and Future Work

In this paper we have presented an approach for the execution, verification
and validation of QVT-R transformations through their compilation into CPNs.
The approach supports when and where clauses and CBE semantics. We have
shown how to use the occurrence graph to check termination and confluence,
how to analyse relation conflicts by transition persistence, and how to determine
whether certain structures are created in enforced domains using model checking,
invariants and boundedness analysis. Finally, we have demonstrated that CPN-
Tools can be used for execution, verification and validation of transformations;
and presented a tool that automates the code generation for it.

One limitation of our proposal is the full support for OCL, which would
require a complex compilation into ML. Up to now we support a small subset
enough to translate the auxiliary query of the example. Complex queries involv-
ing negation would require using tokens with lists also in checkonly domains. We
are currently improving our tool chain and defining back-annotation mechanisms
so that the user does not realise that the execution is based on CPNs, e.g. by
translating the final marking into XMI. It would be also interesting to develop
a high-level language to specify the properties to be model-checked. The use of
CPNs opens the door to other useful techniques, such optimizing the CPN [5]
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and translating such optimizations into QVT, or the verification of properties in-
dependently of the marking. We also plan to complement our analysis techniques
with the automatic generation of initial markings for the nets.
Acknowledgments. Work supported by the Spanish Ministry of Science and
Innovation, projects METEORIC (TIN2008-02081) and MODUWEB (TIN2006-
09678).

References
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