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Abstract Recommender systems (RSs) are ubiquitous in all sorts of online ap-
plications, in areas like shopping, media broadcasting, travel and tourism, among
many others. They are also common to help in software engineering tasks, in-
cluding software modelling, where we are recently witnessing proposals to enrich
modelling languages and environments with RSs. Modelling recommenders assist
users in building models by suggesting items based on previous solutions to similar
problems in the same domain. However, building a RS for a modelling language
requires considerable e�ort and specialised knowledge.

To alleviate this problem, we propose an automated, model-driven approach
to create RSs for modelling languages. The approach provides a domain-speci�c
language called Droid to con�gure every aspect of the RS: the type of the rec-
ommended modelling elements, the gathering and preprocessing of training data,
the recommendation method, and the metrics used to evaluate the created RS.
The RS so con�gured can be deployed as a service, and we o�er out-of-the-box
integration with Eclipse modelling editors. Moreover, the language is extensible
with new data sources and recommendation methods.

To assess the usefulness of our proposal, we report on two evaluations. The �rst
one is an o�ine experiment measuring the precision, completeness and diversity
of recommendations generated by several methods. The second is a user study �
with 40 participants � to assess the perceived quality of the recommendations. The
study also contributes with a novel evaluation methodology and metrics for RSs
in model-driven engineering.

Keywords Recommender Systems · Modelling Languages · Model-driven
Engineering · Domain-speci�c Languages · User Study

1 Introduction

Recommender systems (RSs) are information �ltering systems that assist users in
choosing from a potentially large collection of items. Their goal is to predict and
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exploit the preferences of the user to o�er a personalised list of items (Adomavi-
cius and Tuzhilin, 2005). RSs are present within all sorts of platforms, providing
suggestions on a variety of items, such as music and video on streaming platforms
(e.g., Spotify and Net�ix), or products to buy on e-commerce sites (e.g., Amazon).

RSs are also used to assist developers in software engineering activities (Robil-
lard et al., 2010; Di Rocco et al., 2021). These include recommenders of code refac-
torings (Oliveira et al., 2019), API code examples (Abid et al., 2021), meaningful
method names (Liu et al., 2022), or development team members (Tuarob et al.,
2021), to name a few. Following this trend, proposals of RSs for software modelling
and design tasks are starting to appear (Almonte et al., 2022b). Modelling is cen-
tral to most engineering disciplines and essential for software engineering. Indeed,
some software development paradigms like model-driven engineering (MDE) have
models as the main assets of the development process (Brambilla et al., 2017).
Therefore, mechanisms that help designers to �nd, create, complete, repair and
reuse models based on existing knowledge are of great importance (Almonte et al.,
2022b). For this reason, several researchers have proposed RSs for modelling tasks,
such as model completion (Mazanek and Minas, 2009; Moha et al., 2010), model
�nding (Cerqueira et al., 2016; Matikainen et al., 2013), and model repair (Iovino
et al., 2020; Neubauer et al., 2017). In this paper, we are interested in the creation
of RSs that help completing existing models.

Building a RS for a modelling language involves several steps, most importantly
selecting the data for training and testing the RS, preprocessing these data (e.g., to
�x ambiguities or unify item names), con�guring the recommendation algorithm,
evaluating the RS with suitable metrics, and deploying the RS within a modelling
tool. These tasks require specialised knowledge and high implementation e�ort.
Moreover, software paradigms like MDE or low-code development (Di Ruscio et al.,
2022) often need to create new modelling and domain-speci�c languages (DSLs)
to express solutions in the targeted domain. Hence, given the potential variety of
modelling languages and DSLs, mechanisms to facilitate the construction of RSs
for them are required.

To tackle this challenge, we propose an MDE solution to automate the creation
of RSs for modelling languages. It is supported by a tool, called Droid, which pro-
vides: (i) a DSL to con�gure the kind of items that the RS will recommend (e.g.,
attributes for class diagrams, activities for process models); (ii) an engine that
automates the preprocessing of models for training and evaluation, and the eval-
uation of the candidate recommendation algorithms against con�gurable metrics;
(iii) facilities to compare between di�erent RS con�gurations and identify the most
appropriate one; (iv) a generator that deploys the RS as a service, which heteroge-
neous modelling clients can integrate; and (v) an out-of-the-box integration of the
RS with Eclipse modelling tools. Our solution is extensible, since it permits a light
integration of new data sources, data encodings and recommendation algorithms.

This paper presents the approach and its supporting tool, and reports on the
results of an o�ine evaluation and a user study that aim to answer the following
research questions (RQs):

RQ1 How precise, complete and diverse are the recommendations of Droid

recommenders?

RQ2 How do users perceive the recommendations of Droid recommenders?
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RQ3 How do the o�ine experiment results compare to the ones of the user

study?

This paper is an extension of our previous works (Almonte et al., 2020, 2021,
2022a), where we introduced Droid and performed a preliminary o�ine evalua-
tion of its precision applied to UML models within two domains (literature and
education). The novel contributions of the present paper are the following:

� We have made Droid's architecture extensible by means of extension points
that facilitate the incorporation of new data sources, data encoding algorithms,
and recommendation methods.

� We have integrated intoDroid an additional recommendation method (context-
aware collaborative �ltering, as implemented in MemoRec (Di Rocco et al.,
2023)) using one of the new extension points.

� We have performed an extended o�ine evaluation of the accuracy of the recom-
mendations provided by Droid recommenders. In comparison to the prelimi-
nary evaluation reported in (Almonte et al., 2021), the new one uses a bigger
training dataset to build the RSs (3× more models), and considers three rec-
ommendation domains (one more than in (Almonte et al., 2021)).

� We report on a novel user study that analyses the users' perception of the rec-
ommendations provided by Droid recommenders. This study considers both
classical metrics of RSs as well as novel metrics speci�cally devised for model
completion recommendations (serendipity, redundancy, contextualisation and
generalisation). To the best of our knowledge, this is one of the �rst user stud-
ies of the model completion recommendation task, which permits analysing
how well o�ine evaluations align with the users' perception for this particular
case. This is an important task since, nowadays, most RSs for modelling are
evaluated only using o�ine experiments (cf. Subsection 7.3).

The rest of the paper is organised as follows. First, Section 2 provides moti-
vation for our approach, introducing a running example and background on RSs.
Next, Section 3 overviews our proposal. Section 4 describes the Droid DSL, which
is used to con�gure all aspects of the RS, and Section 5 gives details of its sup-
porting tool. Section 6 reports on the results of the o�ine experiment and the
user study, and answers the research questions. Finally, Section 7 analyses related
research, and Section 8 ends with conclusions and future work.

2 Motivation and Background

This section starts with a motivating example that will be used in the rest of
the paper (Subsection 2.1). Then, it describes the contributions of our proposal
(Subsection 2.2), and provides an overview of RSs (Subsection 2.3).

2.1 Motivating example

Assume we would like to build a RS to assist in the creation of UML class models
by recommending attributes and operations for classes.
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Models are de�ned using a modelling language. In MDE (Brambilla et al.,
2017), it is a standard practice to describe the abstract syntax of modelling lan-
guages by means of a meta-model. Figure 1a shows an excerpt of the meta-model
of UML 2.0 class diagrams (UML 2.5.1 OMG speci�cation, 2017), which we use
in our example. It structures UML class models into Packages that can contain
Classes, Datatypes and Associations. Classes can declare attributes (class Property) and
Operations, as well as inherit from other classes (relation Class.superClass). Figure 1b
shows a UML model (i.e., an instance of the UML meta-model) in abstract syntax
on top, and using the standard concrete syntax of class diagrams at the bottom.

Multiplicity
Element

lower: int
upper: int

Feature

Redefinable
Element

Behavioral
Feature

Operation

superClass Association

Package

DataType

TypeTypedElement

StructuralFeature

NamedElement

name: String

Classifier

isAbstract: boolean

Property

aggregation: AggregationKind

Class

2..*
memberEnd

0..1
type

*
ownedOperation

endType
1..*

 0..*
ownedType

*

type
0..1

 *
ownedAttribute

(a) Excerpt of UML meta-model.
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:member
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End
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:owned
Attribute :type
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(b) UML class diagram example.

Fig. 1: UML meta-model excerpt and model in abstract and concrete syntax.

Figure 2 illustrates the behaviour of the RS that we aim to build. The left
part of the �gure shows a class model being created, which contains the classes
Library and Book. To help the designer complete the target class Book, the RS would
analyse similar classes previously de�ned, to return a ranked list of suitable new
attributes and operations for the class. As an example, the �gure shows a repository
with previous models, among which one declares a class Journal. Since this class is
�similar� to Book, the RS would propose adding Journal's attributes (publisher and
topic) to Book.

Overall, the RS to build should recommend two types of items (attributes
and operations) for a given target class. However, building such a RS by hand
is costly. While there are well-known recommendation methods for building RSs
(cf. Subsection 2.3), they need to be adapted for the modelling language (class
models in our example) and task (recommendation of attributes and operations).
Moreover, the performance of these methods may di�er. For instance, one method
may select classes with similar items to the ones in the target class, and recommend
items from those classes; another method may recommend items that are similar to
those the target class already has; while yet another method may recommend the
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Journal

title: String
authors: String
year: int
publisher: String
topic: String

Book

title: String
authors: String
year: int

Active Model

Library

name: String

collection*

…

publisher: String
topic: String

…

Recommendation

Model Repository

Fig. 2: Obtaining recommendations to assist in the creation of a UML class model.

most popular items (i.e., those appearing most frequently in classes). Selecting the
best performing recommendation method for a modelling language needs to be an
informed decision based on a set of metrics carefully chosen. However, computing
those metrics by hand is costly. Finally, while some RSs for modelling have been
proposed (Almonte et al., 2022b; Burgueño et al., 2021; Di Rocco et al., 2023;
Di Rocco et al., 2021), they are typically hardwired to a speci�c modelling language
and cannot be used for other languages, even if they are similar.

2.2 Contribution of Droid

To overcome the previous limitations, we propose Droid: a model-driven solution
to facilitate the creation and evaluation of RSs that assist in creating models of a
modelling language. Droid does not require deep knowledge of RSs or program-
ming. To create a RS with Droid, the user only needs to provide a meta-model
of the modelling language, and a dataset of models. Droid integrates recommen-
dation methods that can be con�gured for a modelling language by specifying
the target of the recommendation (e.g., UML classes) and the items to be recom-
mended (e.g., attributes and operations). The performance of the recommendation
methods can be assessed by the automatic calculation of metrics on the provided
dataset. Finally, Droid generates automatically RSs for the modelling language,
providing out-of-the-box integration with modelling environments within Eclipse.

Droid allows creating RSs for modelling languages independently of their vi-
sual or textual concrete syntax. This is so as it relies on the abstract syntax of the
languages. The RSs created with Droid can recommend objects � instances of the
meta-classes in the language meta-model � together with values for their �elds. The
RS in our running example suggests attributes and operations for UML classes,
but with Droid, it would be easy to customise it to recommend, e.g., classes for
packages, or superclasses for a given class.

In Figure 2, recommending an attribute for a class entails a basic editing op-
eration (adding an object to another one in the underlying abstract syntax repre-
sentation of the model). However, the di�culty relies on �ltering which attributes
are good recommendations for a given class. For example, an attribute power would
not be appropriate for the class Book. RSs learn to make good recommendations
by processing datasets of existing models (cf. Subsection 2.3). Droid permits con-
�guring the RSs for arbitrary languages, targets and items.

Droid supports several recommendation methods, but new methods can be
added. These include methods that extract information from existing datasets
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of models, but also rule-based methods. The former methods are suitable when
it is necessary to add new labelled information in the model (e.g., an attribute
author for a class Book). The latter methods are adequate to make a model comply
with certain syntactical laws or guidelines (e.g., avoid abstract classes without
children). As a limitation, currently, Droid cannot recommend graphs made of
related objects (e.g., a design pattern in the case of UML class diagrams).

Droid recommenders help in the task of completing models semantically.
Other tasks, like reusing a model or parts of it (Stephan, 2019; Gomes, 2004),
repairing an inconsistent model (Marchezan et al., 2023b,a), or improving a model
(e.g., via critics (Robbins and Redmiles, 1998; Ali et al., 2013, 2010)), are currently
not supported, but left for future work.

2.3 Recommender systems

Recommender systems (RSs) are software tools that suggest items that may be
of interest to a particular user according to her preferences, supporting decision
making tasks in situations of information overload (Ricci et al., 2022). As a re-
search �eld, it emerged in the mid-90s with roots in areas such as cognitive science
and information retrieval (Adomavicius and Tuzhilin, 2005). Nowadays, they are
ubiquitous and key components in many types of applications, in areas such as
music (e.g., Spotify), video (e.g., Net�ix), streaming platforms (e.g., Twitch), e-
commerce sites (e.g., Amazon), and social networks (e.g., Facebook), among many
others.

The term item is used to indicate what a RS suggests to its users. RSs typ-
ically focus on a speci�c kind of item (e.g., movies), using customised graphical
interfaces, and �ltering and ranking algorithms to deliver useful and e�ective rec-
ommendations for that kind of item (Ricci et al., 2022). The construction of a RS
typically relies on existing data about three types of entities: target users, items,
and interactions between users and items (usually unary or numeric ratings) that
express personal preferences. These data may come from diverse sources, and their
e�ective exploitation depends on the applied recommendation algorithm and the
available computational resources (Ricci et al., 2022).

When it comes to how recommendations are made, RSs are classi�ed into three
broad categories: content-based, where the items recommended to a user are sim-
ilar to the ones the user preferred in the past; collaborative �ltering, where the
items recommended to a user are similar to the ones preferred by like-minded
users; and hybrid, where combinations of the previous two techniques are used to
alleviate their drawbacks. Providing useful recommendations for a particular task
requires careful selection of the recommendation method. Both content-based and
collaborative �ltering methods may su�er from user cold start situations (i.e., the
user has rated few items so that the RS cannot deeply understand the user's pref-
erences (Adomavicius and Tuzhilin, 2005)). While content-based recommenders
may su�er from overspecialisation � only suggesting items that are too similar to
the ones the user already knows � collaborative-�ltering is able to suggest novel,
diverse or even unexpected (serendipitous) recommendations. However, collabora-
tive �ltering may su�er from the item cold start problem, in which an item can
only be recommended after it has been rated by certain number of users.



Engineering Recommender Systems for Modelling Languages 7

The quality of the issued recommendations is critical for the success of a
RS (Ricci et al., 2022). The most frequent approaches to evaluate RSs are o�ine
experiments, user studies, and online experiments. O�ine experiments are con-
ducted on datasets of previous user-item interactions, which are split into training
and test sets to build and evaluate the RS, respectively. This type of evaluation
is the easiest to conduct, as it assesses the performance of the RS without re-
quiring the intervention of real users in the evaluation process. In contrast, user
studies allow evaluating a RS online, e.g., via A/B tests that capture the impact of
recommendations in real time. This option is more expensive because it requires
recruiting test subjects who are asked to perform a series of tasks. Even if o�ine
experiments are useful, real users can provide additional information about the
performance of the RS. Finally, online experiments allow measuring, among other
issues, long-term gain or user retention in order to understand how overall goals
are a�ected. Similar to user studies, online experiments require real users; however,
in them, the users are typically unaware of the experiments, which are conducted
at large scale on deployed RSs, in settings close to reality.

An important factor to consider when conducting evaluations is the selection
of metrics (Ricci et al., 2022). Typical metrics of the ranking quality of the recom-
mendation lists are precision, i.e., the likelihood that a suggested item is relevant;
recall, i.e., the proportion of relevant items in the recommendation lists; F1, i.e.,
the harmonic mean of precision and recall; and nDCG (normalised Discounted Cu-
mulative Gain), which considers if the most useful items are in the top positions
of the recommendation lists. Additional metrics, such as MAE (Mean Absolute
Error) and RMSE (Root Mean Squared Error), target the accuracy of rating pre-
dictions, and are in disuse in the �eld. Moreover, other complementary metrics
can be used, such as USC (User Space Coverage), which assesses the percent-
age of users that the RS can recommend, and ISC (Item Space Coverage), which
measures the diversity of the recommendations.

Our focus is on using RSs as assistants for creating models (Almonte et al.,
2022b). Hence, in our setting, the items are model elements to be recommended
(e.g., attributes and operations in a class diagram), and the users are re-interpreted
to be the containers of the items (e.g., classes in a class diagram, which hold the
attributes and operations being recommended). To avoid confusion, we use the
term target � instead of user � to denote the model element for which items are
recommended.

3 Overview of our Approach

The aim of our approach � called Droid � is to facilitate the construction of RSs
for modelling languages of interest, assisting in the creation of models. For this
purpose, it provides a textual DSL that allows the RS developer to con�gure, gen-
erate and evaluate candidate RSs. In addition, the approach deploys the selected
RS in a REST API, and provides out-of-the-box integration with Eclipse editors.
Figure 3 details the steps of the process to de�ne and generate a RS with Droid.

As a �rst step, the RS developer must collect the necessary data to train and
evaluate the RS. These data consist of models conformant to the meta-model of the
modelling language the RS is built for. For convenience, our tooling has a facility
to collect data from local folders, from the MDEForge model repository (Basciani
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Fig. 3: Process to create a RS with Droid.

et al., 2014), and via the MAR model search engine (Hernández López and Sánchez
Cuadrado, 2022). In addition, it is possible to include other data sources via ex-
tension points. Some recommendation methods, e.g., rule-based, may not require
input data for training. Still, test data is required for the �nal evaluation stage.

Steps 2 to 5 are driven by the DSL. Speci�cally, in step 2, the RS developer
uses the DSL to specify the items to be recommended (e.g., attributes, operations)
and the target of the recommendation (e.g., classes). This e�ectively con�gures the
RS for the particular modelling language, as the items and target must belong to
the language meta-model.

In step 3, the RS developer can use the DSL to preprocess the models col-
lected in step 1 to modify or remove irrelevant or mishaped information. For this
purpose, the DSL provides useful preprocessing primitives to, e.g., remove special
characters like blank spaces or non-alphabetic characters. The RS developer can
specify several candidate preprocessing con�gurations, and obtain information on
the e�ects of each of them, to apply the most appropriate one.

In step 4, the training of the RS takes place. The RS developer can choose
several candidate recommendation methods, and use them with di�erent sets of
parameter values. Our implementation currently supports seven methods, and
permits incorporating new ones via an extension point. Droid will produce a
di�erent RS for each candidate method, trained with the preprocessed models.
This training step is omitted for recommendation methods that do not use training
data, such as those based on rules.

In step 5, Droid automatically evaluates the resulting RSs against a set of
performance metrics. The DSL permits selecting the set of metrics to apply, as
well as the evaluation options. The result of the evaluation is a report with the
value of the metrics achieved by each candidate recommendation method. This
way, the RS developer can easily identify the best performing method.

Finally, in step 6, the RS developer selects the most suitable RS, which becomes
automatically deployed as a REST service. This allows the integration of the RS
with arbitrary modelling environments. Currently, our tooling provides an out-of-
the-box integration of this service with the default tree editors that the Eclipse
Modeling Framework (EMF) (Steinberg et al., 2008) generates from Ecore meta-
models.

In the next section, we introduce our con�guration DSL in more detail.
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4 The Droid Domain-Speci�c Language

This section describes the Droid DSL. The language supports the con�gura-
tion of RSs, automating all steps in their generation process: con�guration of
the recommendation targets and items (Subsection 4.1), data preprocessing (Sub-
section 4.2), training of the candidate RSs (Subsection 4.3), and their evaluation
(Subsection 4.4).

We will illustrate the DSL through code fragments corresponding to the run-
ning example, each focused on a con�guration aspect; however, all fragments to-
gether belong to the same �le. Figure 4 shows the meta-model of the DSL. It
extends the one presented in Almonte et al. (2021) by making the de�nition of
recommendation methods extensible (see Subsection 5.2), and including data pre-
processing options. We will refer to this meta-model in the following subsections.

PreProcessing

specialCharRemoval: Boolean=true
editDistanceMerging: Int[*]={1}
minRatingsPerItem: Int[*]={2}
minRatingsPerTarget: Int[*]={2}

inv: not 
(perUser and perItem)

evaluation

DomainProperty

aliasName: String

«enumeration»
SplitType

CROSSVALIDATION
RANDOM

«enumeration»
MetricType

PRECISION
RECALL
F1
NDCG
ISC
USC
MAP

Parameter

name:String
value: String[1...*]

Metric

name: metricType

«from Ecore»
EStructural

Feature

Simple
Feature

DerivedProperty

expression: String

«from Ecore»
EClass

Domain
Class

EvaluationMethod

maxRecommendation: Int=5
relevanceThreshold: Double
cutoffs: Int[1...*]

SplitMethod

splitType: SplitType=CrossValidation
nFolds: Int=10
perUser: Boolean=true
perItem: Boolean=false
percentageTraining: Double

Recommendation
Method

name: String

RecommenderConfiguration

name: String
metaModelURI: String
repositoryURI: String

preprocessing

parameters
0...*

metric
1...*

feature

pk
features

  *

items
*

class

classes
  *

target

splitmethods
1...*

Fig. 4: Meta-model of the Droid DSL (extension of (Almonte et al., 2021)).

4.1 Con�guring the RS to the modelling language

Droid supports the generation of RSs for models and meta-models (since a meta-
model is also a model). Thus, the con�guration of a RS for a (meta-)modelling
language requires providing the meta-model of the language, together with a set
of instances of this meta-model that will be used for training and evaluation (at-
tributes metaModelURI and repositoryURI in class RecommenderCon�guration of Figure 4).
In addition, the con�guration must include the target language elements subject to
recommendation (class DomainClass), the items to be recommended (class Domain-

Property), and their identi�ers (references DomainClass.pk and DomainClass.features).
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Technology-wise, language meta-models should be described using EMF. Hence,
Droid can generate RSs for Ecore meta-modelling (since Ecore has itself a meta-
model), and for modelling using any EMF-de�ned language, either domain-speci�c
or general-purpose like UML.

As an example, Listing 1 shows the con�guration of the RS for UML class
models. Lines 1�3 declare the name of the RS, the URI of the UML meta-model,
and a local folder containing the dataset of models. These models may have been
gathered using the data collection facilities of Droid (step 1 in Figure 3). Next,
lines 5�10 specify the target of the recommendation (classes) and the modelling
items that will be recommended (attributes and operations). Class (line 6) is a
meta-class of the UML meta-model (cf. Figure 1a), and for each item to be recom-
mended, the listing speci�es an alias (�attributes�, �methods�) and the property by
which such items are accessed from the meta-class. In this case, ownedAttribute and
ownedOperation (lines 7�8) are two associations stemming from Class (cf. Figure 1a).
Finally, lines 12�22 de�ne the attributes to be used as identi�ers of the target class
and the items (their name in all cases). In addition to Class (which is the target),
these lines declare the identi�ers of meta-classes Property and Operation, as they are
the target of associations ownedAttribute and ownedOperation in the UML meta-model.

1 Recommender: "ModellingRecommender"
2 Metamodel: "http://www.eclipse.org/uml2/5.0.0/UML"
3 Repository: "/ModellingRecommender/instances"
4

5 Target {
6 class Class {
7 item "attributes" : ownedAttribute;
8 item "methods" : ownedOperation;
9 }

10 }
11

12 Identi�ers {
13 class Class {
14 pk feature name;
15 }
16 class Property {
17 pk feature name;
18 }
19 class Operation {
20 pk feature name;
21 }
22 }

Listing 1: Con�guring recommendation targets and recommended item types.

This con�guration mechanism enables the speci�cation of the types of objects
receiving the recommendation (targets), the types of objects to be recommended
(items), and their features. This is enough to con�gure RSs where the items are
objects with attributes, connected to the target of recommendations. In our ex-
ample, this permits the de�nition of a wide set of RSs, e.g., recommending classes
for packages, or parameters for operations. However, this mechanism is not able
to recommend patterns of objects, e.g., UML design patterns.
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4.2 Data preprocessing

Data preprocessing aims at improving the quality of the input data (models in our
case) and, subsequently, of the RS built from them. It typically involves modifying
or deleting irrelevant information from the original dataset (Ricci et al., 2022).

Our DSL o�ers four preprocessing options (class PreProcessing in Figure 4),
which can be combined. The �rst one (specialCharRemoval) allows removing spe-
cial characters (e.g., numbers, blank spaces, and non-alphabetic characters such
as exclamation marks, commas, underscores, or symbols) from the textual infor-
mation within the models of the dataset. This option can take the values true and
false. The second option (editDistanceMerging) speci�es the Levenshtein distance
under which two strings can be considered equal. This distance is given by the
number of deletions, insertions, or substitutions required to transform one string
into another (Shahare, 2017) (e.g., �car� and �cat� have Levenshtein distance 1).
The third option (minRatingsPerItem) removes from the dataset all items that do
not appear in a minimum number of targets. Similarly, the last option (minRat-
ingsPerTarget) removes all targets lacking a minimum number of items.

Listing 2 de�nes the preprocessing options for the running example. The DSL
supports assigning several values to each option, and the engine will perform all
possible combinations. Speci�cally, the listing enables preprocessing con�gurations
by both removing (true) and keeping (false) special characters; applying string sim-
ilarity for distances 2, 3 and 4; deleting the attributes and operations (items) that
do not appear in at least 1, 2 or 3 classes (target); and deleting the classes (target)
that have less than 1, 2 or 3 attributes or operations (items). Overall, the listing
produces 2*3*3*3=54 preprocessing combinations. As we will see in Subsection 5.3,
the Droid engine will execute each preprocessing combination, calculating several
metrics so that the RS developer can choose the most appropriate one.

23 PreProcessing {
24 specialCharRemoval: true, false;
25 editDistanceMerging: 2,3,4;
26 minRatingsPerItem: 1,2,3;
27 minRatingsPerTarget: 1,2,3;
28 }

Listing 2: Con�guring the data preprocessing options.

The supported preprocessing options were selected based on an analysis of the
most common forms of preprocessing that modelling RSs use for models (e.g.,
merging similar items (Di Rocco et al., 2023)) and general-purpose RSs use for
data (e.g., data cleaning, �ltering scarcely rated items or targets (Amatriain et al.,
2011)). Since the options can be combined and receive ranges of values, the RS
designer can quickly specify large amounts of preprocessing con�gurations. Still,
in the future, we aim at supporting specialised preprocessing options by using
extension points.
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4.3 Training the RS

Training the RS involves two tasks: splitting the data into training and test sets,
and building the RS using the training set and one (or several) recommendation
methods. Droid allows automating both tasks.

The DSL supports two data splitting techniques: CrossValidation and Ran-

dom (class SplitMethod in Figure 4). CrossValidation ensures good generalisation
and reduces over�tting (Reitermanová, 2010). It is con�gured with the number
of subsets to create, called k folds. In this setting, one subset is used for testing
and the rest for training, and this process is repeated k times assigning the role of
test set to a di�erent subset in each iteration. Random splitting is con�gured with
the percentage of elements to be used for training/test, and the sampling is done
randomly following a uniform distribution. Lines 30�31 of Listing 3 show the data
splitting con�guration for the example: 10-fold cross-validation.

29 Split {
30 splitType: CrossValidation;
31 nFolds: 10;
32 perUser: true;
33 }

Listing 3: Con�guring the dataset splitting into training and test sets.

In addition, splits can be performed per user or per item. The former builds
the subsets for each available user, and the latter for each available item. For
example, a perUser random split with 80% training percentage would use 80% of
the preferences of each user (i.e., 80% of the attributes and operations of each
class) for training, and the remainder 20% for testing. Line 32 of Listing 3 selects
a perUser split.

As for the actual training of the RS, the RS developer needs to select the
candidate recommendation methods and the values of their parameters (classes
RecommendationMethod and Parameter in Figure 4). Then, the Droid engine trains
each RS with every speci�ed method and parameter, presenting performance met-
rics of the resulting RSs so that the developer can choose the most appropriate
one.

The DSL currently supports the following seven recommendation methods:
item popularity (ItemPop), content-based cosine similarity (CosineCB), user-based
collaborative �ltering (UBCF), item-based collaborative �ltering (IBCF), context-
aware collaborative �ltering (CACF), user-based collaborative �ltering with content-
based similarity (CBUB), and item-based collaborative �ltering with content-
based similarity (CBIB). However, as we will describe in Subsection 5.2, our ar-
chitecture is extensible, since it permits adding new recommendation methods in
an external way, and then the DSL enables their selection by name, and their
con�guration by providing values to their parameters.

Listing 4 shows the con�guration of the recommendation methods for the ex-
ample, where we have selected all the seven supported methods. The parameter
values appear after the method name between parenthesis, and specify di�erent
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user/item neighbourhood sizes (i.e., number of most similar users/items with which
generating recommendations).

34 Methods {
35 ItemPop, CosineCB, CBIB("5","10"), CBUB("5","10"),
36 CACF("5","10"), IBCF("5","10"), UBCF("5","10");
37 }

Listing 4: Selecting the candidate recommendation methods to train the RS.

Overall, extensions points make the DSL extensible by enabling the addition
of new recommendation methods in an external way. Instead of hard-coding these
methods, e.g., as an enumerate or class in the meta-model of Figure 4, the class
RecommendationMethod speci�es the name of an available method in its attribute
name, and sets values to the method parameters. The DSL editor has information
of the available methods (these are the externally implemented extension points),
so it is able to type-check that the referenced method exists and the parameter
values are consistent with the parameter types de�ned in the extension point (cf.
Subsection 5.2).

4.4 Evaluating the RS

The DSL allows choosing the metrics to be used for evaluating the selected RS
methods (class EvaluationMethod in Figure 4), and to con�gure some evaluation
options.

Listing 5 shows this con�guration for the running example. Line 39 declares
the metrics to compute. In this case, the list includes all the metrics currently
supported by Droid: Precision, Recall, F1 (the harmonic mean of Precision and
Recall), nDCG (normalised discounted cumulative gain), ISC (item space cov-
erage), USC (user space coverage), and MAP (mean average precision). Line 40
speci�es the number of top items in the ranked recommendation lists with which
computing the metrics (cuto�s). Then, line 41 sets the maximum number of items
that the RS will recommend. Finally, line 42 sets the minimum value of the esti-
mated preference score above which an item is considered a good recommendation
(relevanceThreshold).

The metrics are computed on the input data reserved for testing by the split
technique (Subsection 4.3). When considering a perUser split, for each target user
(i.e., classes in our example), a metric is computed using the user's items (i.e., at-
tributes and operations in our example) in the test set and the items recommended
by a target method, measuring to what extent the two sets of items are close. For
example, precision measures the percentage of recommended items that belong to
the user's test set, and recall measures the percentage of the user's test items that
the method recommends. This can be measured for the entire recommendation
lists, or for a cuto� of the top k items of each list. Moreover, in this process, the
relevance of a recommended item can be established by a threshold score value.
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38 Evaluation {
39 metrics: Precision, Recall, F1, NDCG, ISC, USC, MAP;
40 cuto�s: 1,2,3,4,5;
41 maxRecommendations: 5;
42 relevanceThreshold: 0.5;
43 }

Listing 5: Choosing and con�guring the evaluation metrics.

Overall, the supported metrics are some of the most common ones for evaluat-
ing RSs (Gunawardana et al., 2022; Zangerle and Bauer, 2023). However, we plan
to add an extension point enabling new metrics to be de�ned externally.

5 The Droid Framework

Next, we provide a detailed description of the Droid framework, presenting its
architecture (Subsection 5.1), extensibility mechanisms (Subsection 5.2), function-
alities for the RS developer (Subsection 5.3), and generated recommendation ser-
vices, including the automatic integration of RSs within the default EMF tree
editors (Subsection 5.4).

5.1 Architecture

Figure 5 depicts the architecture of Droid, which has three main components:
The Droid Con�gurator, the Droid Service, and the Clients. Additionally, the
framework o�ers three extension points: DataCollection, DataEncoding, and Recommen-

dationMethod.
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The Droid Con�gurator is an Eclipse plugin that permits the RS developer
to con�gure, evaluate and synthesise RSs. It provides an Eclipse textual editor
for the DSL presented in Section 4, where the RS developer can con�gure mul-
tiple RSs for a given modelling language (label 1). The con�guration speci�ed
with the DSL is the input to the Data Preprocessor (label 2). The results that
each data preprocessing option yields are displayed in a dedicated view, where the
RS developer can select the one to apply (label 3). Likewise, the RS Evaluator

takes the speci�ed RS con�guration as input (label 4), and uses the external li-
braries RankSys (Vargas and Castells, 2011) and RiVal (Said and Bellogín, 2014)
to evaluate the selected recommendation methods. The metrics chosen by the RS
developer are computed for each RS, and the results are displayed in an Eclipse
view (label 5). Subsection 5.3 o�ers more details about the Droid Con�gurator.

The RS developer can select the preferred RS based on the reported metrics,
and the RS Synthesizer generates a set of con�guration �les for the recommenda-
tion service (label 6). This service, called DroidREST (label 7), is a REST API
implementing a generic recommendation service that can be customised for par-
ticular modelling languages using the con�guration �les that the RS Synthesizer

produces. The service uses a JSON-based model representation that allows clients
to request recommendations. DroidREST processes these requests and sends the
generated recommendations as a response.

In the Client side, any modelling tool can use the Droid Service to obtain
recommendations and make them available to the modelling language users (label
8). Currently, our tooling supports the automatic integration of the resulting RSs
within the default tree editor that EMF provides for Ecore-based languages. How-
ever, other modelling clients are possible, even outside the Eclipse/EMF ecosystem,
as we showed with the Socio modelling chatbot in (Almonte et al., 2021), or the
Dandelion low-code platform in (Martínez-Lasaca et al., 2023). Subsection 5.4
provides more details on the Droid Service and its clients.

Finally, the framework has three extension points (labels 9�11) that recom-
mendation experts can use to extend Droid, as we explain next.

5.2 Extensibility options

Droid can be extended externally, via three extension points (cf. Figure 5) en-
abling the incorporation of new data sources (DataCollection), data encodings (DataEn-
coding) and recommendation methods (RecommendationMethod). Extension points are
the mechanism that Eclipse provides to extend the behaviour of a program in an
external way. They declare a contract that extensions must conform to. At run-
time, an extended program can query for existing extensions implementing an
extension point, and invoke them as needed.

Figure 6a depicts the extension point to de�ne new data sources (for collect-
ing models and meta-models) in Droid. Speci�cally, adding a new data source
to Droid requires providing the name of the data source, the URL of the data,
and a Java class implementing the interface IDataSource, with details on how to
collect the data. Droid currently integrates three data sources, implemented as
extensions conforming to this extension point. The �rst one allows gathering data
via browsing local folders. The second one gathers data by accessing the MAR
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model search engine (Hernández López and Sánchez Cuadrado, 2022), which re-
turns models satisfying a given set of keywords. The third one retrieves models
from the MDEForge (meta-)model repository (Basciani et al., 2014), which sup-
ports queries via keywords, a minimum model size, and quality metrics that the
models must satisfy.

DataCollection

name:String
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IDataSource

+ getPage()

source

«extension point»

«interface»

(a) Data source.

DataEncoding
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«extension point»
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(b) Data encoding.
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libraryName: String
methodName: String
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Parameter
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type: String

INewMethod
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+ generateCode()

method
«interface»

(c) Recommendation method.

Fig. 6: Droid extension points.

The second extension point allows the de�nition of data encodings. These rep-
resent the interactions between targets and items in some format � typically as
(rating) matrices � which recommendation methods use for training and evalua-
tion. Since each recommendation method requires a speci�c data encoding, this
extension point permits its declaration and implementation. As the class diagram
in Figure 6b shows, the extension point requires providing the name of the encoding
technique, a description, and an implementation of the Java interface INewDataEn-

coding performing the actual encoding.

Currently, Droid provides three extensions conforming to the DataEncoding ex-
tension point: binary, frequency, and normalised frequency. They build matrices
with the targets as rows, and the items as columns. Then, in the binary encoding,
each matrix cell is set to 1 if the corresponding target and item are �related� (e.g.,
a class contains certain attribute), and 0 otherwise; in the frequency encoding, the
cells contain a real value that weights the relationship between the target and the
item (e.g., the number of classes with same name in di�erent models that contain
a given attribute); and in the frequency normalised encoding, the cells contain the
frequency value normalised to some range (usually [0,1]).

The last extension point, shown in Figure 6c, allows adding recommendation
methods. Implementing this extension point entails providing a Java class (im-
plementing the interface INewMethod) that invokes the associated recommendation
method; the name of the used recommendation library (if any); the method name
and its category; the name of the data encoding technique used by the method
(which must be the name of a DataEncoding extension); a description; an example
of use (to be displayed in the editor to help the end-user, like UBCF(�5�, �10�)); and
the name and type of the method parameters.

Currently, Droid supports seven recommendation algorithms from two li-
braries, which have been integrated using the extension point. Speci�cally, from
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MemoRec (Di Rocco et al., 2023), it supports CACF, and from RankSys (Vargas
and Castells, 2011), it supports ItemPop, CosineCB, UBCF, IBCF, CBUB and
CBIB.

5.3 Droid Con�gurator

The Droid Con�gurator is an Eclipse plug-in designed to help RS developers build
RSs for modelling languages. It is available at https://droid-dsl.github.io/.

The con�gurator includes a wizard � with three steps � for the creation of
Droid projects, as shown in Figure 7. The �rst step requires specifying the name of
the new RS, and the modelling (UML, XMI) or meta-modelling (Ecore) technology
that the RS will serve. To ease the con�guration of the RSs, it also provides an
option to automatically generate a default Droid con�guration model with typical
values. In step 2, the wizard permits selecting one of the available data sources to
collect models for training and evaluating the RS. When choosing a data source,
the wizard shows a page to con�gure a query for the selected data source. In
particular, the step 3 of the �gure displays the query con�guration page for the
MAR engine.

1

2

3

Fig. 7: The three steps of Droid's wizard, with con�guration of MAR search in
step 3.

Figure 8 shows a screenshot of the Droid Con�gurator environment. The editor
(label 1) allows the con�guration of RSs through the DSL presented in Section 4.
This editor was built using Xtext1, and features syntax highlighting, autocomple-
tion, and markers for errors and warnings. A pop-up window (label 2) presents
autocompletion options by listing the possible items that can be recommended

1 http://www.eclipse.org/Xtext/

https://droid-dsl.github.io/
http://www.eclipse.org/Xtext/
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for a given target. For instance, for the running example, it shows the properties
that the meta-class Class from the UML meta-model declares. The �gure shows an
excerpt of the UML meta-model (label 3) with arrows to the elements selected in
the screenshot.

7654

3
1

2

Fig. 8: Screenshot of the Droid Con�gurator.

The Data Preprocessing view at the bottom helps in understanding the dataset,
and displays information of each preprocessing con�guration. The data descrip-
tion section (label 4) provides details about the dataset, namely, the total number
of models, loading models (i.e., not broken), and well-formed models; together
with the minimum, maximum and average model size (measured as the number of
model elements). The target/items section (label 5) shows the number of targets
and items (total and unique), the average number of items per target, and the
percentage of sparsity (i.e., the percentage of the target-item matrix that is not
populated). The settings section (label 6) displays the options of each preprocess-
ing con�guration, which concern the removal of special characters, the Levenshtein
distance for item merging, and the minimum rating per target and per item (cf.
Subsection 4.2). Finally, the panel with label 7 shows the preprocessing results for
the currently selected preprocessing con�guration in the settings section (Con�g-
uration 1 in the �gure). The upper table reports the number of remaining items
after applying each preprocessing con�guration, and the bottom table displays the
percentage of targets and items left after cleaning the data.

To train the candidate RSs, the RS developer needs to choose a preprocessing
con�guration, and click on the button Train (label 6 in Figure 8). This opens the
view of Figure 9, which shows metrics for all trained RSs. They are displayed in a
drill-down table, where each row corresponds to a recommendation method, and
each column to a selected metric. The table displays the method categories (e.g.,
Collaborative Filtering, Hybrid) according to the extension point details. Within
each category, the recommendation methods that were selected using the Droid
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DSL are listed, and for each method, there is a block of rows corresponding to the
values of each method parameter, if any. Columns 2�8 display the value of the met-
rics selected in the DSL. As an example, the Hybrid category includes two methods:
content-based item-based (CBIB) and content-based user-based (CBUB). These
methods have one parameter, named k, which is the neighbourhood size. Conse-
quently, a block is displayed with one row for each speci�ed value of k in the DSL.
For CBUB, the parameter k takes the values 5, 10, 15, and 20. To facilitate under-
standing, the colour of the rows depends on the F1 value achieved by the methods:
green for methods with an F1 value in the top 20% values, red for methods whose
F1 value is below the median, and orange for the rest.

Fig. 9: Training results view of the Droid Con�gurator.

5.4 Recommendation service and clients

Upon selecting a RS in the training results view (cf. Figure 9), Droid synthesises
a set of con�guration �les, which are uploaded to a server. These �les store the
information needed to generate the recommendations, such as the items to rec-
ommend for a given target and context. This way, our generic recommendation
service DroidREST can compute the recommendations based solely on these con-
�guration �les. This design facilitates re-deploying the RSs de�ned with Droid by
just uploading new con�guration �les, without changing the server or the client
code.

Moreover, our decision to deploy the RSs as services (instead of their direct
deployment within a speci�c modelling tool) decouples the recommendation com-
putation task from the modelling environment. This way, the same RS can be
reused from di�erent modelling tools, even if developed with technologies other
than Eclipse � see (Almonte et al., 2021) for an example of integration of a Droid
recommender within a modelling chatbot.
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Clients (i.e., modelling tools) can solicit recommendations via POST requests
to DroidREST. The requests should include the name of a deployed recommender,
and a JSON �le containing the name of the recommendation target and its context
(i.e., the items of the target). Then, the service responds with the list of new items
recommended for that target. The POST requests accept optional parameters
like the maximum number of recommended items to retrieve (newMaxRec), the
recommendation score threshold for considering an item relevant (threshold), and
the type of the items (itemType).

DroidREST is implemented in Java using Jersey2 and Tomcat3. It has three
main classes: Recommender, which handles the requests from the clients; Contex-
tItem, which parses the received JSON �les to extract the recommendation target
and its items from the modelling context; and RecommenderGenerator, which gen-
erates the recommendations for the given target taking its context and the query
parameters into account. Since retrieving the recommendations is direct, the ser-
vice has response times in the order of milliseconds.

While any modelling tool can integrate RSs built with Droid via the REST
service, for convenience, we provide an out-of-the-box integration of the service
within the default tree editors that the Eclipse Modeling Framework (EMF) gen-
erates from Ecore meta-models. By default, these editors permit the creation of
instances of a meta-model using a tree view. EMF generates the code of the editors
automatically by applying a set of code generation templates to the modelling lan-
guage's meta-model. Such templates are written in a model-to-text language called
Java Emitter Templates (JET)4 and produce the Java code of the editors. For the
integration of the recommenders within such editors, we overwrote those built-in
templates so that now, in addition, they generate a Recommender pop-up menu
on the objects that can be target of the recommendations, and a submenu with
the possible item types to be recommended. Implementation-wise, this new menu
is an instance of the Java class org.eclipse.jface.action.MenuManager. Clicking on one of
these submenus for an item type sends a POST request to DroidREST specifying
the RS name as a path parameter, and providing a JSON �le with the following
information: the object target of the recommendation, its items, the objects in its
context, and the item type to recommend. DroidREST responds with a ranked list
of item recommendations in JSON format, which details, for each recommended
item, the value of its features (those declared in theDroid con�guration �le) and a
ranking value. Then, the retrieved recommendations are presented in a table inside
a Shell window, ordered by their relevance. The user can select recommendations
from this table, which are incorporated into the model under construction.

As an illustration, Figure 10 shows a Droid recommender integrated in the
tree editor of an object-oriented modelling language similar to UML. The �gure
shows a class model being edited (label 1). Right-clicking on an object of type
Klass (BankEmployee in the �gure) brings up the pop-up menu Recommender,
with submenu options for obtaining recommendations of Attributes or Methods for
the class (label 2). In the �gure, the user has selected the �rst submenu, so a
collection of attributes is recommended (label 3). Internally, the recommendations
are retrieved by invoking DroidREST passing as parameter a JSON �le with the
selected object (i.e., BankEmployee), its items (none in this case), its context
(i.e., object MyBank), and the item type to recommend (i.e., Property). Then,

2 https://eclipse-ee4j.github.io/jersey/ 3 https://tomcat.apache.org/
4 https://projects.eclipse.org/projects/modeling.m2t.jet
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the JSON list of recommendations that the service returns is converted into Java
objects, which are displayed in a table. As shown in the �gure, in addition to the
name, each recommended attribute has a rating that indicates the con�dence in
the recommendation, where higher rating values imply greater con�dence that the
recommendation is relevant.

1
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3

Fig. 10: Out-of-the-box integration of a Droid recommender in a tree modelling
editor. (1) Model being edited. (2) Recommender menu displayed upon clicking
on a class. (3) Recommendations shown to the user.

Figure 11 shows a screenshot of the example UML RS integrated (manually)
within Obeo's UML Designer. For this integration, we created a recommendation
layer that, when active, enables to request recommendations for UML classes. In
the �gure, the user requested recommendations for class Student, so a pop-up
dialog presents a ranked list of recommendations with their rating. Once the user
selects the items of interest, they are added to the class.

6 Evaluation of Droid Recommendations

In this section, we evaluate the recommendations that the RSs built with Droid
produce. We pursued two types of experiments. First, in order to assess how good
Droid recommendations are with respect to �ground truth� data in existing mod-
els, we designed an o�ine experiment to answer the following RQ:

RQ1 How precise, complete and diverse are the recommendations of Droid

recommenders?

Second, since users of modelling languages may have di�erent perceptions on
the quality and usefulness of the issued recommendations, we designed a user study
to answer:
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Fig. 11: Integration of the UML RS within a Sirius editor.

RQ2 How do users perceive the recommendations of Droid recommenders?

Additionally, we wanted to study to what extent the results of the o�ine eval-
uation and the user study di�er, answering to:

RQ3 How do the o�ine experiment results compare to the ones of the user

study?

Figure 12 displays our evaluation process. First, we collected three datasets
on three di�erent domains (label 1, Subsection 6.1.1). Then, we used Droid to
create a set of candidate RSs (labels 2 and 3, Subsection 6.1.2). To answer RQ1,
we compared the resulting RSs by domain using several metrics (label 4, Subsec-
tions 6.1.3 and 6.1.4). Subsequently, to answer RQ2, we conducted a user study
where 40 participants rated the recommendations produced by three of the recom-
menders with respect to �ve criteria (label 5, Subsection 6.2). Finally, the answer
to RQ3 comes from the comparison of the results of the o�ine experiment and the
user study (label 6, Subsection 6.2.10). We discuss threats to the validity of these
experiments in Subsection 6.3.

The datasets and the raw data of the experiments are available at https:

//github.com/Droid-dsl/DroidConfigurator.

6.1 RQ1: O�ine experiment

Next, we describe the setup of the o�ine experiment (Subsection 6.1.1), the exper-
iment design (Subsection 6.1.2) and the obtained results (Subsection 6.1.3), and
answer RQ1 (Subsection 6.1.4).

https://github.com/Droid-dsl/DroidConfigurator
https://github.com/Droid-dsl/DroidConfigurator
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Query MAR search engine: Keywords + UML
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Fig. 12: Evaluation process.

6.1.1 Experiment setup

To understand how good the recommendations of Droid recommenders are, we
built several RSs for UML class diagrams in three di�erent domains: Banking,
Literature and Education. Just as in the running example, the RSs recommend
attributes and operations for classes.

We collected the models used to train and test the RSs from MAR (Hernández
López and Sánchez Cuadrado, 2022). Table 1 shows the search keywords we used to
retrieve the models for each domain, and some statistics of the resulting datasets:
number of models, number of targets (i.e., classes), number of items (i.e., attributes
and operations), and average number of items per target. The number of models
in the datasets is balanced, ranging from 2,297 models (for Banking) to 2,771
(for Education). All models conform to the UML 2.0 meta-model, and contain
class diagrams. The datasets are available at https://github.com/Droid-dsl/

DroidConfigurator.

Table 1: Description of the datasets.

Domain Keywords Models Targets Items Items/target (avg.)

Banking
bank, �nance, economy,
accounting, investment

2,297 2,346 6,902 3.15

Literature
bibliography, book, author,
journal, magazine

2,605 2,272 7,202 2.94

Education
professor, teacher, student,
alumn, school

2,771 2,154 6,789 3.17

Total: 7,673 6,772 20,893

These datasets extend those used in the o�ine experiment conducted in (Al-
monte et al., 2021) by considering an additional domain (Banking) and 3× more

https://github.com/Droid-dsl/DroidConfigurator
https://github.com/Droid-dsl/DroidConfigurator
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models. This enables us to assess whether the results of the previous preliminary
experiment are consistent with those obtained for this larger and more diverse
dataset.

6.1.2 Experiment design

We built multiple RSs for each domain, using the con�guration options for data
preprocessing, data splitting, RS training and RS evaluation in Listings 1�5 of
Section 4. More in detail:

� For data preprocessing (cf. Subsection 4.2), we set specialCharRemoval to both
true and false; editDistanceMerging to 2, 3 and 4; and both minRatingsPerItem
and minRatingsPerTarget to 1, 2 and 3.

� For data splitting (cf. Subsection 4.3), we used 10-fold cross-validation with a
perUser technique to split the datasets into training and test sets.

� For training (cf. Subsection 4.3), we selected the recommendation methods
ItemPop, CosineCB, CBIB, CBUB, IBCF, and UBCF. We excluded CACF
from the experiment as it is not applicable to UML models, but just to meta-
models. We parameterised all methods but ItemPop and CosineCB with user/item
neighbourhood sizes (k) of 5, 10, 15, 20, 25, 50 and 100. As commonly done in
the RSs �eld (Ji et al., 2020), we consider the popularity-based method Item-
Pop as a baseline to beat, being a non-personalised recommendation approach
but capable of providing e�ective recommendations due to potential popularity
biases in the data.

� For evaluating the RSs (cf. Subsection 4.4), we applied the ranking quality
metrics precision (p), recall (r), F1, nDCG and MAP; and the coverage and
diversity metrics USC and ISC. Additionally, we used a relevance threshold of
0.5, cut-o� values from 1 to 5, and a maximum number of recommendations
of 5.

6.1.3 Experiment results

Table 2 shows the performance achieved by every recommendation method in each
domain/dataset (Banking, Education and Literature) as well as the average results
across the three domains. The rows correspond to the recommendation methods
and domains/datasets, and the columns to the performance metrics. For the sake
of brevity, the table just shows three representative recommendation methods:
ItemPop (item popularity, a non-personalised baseline), CosineCB (content-based
with cosine similarity, a representative of content-based approaches), and CBUB
(content user-based hybrid, the best performing collaborative �ltering method in
this experiment). For CBUB, the table presents the results for neighbourhood
size k=5, since it was the best performant. ItemPop and CosineCB do not have
parameters.

We can observe that CBUB was the best-performing recommendation method
across all domains. By contrast, ItemPop performed the worst across the domains
except on Banking, where it performed better than CosineCB.

Considering F1 � the harmonic mean between precision and recall � the best
recommendations were generated for the Banking domain, with an F1 value of
0.643 for CBUB. The other two domains show a signi�cant, but more undersized
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Table 2: Performance of the recommendation methods in the o�ine experiment.

Method Domain p r F1 MAP nDCG USC ISC
ItemPop 0.041 0.201 0.069 0.138 0.155 1.000 0.016
CosineCB 0.043 0.216 0.072 0.212 0.213 1.000 0.025
CBUB

All domains
0.370 0.515 0.431 0.482 0.492 0.436 0.032

ItemPop 0.078 0.383 0.129 0.272 0.301 1.000 0.023
CosineCB 0.068 0.339 0.113 0.335 0.336 1.000 0.036
CBUB

Banking
0.604 0.688 0.643 0.669 0.677 0.436 0.042

ItemPop 0.019 0.084 0.031 0.066 0.073 1.000 0.008
CosineCB 0.026 0.132 0.044 0.129 0.130 1.000 0.016
CBUB

Education
0.175 0.384 0.241 0.326 0.342 0.423 0.020

ItemPop 0.028 0.135 0.046 0.076 0.090 1.000 0.016
CosineCB 0.036 0.178 0.059 0.171 0.173 1.000 0.022
CBUB

Literature
0.331 0.472 0.389 0.449 0.456 0.451 0.034

performance. Furthermore, the performance results were quite positive over the
whole dataset (i.e., considering the three addressed domains together), with a
maximum F1 value of 0.431 for CBUB.

Table 3 presents the precision of the recommendation methods on each domain
at cut-o� k, p@k, for k from 1 to 5. We observe that the smaller the value k, the
higher the precision. Likewise, CBUB outperformed ItemPop and CosineCB across
all domains.

Table 3: Precision@k of the recommendation methods in the o�ine experiment.

Method Domain p@1 p@2 p@3 p@4 p@5 Avg.
ItemPop 0.102 0.077 0.061 0.048 0.041 0.066
CosineCB 0.210 0.106 0.071 0.054 0.043 0.097
CBUB

All domains
0.464 0.250 0.171 0.130 0.105 0.224

ItemPop 0.194 0.154 0.127 0.095 0.078 0.129
CosineCB 0.334 0.167 0.112 0.084 0.068 0.153
CBUB

Banking
0.663 0.347 0.235 0.176 0.141 0.312

ItemPop 0.058 0.044 0.029 0.022 0.019 0.034
CosineCB 0.126 0.066 0.044 0.033 0.026 0.059
CBUB

Education
0.293 0.176 0.122 0.098 0.078 0.154

ItemPop 0.053 0.033 0.028 0.025 0.028 0.033
CosineCB 0.169 0.085 0.056 0.044 0.036 0.078
CBUB

Literature
0.437 0.229 0.155 0.117 0.095 0.207

6.1.4 Answering RQ1

To answer RQ1 (How precise, complete and diverse are the recommendations

of Droid recommenders?), we analysed the performance of the recommendation
methods looking at their F1 values (cf. Table 2). F1 is a commonly used metric in
the information retrieval and RSs �elds. It is the harmonic mean of precision and
recall, and thus provides a compromise between the precision of the recommenda-
tions (the proportion of relevant items among the retrieved items) and their recall
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(the proportion of relevant items that were retrieved), ensuring that the evaluation
considers both the relevance and coverage of the recommendations.

The highest F1 value was 0.643 for the Banking domain, 0.241 for Educa-

tion, 0.389 for Literature, and 0.431 for all domains together. In all cases, CBUB
achieved the highest F1 value. These results show that the RSs built with Droid
can provide sensible recommendations for the three domains (cf. Table 2). Addi-
tionally, we observe that the performance of the RSs varies across domains. Several
factors can play a role here depending on the quality of the dataset, like the av-
erage number of preferences per target/item, or the rating sparsity, which is the
proportion of existing target-item relations.

Our results con�rm the conclusions of our preliminary experiment (Almonte
et al., 2021), in that collaborative �ltering methods outperform content-based ones
for the recommendation task of completing classes. However, while UBCF gener-
ally performed better in (Almonte et al., 2021), now the hybrid method CBUB is
the one with the best performance. This is due to the use of data preprocessing
and a bigger dataset, which allows establishing more valuable content-based user
similarities within the collaborative �ltering heuristic of the method. In particular,
the inclusion of a data preprocessing phase, which was absent in (Almonte et al.,
2021), permits creating RSs with an order of magnitude higher performance. This
way, while preprocessing may lead to higher values of precision-based metrics (pre-
cision, recall, F1), it may decrease diversity/coverage metrics (like ISC and USC)
which had higher values in (Almonte et al., 2021). This can be attributed to the
fact that preprocessing deleted items that did not appear in a minimum number
of targets (2 at least), and targets lacking a minimum number of items (1 item).

6.2 RQ2 and RQ3: User study

In the following, we report on a user study to validate and complement the results
of the o�ine experiment. This study aims at evaluating how users perceive the
recommendations issued by Droid recommenders. Next, we present the method-
ology of the user study (Subsection 6.2.1), the considered assessment metrics
(Subsection 6.2.2), the participants (Subsection 6.2.3), the results per assessment
metric (Subsections 6.2.4 to 6.2.8), and answer RQ2 and RQ3 (Subsections 6.2.9
and 6.2.10).

6.2.1 Design of the user study

Roughly, the user study involves human participants performing one task, con-
sisting in the assessment of the recommendations generated by the three recom-
mendation methods discussed in the o�ine experiment: ItemPop, CosineCB, and
CBUB. Analogously to the o�ine experiment, the user study analyses the recom-
mendations for three domains: Banking, Education and Literature.

We conducted the study remotely and asynchronously. The participants re-
ceived an email invitation that included the URL of the website to participate in
the experiment, and a unique identi�er. To encourage maximum participation, we
granted seven days to complete the experiment. After logging into the website with
their identi�er, the participants had to evaluate either 3 or 6 cases5. Each case

5 To ensure the evaluation of 45 cases, the last 5 participants only evaluated 3 cases.
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presented a class diagram composed of a target class and its modelling context,
together with a list of recommended items (a mix of attributes and operations)
for the target class. Then, for each recommended item, participants had to state
whether they perceived the recommendation as:

� Correct : The item is suitable for the target class.
� Obvious: The item could have easily been proposed by the participant.
� Redundant : The item exists or is similar to an existing one in the diagram.
� Contextualised : The item belongs to the domain of the diagram.
� Generalisable: The item is also applicable to other classes of the diagram.

As an example, Figure 13 shows one of the cases from the experiment, as
presented to the participants. The web page displays: (1) a class diagram with
the target class (tagged as �Target�) and its context, (2) the recommended at-
tributes and operations for the target class, (3) the �ve criteria to be evaluated by
the participant, (4) the participant's level of con�dence in their assessment, and
(5) a textbox to specify missed items for the target class not found among the
recommendations.

1
2 3

4 5

Fig. 13: One of the cases evaluated in the user study.

We assigned the cases to each participant randomly from the three domains,
ensuring that each case was evaluated by exactly �ve participants. The recom-
mendation lists for each target class included the �ve top items suggested by each
recommendation method (ItemPop, CosineCB and CBUB). This means that each
target class received a maximum of 3x5=15 recommendations, but there could
be fewer, since we eliminated duplicates (i.e., items recommended by more than
one method). We selected this size to make the evaluation less burdensome for
the participants by recommending a reasonable, but not overwhelming number of
options. Altogether, participants evaluated 45 cases, each one of them containing
15 recommendations, which resulted in 3,375 recommendation evaluations. The
recommended items were listed in random order, so participants could not know
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which method each recommended item came from (not even if the recommenda-
tions were automatically generated).

6.2.2 Assessment metrics

To evaluate the participants' perception of the recommendations, we used their
assessments about them (i.e., whether they were correct, obvious, redundant, con-
textualised or generalisable) to compute the following metrics:

� Precision@k (for k = 1,...,5), which measures the likelihood that a suggested
item is relevant.

� Serendipity, which measures how unexpected the correct recommendations are.
� Redundancy, which measures to what extent correct recommendations are un-
necessary for the user.

� Contextualisation, which measures whether a correct recommendation is re-
lated to the target's context (in the study, the class diagram of the target
class).

� Generalisation, which measures whether a correct recommendation is extensi-
ble (valuable) to other targets.

Precision is calculated out of the correct assessments of participants. It is mea-
sured as the percentage of positively agreed evaluations about correctness out of
the total number of target-item pairs of the study (3,375). As commonly done in
user studies with inter-rater agreement (Fleiss et al., 1981), we consider a target-
item pair as positively agreed if it was marked correct by at least three participants
out of the �ve who evaluated the pair. The computation of the other metrics is
analogous. Serendipity considers the negatively agreed obvious assessments, i.e.,
the target-item pairs that the participants marked as not obvious. Similarly, re-
dundancy, contextualisation and generalisation consider the positively agreed re-
dundant, contextualised and generalisable assessments, respectively. We do not
measure recall, since participants did not have the complete set of correct items
for a given target (as stated by human subjects).

It must be stressed that, to the best of our knowledge, this is the �rst time that
metrics serendipity, redundancy, contextualisation, and generalisation are used to
evaluate the model completion recommendation task. They, however, have been
proposed or used as valuable and complementary metrics for evaluating RSs (Raza
and Ding, 2019; Silveira et al., 2019).

6.2.3 Subjects

We recruited the participants by email, inviting a potential set of candidates from
the modelling and recommendation areas. Overall, 40 people completed the user
study within the given seven day limit (cf. Subsection 6.2.1).

Prior to the experiment, the participants �lled out a demographic questionnaire
to collect some statistical data. Overall, 80% of the participants were male and
20% female. The majority were between 25 and 34 years old (55%), with the rest
between 35 and 44 (27.5%), 45 and 54 (12.5%), and 18 and 24 (5%). Half of the
participants were PhD students (50%), while the rest were PhD holders (37.5%),
MSc holders (7.5%), and MSc students (5%). Participants were mostly academics
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(65%), but also industry employees (22.5%), researchers (7.5%) and students (5%).
Note that, in this classi�cation, researchers do not work at a university but in a
research center, and industry employees work in a company with no research duty.
Most participants (90%) had a high level of English, and all had studied computer-
related subjects. A 95% of the participants declared a high level of knowledge
on object-oriented programming, and 87.5% on class diagrams. Participants had
between 1 to 27 years of experience in software development (10 years in average).

6.2.4 Precision results

In this and the following four subsections, we discuss the results of the user study
in terms of the assessment metrics introduced in Subsection 6.2.2. We start by
analysing precision. This is the only metric that is common to both the o�ine ex-
periment and the user study, enabling their comparison. It measures how accurate
the recommendations are, being an indicator of the relevance of the recommenda-
tions for the users.

In the user study, we compute precision as the percentage of target-item pairs
that the participants marked as correct. Table 4 shows the precision of the recom-
mendation methods on each domain. Columns three to seven display the precision
at k, p@k, which is the precision of the top k recommended items, with k = 1, ..., 5.
The recommendation method with the highest precision for the complete dataset
(i.e., considering all domains jointly) is CBUB, with an average precision of 0.373.
This is in accordance with the o�ine experiment, where CBUB was the best per-
forming method. CBUB also achieved the best precision in the Banking (0.493)
and Education (0.373) domains, but not in the Literature domain, where CosineCB
had a higher precision (0.453).

Table 4: User study: Precision@k by domain.

Method Domain p@1 p@2 p@3 p@4 p@5 Avg.
ItemPop 0.267 0.356 0.267 0.356 0.289 0.307
CosineCB 0.244 0.133 0.467 0.311 0.244 0.280
CBUB

All domains
0.444 0.356 0.333 0.400 0.333 0.373

ItemPop 0.467 0.667 0.333 0.400 0.267 0.427
CosineCB 0.467 0.200 0.533 0.267 0.200 0.333
CBUB

Banking
0.600 0.667 0.400 0.400 0.400 0.493

ItemPop 0.067 0.267 0.333 0.267 0.200 0.227
CosineCB 0.067 0.000 0.067 0.133 0.000 0.053
CBUB

Education
0.467 0.133 0.333 0.533 0.400 0.373

ItemPop 0.267 0.133 0.133 0.400 0.400 0.267
CosineCB 0.200 0.200 0.800 0.533 0.533 0.453
CBUB

Literature
0.267 0.267 0.267 0.267 0.200 0.253

More in detail, Table 5 shows the p@k values (for all domains) depending
on the con�dence level that the participants indicated in the study for each case
evaluated. The table only considers those assessments where the participants felt
somewhat/fairly/completely con�dent. In this case, CBUB outperforms CosineCB
and ItemPop in all domains. In particular, focusing only on the cases of completely
con�dent participants, CBUB achieved an average precision value of 0.543.
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Table 5: User study: Precision@k by con�dence level for all domains.

Method Con�dence #Part. #Evals p@1 p@2 p@3 p@4 p@5 Avg.
ItemPop 0.357 0.429 0.286 0.714 0.429 0.443
CosineCB 0.429 0.500 0.643 0.500 0.500 0.514
CBUB

Completely con�dent 9 225
0.429 0.714 0.571 0.429 0.571 0.543

ItemPop 0.341 0.409 0.432 0.500 0.455 0.427
CosineCB 0.386 0.386 0.591 0.477 0.409 0.450
CBUB

Completely con�dent,
Fairly con�dent

34 1860
0.545 0.455 0.500 0.455 0.568 0.505

ItemPop 0.267 0.444 0.311 0.422 0.311 0.351
CosineCB 0.311 0.289 0.533 0.378 0.289 0.360
CBUB

Completely con�dent,
Fairly con�dent,

Somewhat con�dent
40 2835

0.467 0.400 0.356 0.422 0.422 0.413

Finally, Table 6 restricts the analysis of precision further by considering only
completely con�dent assessments in two scenarios. The �rst scenario only consid-
ers those cases where the target class was contextualised, i.e., the class diagram
contained other classes beyond the target class (Table 6a). In the second scenario,
in addition to be contextualised, the target class had at least one attribute or
operation (Table 6b). The precision of CosineCB and CBUB in these two sce-
narios increases, achieving p@k values of 0.582 and 0.600. However, as the table
shows, these values come from a small number of participants and evaluations,
so their statistical support is small. We will use these scenarios later to analyse
contextualisation in Subsection 6.2.7.

Table 6: User study: Precision@k of completely con�dent assessments in two scenar-
ios: (a) target class with context; (b) target class with context and items (attributes
or operations).

(a) Precision@k contextualised
Method Con�dence #Part. #Evals p@1 p@2 p@3 p@4 p@5 Avg.
ItemPop 0.364 0.364 0.273 0.636 0.455 0.418
CosineCB 0.455 0.545 0.636 0.636 0.636 0.582
CBUB

Completely
con�dent

8 180
0.455 0.636 0.455 0.455 0.636 0.527

(b) Precision@k with contextualised and with items
Method Con�dence #Part. #Evals p@1 p@2 p@3 p@4 p@5 Avg.
ItemPop 0.444 0.333 0.333 0.667 0.556 0.467
CosineCB 0.444 0.556 0.667 0.667 0.667 0.600
CBUB

Completely
con�dent

6 150
0.444 0.667 0.556 0.444 0.667 0.556

6.2.5 Serendipity results

Serendipity is the ability to suggest items that go beyond popular or trending
ones (Ricci et al., 2022). It measures the unexpectedness of the recommendations,
which the user would not otherwise think of, even though they are relevant to
the task at hand. In this sense, serendipitous recommendations are not necessarily
novel (fresh) items recently added into the system. By contrast, they are items
that, in addition to being unknown to the user, generate certain surprise the �rst
time they are presented.
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In the particular recommendation task that we are addressing � class model
completion � serendipitous recommendations can be very valuable as they consist
of non-evident attributes and operations appropriate for the target class being
modelled.

We measure serendipity as the percentage of target-item pairs that the partic-
ipants marked as non-obvious. That is, recommendations marked as obvious are
not considered serendipitous, and vice versa.

Table 7 shows the average serendipity values of the recommendation meth-
ods per domain. In general, the participants perceived the recommendations as
non-obvious, as serendipity values are close to 1. As expected, ItemPop generated
slightly more serendipitous recommendations than CosineCB and CBUB when
considering the dataset of all domains together, as some recommendations were
generic or did not clearly belong to the target domain. If we look at each do-
main separately, the Education domain has the highest serendipity values, and the
Banking domain the lowest ones. This may be due to the closeness of the Educa-
tion domain to participants, who were mostly academics. We found no signi�cant
di�erence between the serendipity values of the recommendation methods for a
same domain.

Table 7: User study: Serendipity@k by domain.

Method Domain Evaluations s@1 s@2 s@3 s@4 s@5 Avg.
ItemPop 0.822 0.822 0.956 0.844 0.822 0.853
CosineCB 0.844 0.889 0.600 0.822 0.844 0.800
CBUB

All domains 3,375
0.756 0.800 0.889 0.800 0.867 0.822

ItemPop 0.533 0.533 0.867 0.867 0.867 0.733
CosineCB 0.667 0.867 0.533 0.800 1.000 0.773
CBUB

Banking 1,125
0.467 0.533 0.733 0.867 0.733 0.667

ItemPop 1.000 1.000 1.000 0.933 0.867 0.960
CosineCB 0.933 1.000 1.000 1.000 1.000 0.987
CBUB

Education 1,125
0.867 0.867 0.933 0.667 0.933 0.853

ItemPop 0.933 0.933 1.000 0.733 0.733 0.867
CosineCB 0.933 0.800 0.267 0.667 0.533 0.640
CBUB

Literature 1,125
0.933 1.000 1.000 0.867 0.933 0.947

Finally, we have calculated the Pearson correlation scores between all pairs
of metrics considered in the study (cf. Subsection 6.2.2), and in particular, the
correlation between precision and serendipity is 0.545. This value is moderate but
relatively high with respect to other pairs of metrics, for which we did not �nd
any signi�cant correlation. This is a positive result since it indicates that the
generated recommendations tended to be both accurate and serendipitous. Note
that, as reported in Subsection 6.1.1, in our dataset, the average number of items
per user, i.e., attributes/methods per class in the UML diagrams, is 3.15, 2.94 and
3.17 for the Banking, Literature and Education domains, respectively. Hence, it is
likely that the correctly recommended test items are popular attributes/methods
for the classes at hand.
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6.2.6 Redundancy results

We propose using the redundancy metric to assess to what extent the recommended
items (attributes and operations) are unnecessary, given the current items of the
target (class). It is related to diversity, which considers the absence of duplicated
or very similar items within a recommendation list. In general, redundant recom-
mendations should be avoided. Speci�cally for class modelling, designers should
not get suggestions of attributes and operations that exist or are too similar to
those in a class.

Redundancy is the percentage of recommendations that the participants per-
ceived as redundant. Table 8 shows the redundancy values of the recommendation
methods by domain. Low values (close to zero) indicate that the recommenda-
tions were su�ciently distinct from the attributes and operations of the target
class, being consequently useful. We observe no signi�cant di�erences between the
redundancy values of the di�erent methods and domains, except for the Banking
domain. Redundancy is slightly higher in this domain, meaning that, compared to
the other domains, a higher percentage of the recommended items were alike to ex-
isting items. This is consistent with the serendipity values that Banking obtained
(cf. Subsection 6.2.5), as redundant values re�ect less serendipity.

Table 8: User study: Redundancy@k by domain.

Method Domain Evaluations r@1 r@2 r@3 r@4 r@5 Avg.
ItemPop 0.044 0.156 0.000 0.022 0.022 0.049
CosineCB 0.000 0.022 0.089 0.111 0.022 0.049
CBUB

All domains 3,375
0.044 0.089 0.067 0.067 0.022 0.058

ItemPop 0.133 0.467 0.000 0.000 0.000 0.120
CosineCB 0.000 0.000 0.133 0.267 0.000 0.080
CBUB

Banking 1,125
0.133 0.267 0.200 0.133 0.000 0.147

ItemPop 0.000 0.000 0.000 0.000 0.000 0.000
CosineCB 0.000 0.000 0.000 0.000 0.000 0.000
CBUB

Education 1,125
0.000 0.000 0.000 0.067 0.067 0.027

ItemPop 0.000 0.000 0.000 0.067 0.067 0.027
CosineCB 0.000 0.067 0.133 0.067 0.067 0.067
CBUB

Literature 1,125
0.000 0.000 0.000 0.000 0.000 0.000

This result could be due to several factors: the input dataset itself, in which
classes have been designed with �redundant� attributes and operations; the fre-
quency distribution of items in the Banking domain follows a more pronounced
heavy tail than the other domains, and thus there is a greater bias towards rec-
ommending popular (and therefore redundant) items; the item neighbourhoods in
collaborative �ltering are smaller, i.e., there are fewer items per target. An ex-
haustive study should be done to provide a well-argued explanation. Nonetheless,
according to the values reported in Table 8, it seems that the last two aspects may
apply; the ItemPop and CBUB methods show higher redundancy than CosineCB.
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6.2.7 Contextualisation results

Contextualisation is a metric we propose to analyse the relation of the recom-
mended items to the target's context. In the class completion task, the context
of a target class refers to the set of other classes (together with their attributes
and operations) that surround the target class. In our study, we measure contex-
tualisation as the percentage of recommendations that the participants marked as
contextualised.

Table 9 shows the average and contextualisation @k values of each recommen-
dation method and domain. As expected, CBUB generated the most contextu-
alised recommendations since it exploits content-based information from related
classes in a collaborative �ltering fashion. By contrast, CosineCB was the worst-
performing method in terms of contextualisation since it only exploits information
of the target class to generate recommendations.

Table 9: User study: Contextualisation@k by con�dence level in three scenarios:
(a) all target classes; (b) target classes with context; (c) target classes with context
and items (attributes or operations).

(a) Contextualisation@k by con�dence level
Method Con�dence #Part. #Evals c@1 c@2 c@3 c@4 c@5 Avg.
ItemPop 0.289 0.222 0.222 0.200 0.267 0.240
CosineCB 0.156 0.156 0.200 0.244 0.222 0.196
CBUB

All 40 3,375
0.333 0.200 0.289 0.311 0.267 0.280

ItemPop 0.429 0.214 0.143 0.357 0.286 0.286
CosineCB 0.143 0.286 0.214 0.214 0.214 0.214
CBUB

Completely
con�dent

9 225
0.286 0.357 0.429 0.357 0.500 0.386

(b) Contextualisation@k by con�dence level (classes with context)
Method Con�dence #Part. #Evals c@1 c@2 c@3 c@4 c@5 Avg.
ItemPop 0.324 0.243 0.243 0.243 0.297 0.270
CosineCB 0.162 0.162 0.216 0.297 0.243 0.216
CBUB

All 40 2,775
0.378 0.189 0.324 0.324 0.324 0.308

ItemPop 0.545 0.182 0.182 0.364 0.273 0.309
CosineCB 0.182 0.364 0.273 0.273 0.273 0.273
CBUB

Completely
con�dent

8 180
0.364 0.455 0.455 0.455 0.636 0.473

(c) Contextualisation@k by con�dence level (classes with context and items)
Method Con�dence #Part. #Evals c@1 c@2 c@3 c@4 c@5 Avg.
ItemPop 0.300 0.233 0.267 0.200 0.267 0.253
CosineCB 0.133 0.133 0.167 0.200 0.233 0.173
CBUB

All 40 2,250
0.367 0.200 0.367 0.333 0.333 0.320

ItemPop 0.444 0.111 0.111 0.222 0.222 0.222
CosineCB 0.111 0.333 0.222 0.222 0.111 0.200
CBUB

Completely
con�dent

6 150
0.333 0.444 0.444 0.333 0.556 0.422

More in detail, Table 9a contains the results when considering all cases evalu-
ated by the participants (3,375), where CBUB achieved an average contextualisa-
tion value of 0.280. Tables 9b and 9c show contextualisation results when �ltering
out cases with little context information. In particular, discarding diagrams with
only the target class (9b), and discarding diagrams with only the target class or
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where the target class had just one attribute/operation (9c). In these scenarios,
the contextualisation values increase to 0.308 and 0.320.

For all the above scenarios, as with previous metrics, if we limit the analysis to
those assessments with which participants felt completely con�dent, the contextu-
alisation values of all methods increase, being 0.473 the maximum one, achieved
by CBUB. However, when doing so, the computation of such values considers a
signi�cantly smaller number of participants and evaluations.

6.2.8 Generalisation results

In the studied class modelling task, generalisation is a metric we propose to mea-
sure whether recommendations are applicable (valuable) to classes �related� to the
target one. It represents the possibility of using recommended attributes and op-
erations with classes linked to the class that is being de�ned, e.g., via the subclass
relation.

In our study, generalisation was measured as the percentage of recommenda-
tions that the participants deemed as generalisable. Table 10 shows the generali-
sation values of the methods, in the upper part considering all assessments, and
in the bottom part considering only those assessments for which the participants
were completely con�dent. In average, CosineCB is the method that generates less
generalisable recommendations. This can be expected since it is (over)specialised
in the target's pro�le, that is, in the attributes and operations of the target class.
ItemPop and CBUB obtained the same generalisation values when taking just
completely con�dent assessments into account, but ItemPop tends to slightly out-
perform CBUB when considering all assessments. However, checking the most
popular items that ItemPop recommends uncovers that they correspond to generic
attributes like name, title and address.

Table 10: User study: Generalisation by con�dence level.

Method Con�dence #Part. #Evals g@1 g@2 g@3 g@4 g@5 Avg.
ItemPop 0.089 0.111 0.044 0.022 0.067 0.067
CosineCB 0.022 0.022 0.044 0.089 0.000 0.036
CBUB

All 40 3,375
0.089 0.022 0.178 0.044 0.044 0.076

ItemPop 0.429 0.286 0.357 0.571 0.286 0.386
CosineCB 0.500 0.286 0.214 0.429 0.286 0.343
CBUB

Completely
con�dent

9 225
0.429 0.500 0.286 0.286 0.429 0.386

6.2.9 Answering RQ2

To answer RQ2 (How do users perceive the recommendations of Droid recom-

menders?), we focus on the metrics used in the user study.
Regarding precision, on individual domains, we observe average values ranging

from 0.373 to 0.493 for the hybrid recommendation method CBUB (cf. Table 4). If
we limit our attention to those evaluations in which participants stated a complete
con�dence with their assessments, the global average precision value of CBUB
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rises to 0.543 (cf. Table 5). Likewise, in contextualised cases, i.e., in diagrams
with more than one class and more than one attribute/operation in the target
class, CosineCB achieves precision values as high as 0.600, followed by CBUB
with 0.556 (cf. Table 6). Comparing these results with others from related user
studies (Cerqueira et al., 2016; Elkamel et al., 2016; Kuschke and Mäder, 2017), we
can claim that the recommendations provided by Droid are perceived as highly
precise, even considering that we did not use ad hoc recommendation methods for
the task at hand, and we did not exploit very large datasets.

Moreover, the participants evaluated the generated recommendations as pre-
dominantly serendipitous, with average values ranging from 0.640 to 0.987 (cf.
Table 7). In this sense, having both high precision and high serendipity makes
Droid recommendations very valuable for users.

When it comes to the perceived redundancy of the recommendations, we ob-
serve signi�cant di�erences between domains (cf. Table 8). Whereas the partici-
pants perceived almost no redundancy on the Education domain, recommendations
on the Literature domain were evaluated as slightly redundant, and recommenda-
tions on the Banking domain seemed the most redundant ones. We argue that
these results may depend on certain characteristics of the input datasets, and
not on the recommendation method used. Nonetheless, speci�c recommendation
methods to avoid redundancy (e.g., based on diversi�cation techniques) could be
researched (Adomavicius and Kwon, 2011).

As expected, the more context the class diagrams have, the more contextu-
alised the recommendations are perceived (cf. Table 9). For instance, average con-
textualisation values varied from 0.280 to 0.473 for the CBUB method, in non-
contextualised and contextualised cases, respectively. The impact of these results
in practice should be studied carefully. However, in our opinion, they are promising
results that encourage further research on speci�c context-aware recommendation
approaches for the addressed task.

Finally, the participants did not feel the recommendations to be particularly
generalisable to other classes in the context (cf. Table 10). Looking only at the
evaluations coming from participants completely con�dent in their assessments,
more recommendations were found to be generalisable, although in the case of the
ItemPop method, they were also overly generic.

6.2.10 Answering RQ3

To answer RQ3 (How do the o�ine experiment results compare to the ones of the

user study?), we compare the precision values of the recommendation methods in
the o�ine experiment (Table 3) and the user study (Table 4). We observe that
the precision achieved in both evaluations is high, being the user study results
slightly higher. Speci�cally, the precision of CBUB was particularly similar in both
evaluations, respectively achieving average values of 0.224 and 0.373 on the three
addressed domains together. Likewise, considering each domain separately, the
best performing method in both evaluations was CBUB on the Banking domain,
with average values of 0.312 and 0.493.

When it comes to the other methods, the precision achieved in the user study is
considerably higher for the CosineCB and ItemPop methods, except for CosineCB
on the Education domain, where the method performed slightly better in the o�ine
experiment (0.053 vs. 0.059 in average).
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Generally, higher precision values in the user study could be attributed to
the fact that users may evaluate as correct valuable recommendations (e.g., an
attribute called account_number for a class Account) that nonetheless are �agged as
incorrect by the o�ine method, which may perform a stricter comparison (e.g.,
it may �ag account_number as incorrect, and account_id as correct). However, we
cannot always expect those results, since the quality of recommendations � as
perceived by the users � can only be proportional to the quality of the data the
RS was trained with. Still, even with low-quality data, an o�ine evaluation may
yield good results (as given by the metrics of choice).

Overall, all the above results con�rm that hybrid recommendations � exploiting
both content-based and collaborative �ltering information � are the most accurate
since, as reported in the RSs literature, they help mitigating the particular weak-
nesses of the two types of approaches (Amatriain et al., 2011; Burke, 2002). Our
experiment shows good correlation between the user study and the o�ine experi-
ment. This is an important result, since most RSs built today are only evaluated
with o�ine experiments, or not at all (Almonte et al., 2022b; Burgueño et al.,
2021; Weyssow et al., 2022; Di Rocco et al., 2021, 2022) (see also Subsection 7.3).
Even if this may suggest that o�ine experiments may be a reasonable surrogate
for user studies � much more costly to perform � this indication needs to be taken
with caution. We argue that user studies � like the one presented here � are ad-
visable to better understand the weak and strong points of a RS, providing an
assessment of the real value of recommendations.

6.3 Threats to validity

In this section, we examine the threats to the validity of our evaluations.

External validity. External validity refers to the degree of generalisability of the
results of an experiment.

Regarding the o�ine experiment presented in Subsection 6.1, we used three
di�erent domains, and for each one of them, we constructed a speci�c dataset
by searching models containing representative keywords of the domain (cf. Ta-
ble 1). To increase even further the generality of our results, we could expand the
selection of keywords, and incorporate more domains. Moreover, our experiment
focused on a particular recommendation task, namely, the recommendation of class
attributes and operations. Hence, we cannot claim that our conclusions apply to
other di�erent modelling tasks.

In the user study reported in Subsection 6.2, we used the same domains and
datasets as in the o�ine experiment. Therefore, similarly to the o�ine experiment,
the generality of the conclusions of our study could be strengthened if more do-
mains and a bigger dataset were taken into account. Secondly, the participants in
the user study performed the evaluation online from their respective work/study
locations. We assumed that they had correctly understood their assignment, and
did not monitor how long they took to complete it (counting from the moment
they started doing it). To assess the participants' engagement, we inspected their
responses and found no �xed pattern in their assessments (e.g., always marking
the �rst �ve recommendations as precise). However, to reduce the likelihood of
participants giving random scores, and to make sure that everyone understood
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the task at hand, a more controlled user study in person could be conducted.
Finally, the user study involved 40 participants, who evaluated 3,375 cases. This
represents a substantial amount of data, but further evidence could be obtained
with a bigger set of participants (even if the sample size is generally bigger than
other user studies evaluating modelling recommendations found in the literature,
cf. Subsection 7.3).

Internal validity. Internal validity refers to which extent a causal relationship exists
between the conducted experiment and the presented conclusions. In the o�ine ex-
periment, we attempted to avoid any bias on the data by using a third-party search
engine to collect the diagrams of our datasets, and by using a set of model search
keywords instead of hand-picking the models. Likewise, we tried to reduce any
bias in the results of the user study by choosing the targets for the experiment,
the evaluation cases for each participant, and the order of the recommendation
lists at random. Moreover, to avoid spurious e�ects caused by subjective individ-
ual assessments, �ve participants evaluated each recommendation. Fleiss Kappa's
coe�cients (Fleiss, 1971) for inter-rater agreement show statistically signi�cant
(p < 0.001), moderate agreement among raters in their assessments of correctness,
serendipity and redundancy; and reveal fair agreement among raters regarding
the assessments of contextualisation and generalisation6. This is reasonable since
the latter aspects are more challenging to interpret and evaluate without direct
involvement in a class diagram modelling task.

Construct validity. Construct validity is the extent to which an experiment accu-
rately measures the concept it was intended to evaluate. To avoid an inadequate
de�nition of the measured concepts, our two evaluations (o�ine experiment and
user study) applied established metrics in the RSs community. Speci�cally, the
user study used precision, serendipity, redundancy, contextualisation and gener-
alisation. However, the last two of them had to be slightly reformulated for the
modelling domain. In addition, the fact that we considered these �ve indicators
to assess the perception of users about the recommendations (rather than a single
indicator) mitigates the possibility of construct underrepresentation.

Conclusion validity. Statistical conclusion validity is the degree in which the con-
clusions are founded on an adequate analysis of the data. On the one hand, the
o�ine experiment employed widely-used software (RankSys and RiVal) to measure
the performance of the RSs, thus preventing any spurious measurements. On the
other hand, the user study revealed no signi�cant correlation between the metrics,
except between precision and serendipity (0.545). In this case, to avoid unrelia-
bility in our measures, two authors of the paper carefully revised that they were
computed correctly. However, using a small sample size can lead to low statistical
power (i.e., �nding no correlation when there is one). The somewhat homogeneous
background of our participants mitigates this problem. In any case, further studies
with more participants could be performed to strengthen our conclusions.

6 Discarding �not con�dent at all� and �slightly con�dent� assessments, we obtain agreement
values of 0.467 for feature correct, 0.522 for obvious, 0.504 for redundant, 0.356 for contextu-
alised and 0.288 for generalisable, with p-values lower than 0.001.
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7 Related Work

In this section, we review related research works on RSs developed to assist in soft-
ware modelling (Subsection 7.1), generative approaches for RSs (Subsection 7.2),
and user studies targeting the evaluation of RSs for modelling tasks (Subsec-
tion 7.3).

7.1 RSs in modelling tasks

The interest in modelling assistants is increasing in the research community, as
shown in our mapping review (Almonte et al., 2022b). There, we characterised,
categorised and analysed existing research works on RSs for MDE. In this sub-
section, we �rst summarise the approaches analysed in the review, and then, we
expand it to include recent proposals in the �eld.

The most common purposes of RSs in MDE are the completion, �nding, repair,
reuse and, to a lesser extent, creation of modelling artefacts. As an example, to
support model creation and extension, DoMoRe (Agt-Rickauer et al., 2018) ex-
ploits the relationships of a knowledge base of domain-speci�c terms to provide
context-sensitive recommendations. To assist in model �nding, Cerqueira et al.
(2016) propose a content-based approach that �nds and recommends sequence
diagrams. For model reuse, SimVMA (Stephan, 2019) suggests Simulink models
to be imported or cloned, and REBUILDER (Gomes, 2004) �nds UML diagrams
similar to a given query.

Some approaches have been improved since we performed our survey. For ex-
ample, PARMOREL (Barriga et al., 2020; Iovino et al., 2020), which applies re-
inforcement learning to �nd optimal sequences of model repair actions, has been
extended to deal with inter-model inconsistencies (Barriga et al., 2022). Likewise,
ReVision (Ohrndorf et al., 2018), an approach that suggests consistency-preserving
model editing rules for model repair, has been enhanced to generate repairs for
inconsistencies introduced by incomplete editing actions (Ohrndorf et al., 2021).
RapMOD (Kuschke and Mäder, 2017; Kuschke et al., 2013), which proposed a
ranking approach for the auto-completion of UML class diagrams, has been ex-
panded into an entire auto-completion approach for graphical models supported
by a working prototype (Mäder et al., 2021). Finally, the assistant envisioned
by Savary-Leblanc (2019), which recommends semantically related terms based on
lexical databases like WordNet, has been recently integrated into the Papyrus3
modelling tool (Savary-Leblanc et al., 2021).

Some recent approaches apply novel machine learning techniques to build RSs.
Speci�cally for modelling and meta-modelling, Burgueño et al. (2021) propose a
RS for class diagrams based on natural language processing; Weyssow et al. (2022)
apply a deep learning model to abstract domain concepts for recommending meta-
model concepts; Di Rocco et al. (2021) use graph neural networks (GNNs) to assist
modellers in the speci�cation of meta-models and models; and Shilov et al. (2023)
also use GNNs, but to assist in enterprise modelling processes. There are also
new approaches based on classical recommendation methods, like MemoRec (Di
Rocco et al., 2023), which employs context-aware collaborative �ltering to provide
recommendations for meta-model completion.
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Additionally, other recent works propose RSs for editing operations. Speci�-
cally, NEMO (Di Rocco et al., 2022) uses an encoder-decoder neural network to
aid modellers in executing model editing operations; Ockham (Tinnes et al., 2021)
uses an approach based on labelled graphs to learn edit operations from model
histories; and Nair et al. (2021) de�ne RSs that improve the modelling experience
by informing the modeller about the next modelling action to execute.

As we have discussed, recommenders helping in completing a model typically
rely on existing data, which they process to �lter and recommend potentially
interesting items for the user. However, RSs for other modelling tasks may re-
quire di�erent techniques. For example, RSs helping to repair inconsistent mod-
els (Marchezan et al., 2023a,b) need to consider the language syntax and semantics,
and use specialised techniques, like calculating trees of possible repair actions, and
�ltering them according to some heuristics. Recommenders helping to improve a
model via critics (Robbins and Redmiles, 1998; Ali et al., 2013) are typically based
on agents (modelled, e.g., as rules) that continuously analyse the model to detect
anti-patterns or potential mistakes. Critics are language-speci�c, and approaches
exist to help de�ning critics for modelling languages (Ali et al., 2010). Instead,
RSs for model completion do not focus on detecting problematic parts of a model,
but instead can be invoked to suggest items to include into the model, learned
from an existing body of knowledge (e.g., existing models).

Overall, there is a good number of proposals of RSs for modelling. However,
the recommendation method is typically �xed, the recommendations cannot be
customised, there is no support for data preprocessing, and they do not integrate
mechanisms for evaluating the quality of the recommenders, as Droid supports.

7.2 Automated generation of RSs

As we have seen in previous section, most RSs for modelling were developed ad-hoc,
by hand and from scratch. Since this requires high expertise and e�ort (Mussbacher
et al., 2020), some studies (Almonte et al., 2022b) identify the need for methods
and tools that automate their construction. Following this idea, some recent works
propose solutions to reduce the amount of time, e�ort and expertise required to
develop and integrate RSs. The work presented in this paper aims at �lling this
gap. Next, we compare Droid with other related approaches.

LEV4REC (Di Sipio et al., 2021) is a low-code tool that allows the con�guration
of RSs for non-modelling environments by means of a feature model. Some aspects
that can be customised include the recommendation algorithm or the underlying
libraries. From this information, it generates the source code of the RS ready
for deployment. However, being a generic tool, LEV4REC does not support the
customisation of RSs for modelling languages, or the deployment and integration
of the RSs with modelling tools. Likewise, it does not support the exploration of
data preprocessing policies or the analysis of the RS performance.

Fellmann et al. (2018) propose a reference model focused on data requirements
of RSs for process modelling. The model can be used as a guide for developing new
process modelling recommenders or evaluating existing ones. Hence, it is speci�c
to process modelling and does not provide automation or code synthesis.

Hermes (Dyck et al., 2014) permits building Eclipse-based RSs that help in
completing models with recommended elements from other models in a repository.
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It can be applied to models and meta-models within the EMF ecosystem. Similarly
to Droid, it has a plugin-based architecture with extension points for de�ning new
recommendation methods, data repositories and the integration with modelling
editors. However, the recommenders are speci�c for Eclipse modelling tools, and
need to be coded. In contrast, Droid recommenders are synthesized automatically
from a high-level description, using a DSL, and without coding. Moreover, they
can be integrated with any modelling tool via a REST API, and be evaluated to
assess their performance.

Rojas and Uribe (2013) propose an MDE framework to create mobile RSs of
geographic points of interest. It allows the de�nition of the structure, behaviour
and navigation of the RSs, as well as the customisation of the user preferences and
similarity criteria for points of interest. Later on, they proposed a similar solution
for trips and tours recommendation (Rojas et al., 2009). In both cases, the domain
of the recommendation is �xed.

Espinosa et al. (2013, 2019) present an MDE solution to assist non-expert users
in applying data mining. They propose a framework that reuses past experiences
of data mining experts to calculate how accurate a new dataset is and recommend
the one with the best performance. The framework supports the customisation
of the data mining task to perform, the mining algorithm, the evaluation method
and the metrics. Although it allows customisation �exibility, recommendations are
speci�c to data mining applications.

7.3 User studies of RSs for modelling

Even though multiple approaches have been proposed to assist in modelling tasks,
only a few of them have been evaluated through user studies. Interactions with
actual users can yield very valuable knowledge about the RS performance even
when o�ine testing is feasible.

Some reported user studies about recommenders for modelling make use of
questionnaires to collect user feedback. This is the case of DSL-maps (Pescador
and de Lara, 2016), a recommender of patterns for meta-model construction; Mag-
net (Abid et al., 2019), an assistant to speed up the learning curve of a modelling
tool; and IPSE (Garbe, 2012), an intelligent problem-solving environment for UML
class diagrams. Their user studies respectively involved 7, 9, and 14 participants
responding to questions after using the proposed tools. Thus, the number of par-
ticipants is small, and the evaluations measured general, after-use satisfaction.

Other user studies involve performing some modelling tasks with and without
the proposed assistants. For instance, Koschmider et al. (Hornung et al., 2009,
2008; Koschmider et al., 2011) evaluated a recommender of process model frag-
ments with 10 participants, who created process models with and without the RS,
comparing the time spent, the quality of the result, and the user satisfaction in
each case. Similarly, Mora Segura et al. (2023) evaluated the search facilities of the
Extremo modelling assistant. In the study, 20 participants built a meta-model
with/without assistance. The study measured the productivity of the participants,
and the completeness and correctness of the participants' solutions with respect
to a reference solution. Sánchez Cuadrado et al. (2018) evaluated a recommender
of quick �xes for model transformation within AnATLyzer, by asking 2 experts to
repair erroneous transformations without the recommender, and checking if any of
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the recommended quick �xes was comparable to their solution. Huh et al. (2009)
assessed a recommender of data mappings by asking 4 participants to carry out
a set of mapping tasks, and measuring the time spent and the user satisfaction.
Nair et al. (2021) conducted a user study to evaluate a recommender of modelling
actions, in which 5 participants had to solve several modelling exercises, and their
actions were analysed to see if they were among the recommended ones; afterwards,
the participants responded to a questionnaire to collect feedback. Finally, Paydar
and Kahani (2015a,b) evaluated an approach to facilitate the reuse of functional
requirements models. For this purpose, they collected the opinion of 7 experts on
the accuracy of the underlying algorithms. Overall, these works were assessed by
user studies, but the number of participants was low.

Studies with a higher number of participants evaluate recommendations in
di�erent manners. RapMOD (Kuschke and Mäder, 2017), a tool that o�ers auto-
completion of UML models, reports two user studies. In the �rst one (Kuschke
et al., 2013), 16 participants performed a modelling task, which was compared
with the recommendations of the approach. In the second one (Mäder et al.,
2021), 37 participants performed several modelling tasks with and without the
tool. Both studies analysed the performance and quality of the recommendations,
and additionally, the latter one collected user feedback. Cerqueira et al. (2016)
proposed an approach to �nd software artefacts in the form of UML sequence
diagrams. This was evaluated by presenting 26 participants with instructions to
perform searches, and measuring the accuracy and level of satisfaction. Finally,
to evaluate an assistant for the design phase of software projects, Elkamel et al.
(2016) asked 20 participants to design a UML class diagram with and without the
RS. In all these studies, although the number of participants is slightly higher, it
is still relatively small, and most lack a clear evaluation design. In contrast, our
user study involved more participants, followed a sound methodology, and used
assessment metrics both from the RSs community and others speci�cally devised
for class model completion. To our knowledge, this is the �rst work for modelling
recommenders that compares results of an o�ine experiment with results of a user
study.

8 Conclusions and Future Work

This paper has presented Droid, a model-driven approach to create RSs for mod-
elling languages. It o�ers a DSL to con�gure every aspect of the RS: the kind of
recommended modelling items, the recommendation method, the gathering and
preprocessing of training data, and the methodology and metrics to evaluate the
created RS. The RS is deployed as a REST service to facilitate its integration with
arbitrary modelling tools. Moreover, Droid provides an out-of-the-box integration
of the RSs with the default tree editors of EMF-based modelling languages.

We have evaluated the e�ectiveness of Droid recommenders by means of an
o�ine experiment using over 7,600 UML models across three domains. In addi-
tion, we have performed a user study with 40 participants, who perceived the
recommendations as highly precise, predominantly serendipitous, slightly or not
redundant (depending on the domain), but not particularly generalisable. We also
found that the more context the models have, the more contextualised the rec-
ommendations are perceived. The precision results of the o�ine experiment and
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the user study are consistent, just slightly better for the user study. Finally, the
hybrid recommendation methods were the most accurate in our evaluation.

As we have seen, Droid recommenders can be automatically incorporated into
EMF tree editors. Likewise, we have recently released the tool IronMan (Almonte
et al., 2023), which facilitates the integration of recommendation services � like
those of Droid � into existing graphical modelling editors implemented with the
Sirius7 language workbench. This integration adds an additional graphical layer to
the editor, which enables the option to invoke the RS when a shape corresponding
to an instance of the target class is selected, displaying a list of recommendations
for the user to choose from. In the same line, we would like to provide automated
support for the integration of our RSs within textual editors built with technologies
like Xtext.

Furthermore, we plan to increase the current library of extensions to integrate
additional data sources, data encodings, and recommendation methods (e.g., based
on neural networks or built ad-hoc). We would also like to include new extension
points in Droid, in particular, to enable the inclusion of speci�c preprocessing
options and user-de�ned evaluation metrics. For instance, Droid has particular
metric implementations of recommendation diversity and coverage, but there are
alternative ways to measure these characteristics. In addition, one could de�ne
metrics oriented to the task at hand, such as the balance of recommendations
in terms of the underlying item types, e.g., classes, methods and attributes in
object-oriented modelling.

Droid currently automates the o�ine evaluation of the created RSs. To com-
plement this facility, we plan to incorporate an automatic generator of the in-
frastructure needed to conduct user studies of RSs, assisting in the selection of
the evaluation cases, the recommendation methods to include in the study, and
automating the analysis of the evaluation results. Moreover, we will consider ex-
tending Droid to support other modelling tasks, like (sub-)model reuse, model
repair, or model optimisation and improvement.

To complement our empirical experiments (i.e., the o�ine and user studies),
we will aim at performing an online experiment in which users are requested to
freely perform modelling tasks through a tool, with and without the support of
a RS. In this experiment, the utility of recommendations could be de�ned by
alternative aspects (Jannach and Adomavicius, 2016), such as the percentage of
recommendations accepted/rejected by users, the time spent to perform the tasks
with/without using a recommender, and the quality of the results.

Data Availability Statements

The datasets generated and/or analysed during the current study are available in
the following repository: https://github.com/Droid-dsl/DroidConfigurator.

The o�cial Droid repository provides documentation, all links to datasets,
and any other relevant information: https://droid-dsl.github.io/.

7 https://projects.eclipse.org/projects/modeling.sirius

https://github.com/Droid-dsl/DroidConfigurator
https://droid-dsl.github.io/
https://projects.eclipse.org/projects/modeling.sirius
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