
Conversational Assistants for Software Development:
Integration, Traceability and Coordination

Albert Contreras a, Esther Guerra b and Juan de Lara c

Computer Science Department, Universidad Autónoma de Madrid, Spain
{albert.contreras, esther.guerra, juan.delara}@uam.es

Keywords: Software Development, Development Assistant, Large Language Model, Conversational Agent, Chatbot,
IDE, Eclipse, Java, Method Renaming.

Abstract: The recent advances in generative artificial intelligence are revolutionising our daily lives. Large language
models (LLMs) – the technology underlying conversational agents like ChatGPT – can produce sensible text
in response to user prompts, and so, they are being used to solve tasks in many disciplines like marketing, law,
human resources or media content creation. Software development is also following this trend, with recent
proposals for conversational assistants tailored for this domain. However, there is still a need to understand
the possibilities of integrating these assistants within integrated development environments (IDEs), coordinat-
ing multiple assistants, and tracing their contributions to the software project under development. This paper
tackles this gap by exploring alternatives for assistant integration within IDEs, and proposing a general archi-
tecture for conversational assistance in software development that comprises a rich traceability model of the
user-assistant interaction, and a multi-assistant coordination model. We have realised our proposal building an
assistant (named CARET) for Java development within Eclipse. The assistant supports tasks like code comple-
tion, documentation, maintenance, code comprehension and testing. We present an evaluation for one specific
development task (method renaming), showing promising results.

1 INTRODUCTION

Software development has been striving for higher
levels of productivity and quality from its incep-
tion. This goal has been pursued by several strate-
gies, such as the use of higher-level development
languages (Wasowski and Berger, 2023), automa-
tion techniques (Brambilla et al., 2017), power-
ful integrated development environments (IDEs like
Eclipse1, Visual Studio Code2, or IntelliJ IDEA3),
knowledge bases and FAQs documenting develop-
ment expertise (Abdalkareem et al., 2017), catalogues
of design patterns (Gamma et al., 1994), or recom-
menders and development assistants (Rich and Wa-
ters, 1988; Savary-Leblanc et al., 2023). In this paper,
we are interested in the latter approaches.

The recent advances in deep learning, natural lan-
guage processing and generative artificial intelligence

a https://orcid.org/0009-0006-6887-9826
b https://orcid.org/0000-0002-2818-2278
c https://orcid.org/0000-0001-9425-6362
1https://www.eclipse.org/
2https://code.visualstudio.com/
3https://www.jetbrains.com/idea/

have triggered the appearance of open domain con-
versational agents able to produce sensible responses
upon arbitrary user prompts. These agents, also called
chatbots4, are currently being explored to solve all
sorts of tasks in domains like marketing, law, hu-
man resources, media content creation, and software
development, among many others. They are pow-
ered by large language models (LLMs), which are
transformer-based networks trained on vast amounts
of text data. Some specific LLMs for code exist (Xu
et al., 2022a), such as Codex5, Code Llama6, and
StarCoder (Li et al., 2023). Some of them are even
integrated into IDEs, such as GitHub Copilot7. Still,
assistant-based development is in its childhood, with
many problems to solve and assistance strategies to
assess (Ozkaya, 2023a). This way, researchers work-
ing on development assistance may wonder: What are
the possible ways to integrate assistants into IDEs?

4In this paper, we use the terms conversational agent
and chatbot interchangeably.

5https://openai.com/blog/openai-codex
6https://ai.meta.com/blog/

code-llama-large-language-model-coding/
7https://github.com/features/copilot

https://www.eclipse.org/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/
https://openai.com/blog/openai-codex
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://github.com/features/copilot

Is it possible to retrieve past developer-assistant in-
teractions? How can multiple assistants be coordi-
nated? How can the assistant effectiveness be as-
sessed?

This paper aims to answer the previous questions.
For this purpose, we first present a taxonomy of the
possibilities for integrating conversational assistance
into IDEs, in the form of a feature diagram (Kang
et al., 1990). Then, we propose a general and ex-
tensible architecture for conversational assistance in
software development, able to coordinate the recom-
mendations of several chatbots, not necessarily built
using LLMs. The architecture reifies and persists the
interactions between the developers and the assistant
as a traceability model. This allows tracking the deci-
sions made, as well as supporting queries about which
parts of the code generated the assistant, why, when,
and who invoked the assistant.

To validate these ideas, we present a specific
conversational assistant for Java development within
Eclipse called CARET (Conversational Assistant for
softwaRE developmenT). The assistant helps in a
wide range of development tasks, including code
completion, documentation, maintenance, program
comprehension and unit test generation. It features
a bidirectional traceability model from reified user-
agent interactions to code, and vice versa, via code
annotations. We present an evaluation of the suitabil-
ity of one of the development tasks (method renam-
ing), which yields very promising results.

In the remainder of this paper, Section 2 provides
background on chatbots and analyses the state of the
art. Next, Section 3 describes the three main ingredi-
ents of our approach: the analysis of the assistant-IDE
integration possibilities, the traceability model, and
the coordination of multiple conversational agents
into a unified assistant. Section 4 introduces CARET,
our Java/Eclipse assistant. Then, Section 5 reports on
the evaluation. Finally, Section 6 finishes with the
conclusions and prospects for future work.

2 STATE OF THE ART

Next, we provide some background and state of the
art on conversational agents (Section 2.1) and their
use for software development tasks (Section 2.2).

2.1 Conversational agents

Conversational agents (or chatbots) are being increas-
ingly used to access software services using natural
language. Their popularity has risen because they re-
duce the entry level to services like customer support,

banking or shopping, and can be easily embedded into
social networks (e.g., Telegram), websites or intelli-
gent speakers. These chatbots are called task-oriented
as they help users in performing a specific task.

Many technologies to build task-oriented chat-
bots exist (Pérez-Soler et al., 2021), like Google’s
Dialogflow8, Amazon Lex9, Microsoft’s Bot Frame-
work10, the IBM Watson Assistant11 or Rasa12. They
allow defining the user intents that a chatbot aims
at recognising (e.g., ordering a pizza, setting an ap-
pointment with a technician). Intents declare training
phrases, which are used to train a natural language
understanding engine. This way, when the user inputs
an utterance, the engine selects the most likely intent
with a certain confidence. If the confidence is below
a threshold, then a fallback intent is selected, if avail-
able. Fallbacks are an indication of user requests that
the chatbot cannot handle.

Intents may have parameters, which are pieces
of information required from the user (e.g., type of
pizza, appointment date), and whose value is ex-
tracted from the user utterance. When the chatbot de-
tects an intent, it performs the actions associated to
the intent, usually accessing an external information
system and composing a response. Finally, the user-
chatbot conversation flows are explicitly designed by
setting paths of intents that a user may follow to per-
form a task.

Different from task-oriented chatbots, the recent
advances in generative artificial intelligence have pro-
moted the appearance of open-domain chatbots based
on LLMs, like OpenAI’s ChatGPT13 or Google’s
Gemini14 (formerly known as Bard). LLMs are large
neural networks with a transformer-based architecture
that are trained on vast amounts of textual data (Xu
et al., 2022a). They are able to provide a sensible text
output upon arbitrary user prompts without the need
to predefine admissible user intents.

Rather than being task-specific, LLMs are typi-
cally open-domain, although some of them have been
fine-tuned on specialised data, like code (Xu et al.,
2022a). Fine-tuning enables repurposing an LLM
pretrained on generic text data for specific down-
stream tasks (e.g., question-answering), or domains
(e.g., programming). However, since LLMs have no
fallbacks, it can be difficult to assess the accuracy of
the produced output, or to assert when an LLM does

8https://dialogflow.com/
9https://aws.amazon.com/en/lex/

10https://dev.botframework.com/
11https://www.ibm.com/cloud/watson-assistant/
12https://rasa.com/
13https://openai.com/chatgpt
14https://gemini.google.com/

https://dialogflow.com/
https://aws.amazon.com/en/lex/
https://dev.botframework.com/
https://www.ibm.com/cloud/watson-assistant/
https://rasa.com/
https://openai.com/chatgpt
https://gemini.google.com/

not know the answer, leading to so-called hallucina-
tions (Chen et al., 2023) (i.e., inaccurate or nonsensi-
cal answers presented as fact). Related to this issue,
the temperature hyperparameter of LLMs is used to
regulate their unpredictability. This way, the higher
the temperature, the less predictable the LLM’s out-
puts become upon the same input.

2.2 Conversational assistance for
software development

The idea of development assistants can be traced back
to the programmer’s apprentice (Rich and Waters,
1988) in the 80’s. This system used symbolic arti-
ficial intelligence – knowledge representation based
on frames – to describe and reason about programs
with the help of design clichés (a.k.a. design pat-
terns (Gamma et al., 1994)).

Today, the focus of artificial intelligence has
shifted to machine learning. In particular, deep learn-
ing is being increasingly used to help software de-
velopers in tasks related to requirements, software
design and modelling, coding, testing, and mainte-
nance (Yang et al., 2022).

Recently, the advent of LLMs (Zhao et al., 2023)
has prompted their use also for software engineer-
ing. Several LLM-based programming assistants have
been proposed. One of the first ones was GitHub
Copilot, originally built on Codex, an LLM based
on GPT-3 and fine-tuned on code. Copilot is inte-
grated in several IDEs such as Visual Studio Code
and JetBrains, and offers autocompletion assistance
as the developer types. Although Copilot was ini-
tially free, currently it is a paid feature. Its code com-
pletion capabilities have been recently integrated into
the Eclipse IDE as a plugin15. This plugin provides
autocompletion for several languages using GitHub
Copilot at the back, and hence requiring a subscrip-
tion. While these assistants are valuable for develop-
ers, a deeper integration with the IDE beyond code
completion would be desirable. They also lack trace-
ability information to understand which parts of the
code created the assistant and why. Moreover, future
assistant-enabled IDEs may need to coordinate sev-
eral agents.

The programmer’s assistant (Ross et al., 2023) is
a conversational assistant for Python based on Codex.
It is interacted with using conversation, and the con-
text can be provided by selecting code. A user study
revealed the utility and good acceptance of this as-
sistant by developers. However, the assistant is not
integrated into a fully-fledged IDE, so it does not take

15https://www.genuitec.com/products/copilot4eclipse/

advantage of the possibilities of integration via com-
mands, and traceability mechanisms are missing.

In (Xu et al., 2022b), the authors present two sys-
tems for code generation and retrieval from natural
language, both integrated in the IDE PyCharm16 for
Python programming. They evaluated the systems for
improved efficiency and quality with mixed results,
but developers declared enjoying the experience.

Barke et al. used grounded theory to study how
programmers interact with GitHub Copilot (Barke
et al., 2023). They detected two main usages of the
assistant: for the acceleration of known tasks (i.e.,
autocompletion) and for the exploration of options
that may be used as the starting point to reach a so-
lution. We claim that exploration can be improved by
the availability of several agents, and that the assistant
contributions should be properly traced.

Robe and Kuttal explored design options for Pair-
Buddy, a conversational assistant for pair program-
ming, with a 3D embodiment (Robe and Kuttal,
2022). They used a Wizard of Oz methodology, where
a human controls the assistant. The work is justified
by the fact that interaction with development assis-
tants is still in its infancy, and so different design op-
tions need to be explored. We agree with this, but
in addition, we propose including traceability support
and the possibility to coordinate multiple agents.

Devy is a voice-based assistant for development
tasks related to version control (Bradley et al., 2018).
Devy is an intent-based chatbot, and so, it maps high-
level user intents into low-level commands. Intents
may have parameters modelling required information,
and Devy asks for their value when absent. In our
work, we also found that intent-based agents are suit-
able to map user intentions into complex IDE com-
mands, but in addition, we can combine LLM- and
intent-based agents. Other types of assistants have
been included into IDEs, such as a recommender for
commands within Eclipse (Gasparic and Ricci, 2020).

Section 5 will evaluate our proposed assistant on
one particular task: method renaming. Different ap-
proaches have been proposed for this task. For ex-
ample, Liu et al. report on a classifier based on a
deep learning architecture that first identifies method
names that are not consistent with the code, and then
proposes a new name for them (Liu et al., 2019).
Instead, Zhang et al. use the code history to train
a random forest classifier to state whether a method
needs renaming, and if so, produce a name sugges-
tion (Zhang et al., 2023). Our assistant uses LLMs to
suggest new method names, but needs to be explic-
itly invoked by the user, i.e., it lacks a classifier that
detects the need for renaming.

16https://www.jetbrains.com/pycharm/

https://www.genuitec.com/products/copilot4eclipse/
https://www.jetbrains.com/pycharm/

Assistant
response

Interaction

Conversational
Sw Development

Assistance

Assistance IDE integration

Activation

Proactive Reactive

Code
completion

Documentation

Unit
testing

TraceabilityTask

IDE commands

Code
comprehension

Maintenance Generative Intent-based

Multi-language

Text

Multi-agent
coordination

Adaptive

(Re)naming

Code
optimisation Voice

V&V

Error
detection

Homogeneous

Heterogeneous

OtherTechnology

Assistant

Technology

Coding

Error
correction

mandatory

optional

alternative (=1)

or (>1)

LEGEND

User-to-
assistant

Message

Actions

Figure 1: Dimensions of conversational assistance for software development.

Overall, we find different proposals of conversa-
tional assistants for software engineering with a good
acceptance among developers. However, we identify
the following gaps in the state of the art. Firstly, the
integration of the assistants in IDEs, when existent,
is ad-hoc. Beyond autocompletion, the assistants’ re-
sponses are most often messages and do not trigger
IDE commands or modify existing artefacts. Sec-
ondly, the assistant contributions, their provenance
and their rationale are not persisted, to the detriment
of the project monitoring. Lastly, to our knowledge,
no assistant combines or coordinates the contribu-
tions of several LLM- and intent-based conversational
agents, in order to exploit the benefits of each of them.
In the remainder of the paper, we present our proposal
to address these issues.

3 DESIGNING
CONVERSATIONAL
DEVELOPMENT ASSISTANTS

Next, we present the main concepts in our approach.
Section 3.1 presents a feature model with the dimen-
sions of conversational assistance, Section 3.2 pro-
poses a traceability model for assistance-based devel-
opment, and Section 3.3 describes an execution and
coordination model for development conversational
assistants.

3.1 Dimensions of assistance

Figure 1 shows the dimensions relevant to conversa-
tional assistance for software development. It was
elicited based on an analysis of the literature, and our
own experience. It comprises the following four main
features:

• Assistance. The assistance may be for one or
more development tasks (feature Task in the fig-
ure), and be available for one or several program-
ming languages (feature Multi-language). The fea-
ture model classifies tasks into coding tasks (code
completion, documentation), validation & veri-
fication tasks (unit testing, (semantic) error de-
tection, error correction), and maintenance tasks
(code optimisation, code comprehension, renam-
ing of methods, classes or attributes). This list of
tasks is not meant to be exhaustive, but it is rep-
resentative of the task types a conversational as-
sistant can help with. For instance, we leave out
tasks not directly related to programming, like as-
sistance for modelling (Pérez-Soler et al., 2017)
or versioning (Bradley et al., 2018).

• IDE integration. The integration of a conversa-
tional assistant into an IDE must consider several
aspects. First, the Activation of the assistant may
be Reactive (the developer explicitly asks for as-
sistance) or Proactive (the assistant monitors the
developer activity and provides assistance when
it sees fit). Both styles are not mutually exclusive.
In addition, the Interaction of the developer with
the assistant (feature User-to-assistant) can be done
through IDE commands (e.g., menus or buttons),
Text in natural language (e.g., code comments like
in GitHub Copilot, or through dedicated views),
or Voice (Bradley et al., 2018). In the case of com-
mands, the IDE needs to produce a textual prompt
in natural language to send to the conversational
assistant, together with the context of the assis-
tance request (e.g., code fragment selected on the
editor). For text and voice, the IDE may need to
extend the developer prompt with additional con-
text information. The response of the assistant
(feature Assistant response) can be a message, or it
may involve actions that modify development arti-
facts (e.g., inserting new code or comments into a

file, refactoring a code snippet). In the latter case,
the assistant takes an active role, while in the for-
mer case, it acts as an informer or recommender
of information. Finally, the developer-assistant in-
teraction may be optionally traced (e.g., storing
the query of the developer, the answer by the as-
sistant, whether the recommendation was applied)
and the IDE may mark the code fragments added
or modified by the assistant.

• Assistant. The underlying Technology of the con-
versational assistant can be an agent based on gen-
erative artificial intelligence (LLMs), an intent-
based chatbot, or other technologies (e.g., rule-
based natural language processing as in (Pérez-
Soler et al., 2017)). In addition, some assistants
may be Adaptive to the context of use, e.g., check-
ing or enforcing coding standards and norms used
within a company, or learning from previous in-
teractions with the developer.

• Multi-agent coordination. An assistant may in-
tegrate several conversational agents that help in
different Heterogeneous tasks (e.g., coding and
testing) or provide alternative solutions for the
same task (feature Homogeneous, e.g., several
agents that use different LLMs and prompts to
suggest distinct code completions that the devel-
oper may choose from). If an assistant integrates
several agents, then mechanisms for their coordi-
nation are required.

As we will describe in Section 4, our assistant
CARET supports all the tasks of the feature diagram.
It is not multi-language, as it specifically targets Java.
Its activation is reactive, interaction is through both
natural language text and IDE commands, their re-
sponses comprise both text and IDE actions (e.g.,
creating new files, inserting code into files) and it
offers traceability of the developer-assistant interac-
tion. CARET internally uses generative and intent-
based technologies, is not adaptive, and coordinates
multiple heterogeneous conversational agents.

3.2 Tracing assistant contributions

Keeping a trace of the interactions with the assis-
tant can be useful for project management. The trace
would record the contributions of the assistant to the
code, along with the developers’ requests that origi-
nated that code. This can be exploited for code re-
porting and analysis purposes, making it possible to
see what the assistant did, where, when and why.
It would also be possible to undo/redo the assistant
contributions for exploratory purposes. Besides, the
assistant-produced code may require more thorough

«enum»
Role

USER
AGENT
SYSTEM

«enum»
Task

RENAME_METHOD
CREATE_SUBCLASS
CREATE_TEST
FIND_ERROR
FIX_ERROR
...
UNKNOWN

Response

- text: String
- used: boolean

ConversationalAgent

- name: String
- technology: String
- isLLM: boolean

TraceabilityModel

Interaction

- interactionId: String
- timestamp: long
- isTextual: boolean
- userText: String

CodeFragment

- startLine: int
- endLine: int
- code: String
- length: int
- offset: int

Resource

- fileName: String
- fullPath: String
- projectName: String
- projectRelativePath: String

Context

DevelopmentSession

- sessionId: String

role

task

insertedIn
0..1

0..1

agent

responses
*

*
sessions

*
agents

0..1

context

0..1

resource

fragment
0..1

interactions
*

Figure 2: User-assistant interaction traceability model.

testing than the human-produced code, so tracking the
former code would make it easier to identify and sub-
sequently test.

Our approach to tracing the assistant contributions
comprises two elements: a traceability model to store
the interactions, and a set of code annotations that
identify the code fragments introduced by the assis-
tant. This enables bidirectional traceability: from
past developer-assistant interactions into the modified
code, and from the code to the originating interaction.

Figure 2 shows the traceability model. It records,
for each DevelopmentSession, the Interactions between
the user and the assistant that take place during the
session. The interactions have an identifier, a times-
tamp, the role of the interacting participant (user,
agent or system), whether the interaction was started
by a text message or an IDE command (attribute isTex-
tual), the text entered by the user, the development task
resulting from the interaction (e.g., rename method,
create subclass), and a Context that depends on the par-
ticular task. More in detail, the context may include
any code fragment used to formulate the request to
the assistant, in which case, the context stores both
the CodeFragment and its container Resource. For ex-
ample, this would be the context information stored
for a request such as “document the behaviour of this
method”. Alternatively, the context can be a file (e.g.,
for requests like “create a class implementing this in-
terface”), a folder (e.g., for requests like “create a new
sub-package called util”), or empty (e.g., for requests
like “create a new Java project”).

The Response to the interaction comprises the text
answered by the assistant (which may combine both
code and textual explanations), the agent producing

it, and whether the developer actually used the sug-
gested code. In the latter case, the model records the
resource in which the code was inserted, and the po-
sition of the code in the resource. For each agent, the
model stores its name, its technology, and whether it
is based on LLMs. The latter information is relevant
for coordinating multiple agents, as the next subsec-
tion will show.

To trace from the program the assistant-produced
code, we propose the use of code annotations (Guerra
et al., 2010). Whenever an assistant introduces a code
snippet, the outer enclosing code block is automati-
cally annotated to mark the interaction causing it (us-
ing the interaction identifier). In particular, if the as-
sistant adds a method, this becomes annotated; if it
adds a code fragment within a method, the enclosing
method is annotated; and if it adds a class, interface or
enumeration, these receive the annotation. In addition
to the interaction identifier, the annotations carry ad-
ditional meta-data, such as the task being solved and
the agent that suggested the code.

In Section 4.2, we will describe the Java annota-
tion we have created for the contributions of CARET.

3.3 Orchestrating conversational agents

As Section 3.1 discussed, a conversational assistant
may integrate multiple conversational agents for the
same or different tasks, built with different technolo-
gies, and invoked either by IDE commands (e.g.,
menus) or natural language text/voice requests. To co-
ordinate the agents, we propose the scheme displayed
in Figure 3.

task-i

task-j

…

registered
agents

Message

context
injection

task
classification

agent

Prompt

Assistant pool

AnswerAnswerAnswer

Supported
tasks

4
5

answer
selection

processingAnswer
6 7

User

1IDE
command

2b

8

IDE

registered
agents

2a 3a

Figure 3: Orchestrating conversational agents.

Agents are registered for the tasks they are able to
manage (label 1 in Figure 3). Users can make assis-
tance requests via messages in natural language (la-
bel 2a) or commands of the IDE (label 2b). When

this happens, the first step is to select the agents that
know how to handle the user request. The case of IDE
commands is direct, since the command (e.g., create
a class implementing an interface) is linked to a con-
crete task, from which the set of suitable (registered)
agents can be retrieved. The case of natural language
messages is more complex, as it requires the classi-
fication of the message into a task. To carry out this
classification, we propose using an LLM agent (label
3a) with a prompt like:

You are a code assistant that helps software de-
velopers in programming tasks. Please classify
into one of the next categories:
1. task-1
2. task-2
...
n. none of the above
the following request: “⟨user-message⟩”.

If the LLM agent responds “none of the above”,
the user is informed that the assistant is not config-
ured to assist with the requested task, and the current
interaction is considered finished. Otherwise, if the
LLM agent returns one of the listed tasks, the agents
registered for that task shall be selected.

Next (label 4), a prompt is constructed using the
user message or IDE command plus the context infor-
mation (e.g., selected code in the IDE). This prompt
is sent to the selected agents (label 5). Then, the user
is presented the answers provided by the agents, and
can select one of them (label 6). This answer needs to
be processed (label 7) to extract the code and inject it
as required into the software project, using the API of
the IDE programmatically (label 8).

4 CARET

Next, we introduce CARET, a Java programming as-
sistant we have built following the principles de-
scribed in Section 3. Section 4.1 presents its archi-
tecture, and Section 4.2 describes its functionalities
and showcases usage examples.

4.1 Architecture of CARET

CARET is a plugin for the Eclipse IDE that assists Java
programmers in software development tasks. Figure 4
shows its architecture. The assistant integrates con-
versational agents of different technologies to pro-
cess task requests, like OpenAI’s GPT-3.5 LLMs,
Dialogflow and Rasa. In addition, it can be ex-
tended with other technologies by means of an exten-
sion point named AgentTechnology. Extension points

are the mechanism that Eclipse provides to allow
adding functionality to a system externally (i.e., with-
out changing its internal code).

Eclipse

CARET

JDT

Request
Processor

Agent
Orchestrator

registered
agents

ChatView

traceability
model

use

process
message

use

update query

Task
Classifier

classify
request

process
command

AgentTechnology

…
Rasa DialogflowOpenAI

GPT LLMs

org.eclipse.
ui.commands

IDE Menu
RenameMethod

Command
RenameMethod

doTask

Annotation
Injector

use
org.eclipse.
ui.menus

annotateCode

Figure 4: Architecture of CARET.

Users can request assistance in two ways: select-
ing in the IDE specific menus for each task, or writing
a text request on a Chat View. In the former case, the
selected menu determines unambiguously the task to
perform. In the latter case, a Task Classifier tries to
find the task that better fits the text request by sending
the prompt drafted in Section 3.3 to a GPT-3.5 LLM.

The Request Processor coordinates the accom-
plishment of the tasks. It delegates the task execution
to the command class that implements the task be-
haviour (there is one command class per task), pass-
ing the agents that will handle the task as parameters.
The Request Processor obtains the agents from the
Agent Orchestrator. Currently, the set of registered
agents is predefined, and comprises one agent of each
supported technology.

The above-mentioned command classes send to
the agents a prompt tailored to the target task, which
includes the user request and the necessary context in-
formation. The response from the agents is processed
through an interface implemented by all agents con-
forming to the AgentTechnology extension point. The
response includes text, the matching intent (if any),
context information, and code suggestions. The Re-
quest Processor displays the response in the Chat
View, and asks the user for confirmation to apply the
suggestion. If the answer is positive, the project code
is modified using the Eclipse JDT17, the interaction is
traced (and can be saved/retrieved in JSON format),
and the modified code is annotated.

17https://projects.eclipse.org/projects/eclipse.jdt

4.2 Tool support

The user can interact with the assistant by sending a
message through the Chat View or using contextual
menus that appear when right-clicking on the project
files or a selected code fragment. Currently, CARET

assists with the following tasks:

• Code completion: CARET is able to create a new
project with the given name, a new class or inter-
face with the given name in the current project, a
class implementing a given interface, or a subclass
of a given abstract class. It can also generate the
code of a method, for which the user must provide
either a description of the method, or the method
name and its parameters.

• Documentation: It generates the Javadoc com-
ments for a complete Java file. If the user does not
provide a file but a code fragment, it can gener-
ate either Javadoc comments or line-by-line com-
ments for the code.

• Unit testing: It creates a JUnit test for a given
class.

• Error detection and correction: It can help detect
simple semantic errors and propose corrections.
Both functionalities rely solely on GPT-3.5 (i.e.,
the assistant does not integrate analysis or error
detection/fix methods developed ad-hoc for Java).

• Code optimisation: CARET provides four optimi-
sation options for a selected code fragment: ef-
ficiency improvement, readability improvement,
complexity reduction, or general optimisation.

• Code comprehension: It produces an explanation
in natural language of a selected piece of code.

• Method (re)naming: It renames a method to re-
flect its behaviour. Section 5 will evaluate the suit-
ability of such renaming suggestions.

After processing the user request, the code of the
suggested solution is displayed in a pop-up window,
so that the user can decide to apply it or not. As an ex-
ample, Figure 5 shows the response of CARET when
the user selects the code of method “power” in the
Java editor, and clicks on the menu option “Improve
efficiency”. The suggested code improvement is dis-
played in a popup window. If the user accepts the
suggestion, the suggested code is replaced in the Java
editor, and the Chat View shows both the new code
and its explanation.

In addition, accepting the assistant suggestion au-
tomatically adds a code annotation @Generated to the
modified method, class or interface. This annotation –
which we have designed for tracing CARET contribu-
tions – allows keeping track of the assistant-generated

https://projects.eclipse.org/projects/eclipse.jdt

Figure 5: Screenshot of interaction with CARET. The popup
window shows the code suggestion for improving the effi-
ciency of method “power”.

code. It has four parameters: the name of the agent
that produced the code, the performed task, the iden-
tifier of the interaction, and the timestamp (cf. Fig-
ure 2).

As an illustration, Figure 6 shows the code anno-
tation added to the “factorial” method (lines 63–64).
Its parameters indicate that the GPT-3.5 agent modi-
fied the method to reduce its complexity. For conve-
nience, the Chat View at the bottom displays the intro-
duced code, a “Copy code” shortcut button, and a “Go
to” button which opens the file with the modified code
and positions the cursor in the modified code. The lat-
ter information (modified resource and code fragment
objects) is retrieved from the traceability model that
stores the user-assistant interactions, as explained in
Section 3.2.

Figure 6: Screenshot of applied code suggestion for re-
ducing the complexity of method “factorial”, and generated
code annotation.

5 EVALUATION

This section evaluates the suitability of the assistance
provided by CARET. Given the diverse range of tasks
that CARET supports, we select to evaluate a represen-
tative one, which is method renaming, and leave the
evaluation of the remaining ones for future work.

Method renaming is a common task during cod-
ing and maintenance. It seeks the alignment of the
method name and its implementation. Good method
names are important to make the code comprehensi-
ble – “if you have a good name for a method, you
don’t need to look at the body” (Fowler, 1999) – while
inconsistent method names make the code difficult
to understand and maintain (Liu et al., 2019). As
reviewed in Section 2.2, many different approaches
have been investigated for this task. Our goal is to as-
sess whether the LLM-based agents of CARET are fit
for this task. Thus, our evaluation aims to answer the
following research question (RQ):

Can CARET help to improve method names?

Next, Section 5.1 characterises the experimental
setup, Section 5.2 describes the evaluation protocol,
Section 5.3 analyses the results and answers the RQ,
and Section 5.4 discusses the potential threats to va-
lidity.

The experiment results are available at https://
github.com/caretpro/experiment.

5.1 Experiment setup

The evaluation considers four Java projects. Table 1
shows a summary of them, detailing the number of
compilation units (i.e., classes, interfaces, enums), the
number of methods, and the lines of code (LoC).

Name # Units # Methods # LoC
Tutorial-compiler 11 66 2216
JVector 96 646 5221
Log4J-detector 19 117 3008
Ramen 78 362 5114
Total 204 1191 15559

Table 1: Summary of selected projects.

The first three projects in Table 1 were taken from
GitHub public repositories using the following query:

created:>2021-10-01 stars:>100 size:<3500
path:**/.project language:Java

The goal of this query was to find popular Java
repositories (with more than 100 stars), of medium
size (less than 3500 Kb), created after the release of
GPT-3.5 (October 2021). Thus, from the top of the

https://github.com/caretpro/experiment
https://github.com/caretpro/experiment

list of retrieved projects, we discarded those either too
small or hard to build due to their numerous depen-
dencies. The fourth project is a student project from a
programming course at our university, stored in a pri-
vate repository. Overall, the domains of the selected
projects are diverse, comprising compilers18, embed-
ded vector search engines19, vulnerability detection
due to the use of Log4J20, and a social network with
a swing graphical user interface.

5.2 Experiment design

To evaluate the suitability of the method names sug-
gested by CARET, we have performed a user study that
follows the scheme depicted in Figure 7.

project (x4)

method (x2) original name

suggestion w/ original

suggestion w/o original

baseline suggestion

random order

1

2

3

4

5

random order
Likert

scale for
each name

particip.
(x3 each

case)

Figure 7: Scheme of the experiment design.

We first selected four Java projects as explained in
Section 5.1. Then, we prepared a questionnaire with
two parts: one collecting demographic data about the
participants, and the other evaluating name sugges-
tions for eight methods (two of each project). The
method selection criterion was to have less than 20
LoC (to prevent participants from getting tired and to
facilitate their understanding of the aim of the code)
but not be trivial (e.g., getters and setters were ex-
cluded). For each method, the questionnaire pre-
sented its body and parameters, and suggested four
names that participants had to rate using a 5-point
Likert scale. The suggestions included the original
method name, a baseline name made of the con-
catenation ⟨class-name⟩+“Method”, and two names
suggested by CARET using the GPT-3.5 agent with
two variants of the prompt. The prompt of the first
variant included the body and the original name of
the method, while the second one included the body
but not the method name. The GPT-3.5 agent used
GPT-3.5-turbo with the parameter temperature set to
0.7. As an example, the next four names were pre-
sented for the same method: insertNotDiverse (orig-

18https://github.com/wangjs96/
A-tutorial-compiler-written-in-Java

19https://github.com/jbellis/jvector
20https://github.com/mergebase/log4j-detector

inal), concurrentNeighborSetMethod (baseline), insert-
NonDiverseNode (CARET variant 1), and updateNeigh-
bors (CARET variant 2).

Each evaluation case comprised 8 methods (2
from each project) and was evaluated by 3 partici-
pants. To avoid any bias, participants did not know
how each name suggestion was generated, and the or-
der of presentation of the methods and name sugges-
tions was randomised. We recruited 12 participants
in total, who evaluated 32 different methods, and
96 methods overall. The evaluation was conducted
offline. Participants received the questionnaires by
email and were given 5 days to submit their responses.

The questionnaires used are available at: https://
github.com/caretpro/experiment.

5.3 Results and answer to RQ

Demographics of participants. The age of the par-
ticipants ranged from 21 to 41 (31.9 years on aver-
age). Figure 8 summarises their demographic data.
Overall, 83% of participants were men and 27% were
women. In terms of educational level, 50% had a
PhD, 34% had a master’s degree, 8% had a bachelor’s
degree, and 8% were undergraduate students.

50%
34%

8%
8%

Studies

PhD

Master

Student

Bachelor

83%

17%

Gender

Male

Female

(a) (b)(a) Gender

50%
34%

8%
8%

Studies

PhD

Master

Student

Bachelor

83%

17%

Gender

Male

Female

(a) (b)(b) Studies
Figure 8: Demographic data of participants.

As Table 2 shows, the participants had an average
of 9.75 years of experience in software development,
and 4.75 years in Java development. They rated their
knowledge of Java from 1 (none) to 5 (expert), ob-
taining an average of 3.42. Hence, overall, the partic-
ipants declared to have good experience in software
and Java development, and a fair knowledge of Java.

Experience Average (years)
Software development 9.75
Java development 4.75

Table 2: Years of experience in development.

Evaluation results. Before analysing the responses
to the questionnaires, it is worth noting that all
method names generated by CARET are valid (e.g.,
they do not start with a number or special symbol) and
follow the Java naming convention of being in lower
camel-case.

With regard to the questionnaires, the box plots

https://github.com/wangjs96/A-tutorial-compiler-written-in-Java
https://github.com/wangjs96/A-tutorial-compiler-written-in-Java
https://github.com/jbellis/jvector
https://github.com/mergebase/log4j-detector
https://github.com/caretpro/experiment
https://github.com/caretpro/experiment

(a) (b)

Figure 9: Distribution of scores of the suggested method names. (a) Distribution of the averages of the three scores received
by each method. (b) Distribution of all scores (i.e., without averaging per method).

in Figure 9 depict the distribution of scores that
each method renaming strategy received. In the box
plots, new1 corresponds to the assistant suggestions
produced with the prompt that includes the original
method name, and new2 to those produced omitting
the original method name. As Section 5.2 explained,
3 participants evaluated each method. Thus, Fig-
ure 9(a) shows the distribution of the average score
values of each method (i.e., 32 data points per se-
ries), and Figure 9(b) shows the distribution of all
scores without averaging per method (i.e., 32×3=96
data points per series).

We can see that the average score (marked with a
cross in the box plots) is 3.05 (out of 5) for the orig-
inal method names, 3.95 for strategy new1, 3.74 for
strategy new2, and 1.51 for the baseline names. As
expected, the baseline names were the lowest rated.
Furthermore, in Figure 9(b), the median of the scores
for the original method names is 3, while for the two
assistant-generated method names is 4.

Figure 10 shows the results disaggregated by
project, for the average scores (as in Figure 9(a)).
Across all projects, the average and median of both
new1 and new2 are higher than those of original, and
baseline is consistently the worst.

Figure 10: Distribution of scores disaggregated by project.

Now, we delve into the difference in score be-
tween the original method names and those suggested
by the assistant. The left bar of Figure 11 shows the
percentage of method names for which the average
score of both new1 and new2 is higher than the average
score of original. Overall, both new1 and new2 scored
higher in more than half of the methods. The bar on
the right shows the percentage of methods where ei-
ther new1 or new2 is ranked higher than original. In this
case, either new1 or new2 was ranked higher than the
original name for more than 93% of the methods.

56,25%

93,75%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

original < new1 && new2 original < new1 || new2

Figure 11: Comparison of scores between the original
method names and the assistant suggestions.

Finally, to analyse if the difference in scores of
new1, new2 and original is statistically significant, we
use the Wilcoxon Signed-Rank Test (Wilcoxon, 1945)
to compare sample groups by pair ratings.

First, we define the null hypothesis H0 as “there is
no difference between the median scores of the original
names and the new1 suggestions”. This test results
in W = 616, Z(cal) = -4.917, α = 0.05, Z(α/2) = 1.96,
and p− value = 0.0000008. Since p− value < α, we
reject H0 and state with 95% confidence that there is
a significant difference between the medians of the
scores of the original names and the new1 suggestions.

Second, we set H0 to “there is no difference be-
tween the median scores of the original names and the
new2 suggestions”. This test results in W = 797.5,
Z(cal) = -3.356, α = 0.05, Z(α/2) = 1.96, and p−value
= 0.0007897. Since p− value < α, we reject H0 and
state with 95% confidence that there is a significant
difference between the median scores of the original
names and the new2 suggestions.

Finally, we set H0 to “there is no difference
between the median scores of the new1 and new2
names”. This results in W = 1264, Z(cal) = -1.227, α =
0.05, Z(α/2) = 1.96, and p−value = 0.2196459. Since
p−value > α, we accept H0 and state with 95% con-
fidence that there is no significant difference between
the median scores of the new1 and new2 names.

Answering the RQ. For the used dataset, the partic-
ipants perceived the original method names as less
appropriate than the suggestions new1 and new2 pro-
duced by CARET. Hence, we can answer that CARET

suggestions could have helped to improve the method
names in this study.

5.4 Threats to validity

Internal validity refers to the extent to which there
is causal relationship between the conducted experi-
ment and the resulting conclusions. We attempted to
avoid any bias in the data by selecting Java projects
developed by third parties, which were not present in
GPT3’s training data. We also tried to prevent bias
in the experiment by randomising the order of the
projects and method names in the questionnaires, and
by not revealing to the participants which mechanism
was used for each presented method name.
External validity concerns the generalisability of the
results. The study involved 12 participants who eval-
uated 384 alternative method names for 96 method
blocks (32 unique ones) coming from 4 projects.
While this is a fair amount of data, more evidence
would be obtained with larger sets of participants and
methods. Moreover, the participants rated methods
with less than 20 LoC, so the results may differ for
longer methods. Our study used GPT-3.5 with a tem-
perature value of 0.7, but we cannot claim that this is
the best value for solving the method renaming task.
In the future, we will experiment with other tempera-
ture values to assess the quality of the output.
Construct validity is the extent to which an experi-
ment accurately measures the concept it intends to
evaluate. Since our evaluation is based on a subjec-
tive assessment of the appropriateness of the method
names, we compiled 3 evaluations per method and av-
eraged the scores. We did not consult the original

project developers (e.g., via pull requests as in (Liu
et al., 2019)), but 12 independent developers evalu-
ated the method names. To validate that the opinion
of the participant developers was aligned and there
were no outliers, we measured the inter-rater reliabil-
ity using Fleiss’ kappa (Fleiss, 1971). The level of
agreement between the participants was between 0.2
and 0.4 in all projects which, according to (Landis and
Koch, 1977), can be considered fair.

6 CONCLUSIONS AND FUTURE
WORK

Intelligent conversational assistants will soon become
an integral part of most development processes and
environments (Ozkaya, 2023b). With this expecta-
tion, we have explored the option space for their in-
tegration within IDEs, and proposed a traceability
model and a coordination scheme for multiple con-
versational agents. We have realised our proposal in
CARET, a Java assistant for Eclipse that helps in tasks
such as code completion, documentation, code opti-
misation, and unit test generation. Finally, we have
conducted a user study of the method renaming task
supported in CARET, with very promising results.

We are currently improving CARET to allow regis-
tering any number of conversational agents that would
be orchestrated in combination with the predefined
ones. We would like to add further homogeneous
agents, e.g., focused on autocompletion using LLMs
for code, such as GitHub Copilot. Our goal is to
automate the creation of conversational assistants for
other programming languages (e.g., Python or C++),
Eclipse plugins, testing frameworks (e.g., Cucumber),
or model-driven development (e.g., the Eclipse Mod-
eling Framework (Steinberg et al., 2008)). We also
plan to explore the possibility to inject additional con-
text to the assistants by prompts that include, e.g.,
the user expertise or company-specific coding stan-
dards and guidelines. Finally, as with method renam-
ing, we intend to evaluate the other tasks supported
by CARET, taking as a basis works on evaluation of
LLMs for code (Chen et al., 2021).

ACKNOWLEDGEMENTS

Work funded by the Spanish MICINN with projects
SATORI-UAM (TED2021-129381B-C21), FINESSE
(PID2021-122270OB-I00), and RED2022-134647-T.

REFERENCES

Abdalkareem, R., Shihab, E., and Rilling, J. (2017). What
do developers use the crowd for? A study using stack
overflow. IEEE Softw., 34(2):53–60.

Barke, S., James, M. B., and Polikarpova, N. (2023).
Grounded Copilot: How programmers interact with
code-generating models. Proc. ACM Program. Lang.,
7(OOPSLA1):85–111.

Bradley, N. C., Fritz, T., and Holmes, R. (2018). Context-
aware conversational developer assistants. In ICSE,
pages 993–1003. ACM.

Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-
driven software engineering in practice, 2nd edition.
Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., et al. (2021). Evaluating
large language models trained on code. CoRR,
abs/2107.03374.

Chen, Y., Fu, Q., Yuan, Y., Wen, Z., Fan, G., Liu, D., Zhang,
D., Li, Z., and Xiao, Y. (2023). Hallucination de-
tection: Robustly discerning reliable answers in large
language models. In CIKM, pages 245–255. ACM.

Fleiss, J. L. (1971). Measuring nominal scale agreement
among many raters. Psychological Bulletin, 76:378–
382.

Fowler, M. (1999). Refactoring - Improving the Design of
Existing Code. Addison Wesley object technology se-
ries. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional, 1 edition.

Gasparic, M. and Ricci, F. (2020). IDE interaction support
with command recommender systems. IEEE Access,
8:19256–19270.

Guerra, E. M., Cardoso, M., Silva, J. O., and Fernandes,
C. T. (2010). Idioms for code annotations in the Java
language. In SugarLoafPLoP, pages 7:1–7:14. ACM.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
33:159–174.

Li, R. et al. (2023). StarCoder: May the source be with you!
CoRR, abs/2305.06161. See also https://huggingface.
co/blog/starcoder.

Liu, K., Kim, D., Bissyandé, T. F., Kim, T., Kim, K.,
Koyuncu, A., Kim, S., and Traon, Y. L. (2019). Learn-

ing to spot and refactor inconsistent method names. In
ICSE, pages 1–12. IEEE / ACM.

Ozkaya, I. (2023a). Application of large language models to
software engineering tasks: Opportunities, risks, and
implications. IEEE Softw., 40(3):4–8.

Ozkaya, I. (2023b). The next frontier in software devel-
opment: AI-augmented software development pro-
cesses. IEEE Softw., 40(4):4–9.

Pérez-Soler, S., Guerra, E., de Lara, J., and Jurado, F.
(2017). The rise of the (modelling) bots: Towards as-
sisted modelling via social networks. In ASE, pages
723–728. IEEE Computer Society.

Pérez-Soler, S., Juárez-Puerta, S., Guerra, E., and de Lara,
J. (2021). Choosing a chatbot development tool. IEEE
Softw., 38(4):94–103.

Rich, C. and Waters, R. C. (1988). The programmer’s ap-
prentice: A research overview. Computer, 21(11):10–
25.

Robe, P. and Kuttal, S. K. (2022). Designing PairBuddy –
A conversational agent for pair programming. ACM
Trans. Comput.-Hum. Interact., 29(4).

Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz,
J. D. (2023). The programmer’s assistant: Conver-
sational interaction with a large language model for
software development. In IUI, pages 491–514. ACM.

Savary-Leblanc, M., Burgueño, L., Cabot, J., Pallec, X. L.,
and Gérard, S. (2023). Software assistants in soft-
ware engineering: A systematic mapping study. Softw.
Pract. Exp., 53(3):856–892.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: Eclipse Modeling Framework, 2nd edi-
tion. Pearson Education.

Wasowski, A. and Berger, T. (2023). Domain-specific lan-
guages - Effective modeling, automation, and reuse.
Springer.

Wilcoxon, F. (1945). Individual comparisons by ranking
methods. Biometrics, 1:196–202.

Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J.
(2022a). A systematic evaluation of large language
models of code. In MAPS@PLDI, pages 1–10. ACM.

Xu, F. F., Vasilescu, B., and Neubig, G. (2022b). In-IDE
code generation from natural language: Promise and
challenges. ACM Trans. Softw. Eng. Methodol., 31(2).

Yang, Y., Xia, X., Lo, D., and Grundy, J. C. (2022). A sur-
vey on deep learning for software engineering. ACM
Comput. Surv., 54(10s):206:1–206:73.

Zhang, J., Luo, J., Liang, J., Gong, L., and Huang, Z.
(2023). An accurate identifier renaming prediction
and suggestion approach. ACM Trans. Softw. Eng.
Methodol., 32(6):148:1–148:51.

Zhao, W. X. et al. (2023). A survey of large language mod-
els. https://arxiv.org/abs/2303.18223.

https://huggingface.co/blog/starcoder
https://huggingface.co/blog/starcoder
https://arxiv.org/abs/2303.18223

