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Abstract. Meta-models play a pivotal role in Model-Driven Engineering, as they
are used to define the structure of instance models one level below. However, in
some scenarios, organizing meta-models and their instances in multi-level models
spanning more than two levels yields simpler solutions. This fact has triggered the
proposal of different multi-level modelling tools and approaches, although each
one of them supports small variations of the multi-level concepts.
In order to benefit from multi-level technology, existing meta-models and their
instances could be migrated manually, but this is error prone, costly, and requires
expertise for choosing the most appropriate tool and approach. Hence, we propose
an automated migration process. This way, starting from a meta-model annotated
with multi-level “smells”, our approach creates a neutral multi-level representa-
tion, and recommends the most appropriate tool according to the required multi-
level features. We present an initial prototype, and a preliminary evaluation on
the basis of meta-models developed by third parties.

1 Introduction

Modelling in Model-Driven Engineering (MDE) has traditionally adopted a two meta-
level approach, where meta-models define the set of admissible models one level be-
low. Instead, multi-level modelling (MLM) [3], also called deep modelling [5], is a
modelling proposal that permits the use of an arbitrary number of meta-levels, not nec-
essarily two. This may lead to simpler solutions – with less accidental complexity and
a clear specification of classification levels – in situations where the type-object pattern
or some of its variants arise [3, 6].

While the dominant practice nowadays follows two-level approaches, our previous
studies show that there is a considerable amount of meta-models that could benefit
from multi-level technology [6]. In particular, the occurrence of the type-object pattern
is common in domains like software architecture or process modelling. For example,
in the latter domain, it is frequent the need to model both task types and instances,
resource types and instances, agent types and instances, and so on. Using MLM would
make such meta-models simpler. However, a manual rearchitecture of a large meta-
model into a multi-level version is costly, tedious and error-prone.

Several tools and approaches for MLM have emerged along the years, such as
DeepTelos [11], the DPF Workbench [12], Dual Deep Modelling [15], Melanee [1],
METADEPTH [5], MultEcore [13], OMLM [9], SLICER [16], XMF [4] and XMod-
eler [7]. Each one of them has its own strengths and limitations, while many implement



small variations of multi-level concepts, like attribute potency or leap potency [8]. De-
ciding on the tool or approach to use in order to more optimally describe the concepts
in a domain can be challenging for novices, and may hamper the adoption of MLM.

To facilitate the migration of standard meta-models into a multi-level setting, we
propose automated support for the rearchitecture process and the decision of the most
suitable MLM approach given the problem characteristics. For this purpose, first the
meta-model to be migrated needs to be annotated to indicate occurrences of multi-
level modelling “smells” [6]. Then, this meta-model is automatically transformed into a
multi-level neutral representation that is able to accommodate some of the most promi-
nent MLM approaches. From this representation, a number of heuristics recommend
the best suitable MLM tool for the given problem, for which a serializer synthesizes
the multi-level artefact. In this short paper, we present an overview of the steps in the
process, and a preliminary evaluation on some meta-models developed by third parties.
Paper organization. Section 2 introduces background on MLM and a running example.
Then, Section 3 describes the rearchitecture process, and Section 4 shows a preliminary
evaluation. Finally, Section 5 compares with related work, and Section 6 concludes.

2 Background and motivation

This section illustrates the main concepts of potency-based multi-level modelling, based
on an example in security policies and its encoding using either two or multiple levels.

Mouelhi et al. [14] propose a meta-model to represent access control languages (like
RBAC or OrBAC) and security policies described with them. An excerpt of it is shown
in Fig. 1(a). Hence, the meta-model contains elements to represent both RuleTypes and
Rules, and parameter types (class ElementType) and parameter instances (class Param-
eter). These are two occurrences of the type-object pattern, and arise due to the need
to model both types and instances at the same meta-level. In this way, the conformity
relation between instances and types is reified by the three associations named type.

This solution uses classes to represent both types and instances because it assumes
just one instantiation level below. Instead, should we be able to use more than two meta-
levels, a simpler solution like the one in Fig. 1(b) would suffice. This model has potency
2 (indicated by the “@” symbol), which means that it can be successively instantiated at
the two subsequent meta-levels. Each element inside the model receives the potency of
its container element, if no specified otherwise. For example, ElementType has potency
2, and so it can be successively instantiated at the two next meta-levels. In contrast,
ElementType.hierarchy has potency 1, so it can only be instantiated one level below.
This multi-level model specification is roughly half the size than the flat meta-model (3
vs. 6 classes, 4 vs. 7 attributes, 4 vs. 10 associations, and 3 vs. 0 potency marks).

Fig. 1(c) shows an instance of the meta-model in Fig. 1(a). It contains a small part
of the definition of the RBAC language and an example of use. Hence, it defines rule
type UserRole, and one instance of it named R1.

Fig. 1(d) shows the equivalent multi-level version making use of two meta-levels.
The upper model (with potency 1) contains the definition of the RBAC language, while
the lower model (with potency 0) defines the RBAC instance. The elements in the multi-
level model (e.g., rbac) are instances of a type (e.g., PolicyType), and types w.r.t. other
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Fig. 1. Security policies: (a,c) two-level solution, (b,d) multi-level solution.

elements (e.g., policy). This way, they have both a type and an instance facet, and so
they are called clabjects (merging of the words class and object) [3]. This duality also
applies to associations. This way, in the model with potency 1, associations rparam and
uparam can declare cardinalities which (by default) apply to the next meta-level only.
This possibility of defining cardinalities leads to a more precise model.

Altogether, in this case, the multi-level solution yields a simpler language defini-
tion (see Fig. 1(a-b)). Moreover, it permits organising models across meta-levels (see
Fig. 1(c-d)), hence providing separation of concerns between language designers (e.g.,
the RBAC language designer within the security policies domain) and language users.

While this example is small and easy to refactor into a multi-level solution by hand,
meta-models may be large, and then, their refactoring into multi-level becomes error-
prone. Hence, the next section describes our approach for their automated refactoring.

3 Rearchitecting meta-models into multi-level solutions

Fig. 2 shows our process to rearchitect a meta-model into multi-level. First, the meta-
model needs to be analysed to discover “smells” that indicate the convenience of mi-
grating into a multi-level solution. These smells include the type-object pattern, and
others identified in [6]. Although we currently perform this analysis by hand, it could
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Fig. 2. Our process to rearchitect a meta-model into multi-level

be semi-automated using heuristics. The presence of smells is signalled by annotating
the involved meta-model elements.

In a second step, we transform the annotated meta-model into an instance of a multi-
level neutral meta-model. A recommendation system analyses this model to detect the
features supported, not supported, or which can be emulated by a number of MLM
tools. The result is a ranked list of candidate tools. When one of such tools is selected,
the neutral model is serialized into the specific format of the tool. The overall process
is extensible with new smells and MLM tools.

Next, we explain the steps of the process.
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Fig. 3. Annotated meta-model

1) Discovery of multi-level smells. The first step
is to annotate the occurrences of multi-level pat-
terns in the meta-model. We take as a basis the
patterns identified in [6]. These include the type-
object pattern, where a class plays the role of type,
another the role of instance, and a relation be-
tween them the role of typing. As Fig. 3 shows,
the running example contains three of such occur-
rences. The pattern also applies to associations, in which case, their source and target
classes should be in a type-object relation. Fig. 3 contains three occurrences, like asso-
ciation RuleType.parameters which plays the role of type for Rule.parameters.

Several heuristics are possible to automatically detect occurrences of the type-object
pattern, e.g., based on naming conventions (see pairs 〈Name〉Type / 〈Name〉 in Fig. 3).
However, at this stage, we have focussed in the translation of different variations of this
pattern into a MLM setting, leaving pattern detection heuristics for future work.

One of such variations is the static types [6], where a superclass plays the role
of type for a subclass, and the typing relation is reified as inheritance. In this case,
refactoring into multi-level enables the dynamic creation of instances of the type class.
2) Transformation into a multi-level neutral representation. We transform the an-
notated meta-model into an instance of the multi-level neutral meta-model shown in
Fig. 4(a). It is “neutral” as it captures generalizations of multi-level concepts found in
MLM tools like Melanee, METADEPTH or MultEcore.

In this neutral meta-model, each element may have a potency governing its instan-
tiation. In order to account for different semantics, our potency extends the classical
notion [3] (explained in Section 2) with an interval [start..end]. This specifies a range
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Fig. 4. (a) Multi-level neutral meta-model. Transformation of: (b) basic type-object pattern; (c)
type-object with optional, multiple typing; (d) type-object of references

of meta-levels where it is possible to create direct instances of the element. The num-
ber of subsequent instantiations of these instances is governed by depth, as in classical
potency. The default value for the potency interval is [1..1], and the default depth is
1, which means that the element can be instantiated in the next meta-level but these
instances cannot be instantiated further. This corresponds to standard two-level mod-
elling. An interval [2..2] means that the element can be instantiated starting two levels
below, and its combination with depth 1 corresponds to the notion of leap potency [6].
We will explain further combinations of values in the recommending step.

Transforming a meta-model into our multi-level neutral representation may yield
a model spanning one or several meta-levels. These are reified using the Model class.
Models can hold Clabjects and Features. To account for MLM approaches supporting
elements with multiple types, TypedElement declares the multi-valued reference types,
and Clabject defines the flag isMultiType. Model elements can have zero or more Cardi-
nality restrictions, constraining the number of instances that can be created at a certain
level (not necessarily the next one, as in two-level modelling). The level to which the
cardinality restriction applies is indicated by assigning a potency to it.

Figs. 4(b), 4(c) and 4(d) show the transformation of the meta-model annotations for
some representative variants of the type-object pattern. Fig. 4(b) corresponds to the base
case, where the instance class has a single class type. This is transformed into a clabject
for the type, with default potency interval [1..1] and depth 2. This captures the possibility
of creating types in the next level, and instances of them two levels below. The running
example has three occurrences of this base case. Fig. 4(c) tackles the situation where
the instance class can have multiple, optional typing. Multiple typing is handled as the
base case, but the isMultiType attribute of the produced clabject is set to true. Optional
typing requires producing another clabject for the instance, with potency interval [2..2]
and depth 1. This enables the leap instantiation of instances two levels below, thus
emulating instances with no type. We also support other variations in the direction and
cardinality of the typing relation, as well as its realization as an attribute identifier.
The static types variant aforementioned, where the type and instance classes are related
through inheritance, is also supported. This case leads to one model for the type class
and another for the instance class, which are related through instantiation.



Table 1. Support of MLM concepts by tools: native support (+), emulated (∼), unsupported (−).

dimension multi-level feature start end depth Melanee MetaDepth MultEcore
potency standard potency 1 1 n (n≥1) + + ∼ (n=∞)
in leap potency n (n>1) n 1 ∼ (n=1) + ∼ (n=∞)
clabjects replicability n (n≥1) m (m>n) 1 − (n=1,m=n) − (m=n) +
and deep leap potency n (n>1) n o (o>1) − (n=1,o=1) − (o=1) ∼ (o=∞)
references deep replicability n (n≥1) m (m>n) o (o>1) − (n=1,m=n,o=1) − (m=n,o=1) ∼ (o=∞)
potency in attribute durability 1 n (n≥1) 1 + + ∼ (n=∞)
attributes attribute mutability n (n≥1) m (m>n) 1 + ∼ (m=n) − (always mutable)

instantiation

shallow ref. cardinality 1 1 1 + + +
deep ref. cardinality n (n>1) m (m>n) o (o>1) − ∼ (OCL) −
multiple typing - - - − + (a-posteriori) + (supplementary)
abstract types - - - ∼ (potency=0) + +

The transformation also handles the type-object pattern applied to references, as
Fig. 4(d) shows. This creates one Reference with potency depth 2, owned by the clab-
ject declaring the reference. Moreover, the cardinality bounds get transformed into two
Cardinality objects. The first one captures the cardinality of the type reference and has
potency 1, being enforced one level below. The second one comes from the instance
reference and has leap potency 2, being applied two levels below.

As regards to the meta-model elements with no annotation, they are transformed
into clabjects or features with default attribute values.
3) Recommendation of MLM approach. After transforming the meta-model into a
multi-level neutral model, we analyse it to identify the multi-level features required for
the problem at hand, and which tools provide support for them. For this purpose, we
have built a recommender that recognizes the required multi-level features by detecting
certain patterns on the configuration of element potencies, and then counts how many of
such features are either natively supported, can be emulated, or are unsupported in each
tool. The recommender yields a ranking according to the number of features natively
supported, and in case of tie, by the number of features that can be emulated. It also
reports the unsupported required features.

Table 1 contains a summary of the patterns sought by the recommender (columns
multi-level feature, start, end and depth). The last three columns show whether these
features are supported, unsupported or can be emulated by three representative tools:
Melanee, METADEPTH and MultEcore.

All tools support or can emulate standard potency, while METADEPTH natively
supports leap potency, which is necessary for models like the one in Fig. 4(c). Our
multi-level neutral meta-model supports other variations of potency like replicability,
where an element can be instantiated in a range of levels with depth 1, deep replicability,
where in addition the created instances can be further instantiated, or deep leap potency,
where instantiation starts after a level gap and can be iterated. Interestingly, none of the
three tools fully support the last two options.

Regarding attributes, durability indicates how many levels below an attribute is in-
stantiated, and mutability the range of levels where an attribute can be modified. Mela-
nee natively supports both, while they can be emulated with the other two tools.

As for reference cardinalities, none of the tools permit their specification for lev-
els beyond the next one, although METADEPTH can emulate this via OCL. All tools
support abstract types (Melanee emulates them via clabjects with potency 0), while
multiple types are possible in METADEPTH and MultEcore.



Table 2. Results of applying our rearchitecting process to some of models analysed in [6].

meta-model flat meta-model multi-level version type-object occur. tool ranking
classes refs. attrs. classes refs. attrs. reduc. clabject assoc. Melanee MetaDepth MultEcore

Security Policies 7 12 7 4 5 4 50% 3 4 1 2 3 ×
Agate 69 123 81 64 118 81 4% 6 2 2 1 3
CloudML 21 28 26 15 17 26 23% 6 7 2 1 3
CloudML-2.0 33 50 44 21 40 44 18% 12 5 2 1 3
HAL 42 16 72 41 15 72 2% 1 0 2 1 3

4 Experiments

We have developed a prototype tool with a recommender for Melanee, METADEPTH
and MultEcore. We have used the tool to perform an initial evaluation of our process by
rearchitecting the running example and four third-party meta-models which contain oc-
currences of the type-object pattern, as identified in [6]. Table 2 shows the size metrics
before and after the rearchitecture, as well as the reduction percentage in the number of
elements (clabjects, references and attributes) required to express the same information.
The reduction ranges between 2% (HAL) and 50% (running example). The small re-
duction size for HAL and Agate is because these are the biggest meta-models and have
few type-object occurrences. The reduction gain in the rest of cases is considerable.

The table also includes the number of type-object occurrences in each meta-model,
and the ranking of recommended tools based on their support of the features in Table 1.
This score adds 2 points for each required multi-level feature that the tool supports
natively, 1 point if the feature can be emulated, and -1 if it is unsupported. We have
marked with a cross the cases in which a tool does not support some required feature.

The recommended tool for the running example is Melanee, as it supports mutability
for the three attributes name, and it can emulate leap potency (required for reference
children). METADEPTH appears in second place because it has native support for leap
potency, but mutability needs to be emulated. MultEcore is in third place as it does not
support attribute mutability as required in this case.

More details on the evaluation can be found at http://miso.es/MLeval.

5 Related work

We are not aware of any effort for the automatic rearrangement of meta-models into
multiple levels. There are just some works on manual rearchitecture [6, 9], or introduc-
ing concrete multi-level elements [10]. In [6], we identified patterns where using MLM
may have benefits. In [9], a standard in the oil & gas industry is recasted into multiple
levels. In [10], some evolution operators allow applying the powertype pattern in mod-
els, which may imply reorganizing elements across levels. Hence, to our knowledge,
ours is the first proposal towards an extensible, automated process to migrate to multi-
level (though currently only the refactoring into multi-level is fully automated, but the
discovery of multi-level smells is manual).

Regarding our level-neutral meta-model, the main contribution with respect to other
meta-models (e.g., in METADEPTH [5] or Melanee [2]) is the generalization of potency,
the possibility to specify cardinalities for levels beyond the immediate lower one, and
the capability to indicate multiple typings.



6 Conclusions and future work

We have presented an approach for the automated rearchitecture of meta-models into
multi-level specifications. The approach is based on the identification of multi-level
smells, and their translation into a neutral multi-level model that can be analysed to
recommend the most suitable MLM tool to transform to. We have created prototype
tool support, and performed a preliminary evaluation obtaining promising results.

In the future, we plan to define annotations for other multi-level smells, and heuris-
tics to induce them. We also plan to refine the recommendation process (e.g., to consider
the cost of emulating non-native features), to migrate models together with their meta-
models, and to perform a large scale evaluation.
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