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Abstract—Model transformations play a prominent rôle in
Model-Driven Engineering (MDE), where they are used to
transform models between languages; to refactor and simulate
models; or to generate code from models. However, while the
reliability of any MDE process depends on the correctness
of its transformations, methods helping in detecting errors in
transformations and automate their verification are still needed.

To improve this situation, we propose a method for the static
analysis of one of the most widely used model transformation
languages: ATL. The method proceeds in three steps. Firstly,
it infers typing information from the transformation and detects
potential errors statically. Then, it generates OCL path conditions
for the candidate errors, stating the requirements for a model
to hit the problematic statements in the transformation. Last, it
relies on constraint solving to generate a test model fragment or
witness that exercises the transformation, making it execute the
problematic statement.

Our method is supported by a prototype tool that integrates
a static analyzer, a testing tool and a constraint solver. We have
used the tool to analyse medium and large-size third-party ATL
transformations, discovering a wide number of errors.

Keywords-Model-Driven Engineering, Model Transformation,
Static Analysis, Constraint Solving, Verification and Testing.

I. INTRODUCTION

Model transformation is the main enabler of automation
and model manipulation in MDE [30]. The definition of a
transformation is typically used many times, likely in different
projects. Hence, transformations need to be thoroughly tested
to guarantee the reliability of any MDE solution [24].

The verification of model transformations is an active area
of research [2], and much effort has been spent in verifying
transformations defined with formal languages (e.g., based
on graph transformation [10]). However, most transformation
languages used in practice lack a fully formal foundation or
a theory enabling their verification. One reason is that many
of them rely on the Object Constraint Language (OCL) [22],
which provides further expressiveness but makes transforma-
tion analysis difficult. This is the case of the Atlas Transfor-
mation Language (ATL) [17], one of the most widely used
languages in industry and academia.

ATL is a weakly typed language, which makes ATL trans-
formations prone to typing errors, like using a property of
a subtype class in an expression yielding a supertype, or
omitting the initialization of a mandatory feature. Such ill-
typed transformations are accepted by the ATL engine; hence,
errors can only be discovered upon feeding the engine with an
input model making the transformation execute the incorrect

statement. This testing process is manual, which poses several
drawbacks: it is difficult to manually identify the erroneous
parts of a transformation, the manual creation of input test
models is tedious and time-consuming, and developers need
to manually check that the model resulting from the transfor-
mation is well-formed. Even if some existing works automate
the generation of input test models, they mainly propose black-
box generation criteria like meta-model [27] or requirements
[14] coverage, neglecting the detection of typing errors.

In this paper, we propose a method directed to discover
errors in ATL transformations by combining static analysis
and constraint solving. First, static analysis detects statements
of the transformation that contain errors or are potentially
problematic. While some of these problems will always raise
errors when executing the transformation, others can never
occur either because the transformation is written in such a
way that it prevents the error, or because the only input models
that would trigger the error are not valid according to the input
meta-model integrity constraints.

Hence, as a complementary technique, we use constraint
solving to find an input model that makes the transformation
execute the erroneous statement, thus confirming the existence
of a problem in the transformation, and helping the developer
to understand and reproduce the error. For this purpose, given
a potentially problematic statement, we build an OCL path
condition stating the features needed in an input model to
enforce the execution of the statement. A constraint solver
uses this condition and the meta-model definition to generate
a candidate input model. If no model is found, we discard the
problem. We call the generated model a witness [31], because
it signals a transformation error.

The method is supported by a tool integrated with the ATL
editor. It uses a type checker for ATL transformations [9],
extended with type error detection and OCL path condition
generation. The tool integrates the USE Validator [18] for
witness generation, and the mtUnit transformation testing lan-
guage [14] to automate the testing process. We have evaluated
our proposal against third-party transformations released as
ATL use cases1, discovering a wide number of errors.

Altogether, the contribution of this work is a novel method
to detect errors in ATL transformations which relies on: (i)
static analyis to detect potential problems based on the typing
information, (ii) the construction of OCL path conditions

1http://www.eclipse.org/atl/usecases/



leading to problematic statements, and (iii) the generation of
witness models from the path conditions using model finders.
While we have developed the method for ATL, it could be
adapted for other languages relying on OCL, such as those
of the QVT family [23]. Additionally, we report an initial
evaluation over a set of public transformations.
Paper organization. Section II outlines our approach, which
is detailed in the following sections: Section III introduces
a running example, Section IV explains the static analysis
phase and the recognizable problems, and Section V shows
how to generate OCL path expressions and witness models.
Section VI presents our tool, while Section VII evaluates
our technique. Section VIII compares with related work, and
Section IX draws conclusions and lines for future work.

II. OVERVIEW

Our approach detects potential problems in a transformation
using static analysis. If a problem cannot be statically guaran-
teed to be an error, we generate a witness model that confirms
(or falsifies if it does not exist) the problem.

Fig. 1 outlines our proposal. First, we perform the static
analysis of the transformation. For this purpose, the ATL
transformation is parsed to obtain its abstract syntax model.
Then, we perform a type checking of the transformation
that annotates the ATL model with type information and
detects some typing errors and warnings, some of which may
be only potential and need to be confirmed by a witness
model. Next, we perform an additional analysis to uncover
more complex problems. This step generates a dependence
graph [11] of the transformation that makes explicit the control
flow dependencies between the elements of the transformation,
such as which rules may map a source object to a target object.
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Fig. 1. Overview of the process.

Then, for each potential problem or a particular error
selected by the user, we search a witness model that allows
reproducing the error. To improve the performance of the
search, the static analysis phase calculates the transformation
effective meta-model [28], which is the smallest subset of the
input meta-model that is relevant for the transformation (i.e.,
the classes and features accessed by the transformation code).

This process is called pruning. Then, for each problematic
statement in the ATL transformation, the dependence graph
is traversed to obtain the corresponding error path. This is a
subgraph (a slice of the transformation) that represents the set
of elements with their dependencies that the execution flow
must traverse to trigger the error. From the error path, we
generate the following two artefacts: an OCL path condition
stating the features required from the witness model, and the
path effective meta-model of the error, which includes the
meta-model elements involved in the error. The path effective
meta-model and the transformation effective meta-model are
used to compute the error meta-model, which extends the path
effective meta-model with the mandatory classes and features
needed to obtain a model conformant to the original meta-
model. We compute this error meta-model to improve the
performance of the model search by providing a smaller scope
than the real source meta-model. Finally, we feed the error
effective meta-model and the OCL path condition into a model
finder (i.e., a constraint solver) in order to obtain a witness
model that triggers the error at runtime; if no model is found
up to a given bound, we discard the problem as spurious.

The next section introduces a running example that will be
used to illustrate the different steps of this process.

III. RUNNING EXAMPLE

A transformation is written against its source and target
meta-models. These describe the structure of the models
manipulated by the transformation, including the allowed types
and relations, type and cardinality of features, and additional
constraints typically expressed as OCL invariants.

Transformation languages vary between strongly typed such
as Kermeta [16], where all types are resolved at compile time
and the abstract syntax is annotated with type information,
and dynamically typed such as ATL, where type checking is
performed at runtime (although the ATL IDE has autocom-
pletion facilities, types are not enforced). In this paper, we
describe our approach to analyse transformations written in
dynamically typed languages, focusing on its application to
ATL. Some aspects that can be analysed statically include
type-correctness relative to the source and target meta-models,
applicability and dependency of transformation rules, detection
of unused helpers, and certain performance issues.

As a running example, Listing 1 shows a transformation
from UML Activities to Intalio BPMN2, exhibiting common
errors in faulty ATL transformations. Fig. 2 shows an excerpt
of its source/target meta-models. We have modified some
cardinality in Intalio’s meta-model to illustrate some errors.
1 module UML2Intalio;
2 create OUT : Intalio from IN : UML;
3

4 helper context UML!Activity def :
5 allPartitions : OclAny =
6 self.partition−>collect(p | p.allPartitions)−>flatten();
7

8 helper context UML!ActivityPartition def :
9 allPartitions : Sequence(UML!ActivityPartition) =

10 self.subpartition−>collect(p | p.allPartition)−>flatten();

2http://www.intalio.com/products/bpms



11

12 rule activity2diagram {
13 from a : UML!Activity
14 to m : Intalio!BpmnDiagram (
15 name <− a.name,
16 pools <− pool
17 ),
18 pool : Intalio!Pool (
19 name <− ’main (’ + a.allPartitions−>size() + ’ lanes)’,
20 lanes <− a.allPartitions,
21 sequenceEdges <− a.edge−>
22 select(e | e.oclIsKindOf(UML!ControlFlow))−>
23 collect(e | if e.source.oclIsKindOf(UML!InitialNode) then
24 thisModule.flow initial(e)
25 else e endif ),
26 vertices <− a.partition−>collect(p | p.node)
27 )
28 }
29

30 lazy rule flow initial {
31 from cf : UML!ControlFlow
32 to b : Intalio!SequenceEdge (
33 name <− if cf.name.oclIsUndefined() then
34 ’initial’ else cf.Name endif,
35 source <− cf.source,
36 target <− cf.target
37 )
38 }
39

40 rule initialnode {
41 from initial : UML!InitialNode ( initial.incoming.isEmpty() )
42 to activity : Intalio!Activity (
43 name <− ’empty initial activity’
44 )
45 }
46

47 rule initialnode timer {
48 from initial : UML!InitialNode (
49 initial.incoming−>exists(edge |
50 edge.source.oclIsKindOf(UML!AcceptEventAction))
51 )
52 to activity : Intalio!Activity (
53 activityType <− #EventStartMessage
54 )
55 }
56

57 rule objectnode {
58 from obj : UML!ObjectNode
59 to art : Intalio!Artifact
60 }

Listing 1. ATL transformation.

An ATL transformation can include rules and OCL helpers.
A rule identifies a configuration of source elements defined by
a source pattern, normally made of a single element, for which
it generates one or more target elements. The most commonly
used kinds of rules in ATL are matched rules and lazy rules. A
matched rule is implicitly executed once for each occurrence
of its source pattern, while a lazy rule is executed only when it
is explicitly invoked. For instance, the activity2diagram matched
rule (line 12) transforms every Activity object into an object of
type BpmnDiagram and a Pool. In contrast, the flow initial lazy
rule (line 30) will be executed upon its explicit invocation
through the statement thisModule.flow initial(e) (line 24), and
hence its execution depends on the execution of the caller
rule activity2diagram.

The features of the target objects created by a rule are initial-
ized using bindings with the syntax feature < − OclExpr.
In the case of references, each source object appearing in
OclExpr is looked up in the transformation execution trace
to retrieve the target object in which it was transformed by
some rule. This is called binding resolution.

Fig. 2. Excerpts of UML meta-model (up) and Intalio meta-model (down).

Finally, helpers can be seen as operations or derived features
attached to a given type (lines 4 and 8). Helpers that are not
attached to a type act as global functions.

While the ATL compiler processes the example transfor-
mation without reporting problems, its execution may fail or
produce incorrect target models for the following reasons:

1) Unresolved binding (line 20). There is no rule transform-
ing ActivityPartition (the result of the allPartitions helper) into
Lane (the type expected by feature lanes).

2) Possibly unresolved binding (lines 35 and 36). The right
part of both bindings has an ActivityNode object, which can
be resolved by rules initialnode, initialnode timer, or objectn-
ode. However, there are no rules dealing with ForkNode,
which is also a subclass of ActivityNode, and there may be
InitialNode objects not accepted by the guards in lines 41
and 49. Hence, we need to find a witness model to confirm
whether there are valid models containing objects rejected
by any of these three rules, or otherwise discard this error.

3) Invalid target in resolved rule (line 26). If the binding
is resolved by rule objectnode, it will assign an Artifact
object to the vertices property, which has type Vertex, hence
producing an ill-typed target model. Thus, we need to
check whether this resolution is possible by generating a
witness model.

4) Missing binding for compulsory feature activityType of
Activity (lines 42–44).

5) Potentially conflicting rules (lines 40 and 47). ATL does
not allow two matched rules to be applicable on the same
source object. This can be controlled by defining exclusive
guards for the rules, but checking this property manually
is difficult.

6) Unnecessary flatten operation (line 6).
7) Invalid property (name in line 33) and helper call

(allPartition instead of allPartitions in line 10).



In the following, we explain how we detect these errors by
gathering type information and performing static analysis, and
how we generate witness models for the detected errors.

IV. STATIC ANALYSIS

The first phase of our approach is a static analysis, which
includes the type checking of the transformation and the
analysis of the transformation dependence graph.

A. Type checking ATL transformations

We first perform a type analysis of the transformation to
determine if it satisfies the syntactic constraints imposed by
the source and target meta-models. This is a complex task in
ATL due to its dynamic nature. For instance, the allPartitions
helper in lines 4–6 specifies OclAny as return type, but its body
makes clear that Sequence(ActivityPartition) is a more precise
typing. The call a.allPartitions->size() in line 19 works fine at
runtime, but a naive type checker that takes OclAny as the
type for a.allPartitions would signal an error. The ATL compiler
does not report an error because it does not perform any type
checking. We use type inference to determine the type of OCL
expressions and compare it with the declared type, reporting
warnings if needed. This allows a correct type checking of the
previous expression.

Type checking is performed in two passes. First, we annotate
the variable declarations, rule pattern types and helpers with
the types they explicitly declare. Then, we perform a bottom-
up traversal of the Abstract Syntax Tree (AST) propagating
types, annotating each node in the AST, and reporting errors
and warnings. Currently, we do not support recursive helpers,
but we just use their declared type.

Fig. 3 shows the types used to annotate the AST nodes,
including typical OCL types such as primitive and collection
types. Metaclass refers to a class defined in the source or target
meta-model. TypeError is a marker indicating that a node in the
AST is problematic and cannot be given a type. ThisModule
refers to the transformation. Reflective allows handling queries
to an object’s metaclass at runtime, although our support for
this is limited. Undefined values (i.e., null) are represented
with Undefined. A special undefined value called EmptyCollection
is used for expressions like Sequence {} to indicate that the type
of the collection’s elements is unknown.

TypeError
err : Error

...... Reflective

Special

Empty
Collection

SequenceSet

1 nested 

Collection

kindOf      *

* types

Union

ThisModule

Metaclass

UndefinedBooleanString

PrimitiveType

Type

Fig. 3. Types used to annotate the AST.

We use the type Union to keep track of the multiple types
that an expression may yield. For example, the expression
anActivity.node->union(anActivity.partition)->first() is given the type
Union(ActivityNode, ActivityPartition). This allows reasoning about
the operations that can be performed on the result of the

expression. In this case, it is possible to access the name feature
because both classes inherit this feature from NamedElement,
but an access to incoming raises a warning because only
ActivityNode defines the feature.

Another issue is that ATL does not support the oclAsType
casting operation, which complicates the analysis as there is
no explicit way for downcasting. In the example, line 22 down-
casts implicitly by selecting only ControlFlow edges, ensuring
that the call to flow initial is safe. We deal with this form of
downcasting by means of the kindOf feature in the Boolean type.
Thus, the expression e.oclIsKindOf(UML!ControlFlow) is given the
type “Boolean plus ControlFlow”, and if it appears in iterators like
select, the type of the resulting collection is limited to types
appearing in the kindOf feature (Sequence(ControlFlow) in this
case). We also track the uses of oclIsKindOf in if conditions and
rule filters to implicitly downcast the checked expressions.

In some cases, the type errors detected statically need to
be confirmed by finding a witness model. For example, the
aforementioned implicit downcasting mechanism may report
a false problem. As we will see in Section V, to speed up
the generation of witnesses, we use the effective meta-model
of the transformation (i.e., classes and features accessed by
the transformation). This is calculated from the meta-model
footprint obtained in the analysis phase, using a pruning
algorithm similar to the one presented in [28].

Altogether, the type checking phase annotates the nodes of
the AST of the transformation. This allows identifying some
typing errors and warnings. Table I shows the most important
errors we are able to detect (at this point, the errors in phase
typing). We will explain this table in Section IV-C.

B. The transformation dependence graph

The type checking phase annotates the transformation in a
separate model conforming to an extended ATL meta-model
enriched with the type of the nodes and the control and data
flow of the transformation (see Fig. 4). This model, called
transformation dependence graph (TDG), is analysed in a
second stage to uncover further potential problems.

Rule
name : String
inTypes[*] : Metaclass
outTypes[*] : Metaclass

MatchedRuleLazyRule

Helper
type : Type
arguments[*] : Type

Expression
type : Type

CallExpr
isModuleCall : Boolean

Binding
srcType : Type
tgtType : Type

*

IfExpr

value 1

1   body

 * resolvedBy

filter 0..1

TypeHelper
context : Type

ModuleHelper

ModuleCallable

ModuleCallable TypeHelper
staticCall   0..1 0..*  dynamicCall

0..*  dynCalledBystCalledBy   0..*

VarExp

Variable
Declaration

1  refVar

Fig. 4. Excerpt of extended ATL meta-model.

In Fig. 4, each Expression refers to the type assigned by the
type checker. The control and data flow of OCL expressions
is represented in the abstract syntax of ATL following the
containment relationships of expressions. This suffices also



for loops, which can only be implemented through explicit
iterators and there are no breaking statements (e.g., break,
return). Moreover, since there are no variable reassignments,
any variable usage VarExp only needs to refer to the original
variable declaration.

Analysing the dependencies between a call expression and
the helpers that may process the call is challenging. We use
a similar approach to [20], where every helper that may
resolve a call is added to the TDG (reference dynamicCall).
Similarly, given a binding, we compute all matched rules that
may resolve it (reference resolvedBy). Lazy rules are statically
resolved because they are invoked like global functions (class
ModuleCallable and reference staticCall).
Example. The TDG excerpt in Fig. 5 shows a call to the
lazy rule flow initial from the matched rule activity2diagram, and
the rules resolving the binding source <- cf.source. The type
of cf.source in the right part of the binding is ActivityNode,
and hence rules initialnode, initialnode timer, and objectnode may
resolve it, as all have a subtype of ActivityNode in its from part.

: MatchedRule 

name= “activity2diagram” 
inTypes  { Activity } 

: Binding 

: LazyRule 

name= “flow_initial” 
inTypes= { ControlFlow } 

: VarExp 

varName= “cf” 
source 

: IteratorExp 

iterator= “select” 

: IteratorExp 

iterator= “collect” 

source 
: CallExp 

op= “flow_initial” 

body 

… 

… 

: MatchedRule 

name= “initialnode” 
inTypes  { InitialNode } 

: MatchedRule 

name= “initialnode_timer” 
inTypes= { InitialNode } 

: MatchedRule 

name= “objectnode” 
inTypes= { ObjectNode } 

: Binding 

srcType=  
ActivityNode 
tgtType= Vertex 

: NavExp 

feature= “source” 
type = Vertex resolvedBy 

staticCall 

value 

resolvedBy 

resolvedBy 

rule activity2diagram {  

  ... 

  thisModule.flow_initial (e) 

  ... } 

 

lazy rule flow_initial {  

  ... 

  source <- cf.source, 

  ... } 

 

rule initialnode { 

  from initial: UML!InitialNode 

  ... } 

 

rule initialnode_timer { 

  from initial: UML!InitialNode  

  ... } 

 

rule objectnode { 

  from obj: UML!ObjectNode 

  ... } 

Fig. 5. Excerpt of TDG with elements involved in the “Possibly unresolved
binding” error (line 35 in Listing 1).

C. Analysis of problems

Table I summarizes the problems we detect statically. The
second column indicates in which phase of the analysis the
error is detected, either the type checking (Section IV-A) or
the analysis of the TDG (Section IV-B). The third column
states if the problem needs to be confirmed by generating
a witness: never (i.e., static analysis), sometimes, or always.
The last column indicates the severity of the problem, dis-
tinguishing between execution errors and warnings regarding
style, performance, or unexpected transformation behaviour.
Moreover, the severity of errors can be error-always if the
transformation execution always yields a runtime error; error-
source if runtime errors will occur only for models with certain
features; and error-target if the transformation will not crash,
but it will yield an incorrect target model.

We consider five kinds of errors, corresponding to the five
blocks in Table I. Type errors refer to disconformities between
the types used in the transformation and those declared in its
source and target meta-models. For instance, using an invalid
type name, or accessing a feature in an object whose type does
not define the feature, raises an error.

Description Phase Precision Severity
Typing (with respect to source/target meta-model and helper definitions)
Invalid meta-model or type
name

typing static analysis error-always

Operation/feature not found typing static analysis error-source
Operation/feature not found,
but declared in subclass

typing sometimes
solver

error-source

Feature not found, but de-
clared as operation

typing static analysis error-source

OCL navigation
Wrong iterator body type typing static analysis error-source
Wrong kind of accessor oper-
ator (→ vs. “.”)

typing static analysis error-source

Flatten over non-nested col-
lection

typing static analysis warning-style
/performance

Transformation integrity constraints
Read access to target model typing static analysis warning-behaviour
Filter in lazy rule typing static analysis warning-style
Matched rule without output
pattern

typing static analysis warning-style

Target meta-model conformance
Compulsory target feature not
initialized

analysis
of TDG

static analysis error-target

Binding resolved by rule with
invalid target

analysis
of TDG

sometimes
solver

error-target

Transformation rules
No rule to resolve binding analysis

of TDG
static analysis warning-behaviour

Possibly unresolved binding analysis
of TDG

always solver warning-behaviour

Conflicting rules analysis
of TDG

always solver error-source

Non-invoked rule analysis
of TDG

static analysis warning-behaviour

TABLE I
PROBLEMS DETECTED STATICALLY IN ATL TRANSFORMATIONS.

Errors can also be in OCL navigation expressions. The first
two errors of this kind raise a runtime error when executing the
erroneous statement. Expressions that include the flatenning
of a non-nested collection are performing an unneccesary
operation, hence this is reported as a warning.

Some integrity constraints regarding the semantics of ATL
are not enforced by the ATL IDE, and therefore can be
violated by transformations. Even if these violations will not
produce runtime errors, they may cause unexpected results. For
instance, the target model of an ATL transformation should be
write-only, and therefore we report on any reading operation
over the target model. Another example is the definition of
filters in lazy rules, allowed by the ATL IDE, but ignored by
the execution engine.

Some problems concern the conformance to the target
meta-model of the produced output models. These problems
are unnoticed during the transformation execution, becoming
apparent when the non-conformant output model is processed
by another transformation or modelling tool. Ensuring confor-
mance to the target meta-model statically is challenging, but
we can detect some problems of this type. For instance, we
report an error if a target compulsory feature (i.e., with positive
lower cardinality and no default value) is left unbound, as
this will always produce an incorrect target model. Bindings
resolved by a rule with an invalid target type are a potential
problem, which may require finding a witness model.

Finally, problems related to the dependency between trans-
formation rules include missing rules for the types used in
bindings; conflicting rules, e.g., if two rules have non-exclusive



guards; and dead-rules that will never be executed, e.g., lazy
rules that are invoked nowhere.
Example. In Fig. 5, an error occurs if cf.source (line 35 in
Listing 1) holds an object that cannot be resolved by any of the
rules initialnode, initialnode timer and objectnode. This would be
the case for an object of type ForkNode (incompatible with the
from part of all rules), or an object of type InitialNode that does
not satisfy the guards of initialnode and initialnode timer. Hence,
this problem is marked as “possibly unresolved binding”. The
next section explains how to check whether a model with such
characteristics exists.

V. GENERATION OF WITNESS MODELS

Some problems detected in the static analysis phase can be
signalled accurately, but others require finding a witness model
proving that the error can occur in practice. Failing to find a
witness model may happen in two cases: when the meta-model
includes constraints preventing the existence of problematic
models, or when the transformation contains expressions that
prevent the error at runtime.

The third column in Table I shows the problems that require
this additional step (cells marked as “sometimes solver” or
“always solver”). To generate a witness model for a given
problem, we calculate all possible execution paths leading
to the problem, and for each path, we derive an OCL ex-
pression that characterizes the input models that make the
transformation execute the problematic statement. Then, we
use constraint solving to assert whether there exists a model
that satisfies this OCL expression as well as the meta-model
integrity constraints (cardinality of associations, compositions
and OCL constraints). Next, we explain these steps in detail.

A. Extracting the error path

To calculate the paths leading to an error, we start from
the node that contains the problematic statement, and traverse
the transformation control flow back until reaching a matched
rule. There are seven types of nodes in the graph (see Fig. 4):
Matched rule nodes to represent the execution of a matched
rule, which typically starts the execution flow; Loop to repre-
sent the iteration over a collection; If to represent a condition
and the branch for which the control flow passes towards the
error; Let to represent a variable definition and its scope; Call
to represent an invocation to a helper or lazy rule; Callable to
aggregate several paths starting from a helper or lazy rule; and
Subexpr to identify the valid part of a problematic expression.
Additionally, there is a problem node for each type of problem,
which gathers specific error conditions (see Section V-B).
Example. Fig. 6 shows the error path built from the prob-
lematic binding source < − cf.source (label 1). To exercise the
binding, its owning rule flow initial should be called. Since it is
lazy, it must be explicitly invoked, and we look in the TDG for
any call expression that invokes it. This information is stored in
the TDG’s reference stCalledBy. The Callable node aggregates
all possible rule calls (label 2), just one in this case (label
3). The call (thisModule.flow initial(e)) is performed within the
true branch of a conditional expression (If node, label 4). The

conditional expression is within a collect iterator (lines 23–25).
To reach the iterator, the source collection of the iterator must
exist (Loop node, label 5). Finally, the execution starts in the
activity2diagram matched rule (label 6).

Problem 
Unresolved binding  
source <- cf.source 

Callable (lazy rule) 
flow_initial 

Call 
flow_initial(e) 

Loop 
a.edge->select(e | 
e.oclIsKindOf(…) 

Matched rule 
activity2diagram 

Activity.allInstances()->exists(a | <5> )  

If 
e.source.oclIsKindOf 
(InitialNode) / true 

a.edge->select(e |  
  e.oclIsKindOf(UML!ControlFlow))-> 
  exists(e | <4> ) 

1 

2 

3 

4 

5 

6 

if e.source.oclIsKindOf(InitialNode)  
then <3>  
else false endif 

( this node aggregates several paths 
  that may pass through the rule ) 

let cf = e  
in <2> 

<1> 

let p = cf.source in 
(not p.oclIsKindOf(ObjectNode)) 
and (not p.oclIsKindOf(InitialNode) or not 
         p.incoming.isEmpty())  
and (not p.oclIsKindOf(InitialNode) or not 
  p.incoming->exists(…)) 
       

(problem-specific) 

Fig. 6. Error path and OCL path condition.

B. Building the OCL path condition

Given the error path, we derive an OCL expression de-
scribing the models that make the transformation execute
the problematic statement. To this end, we first collect the
conditions found in every path to the error, and then add
problem-specific conditions to trigger the error.

Our strategy to build the OCL path condition is a bottom-
up traversal of the error path starting from the leaf nodes (i.e.,
nodes that trigger the execution flow). For each node, an OCL
fragment is generated stating the conditions required for the
control flow to continue towards the error. Then, the OCL
fragment for the parent node is generated, which strengthens
the path condition, until the problem node is reached. Note that
each node in the error path has a single parent. Table II shows
the OCL conditions generated from each path node type.

While the OCL condition generated from the error path is
the same for every error type, some kinds of errors require
including an additional problem-specific OCL condition. For
example, if the problematic statement is an access to a feature
of an object o of type T but the feature is defined in a subtype T’
of T, and o is obtained iterating a collection c, we need to add
c->exists(o | not o.oclIsKindOf(T’)) to the OCL path condition to
request some object of the problematic type in the collection.

Table III shows the specific conditions generated for prob-
lems with precision sometimes solver and always solver. For
the rest of problems, we also support the generation of witness
models, but in that case, the extra condition is simply true since
it is enough to reach the statement.
Example. In Fig. 6, the OCL path condition is built starting
from the Matched rule node (label 6). The generated OCL
fragment enforces the existence of objects that can be matched



Element ATL OCL condition Description
Matched rule rule r {

from t : T ( guard(t) )
... }

T.allInstances()−>exists(t |
if guard(t) then dependingNode
else false endif )

The model should contain at least one object t with com-
patible type (T) satisfying the guard.

If expression if condition then branchToError
else theOtherBranch endif

if condition then dependingNode
else false endif

The case in which the false branch leads to error just swaps
the then/else parts.

Iterator expression expr−>collect(it | exprWithError)
−>followingOperations

expr−>exists(it | dependingNode) The operator exists ensures that the collection contains some
problematic element. Any following operation is ignored.

Navigation expression
(mono-valued property)

expr.property.invalidAtt.otherNav not expr.property.oclIsUndefined() The condition demands the existence of property; thus,
accessing the invalid attribute invalidAtt triggers an error.

Navigation expression
(multi-valued property)

expr.property−>invalidOp() not expr.property−>notEmpty() The condition demands a non-empty property; thus, calling
the invalid operation invalidOp triggers an error.

Call to helper with context helper context MM!T
def : aHelper : OclAny =
self.exprWithError

...
exprOfTypeT.aHelper

let genSelf = exprOfTypeT
in genSelf.exprWithError

The body of the helper is inlined, replacing self with a
new value (e.g., genSelf) that contains the receptor object.
Parameters are passed in a similar way.

Call to helper without
context, or lazy rule,
or called rule

helper def : aHelper : OclAny =
exprWithError

...
thisModule.aHelper

exprWithError Lazy rules and called rules are treated as global helpers, in
which the “from” part (of a lazy rule) are parameters.

TABLE II
TRANSLATION OF ATL ELEMENTS INTO OCL CONDITIONS: CONTROL FLOW DIRECTIVES.

by the rule. Then, the condition for the existence of ControlFlow
edges (label 5) is nested within the previous fragment, and
similarly for the If node (label 4). A call to a lazy rule
or a helper implies inlining its body within the generated
expression, which requires passing parameters and binding the
self variable in the case of helpers. This is done by using
let expressions to create new variable scopes (label 3). No
OCL is generated from the callable node (label 2) because this
node just aggregates the paths passing through it. The last step
adds a problem-specific condition to the OCL path condition
(label 1). In particular, we need to check whether cf.source can
contain an object that is not accepted by the rules initialnode,
initialnode timer and objectnode. Hence, following the third row
in Table III, cf.source should either have an incompatible from
type or not satisfy the rule guard, for each of the three rules.

C. Generation of witness models

The previous procedure yields an OCL path condition for
each path to the error. A disjunction of these conditions is
declared as the invariant of an artificial class in the meta-model
(called ThisModule), which also contains the translation of the
global variables and helpers defined in the transformation. This
is done because OCL does not support global constraints, but
they must be defined in the context of some class. Then, a
model finder (like UMLtoCSP [8] or the USE Validator [18]),
checks whether there is a model that satisfies all invariants (we
force one object of type ThisModule, which later is discarded).
Most model finders rely on bounded search, exploring models
up to a certain size, typically given in terms of a range for
the number of objects of each class. Hence, they employ
the “small scope hypothesis” [1], [15] and assume that most
constraints are satisfied by models of limited size.

To further constrain the search space, we use a pruned
version of the input meta-model which only considers the
types and features used in the OCL path condition, as well
as the mandatory types and features needed to obtain a valid
instance of the complete input meta-model. Using a pruned

version of the input meta-model can drastically reduce the
finding time, especially in the case of large meta-models,
because the solver does not need to consider types irrelevant
for the error. As an example, the next table shows the size of
the pruned meta-model and the time it takes to find a witness
model for the path condition in Fig. 6, compared to using the
complete meta-model. In this example, the pruned meta-model
reduces the finding time by 99.47%.

pruned MM. complete MM.
number of classes 84 249
number of associations 3 401
witness generation time (sec.) 0.18 34.40

Example. The figure to
the right shows a wit-
ness model for the path
expression of Fig. 6,
obtained with the USE
Validator. The model
exercises lines 35 and 36 of the transformation, and it has
a ControlFlow object with source and target pointing to an
InitialNode which does not satisfy the guards of the rules
initialnode and initialnode timer. This makes the transformation
to yield an invalid target model, containing a SequenceEdge
with undefined source and target references.

VI. TOOL SUPPORT

Our method is supported by an Eclipse plugin (available
at http://www.miso.es/tools/anATLyzer.html) that includes an
ATL type checker, an analysis module, and relies on the
USE Validator to generate witness models. The plugin is
integrated in the ATL editor, so that error reporting and witness
generation is seamlessly integrated in the IDE. Moreover,
we provide a mtUnit script that automates the testing of the
transformation with the generated witness models and reports
the execution results.

Fig. 7 shows a screenshot of the tool. The detected problems
are marked in the ATL editor (labels 1 and 2) and reported in



Element ATL OCL condition Description
Operation/feature not found in T, but
declared in its subclasses S1,...,Sn

<expr : T>.feature not expr.oclIsKindOf(S1) and ...
not expr.oclIsKindOf(Sn)

expr should have a type compatible with T,
different from S1,...,Sn.

Binding resolved by rule with invalid
target

feature <− <expr : T>
...
rule r { from t : T1 ( guard(t) ) ... }

// If expr is mono−valued:
guard(expr)
// If expr is multi−valued:
expr−>exists(t | guard(t) )

To ensure that expr contains objects accepted
by rule r, expr needs to satisfy the rule guard.
When T1 is a subtype of T an additional check,
expr.oclIsKindOf(T1), is needed.

Possibly unresolved binding feature <− <expr : T>
...
rule r1 { from t : T1 ( guard1(t) ) ... }
rule rn { from t : Tn ( guardn(t) ) ... }

(not expr.oclIsKindOf(T1) or
not guard1(expr)) and ...

(not expr.oclIsKindOf(Tn) or
not guardn(expr))

expr should be incompatible with the rules
declared for T or its subtypes. The OCL path
condition when expr is multi-valued is similar.

Conflicting rules rule r1 { from t1 : T1( guard1(t1) ) ... }
rule r2 { from t2 : T2( guard2(t2) ) ... }

// T <: T1 , T <: T2
T.allInstances()−>exists(t |

guard1(t) and guard2(t) )

We need an object accepted by both rules. T is
the closer descendant of T1 and T2. If T1=T2,
we take T=T1.

TABLE III
TRANSLATION OF ATL ELEMENTS INTO OCL CONDITIONS: PROBLEM-SPECIFIC CONDITIONS.

the Problems view (label 3). The quickfix facility of Eclipse
allows generating witness models, visualized with PlantUML
(label 4). These models can be automatically added to a mtUnit
test suite for testing the transformation (label 5).

1 2 

3 5 

4 

Fig. 7. Enhanced ATL editor.

Some practical issues arose during the development, due
to incompatibilities of the OCL used in ATL and USE.
For instance, since USE lacks derived attributes, we had to
encode helpers as operations. The USE Validator only supports
collections of type Set, does not support recursive functions,
and attributes with lower bound 0 and a primitive type need a
special encoding (as a Set plus a constraint). Built-in features
of ATL, like refImmediateComposite, need to be emulated by
OCL operations. Finally, the type checker of USE performs a
type inference for collections which is less precise than ours,
and it signals as errors some expressions accepted by our
analyser; this was partly solved by recasting these expressions.

VII. EVALUATION

To evaluate our method, we have used some transformations
from the ATL Use Cases repository. This is a documented
collection of 26 non-trivial applications of model transforma-
tions, some of them from industrial projects. We only selected
use cases ranked as “reaching completion” – which is the
highest rank – meaning that the transformations are complete

or only minor details are missing; hence, they are supposed
to have few errors. Moreover, we discarded two use cases
because the involved meta-models were not available, and two
more because they exercised AMW but not ATL. Altogether,
our evaluation considered 6 use cases with the highest rank,
which amounts to 19 transformations because some use cases
included several transformations.

Fig. 8 shows the results of our evaluation (we omit the
error types that were not found in any transformation). The
first rows of the table contain metrics of the complexity of the
transformations. For use cases with several transformations,
we show the average of each metric. The rest of the table
shows the number of errors of each type uncovered. For
the problems that may require the generation of a witness
model (marked with *), the second line shows how many were
confirmed statically, how many were confirmed by a witness
model, how many were discarded because no witness exists,
and how many remained unconfirmed for some reason (e.g.,
the OCL path condition included recursion).

Only one of the evaluated transformations does not present
problems. Thus, our techniques are able to catch elusive errors
and can help to improve the quality of transformations.

The most frequent error is the creation of target models
where the cardinality of some compulsory feature is violated
(Compulsory target feature not initialized). This is problematic
if the erroneous target model is to be used as input in a chained
transformation that expects correct input models.

In three uses cases (C, D and F), some feature or operation
defined in a subclass is accessed over an expression whose
static type is a superclass. Thus, the transformation may fail if
instances of the superclass exist. Our analyser is able to discard
this potential problem when a rule filter or the condition in an
iterator ensure that such instances cannot reach the problematic
statement. When this cannot be statically guaranteed, we
generate a witness model. For this error type, we confirmed
111 statically, 11 were discarded because there was no possible
witness model, and 29 problems remained unconfirmed.

Another problem signalled by the analyser are the bindings
not resolved by any rule, or potentially unresolved. This
indicates that the transformation does not handle some config-
uration of the source model. This is complex to detect by hand,
as one needs to know the type of the right part of the binding,



A B C D E F Total
Transformation metrics (average)
Number of transformations 1 1 1 8 6 2 19
Lines of code 275 233 831 482 84 155.5 343.3
Number of helpers 6 0 15 39 1.3 2.5 10.6
Number of matched rules 14 5 8 6 4.2 9.5 7.8
Number of lazy/called rules 1 0 15 7 0.2 1.5 4.1
Source meta-model size (classes) 32 5 68 65 7.2 37.5 35.8
Target meta-model size (classes) 77 6 46 27 6.2 24.0 31.0
Detected errors and warnings:
Typing (with respect to source/target meta-model and helper definitions)
Invalid meta-model or type name 1 1
Operation/feature not found 10 10
Operation/feature not found, but declared in subclass* 2 122 27 151

[0/0/0/2] [84/0/11/27] [27/0/0/0] [111/0/11/29]
OCL navigation
Wrong iterator body type 1 1
Wrong kind of accessor operator 33 28 61
Flatten over non-nested collection 4 9 13
Transformation integrity constraints
Read access to target model 3 3
Matched rule w/o output pattern 1 1
Target meta-model conformance
Comp. target feat. not initialized 49 10 71a 27 24 181
Binding resolved by rule with invalid target* 6 6

[0/0/0/6] [0/0/0/6]
Transformation rules
No rule to resolve binding 1 5 2 8
Possibly unresolved binding* 8 1 7 9 25

[0/0/0/8] [0/0/1/0] [0/3/0/4] [0/9/0/0] [0/12/1/12]

Total number of problems 58 0 12 238 67 68 441

Evaluated use cases:
A: cpl to spl
B: pdl to tina
C: fiacre to lotos
D: models measurements
E: code clone tools
F: sbvr to uml

*Requires witness model. The
cells show: total number of er-
rors [errors confirmed statically
/ errors confirmed by witness /
errors discarded because no wit-
ness was found / unconfirmed
errors]

aThe analyser reported 6 false
errors due to imperative code.

Fig. 8. Result of evaluated transformations.

and then look up all transformation rules that may resolve
it. The use cases contain 21 occurrences of this problem, 8
confirmed statically and 12 by generating a witness model.

A. Threats to validity

The main threat to the validity of our evaluation is the rel-
atively low number of transformations analysed. Nonetheless,
their large size and the fact that they are real case studies
developed by third parties make them representative of the
errors in a typical transformation. Moreover, the analysed
transformations are public and have been likely revised and
improved by a broad audience. It is expected that transforma-
tions which are not in public repositories are faultier. We plan
to improve our evaluation with other ATL transformations.
We also plan to perform an experiment directed to measure
to what extent the development of new transformations using
our techniques help reducing the number of errors.

Our implementation is so far available only for ATL. The
features of other transformation languages may limit or impose
other constraints in the static analysis phase. For instance,
QVT-Relations does not have the limitation of write-only
target models. However, we believe that our method could
be adapted to other languages that rely on OCL as well.

Finally, there is no formal semantics for ATL, and most of
the errors we capture are based on the explanations in the ATL
guide and our own experience. In this sense, there is the risk
that we have misinterpreted the semantics of ATL for some
errors. To mitigate this, we have written tests to acknowledge
our intuition about the behaviour of the ATL engine. Our aim
is to extend such tests, so that they can serve as reference and
test bed for ATL tooling developers.

B. Discussion
The analysed transformations range from purely declarative

(i.e., only matched rules) to purely imperative (i.e., only
called rules and imperative blocks). The static analyser always
worked as expected and generated the corresponding path
expressions except for a few imperative blocks.

For errors of type “always/sometimes solver”, we have man-
ually checked that the witness model that confirms or discards
the problem is correctly generated. However, sometimes, the
OCL code we generate cannot be processed by the USE
Validator. This may happen due to three reasons, which we
plan to tackle in the future:
• The OCL path condition generated for an error traverses

nodes containing other errors. A solution would be to
prioritize the order in which errors should be solved, fixing
first the errors described by OCL path conditions that do
not include other errors, and so on.

• Our type inference is more precise than USE’s, which
implies that some OCL/ATL expressions are deemed cor-
rect by our static analyser, but for USE are not. In fact,
this is why most problems in the use case D could
not be processed. We plan to develop a transformation
from OCL/ATL to OCL/USE able to recast the required
expressions using oclAsType, which is supported by USE.

• The USE Validator has some limitations, such as no
support for Sequence collections and recursive functions.

Altogether, the evaluation shows that transformations
thought to be stable may contain errors of diverse nature. Some
may due to the dynamic nature of ATL, but others are inher-
ent to rule-based languages (non-initialized features, wrong
rule resolution, etc.). Our method has allowed uncovering a



surprisingly high number of problems, proving that this kind
of techniques is urgently needed to help developers improving
the quality of model transformations.

VIII. RELATED WORK

Next, we review approaches for transformation verifica-
tion [24], focussing on testing, analysis via constraint solving,
static analysis, and slicing.
Transformation testing. A main challenge in transformation
testing [3], [26] is the automated creation of input test models.
Most proposals employ a black-box approach, and some rely
on model finders to generate test models [14]. For example,
in [29], partial models are used to reflect test intentions, and
model finders complete them into full-fledged models confor-
mant to a meta-model. Other approaches rely on coverage of
the meta-model [12] or the transformation requirements [14]
as criteria for automated model generation.

Few works focus on white-box testing. In [19], the authors
use the effective meta-model of each transformation rule to
derive test cases. In [13], a white-box testing approach for ATL
produces a set of input models ensuring certain coverage. To
this aim, the authors build a dependency graph by partitioning
the transformation OCL expressions, and traverse the graph
in each possible way to compute input models using model
finders. They do not perform type checking or static analysis,
but their goal is maximizing the variety of obtained models.
Instead, our generation of model witnesses is driven by the
problems found by the static analysis.

We follow a white-box approach to generate input models
(witnesses) driven by static analysis. These models are maxi-
mally effective as they allow reproducing an error. However,
our technique is not a replacement for the previous testing
methods, but it is complementary, directed to typing errors.
Transformation analysis based on constraint solving. Many
works use transformation models [4] to express transforma-
tions and use model finders for their analysis. A transformation
model is the merge of the source and target meta-models, pos-
sible trace links between their elements, and OCL invariants
expressing correctness conditions.

In [5], [6], ATL transformations are translated into transfor-
mation models, and model finders are used to check whether
the transformation can produce a model not satisfying the
output meta-model constraints. In [7], some analysis properties
are defined for transformations based on their translation into
OCL and their analysis with model finders. While this branch
of works assumes a correctly typed ATL transformation, we
focus on discovering typing errors.

Our contribution in this area is a novel technique, based
on static analysis, extracting the slice of the transformation
that corresponds to the path to an error, building an OCL
expression with the conditions for a model to reach the error,
and using model finders to generate one such witness model.
Static analysis of transformations. Even though static anal-
ysis has been used in graph transformation to detect, e.g., rule
conflicts and dependencies [10], its use in transformation lan-
guages closer to programming languages, like ATL or QVT, is

an exception. The literature reports on three main applications
of static analysis: maintainability of transformations [25], [35],
generation of input test models, and static detection of errors.
We focus on the last two applications.

Regarding test generation, in [21], the effective meta-model
of Kermeta transformations is used to generate input test
models ensuring a proper coverage of the transformation.
While Kermeta is strongly typed, ATL transformations may
be ill-typed; thus, we focus on identifying typing errors and
potential problems and generate witness models for them.

The use of static analysis to detect errors in transformations
is mostly unexplored. In [36], the presented Java Façade for
ATL can be used to build static analyses. We opted for a new
API to integrate explicit rule dependencies and error handling
information. Static type checking of VIATRA2 transformation
patterns [33] relies on constraint solving to ensure a correct
typing of the patterns’ parameters w.r.t. the meta-models. In
our case, the type-checking is on ATL, which heavily relies on
OCL, thus making type-checking more complex. Moreover,
we perform an additional analysis directed to find further
problems and generate witness models to signal such errors.
Program slicing and path conditions. Program slicing is a
technique to detect the parts of a program that affect a given
statement [32], [37]. Few works have adapted this idea to
model transformations. One exception is [34], which defines
dynamic backward slicing for in-place VIATRA2 transforma-
tions. Our approach is similar, but we need to tackle the
peculiarities of ATL, like the different types of rules and the
implicit resolution mechanisms.

While program slices identify the dependencies of a fault,
path conditions characterize the input data leading to a faulty
statement. In [31], path conditions characterize safety viola-
tions, which a constraint solver can verify by generating a
witness. This is a set of values for the input variables, needed
to reach a certain statement. To our knowledge, the use of path
conditions and witnesses in model transformation is novel.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a novel technique for uncovering errors
in ATL transformations. The technique uses static analysis
and type checking for finding problematic statements, and
constraint solving to generate witness models confirming and
explaining the errors. We have built a tool and analysed several
public ATL transformations, uncovering a surprisingly high
number of problems in most of them. This shows that tools
like ours are needed in the model transformation community.

We are extending the approach with quick fixes to solve the
errors. We also plan to derive transformation pre-conditions,
which might be implicit and undocumented, to make explicit
the models the transformation is applicable to. Finally, we
are performing a wider analysis of existing transformations to
classify the most common errors made by developers.
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[4] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lin-
dow. Model transformations? Transformation models! In MoDELS’06,
volume 4199 of LNCS, pages 440–453. Springer, 2006.
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[7] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and valida-
tion of declarative model-to-model transformations through invariants.
Journal of Systems and Software, 83(2):283–302, 2010.
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[19] J. M. Küster and M. Abd-El-Razik. Validation of model transformations
- first experiences using a white box approach. In MoDELS Workshops,
volume 4364 of LNCS, pages 193–204. Springer, 2006.

[20] L. Larsen and M. J. Harrold. Slicing object-oriented software. In
ICSE’96, pages 495–505. IEEE, 1996.

[21] J.-M. Mottu, S. Sen, M. Tisi, and J. Cabot. Static analysis of model
transformations for effective test generation. In ISSRE, pages 291–300.
IEEE, 2012.

[22] OMG. OCL 2.3.1 specification.
http://www.omg.org/spec/OCL/2.3.1/.

[23] QVT. http://www.omg.org/spec/QVT/.
[24] L. A. Rahim and J. Whittle. A survey of approaches for verifying model

transformations. Software and System Modeling, in press, 2013.
[25] A. Rentschler and P. Sterner. Interactive dependency graphs for model

transformation analysis. In Demos/Posters/StudentResearch@MoDELS,
volume 1115 of CEUR Workshop Proceedings, pages 36–40. CEUR-
WS.org, 2013.

[26] G. M. K. Selim, J. R. Cordy, and J. Dingel. Model transformation
testing: The state of the art. In AMT ’12, pages 21–26. ACM, 2012.

[27] S. Sen, B. Baudry, and J.-M. Mottu. Automatic model generation
strategies for model transformation testing. In ICMT’09, volume 5563
of LNCS, pages 148–164. Springer, 2009.

[28] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model pruning.
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