
This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

Towards an Extensible Architecture for
LLM-based Programming Assistants in IDEs

Albert Contreras , Esther Guerra , and Juan de Lara

Universidad Autónoma de Madrid, Spain
{albert.contreras, esther.guerra, juan.delara}@uam.es

Abstract. Large Language Models (LLMs) are the backbone of chat-
bots like ChatGPT, and are used to assist in all sort of domains. Follow-
ing this trend, we are witnessing proposals of LLM-based assistants for
coding tasks. However, current IDEs lack mechanisms tailored to facili-
tate the integration of such assistants, from how to interact with them
to how to apply their suggestions without leaving the environment. To
fill this gap, this short paper presents an extensible architecture for the
definition of assistance tasks (e.g., method renaming) based on LLMs,
and their binding to IDE commands and natural language prompts. We
report on an ongoing effort to build a Java assistant within Eclipse based
on this architecture, and illustrate its use.

Keywords: Programming assistant · Conversational agent · LLM · IDE

1 Introduction

Large Language Models (LLMs) are transformer-based neural networks trained
on vast amounts of text data [8], able to generate sensible outputs upon user
inputs. Many LLMs have appeared, either trained on general data (e.g., those
of the GPT family, Llama, Claude) or on domain-specific data, like code (e.g.,
StarCoder, Code Llama) [8].

General LLMs are the backbone of chatbots such as ChatGPT or Gemini,
and are used to build smart applications and assistants for all sorts of domains.
Programming is no exception to this trend, with many emerging proposals of the
use of LLMs to assist in programming tasks, like code generation from natural
language [1,7], testing [6], or program repair [5]. Some of these assistants are in-
tegrated into popular IDEs. For example, Visual Studio and JetBrains integrate
GitHub Copilot [4], and PyCharm [7] and Eclipse [3] also integrate specific assis-
tants. However, these approaches lack an extensible architecture that facilitates
the addition of LLM-based support for other programming tasks in an external
way (i.e., without modifying the assistant code).

This short paper is a first step to fill this gap. It presents an extensible
architecture whereby new LLM-based programming assistants can be added ex-
ternally to an IDE, either bound to specific IDE commands or accessed in natural
language. The approach is realised in Caret [2], an ongoing effort for a Java
programming assistant within Eclipse. We illustrate the architecture by showing
how to extend Caret via extension points to support new tasks.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://orcid.org/0009-0006-6887-9826
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

2 A. Contreras et al.

developer

I need a class
Book with title
and author

Task classification agent

Classify the following
request: {request}
Into one of:
1. Document a class
2. Create a class
…
and extract the following
parameters: {params}
…

classify task & 
extract params

prompt

LLM

2. Create a class
class=Book
descr=With title
and author

…

registered tasks

{ ‘class’: ‘Book’,
‘descr’: ‘…’} You are an agent to

assist Java progra…

Create a class Book
…

LLM

public class Book {
… }

IDE

IDE

Document class
Create class
…

menu

Create class

dialog

params

1b

1a

2b

2a

3b

3a

4a

6
7

id=1 prompt=‘..’ params

id=2 prompt=‘..’ params

class descr

class

8

IDEbind=Menu

Create class

Document class
IDEbind=Menu

extension point
TaskGroup

5a

task-specific prompt

Fig. 1. Working scheme of the extensible assistant.

2 Extensible Architecture for Programming Assistants

Fig. 1 shows a scheme of our extensible architecture to integrate LLM-based
assistants into IDEs. The idea is having a generic assistant that allows registering
assistive tasks (e.g., document a class, create a class satisfying some domain
requirements), which developers can activate on demand.

Registering an assistive task in the assistant requires specifying, among other
things, how developers can request the assistance: in natural language (label
1a), or via commands of the IDE (e.g., a menu, label 1b). In the first case, the
developer states to the IDE what he/she wants to achieve, and the assistant aims
to deduce which registered task is suitable to accomplish it (label 2a). For this
purpose, the assistant builds a prompt with the developer request and the set of
registered tasks, and asking to classify the request into a task and to extract the
relevant parameters from the request (label 3a). This prompt is sent to an LLM
(label 4a), which outputs the classified task and the detected parameters (label
5a). For example, given the developer request “I need a class Book with title and
author”, the LLM classifies it into the task “create a class”, and extracts the
class name (Book) and description (with title and author) as parameters. The
assistant can use these parameters as context for the requested task.

Then, the assistant activates the identified task, passing to it the parameters
(label 6). The task creates a prompt with two parts (label 8): a general one (“You
are an agent to assist Java programming”), and a specific one providing the task
description and parameters. This prompt is sent to an LLM, which typically
(though not necessarily) will output code. For instance, in the previous example,
the LLM would return a Java class Book with attributes title and author. Finally,
the assistant applies the necessary actions in the IDE to complete the task.

If the request comes from an IDE command (label 2b), the task gets uniquely
determined. Hence, steps 1a to 5b are not necessary, but the developer is pre-
sented a dialog box to introduce the parameters needed for the task (label 3b),
and the assistant proceeds from step 6.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

Towards an Extensible Architecture for LLM-based Programming Assistants 3

type     1

parameters   1..*

tasks    *

ParameterType

+getName(): String

«enum»
JavaConcept

PROJECT
PACKAGE
CLASS
INTERFACE
METHOD
ATTRIBUTE

OtherParameter

-name : String

JavaParameter

«enum»
IDEBind

MENU
CONTEXTUAL
NONE

Parameter

-name: String
-required: bool
-defaultValue: String

Task

-code: String
-name: String
-description: String

Action

Agent

«extension point»
TaskGroup

-id: String
-name: String
-description: String

+ getTasks(): Task[*]

1
binding

agent
1

action
1

Fig. 2. Extension point.

Technically, assistive tasks are registered via
an extension point, a mechanism present in
many IDEs (e.g., Eclipse) and component-based
frameworks. This allows adding arbitrary tasks
in a non-intrusive way. Fig. 2 shows a concep-
tual model of the extension point. It defines the
data needed to register assistive tasks by sub-
classing from TaskGroup. This class groups tasks,
which can be bound to either menu commands,
the usage context (e.g., when selecting a code
snippet), or none (i.e., the task is activated by
natural language). Each Task defines named Pa-

rameters that can be required or not, and have
a type (either a programming concept such as
class or attribute, or other type, like “class de-
scription”). Tasks have a description (used to
build the prompt sent to the LLM Agent, cf. la-
bel 8 in Fig. 1) and perform Actions.

3 Tool Support

We have started to realise the proposed framework as an Eclipse plugin called
Caret [2]. This is a conversational assistant that assists Java developers in
programming tasks within Eclipse, based on the use of OpenAI’s GPT-3.5 LLM
and other intent-based conversational agents built with Rasa and Dialogflow (al-
though it is possible to extend Caret to support other chatbot technologies).
Caret provides an extension point to register assistive tasks and make them
available from the IDE, either via natural language from a Chat View, or through
commands from a context menu that is displayed by right-clicking on Java files.
Currently, Caret assists with the following tasks: code completion, code docu-
mentation, unit testing, error detection, code optimisation, code comprehension
and method renaming.

Fig. 3 illustrates Caret. It shows the request from a developer who writes
“optimise the method calculateMatrixSum” in the Chat View (label 1). Internally,
Caret classifies the task and extracts the method name calculateMatrixSum as
a parameter of the request. Then, it searches the source code of the method
in the active Java file (label 2). Next, it forwards the request to the registered
optimisation task, which inserts the code into a prompt sent to GPT to perform
the optimisation. Finally, a popup window displays the optimised code proposed
by GPT (label 3), and the developer can apply it if desired.

4 Conclusions and Future Work

The advances in LLMs have prompted their use to support programming tasks.
However, given their continuous growth and evolution, we argue that extensi-

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

4 A. Contreras et al.

1 3

2

Fig. 3. Screenshot of assistance request for optimising method calculateMatrixSum.

ble architectures enabling a flexible integration of the assistants into IDEs are
required. We have presented our initial proposal, and an implementation atop
Caret for assisting in Java programming in Eclipse. In the future, we plan
to improve Caret regarding the user experience and support for other tasks.
Our goal is to build a system to facilitate the construction of assistants for other
(domain-specific) languages and software engineering activities (like modelling).

Acknowledgments. Work funded by the Spanish MICINN with projects TED2021-

129381B-C21, PID2021-122270OB-I00 and RED2022-134647-T.

References

1. Barke, S., James, M.B., Polikarpova, N.: Grounded Copilot: How programmers in-
teract with code-generating models. Proc. ACM Program. Lang. 7, 85–111 (2023)

2. Contreras, A., Guerra, E., de Lara, J.: Conversational assistants for software devel-
opment: Integration, traceability and coordination. In: ENASE (2024)

3. Eclipse Copilot: https://www.genuitec.com/products/copilot4eclipse/ (last
access in 2023)

4. GitHub Copilot: https://github.com/features/copilot (last access in 2024)
5. Jin, M., et al.: InferFix: End-to-end program repair with LLMs. In: ESEC/FSE. pp.

1646–1656. ACM (2023)
6. Lemieux, C., Inala, J.P., Lahiri, S.K., Sen, S.: CodaMosa: Escaping coverage

plateaus in test generation with pre-trained large language models. In: ICSE. pp.
919–931. IEEE (2023)

7. Xu, F.F., Vasilescu, B., Neubig, G.: In-IDE code generation from natural language:
Promise and challenges. ACM ToSEM 31(2), 29:1–29:47 (2022)

8. Zhao, W.X., et al.: A survey of large language models. https://arxiv.org/abs/
2303.18223 (2023)

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://www.genuitec.com/products/copilot4eclipse/
https://github.com/features/copilot
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Towards an Extensible Architecture for LLM-based Programming Assistants in IDEs

