
Engineering applications over Social and Open
Data with Domain-Specific Languages

Ángel Mora Segura⋆ and Juan de Lara

Modelling and Software Engineering Group
Universidad Autónoma de Madrid (Spain)
{Angel.MoraS, Juan.deLara}@uam.es

Abstract. There is a current trend among governments and organi-
zations to make all sort of information (like budgets, demographic or
economic data) public. The information released in this way is called
Open Data. Many institutions promote the creation of innovative appli-
cations using the data they have released, e.g., in combination with social
networks, but only highly skilled engineers can accomplish this task.
Our goal is to facilitate the construction of applications using open data
and social networks as communication platform. For this purpose, we
propose a family of domain-specific languages directed to automate the
different tasks involved, like describing the structure and semantics of the
heterogeneous data sets, the patterns to be sought in social network mes-
sages, the information to be extracted from static and dynamic data and
the messages (over social networks) that the system needs to produce.
We have built an extensible working prototype, which allows adding new
open data formats and support for different social networks.

Keywords: Open data, Social networks, MDE, DSLs

1 Introduction

There is currently a trend by different kinds of entities (governmental, foun-
dations and companies) to offer in an open way all sorts of information, like
economic, demographic, legal, scientific or service data. Typically, such data are
offered as open data, which can be freely used and distributed [10]. However, it
is not enough to deploy it, but it needs to have a format and description useful
for consumers, as well as some degree of interconnection amongst the different
resources in which it is presented. Unfortunatelly, in practice, open data are fre-
quently published “as is” (raw data), and with heterogeneous formats like CSV,
Excel, PDF, or accessible via API queries. This heterogeneity makes difficult the
systematic engineering of applications making use of them.

In the governmental context, the open data movement is directed to offer
higher levels of transparency to citizens, and it is common for institutions to

⋆ Work supported by the Ministry of Education of Spain (FPU grant FPU13/02698),
the Spanish MINECO (TIN2014-52129-R) and the R&D programme of the Madrid
Region (S2013/ICE-3006).

2

promote the creation of innovative applications that use their data (e.g., through
hackatons and contests). Sadly enough, despite having been marked as highly
desirable1, the active involvement of citizens in such activities (by providing
data themselves, or creating customized applications) is still scarce. One reason
is that only highly qualified technical personnel is able to create and supply
valuable open data sources and applications, since this involves highly complex
tasks. These include the identification and monitoring of data sources, their
cleansing and semantic tagging, their publication and incorporation to public
repositories, the integration of data sources, their interlinking and visualization,
and the implementation of an application that uses them in an effective way.
Our final goal is to lower the barrier to the creation of this kind of applications.

Our proposal to tackle this problem is based on Model-Driven Engineer-
ing (MDE) [15]. In particular, we propose a Domain-Specific Language (DSL),
named DataDSL, to describe the syntax and semantics of open data. It permits
describing heterogeneous data (coming from different sources, formats and do-
mains) in a unified way. The language has facilities to discover and make explicit
the underlying schemas of data sets and link such schemas to different domains.

We show the integration of DataDSL within EagleData2, an MDE framework
for the high-level description and automated synthesis of applications over social
networks [13]. Hence, DataDSL provides open data resources as one more input
among the ones EagleData supports. EagleData comprises two further DSLs:
PatternDSL for describing patterns to be sought on messages in social networks
(like Twitter), and RuleDSL for describing rules to be triggered upon the reception
of messages matching the given patterns. We demonstrate the approach with an
example consisting in a service to show a user-requested bus line route in a map.
The interaction with the system is performed via Twitter, and the data set is
retrieved from the Spanish open data repository3.
Paper organization. Sec. 2 motivates our approach, describing current chal-
lenges. Sec. 3 overviews our approach and introduces a running example. Sec. 4
presents DataDSL. Sec. 5 shows its integration with EagleData. Sec. 6 describes
tool support. Sec. 7 analyses related work and Sec. 8 concludes.

2 Motivation

Over the last years, web data has become more organized and detailed, i.e., more
semantic, and it is common nowadays to find technologies that aim to gather,
organize, represent and query web information. Moreover, the data-based web
is no longer static, but fed by a non-stop streaming of information coming from
a vast load of files, databases, sensor devices and social media. Specifically, the
Semantic Web4 provides an infrastructure for defining, integrating, sharing and
reusing web data according to its meaning and significance. Together with the

1 https://www.w3.org/2012/06/pmod/report
2 http://miso.es/tools/EagleData.html
3 http://datos.gob.es
4 https://www.w3.org/standards/

3

Semantic Web, a series of technologies have emerged – like RDF, SPARQL or
OWL – enabling applications to query the data or use common vocabularies [4].
However, even though standardization has arrived to Semantic Web via Linked
Data [2], most data made available to citizens do not follow these guidelines,
being most frequently presented in an unstructured way or under private formats.

As an example, the Lod Cloud project5 holds a series of data sets published
by contributors, organisations and others. It provides a trustful measurement of
how accessible are these sets, using a rating system known as the 5-star model6.
This defines a 5-step incremental path to publish data from available online (1
star), structured (2 stars), with non-proprietary formats (3 stars), with links (4
stars) and based on Linked Data technologies (5 stars).

/0123 1 10423 +5

70++3 4 80823 +4

140/83 88 8505+3 +41

+70463 6+ 70873 61

70++3 4 50443 69

:'.,;#.#)'<=>* 20423 + 90+93 4

+220223 +++ +220223 677

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!"!!#

)!"!!#

*!"!!#
!"#$%&

'"#$%&#

("#$%&#)"#$%&#

*"#$%&#

+,-./

Fig. 1: Status of Lod data sets.

As Fig. 1 shows, many of the pub-
lished data sets do not obtain more
than 3 stars, meaning that the ma-
jority uses non-proprietary formats.
Hence, it might be stated that the
Semantic Web orthodoxy is still not
sufficiently established, probably be-
cause companies and distributors find
it easier to publish their data in
common formats like CSV or JSON,
rather than the ones that Linked Data
suggests (namely RDF).

An analysis of the Spanish open
data portal evidences the wide vari-
ety of formats used, revealing up to
55 different ones, like CSV (16%), HTML (10,6%), JSON (10,4%), XML (9,7%),
ASCII (9,3%), XLS (6,8%), and PDF (6,8%). These formats often lack a se-
mantic description of their content, which is one of the main challenges of this
work. Hence, in practice, Linked Data formats are not the first choice for open
data, probably because most of these data sources are aimed to be read both by
developers and non-expert users, and, despite being a very complete standard,
human readability is not amongst Linked Data features.

Therefore, since expecting a scenario in which public administration achieves
acceptable levels in the 5-star model is highly idealistic, it is necessary to have
a sound way of giving semantics to open data sets, independently of the chosen
format for their representation.

Our aim is not only to make sense of open data, but also enabling their
active use in social applications. For this purpose, we will integrate open data
descriptions with EagleData. This is a tool for building simple applications over
social networks, like Twitter. This way, the content of open data sources will be
accessible through social networks.

5 http://lod-cloud.net/
6 http://5stardata.info/

4

3 Overview and Running Example

Our challenge is to build a framework that lightens the developement of appli-
cations combining open data, social network data, and faciliating human inter-
action with them. Fig. 2 shows the typical process, whose steps are automated
by EagleData or by the social network of choice (Twitter in this case).

The process starts with a certain organism releasing some open data. The
developer is to become familiar with these data, performing data cleansing if
needed [11] (label 1). Ideally, an explicit description of the data structe and its
semantics would be produced. Our DataDSL language permits describing such

!"#$%&' (#)#*+*

,-'#)' &,.'/#

012$((#)#*&)-1,)1-' +

3#-&' (#)#

4")'5-#)'

&61-,'&

73'"8#)#

&61-,'9&:

;*!333

!

8'&,-2<'

=6->?$6@

!"#"!$%

"

#

&'()!$%
*"##)+,!$%

A

-".()!"#"

Fig. 2: Creating social
apps over open data.

structure and the tooling helps discovering the un-
derlying data schema and linking it with existing
data descriptions (see Secs. 4.1 and 4.2). Then, a
platform-specific data structure has to be created
to store the items (label 2), and the open data sets
are parsed and instances of those structures cre-
ated. If data from several sources are handled, they
need to be integrated. Our tooling automates this
process as well (see Sec. 4.3).

Then, an app using these data is created (label
3). EaglaData relies on social networks, and pro-
vides two DSLs (see Sec. 5). PatternDSL permits
describing patterns to be sought in social network
messages. RuleDSL enables the description of actions
to be performed upon the reception of social mes-
sages, like querying data (e.g., received in previous messages, or in open data
sources), and sending messages. The final app uses Twitter as front-end to in-
teract with the open data. Many users are already familiar with social networks,
so their use presents and advantage with respect to learning a new app.
Running example. We would like to create an application to visualise the
route of a given bus line, so that users can see the closest stop to their current
position. The city of Santander (Spain) has made available the static data of the
stop positions and bus lines at the open data Spanish portal, in CSV format (see
an excerpt in Fig. 3). In the file, the bus line names have been abbreviated to A
and B. In the data set, there is a row per stop and bus line, so that if both lines
share a stop (e.g., Camarreal 109), there are two rows representing that stop:
one for line A, and another for line B.

Taking advantage of the widespread use of Twitter, and that it especially
favours interaction via mobile devices, our application expects a user tweet or

56; Camarreal 109; A; Calle; Camarreal; 109; 43.44625; -3.87072;
61; Campogiro 23; A; Calle; Campogiro; 23; 43.45044; -3.85070;
63; Campogiro 5; A; Calle; Campogiro; 5; 43.45017; -3.85127;
64; Cajo 17; B; Calle; Cajo; 17; 43.45405; -3.83708;
80; Parque Doctor Morales; A; Calle; Cajo; 1; 43.45496; -3.83419;
88; Camarreal 109; B; Calle; Camarreal; 109; 43.44625; -3.87072;

Fig. 3: Excerpt from an Open Data file in CSV format

5

direct message indicating the line to visualize, search the bus line number in the
data set, and build a Google Maps URL that opens a map with the complete
bus line route. The resulting URL is sent back to the user as a direct message.

4 DataDSL: a DSL to describe heterogeneous open data

As we have seen, the main issue with open data is the heterogeneity of formats
and the frequent lack of explicit semantics. Hence, in order to treat all these data
uniformly, a means to describe their underlying schema is needed. Ideally, these
means should allow processing the sources automatically, so that such data can
be queried and combined, also with data coming from dynamic sources, like social
networks. The solution needs to be extensible, because we would like developers
to be able to increase it with support for other new formats.

Several established languages exist in different technological spaces to de-
scribe the structure of data. For example, in MDE, one resorts to meta-modelling
languages like MOF or Ecore [14]; in grammarware, EBNF grammars are used;
while in ontology engineers use languages like OWL [4]. However, none of these
languages offer native support for the following requirements: (i) being format
independent, but allow to add format dependent options describing the pecu-
larities of certain formats (e.g., the separator or the indication of a header in
CSV files), (ii) extensibility mechanisms to add new formats and a set of options
for these. While one could somehow encode this information in the mentioned
languages (e.g., as annotations in Ecore meta-models), it is more convenient to
develop a DSL offering this support in a native way.

4.1 Language syntax and semantics

DataDSL is a textual DSL that allows describing the semantics of data in het-
erogeneous formats. On the one hand it allows building format-independent,
reusable descriptions called fragments. On the other, it supports format-specific
descriptions for concrete data sources, called data descriptions. These may reuse
fragments, and are typically enriched with options of the particular data format.

Listing 1 shows a DataDSL model with some fragments. Fragments are orga-
nized in packages (lines 1–21 and 22–40), which can be annotated (lines 1, 22
and 23) with their application domain. A fragment contains fields, which may
declare a cardinality interval, and whose type may be primitive (e.g., source in
fragment Line in line 6), an enumeration or another fragment. Fields can be
declared key (e.g., id in line 5) to convey that the value is unique. Key fields
are used in formats with no native support for references, to uniquely identify
the referenced elements. For example, if fragments Line and Stop are reused to
describe the content of a CSV file, then the stops reference (line 10) would be
serialized as a list of stopIDs. Fragments can be reused to build other fragments,
through an extension mechanism similar to inheritance, where a fragment can
extend zero or more fragments.

6

DataDSL supports a large number of primitive data types, like Boolean, Lat
(for latitude), Long (for longitude) and String. When using data types, especially
within data descriptions, it is possible to indicate the specific serialization of
their allowed values. In some specific file, a Boolean may be serialized as true and
false, while in others as t and f, or 1 and 0. Hence, fields with primitive type may
declare lists of options in parenthesis. Lines 18 and 19 declare the minimum and
maximum value for the latitude and longitude. To allow reuse, a refined data
type (i.e., a data type with options) can be declared explicitly and given a name.
For example, line 3 declares Id as a refinement of Int, where the allowed values
have 3 digits as a maximum. As a special case, Strings can be refined by means
of options, but also patterns can be specified. For example, PostalCode in lines
26–29 is a refinement of String made of two parts. The first (the city) is made of
two digits, and the second (the district) has three.

1 @transport
2 package BusLine{
3 datatype Id : Int (minLen = 1, maxLen = 3)
4 fragment Line{
5 key Id id
6 String source
7 String destination
8 GeoPoint sourcePoint (null = ””)
9 GeoPoint destinationPoint (null = ””)

10 Stop[∗] stops
11 }
12 fragment Stop{
13 key Int stopID
14 String name
15 GeoPoint stopPoint
16 }
17 fragment GeoPoint{
18 Lat latit (min = −90.0, max = 90.0)
19 Long longit (min = −180.0, max = 180.0)
20 }
21 }

22 @city
23 @geo
24 package Address{
25 enumeration AddrKind{”Calle”,”Avenida”,”Paseo”}
26 datatype PostalCode : String {
27 Digits[2] city
28 Digits[3] district
29 }
30 fragment Address{
31 AddressPoint addressPoint
32 String others
33 PostalCode postalcode
34 }
35 fragment AddressPoint{
36 AddrKind kind
37 String name
38 Int number
39 }
40 }

Listing 1: Some DataDSL fragments for the running example.

The purpose of fragments is to describe knowledge of a domain in a reusable,
format-independent way. Instead, data descriptions describe a particular data
source, in a particular format. As an example, Listing 2 shows a description
for the example CSV of Fig. 3. Such description reuses different fragments and
definitions in Listing 1.

1 import BusLine.∗
2 import Address.∗
3 description ”CSV” SantanderCityBus{
4 Id lineId
5 AddressPoint address
6 Stop stop
7 } (
8 language={”es−ES”},
9 separator={”;”},

10 order={stop.stopID, stop.name, lineId, address.addressPoint, stop.stopPoint}
11)

Listing 2: Describing the CSV in Fig. 3 reusing fragments.

7

!"#$

%&&'

()(*(+!$

,&&'

()(*(+!$

,&&'

!"#$#%&

-"!"./0()

1*2/3!

-"!"-($4352!5/+

'()#*)#+,-,+.&,/%

63"#*(+!7+8*(3"!5/+

9")8($:;!35+#<'=

;!35+#

>3)

1+!

?(")

-"!(

@5*(

A("3

./+!B

-"C

D//)("+

E"!

E/+#

FF(+8*GG

-"!"@C2(

+8))

+8))"H)(

4"$($(+$5!59(

$(2"3"!/3

0(I"8)!

3(#(J

I)"#$

0(45*")4B"3

2"!!(3+

I/3*"!

*5+E(+#!B

*"JE(+#!B

*5+

*"J

0(I"8)!9")8(

FF(+8*GG

K2!5/+L(C

0#1+2,)&,/%

+/0($

,&&'

K2!5/+

M(C :NK2!5/+L(C
9")8(:N;!35+#

+"*(:N;!35+#

5*2/3!

,N

O"4M"#(

(J!(+0$

%&&'N

*)#+,-,+.&,/%!"#$#%&

"+C4"$(

)/P(34"$(

822(34"$(

05#5!$

4B"3

05#5!

FF(+8*GG

@C2(;!35+#

$8H$!35+#$

,&&'

(+4/05+#

)"+#8"#(

FF(+8*GG

-"!"K2!5/+L(C

/2!5/+$

%&&'

/2!5/+$

%&&'

O35*5!59(Q/0(

M(C :NH//)("+
8+5R8(:NH//)("+
!C2(:N@C2(

B"$B!"#N:NH//)("+

S/*2/$5!(Q/0(

3/4#

*5+N:N5+!
*"J :N5+!

!C2(,

561&2.+&0.&.'()#7#-,%#$#%&

-"!"@C2(?(I5+(*(+! ;!35+#?(I5+(*(+!

;8H$!35+#

+"*(:N;!35+#
!C2(:N@C2(;!35+#
*5+E(+#!B :N5+!

*"JE(+#!B :N5+!

3(I5+(N:N@C2(

@"#

+"*(:N;!35+#

8"/6."9)&,/%

9")8(:N;!35+# <'=

T(+(3")K2!5/+ ;2(45I54K2!5/+

M(C :N-"!"K2!5/+L(C M(C :N;!35+#

K2!5/+

M(C :NK2!5/+L(C
9")8(:N;!35+#

/2!5/+$

%&&'

63"#*(+!Q/0(

!C2(,

Fig. 4: Simplified meta-model excerpt of DataDSL.

A data description declares its format, which is CSV in the listing (line 3).
DataDSL is an extensible DSL, where different format handlers (e.g., for CSV,
JSON, XML) can be included. As we will see later, each handler is in charge of
parsing the data sources of the given format into a common representation, and
to provide support for a number of configuration options. Just like fields, data
descriptions may include options, specified in parenthesis after their definition
(lines 8–10 in the listing). Options for a description may be general (applicable to
any format and provided by default by DataDSL) or specific for the given format.
The listing declares that the data within the CSV file is in Spanish (line 8) using
the general option language. In addition, the CSV format handler contributes
with three options: separator (the separator character of fields in the file, “;” in
the example), header (whether there is a header row, false by default), and order

(to indicate the specific order in which the components of the description will
appear in the file). None of the options is mandatory. In particular, if no order

is specified, the order in which the fields are listed is taken. If order is specified,
and some field of the description is not listed, it is ignored.

An excerpt of DataDSL’s meta-model is shown in Fig. 4. It can be observed
that both Framents and DataDescriptions are defined through Nodes (i.e., fields).
These can be of primitive type (PrimitiveNode), fragment type (FragmentNode)
or composite. In the latter case, they may have an enumeration or refined type.
Nodes may have Options, some of which are shown in the OptionKey enum. DataDe-
scriptions can have either general or specific options. The former are predefined in
DataDSL, while interpreting the later is done through the specific format handler.
Finally, the language distinguishes between DataTypeRefinements and StringRefine-

ments, because the later can specify a structure for the string (class Substring).

8

4.2 Inferring semantics from data sets

Because we intend to minimize the developer’s workload, each format handler can
contribute an algorithm for inferring the structure of a particular data set, and
make it explicit as a DataDSL model. Then, such inferred schema can be refined
by the user, or refactored for the reuse of available fragments. It is to notice
that both XML and JSON permit the availability of external descriptions of
the data, like DTD (Document Type Definition) or JSON Schema7. With them,
it is easy to convert every element into its proper representation in DataDSL.
Unfortunately, neither XML nor JSON force the use of these schemas, and hence
it is common to find data sets with no description of their structure. In that
case, the process is left to heuristics and user intervention, just like with CSV.
Generically, the schema inferring algorithms work in four phases:

1. Check file readability. In a first step, conformance to the given format
is checked. Thus, we approach an early pre-processing of the input file by
removing unexpected characters and literals and by warning the user if the
open data source does not meet the format’s serialization schema.

2. Data source structure detection. Having a valid file to process, we create
the structure of the DataDescription to generate. By analysing its components,
we infer a correspondence to an instance of our DataDSL meta-model. In this
step, we merely identify each component, without assigning them a Type.

3. Data type inference. By default, we set primitive types as String if they
are not explicitly specified (as it happens with DTD). Then, we look over
each primitive value from the input file (e.g., we check CSV column values)
for finding out whether we can assign the corresponding Node a more specific
primitive type. If, for instance, we discover a column that is entirely filled
by integers, then we can set that node type to Int. Additional heuristics to
refine the primitive type can also be applied. For example, for CSV, we check
the column name against predefined sets of keywords, to suggest whether a
column is a key, or represent the Latitude and Longitude of some place if two
columns are in the same time in the range of a latitude and longitude values.
The compatible types are presented in order from more specific (e.g., Lat) to
more general (e.g., Real). To give the algorithm some control about mixed
values we provide a list of probabilistic rates based on how much values
match with the type discovered. Nodes may have options, and so we suggest
values for them. For example, for PrimitiveNode we suggest the minimum and
maximum values for numbers and the null value for strings (if allowed).

Running example. With EagleData we provide a wizard to import files and dis-
cover the value types. In the running example the system automatically produces
the description in Listing 3 (where field names have been renamed). Enumerations
(like the in in line 1) are generated if the number of different strings values is
below a certain configurable threshold. For the example, the algorithm suggests

7 http://json-schema.org/

9

two enums (AddressKind and Line). Once inferred, the user may change the de-
scription, and EagleData checks if the corresponding source is still conformant
to the description.

1 enumeration AddressKind {”Calle”, ”Avenida”}
2 enumeration Line {”A”, ”B”}
3 description CSV SantanderCityBus{
4 Int id (min = 56, max = 88)
5 String idStop (null = ” ”)
6 Line line
7 AddressKind addressKind
8 String addressName (null = ” ”)
9 Int addressNum (min = 1, max = 109)

10 Lat latPoint (minDouble = 43.44625, maxDouble = 43.45496)
11 Long longPoint (minDouble = −3.83419, maxDouble = −3.87072)
12 }(”delimiter” = ”;”)

Listing 3: Automatically inferred data source description.

4.3 Handling the heterogeneity of formats

As we will see in Sec. 6, EagleData provides a series of (Eclipse) extension points
to add support for more formats. In order to enable a uniform access to het-
erogeneous data, we use a common meta-model, shown in Fig. 5. The idea is to
provide mappings for different static data sources to this common model. This
meta-model has the structure of a Table that can be used to represent tabular
data [6]. Cells of the table can be either ContentCell or TableCell which means the
cell contains a subtable instead of a string value. This way, EagleData assumes
that every data provided by format extensions will consist of a group of Tables.

CSV XML JSON

Table Resource Document JSONObject

Row Record Node JSONArray

ContentCell.content Cell Content JSONObject.value

TableCell.table n/a Node.array JSONArray.value

!"#$

%&&'

("#

)*+,-

.*+,-

/0

!"##

)*+,-1-,, 1"2.-2.1-,,

3-,,$

%&&'

3"2.-2.45.!627

Fig. 5: Mapping data modelling technologies to EagleData’s data model.

We provide three basic extensions for the resolution of static data injection:
CSV, XML and JSON since they are the top choices when it comes to represent-
ing open data. The table shows how those three technologies can be mapped to
our common meta-model. Our design is extensible, as it facilitates the integra-
tion of new technologies. We will elaborate on the extensibility mechanisms in
Section 5.

5 Integration with EagleData

Once we have assured that our system is able to work with the structure of a
certain open data set, the developer needs to have a means to implement the

10

+"*(:N;!35+#

()(*(+!$ '

S/+4(2!

?8)(./0()

!"#$#%&

()(*(+!$ '

?8)(U8(3C V4!5/+

"4!5/+$ '

(9(+! ,

7J23($$5/+

4/+05!5/+ ,

OB3"$(

O"!!(3+./0()

8#/)/1,&,/%!"#$#%&

!"#$#%&

5+N,

4/+4(2!$

%&&'

Fig. 6: Simplified meta-model excerpt of PatternDSL and RuleDSL.

actual behaviour of an open data application. Our previous work [13] introduced
a framework called EagleData for describing simple applications over Twitter by
detecting patterns on messages (with a DSL called PatternDSL) and for perform-
ing rule-based actions (with the RulesDSL language), like sending a message. In
order to benefit from the high use of social networks nowadays, we consider very
interesting to be able to integrate open data sets with data coming from social
networks. For the example, we use Twitter, but similar to the different open
data formats, EagleData provides an extension mechanism for adding support
for additional social networks.

The execution scheme of an EagleData application consists in a loop that
observes tweets mentioning a given account. A number of patterns (described
using PatternDSL) are sought in those tweets, and the matching of any such
pattern may trigger associated rules (defined using RuleDSL). The rules may
perform actions, like generating tweets or private messages. These generated
messages may contain information found both in the social network messages or
in the open data sets. Because most of the information that users post in social
networks does not follow a prearranged structure, EagleData provides facilities
for detecting written language patterns. These patterns are the only information
that the final user needs for using an EagleData application, although this does
not necessarily imply the use of keywords or pre-defined hashtags, but following
a flexible conceptual structure the application provider shall ensure that the user
knows in advance. Other information, like geoposition, is intrinsically available
with the tweets themselves as metadata.

Fig. 6 shows a very simplified meta-model. The concept Phrase represents
the largest information unit a social network message can possibly hold. When a
message matches a defined pattern, its associated rules are triggered. These rules
follow an event-condition-action structure, which means that rules are evaluated
whenever a mentioning tweet is received (event), and executed whenever the
message matches a given pattern (the condition, referenced with the keyword on).
For execution, rules may include a series of actions (starting with the keyword
do). Currently, we support element-query and message-reply rules. In the action
block, static data coming from open data sets can be combined with dynamic
social network: both are uniformly available as variables in the domain. See [13]
for further details.

11

Running example. Listing 4 shows an example of a simple pattern definition in
line 1, which serves as the input user interface to our running example, expecting
the bus line the user needs to know about. Any other character in the tweet is
ignored. If multiple occurrences of a single concept are found, only the first
one is considered. The pattern is named MessageLine, and is made of a string
“Line” followed by the line id. This id is declared elsewhere as being either A
or B. Patterns can also make use of synonyms for words (we use the Wordnet
data base [8]) and perform approximate match (e.g., matching an expression
where some vowels are missing). Whenever our running application receives a
tweet matching the pattern from a user, the query addresses takes place (lines
5 – 6), which returns a list of the addresses of the queried bus line stops. The
query result can be reused for the reply action, started by compose. The language
supports string interpolation (line 8), which permits inserting the elements of
lists using separators, or perform replacements. The message is sent back to the
originator of the tweet.

1 phrase MessageLine (”Line”, id)
2

3 on MessageLine
4 do
5 addresses:
6 select latPoint, longPoint where MessageLine.id = SantanderCityBus.id
7 compose
8 ”https://www.google.com/maps/dir/@{addresses.latPoint,addresses.longPoint}[separator=’/’]”

Listing 4: Rule composing a message with a map of the stops for a given line.

6 Architecture and Tool Support

In this section we introduce an extended version of the prototype created for [13],
now called EagleData. The tool is based on Eclipse. A schema of the EagleData
architecture is shown in Fig. 7. EagleData is made of a Core component, which
provides support for the schema discovery and data injection into the common
internal representation. The Core component provides two extension points to
support for additional data format handlers. The UI component provides Eclipse
views and wizards for performing the queries using the three languages.

The framework supports the inference of DataDSL descriptions from data sets.
Fig. 8 shows the wizard providing the assistance for refining the induced types.
Datatypes and enumerations are discovered based on the values saved in the
concrete data sources. The tool is able to generate template queries and rules
based on the underlying open data set structure. Hence, once the DataDSL model
is ready (label 2), we can invoke the generator of patterns and rules, with which
a user is enabled to obtain an application in just a few minutes. The tool counts
with a set of views to check the fragments and datatypes saved on the open
repository, and the tweets that match with the patterns (label 3). The tool is
available at http://miso.es/tools/EagleData.html. The web page contains
videos showing the tool in action to define simple applications over open data
sets.

12

DataDSL
Editor

DataDSL

DataDSL
Definition

PatternDSL
Editor

PatternDSL

PatternDSL
Definition

RuleDSL
Editor

RuleDSL

RuleDSL
Definition

Types
Discoverer

Core

Assistant
Manager

Descriptions
View

UI

Streaming
View

CSV

CSV
Assistant

…

data
assistant

streaming
assistant

Twitter

Twitter
Assistant

Descriptions
Server

Languages

Fig. 7: Architecture of the proposal.

7 Related work

Some data pre-processing tasks in our framework have similarities with Extract-
Transform-Load (ETL) approaches, especially from data warehouses [7]. Many
commercial and open source tools exists nowadays supporting ETL processes,
like Pentaho’s PDI/Kettle8, and data/API integration technologies like Mule-
Soft9 also offer ETL support. Solutions such as CKAN10 seems to be more
complete, offering stream management for publishing and discovering datasets.

However, the purpose of those systems is different from ours. The goal of
DataDSL is to describe the structure of existing data sets, both in format indepen-
dent (through fragments) and format-dependent ways (through data sources).
Then, both types of descriptions can be linked, and so the information in het-
eregeneous data sets can be related in such way. This approach is normally not
followed in ETL, whose goal is moving data from some source data sets into a
relational or multi-dimensional data base. Instead, DataDSL serves to describe
and relate existing data sets.

DataDSL is a meta-modelling language especially tailored to describe open
data. There exist well established meta-modelling languages, like the Meta-
Object Facility (MOF) [9], and widely used frameworks like the Eclipse Mod-
elling Framework (EMF) [14]. We refrained to use such approaches and opted
instead for a customized language with native support for elements like format
specification; fragments and data sources; and the possibility to add options, to
be interpreted by the plugins supporting the specific formats. While this might
be emulated in MOF/EMF e.g., by using annotations, native support for all
these features yields a more natural syntax. Previously to build DataDSL, we
also experimented with multi-level modelling technologies, like MetaDepth [12].
While it provided enhanced flexibility (by e.g., enabling the placement of more

8 http://goo.gl/G41Vaa
9 http://mulesoft.com

10 http://ckan.org/

13

Fig. 8: Type refinement wizard and DataDSL editor

general fragments at higher meta-levels), it also lacked the useful mentioned
primitives that DataDSL has. Moreover, it was not integrated with a framework
to build social network applications. The need (raised by open data) to describe
textual, tabular data is evidenced by the recent W3C recommendation [6]. While
we aim at interperate with such recommendation, the goal is also to be extensible
to arbitrary formats, including XML and even APIs.

Many works have tackled the problem of inferring schemas from data in differ-
ent formats. For example, in [5] the authors propose an approach for discovering
schemas (meta-models) from JSON data, and in [1] the authors propose an al-
gorithm to obtain a concise DTD from XML data. We took ideas from [5] for
our JSON support. As our framework is open, new formats can be added, and
therefore algorithms for schema induction can be incorporated into EagleData.

BPM4People11 extends BPMN enabling to model complex data flow, coming
from a social domain, and [3] extends WebML to incorporate social primitives,
permitting cross-platform operations for several social networks. While these
are more general languages, our DSL approach aims to be much lighter, and
specifically target to make accesible open data through social networks.

Hence, altogether, our work is novel with respect to existing works, combining
a DSL for data description of heterogeneous open data sets, with DSLs for the
description of applications over social networks, to automate the generation of
open data applications.

8 Conclusions and future work

In this paper we have presented DataDSL, a DSL to describe the structure of
heterogeneous open data sets. The DSL is integrated within EagleData, an MDE

11 http://bpm4people.webratio.com/

14

framework to create applications over social networks. We have presented a
working prototype and a running example consisting in a service to obtain a
map-based representation of a bus line, with interaction via Twitter.

While we have used DataDSL to describe static open data, we will tackle its
integration with open APIs. Hence, with DataDSL the underlying data schema
can be described in the style of [5], and options can be used to describe the
available operations of the API. We are currently working in providing EagleData
with visualization outputs, and also automating the process of mapping data
source descriptions to fragments. Our goal is to be able to define programs and
services on fragments, that would become reusable to particular data sources
when the fragments are reused. To simplify even more the development of open
data applications, we will build higher-level DSLs specially targeted for end-
users, whose execution will rely on our EagleData framework and its three DSLs.

References

1. G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from
XML data. In VLDB, pages 115–126. ACM, 2006.

2. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1–22, 2009.

3. M. Brambilla and A. Mauri. Model-driven development of social network enabled
applications with webml and social primitives. In ICWE Worksh., volume 7703 of
LNCS, pages 41–55. Springer, 2012.

4. P. Hitzler, M. Krotzsch, and S. Rudolph. Foundations of Semantic Web technolo-
gies. CRC Press, 2010.

5. J. L. C. Izquierdo and J. Cabot. Discovering implicit schemas in JSON data. In
ICWE, volume 7977 of LNCS, pages 68–83. Springer, 2013.

6. G. K. Jeni Tennison and I. Herman. Model for Tabular Data and Metadata on the
Web. https://www.w3.org/TR/tabular-data-model/, 2015.

7. R. Kimball. The Data Warehouse ETL Toolkit: Practical Techniques for Building
Dimensional Data Warehouses. John Wiley, 1996.

8. G. A. Miller. Wordnet: A lexical database for english. CACM, 38(11):39–41, 1995.
9. OMG. MOF 2.5. http://www.omg.org/spec/MOF/2.5/, 2015.

10. Open Data Commons. http://opendatacommons.org/.
11. E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE

Data Eng. Bull., 23(4):3–13, 2000.
12. A. M. Segura, J. de Lara, and J. S. Cuadrado. ODaaS: Towards the model-driven

engineering of open data applications as data services. In EDOCW’14, pages 335–
339. IEEE Computer Society, 2014.

13. A. M. Segura, J. de Lara, and J. S. Cuadrado. Rapid development of interactive
applications based on online social networks. In WISE, volume 8787 of LNCS,
pages 505–520. Springer, 2014.

14. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley, 2008.

15. M. Völter and T. Stahl. Model-driven software development. Wiley, 2006.

