
Analysing Meta-Model Product Lines
Esther Guerra
Juan de Lara

Universidad Autónoma de Madrid
Spain

Marsha Chechik
Rick Salay

University of Toronto
Canada

Abstract
Model-driven engineering advocates the use of models to de-
scribe and automate many software development tasks. The
syntax of modelling languages is defined by meta-models,
making them essential artefacts. A combination of product
line engineering methods and meta-models has been pro-
posed to enable specification of modelling language variants,
e.g., to describe a range of systems. However, there is a lack
of techniques for ensuring syntactic correctness of all meta-
models within a family (including their OCL constraints),
and semantic correctness related to properties of individual
instances of the different variants. The absence of verification
methods at the product-line level can cause synthesis of ill-
formed meta-models and problematic feature combinations
whose effect at the instance level may go unnoticed.

To attack this problem, we propose an approach to lifting
both the meta-model syntax checking and the satisfiability
checking of properties of individual meta-model instances,
to the product-line level. We validate the approach via a
prototype tool calledMerlin, and report on several exper-
iments that show the advantages of our method w.r.t. an
enumerative analysis approach.
CCS Concepts • Software and its engineering → Soft-
ware product lines; Software design engineering; Formal
software verification;
Keywords Model-Driven Engineering, Product Lines, Meta-
Modelling, OCL, Model Finding

ACM Reference Format:
Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. 2018.
Analysing Meta-Model Product Lines. In Proceedings of the 11th
ACM SIGPLAN International Conference on Software Language Engi-
neering (SLE ’18), November 5–6, 2018, Boston, MA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3276604.3276609

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00
https://doi.org/10.1145/3276604.3276609

1 Introduction
Model-driven engineering (MDE) raises the abstraction level
at which software is built, by promoting models as first-class
artefacts during development [5, 40]. Models are therefore
used to specify, verify, validate and generate code for the fi-
nal system, among other activities. Models are created using
the most appropriate language, either general-purpose (e.g.,
UML or Petri nets) or domain-specific (DSLs), explicitly tai-
lored to define a range of systems within a domain. In MDE,
the abstract syntax of a modelling language is described by
a meta-model which defines domain primitives, their char-
acteristics, relations and constraints. The latter are often
expressed using the Object Constraint Language (OCL) [34].
Modelling languages may admit variants, so that they fit

better for a project or scenario [49]. For example, we may
offer variants of class diagrams for different purposes: while
class operations or interfaces are not needed for analysis, we
may include features of particular programming languages,
like generics or mixins, for detailed design. Building separate
meta-models for every variant combination leads to a large
meta-model set that, without proper support, is challenging
to construct, analyse, manage and search [37].

Software product lines (SPLs) [36] have been proposed to
express and manage collections of related software systems
and their variability. As a particular case, they have been
applied to language variability [31, 49] at the level of con-
crete syntax (i.e., visual representation), abstract syntax and
semantics [31]. We focus on abstract syntax as meta-models
are the core artefacts over which concrete syntax and se-
mantics are defined. SPLs enable a compact representation
of the language variants, providing an interface – a feature
model [23] – for configuring a concrete language variant.

As an example, suppose our aim is to build a meta-model
product line (MMPL) to describe variants of Petri nets [33].
Fig. 1 shows the meta-model of some variants. Variants in
Figs. 1(a) and 1(b) account for two alternative realizations
of tokens (as attributes or objects, respectively); the variant
in Fig. 1(c) describes hierarchical nets (where hierarchical
transitions contain both places and transitions); and the one
in Fig. 1(d) describes state-machine nets (where transitions
have exactly one input and one output). The targeted MMPL
would encompass all these meta-model variants together
with a feature model governing the presence/absence of
meta-model elements depending on the selected features.

https://doi.org/10.1145/3276604.3276609
https://doi.org/10.1145/3276604.3276609

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

posTokens inv: self.itokens >= 0

Place
itokens: int

in
Transition

out

*
*

places
1
* trans *

1

PetriNet

(a) tokens as attributes

Place
in

Transition
out
*
*

Token
tokens *

1

places
1

trans *
1

PetriNet

*

(b) tokens as objects

Place
in

Transition
out
**

places
1
* trans *

1

PetriNet

Token

tokens
*

1 isHierarchical inv:
(self.places→size()> 0 or
self.trans→size()> 0)
implies (self.in→size() +
self.out→size() = 0)

(c) hierarchical nets

Place
itokens: int

in

Transition
out

1
1

posTokens inv: self.itokens >= 0

places
1

trans
1

PetriNet

* *

(d) state-machine nets

Figure 1. Variants of a Petri net meta-model.

Ensuring the correctness of all meta-models in an MMPL
is crucial, but analysing each meta-model separately may be
expensive if there are many of them. Hence, this paper aims
to answer two questions: (Q1) How to effectively create an
MMPL ensuring that the meta-models and their OCL con-
straints across each allowed variant are syntactically correct?
and (Q2) How to efficiently ensure that all instance models
of meta-models within the MMPL have desired properties,
such as meaningful combinations of objects, while being safe
with respect to undesirable properties or configurations?

In the Petri nets example, answering Q1 means guaran-
teeing that in every meta-model variant that contains the
constraint isHierarchical, transitions are subtypes of PetriNet,
as otherwise, the access to references places and trans yields
an error. Answering Q2 would help identify admissible meta-
model combinations, e.g., whether we can combine hierar-
chical and state-machine nets. These two variants conflict
if their integrity constraints clash, preventing creating any
model, or precluding the use of the primitives each variant
offers (e.g., if we are unable to create hierarchical transitions).

Although some approaches to MMPLs exist [27, 35, 41, 49],
we are not aware of analysis techniques to ensure syntactic
correctness of all meta-model variants, meaningful combi-
nation of variants, and effective specification and analysis
of properties pertaining to a subset of the languages of the
family. While some approaches analyse product lines of mod-
els [11], e.g., to check whether each product is well-formed
(i.e., conforming to its meta-model), our focus is on product
lines ofmeta-models. In that context, our goal is broader: not
only to guarantee that the meta-models are well-formed, but
also that they satisfy various instantiability properties (e.g.,
that the set of instance models is non-empty).
The contributions of this paper are the following: (1) A

novel declarative notion of MMPL which supports OCL well-
formedness constraints and is more amenable to automated

PetriNets

Tokens

Feature diagram

Simple Object

Hierarchical

FM = �� { PetriNets, Tokens, Simple, Object, StateMachine, Hierarchical },
PetriNets � Tokens � ((Simple � ꞀObject) � (ꞀSimple � Object)) �

StateMachine

Figure 2. Feature model for the Petri nets example.

analysis than the existing approaches [27, 41]. (2) Techniques
for lifting syntactic checks of meta-models and their OCL
constraints to the product-line level. These techniques use
SAT solving and answer Q1. (3) Techniques for lifting satis-
fiability checking of (un)desired properties of meta-model
instances to the product-line level, answering Q2. The lift-
ing relies on an embedding of the feature model within a
meta-model, and the use of model finders [21, 26] to analyse
the satisfaction of properties expressed in OCL. We also pro-
vide a classification of MMPL property types including both
lifted properties and mixed properties. The latter can refer
to features of the feature model and be analysed for several
meta-models of the MMPL (called family-based specifica-
tions [46]). (4) An evaluation of the effectiveness of our lifted
analyses by comparing their performance w.r.t. an explicit
analysis of each meta-model of the MMPL. (5) A prototype
tool, calledMerlin, available at http://miso.es/tools/merlin.
Paper organization. Sec. 2 introduces MMPLs. Sec. 3 de-
scribes lifting of syntactic constraints, allowing us to answer
Q1. Sec. 4 describes lifting of satisfiability of instance model
properties, allowing us to answer Q2. Sec. 5 presents tooling,
and Sec. 6 evaluates its effectiveness. Sec. 7 discusses related
work, and Sec. 8 presents conclusions and future work.

2 Meta-Model Product Lines
This section introduces the notions of MMPL, configuration
and product derivation (in our context, a meta-model deriva-
tion), using the running example as illustration. We adopt an
annotative approach which relies on known definitions of
feature models [38]. While some approaches encode variabil-
ity using full-fledged programming languages [27, 41, 52],
we opt for annotations because they facilitate lifted analyses
of MMPLs (see Secs. 3 and 4).
Def. 1 (Feature model [38]) A feature model FM = (F ,ϕ) con-
sists of a set of features F = { f1, ..., fn} and a propositional
formula ϕ that defines the allowable feature configurations.
Example. Fig. 2 shows a featuremodel representing the types
of Petri nets in our running example (cf. Fig. 1). The upper
part depicts the feature model using the classical feature dia-
gram notation [23], and the bottom gives its representation
using Def. 1. The feature model requires choosing a repre-
sentation for tokens (Simple or Object, which are alternative),
while it is possible to optionally select any combination of
StateMachine and Hierarchical.

http://miso.es/tools/merlin

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

We base MMPLs in a standard notion of meta-model [32]:
Def. 2 (Meta-model) A meta-model is a tupleMM = (C, FI , I ,
WC), where:
• C is a set of classes, some of which may be abstract.
• FI is a set of attributes and references called fields. Each
field is owned by exactly one class and has cardinality
interval [min..max], with ∞ used for unbounded upper
limits (i.e.,max = ∗).

• I ⊆ C ×C is the class inheritance relation.
• WC is a set of well-formedness constraints called invari-
ants, each of which is assigned to exactly one class.
Non-abstract classes define the types of elements that can

be in a model that is an instance of the meta-model. Fields
of a class can be attributes of a primitive data type (e.g., int)
or references that point to a class. The cardinality of a field
indicates the minimum and maximum number of values it
can hold in an instance of the owning class. In practice, we
define invariants using OCL [34]. These are defined in the
context of a class, and evaluated on all its instances.
Example. Fig. 1 shows four meta-models. The meta-model
in Fig. 1(a) has three non-abstract classes, and four refer-
ences with cardinality [0..∗]. Class Place has an attribute
itokens of type int, and an OCL invariant called posToken re-
quiring every Place to have a non-negative value for itokens.
Class Transition in Fig. 1(c) also has an invariant, isHierarchical,
demanding every Transition with non-empty places or trans
collections to have empty collections of input and output
places (references in and out).

A necessary condition for a meta-model to have instances
(i.e., models) is for it to be well-formed.
Def. 3 (Meta-model well-formedness) A meta-model has well-
formed structure iff (1) every field is owned by a class, (2) ev-
ery reference points to a class, (3) cardinality and inheritance
are uniquely determined, and (4) there are no inheritance
cycles. A meta-model is well-formed iff it has a well-formed
structure, and the invariants are syntactically correct.

Next, we build on Defs. 1, 2 and 3 to propose the notion of
a meta-model product line which would allow us to represent
the meta-model variants of a family of languages.
Def. 4 (Meta-model product line) A meta-model product line
is a tupleMMPL = (FM,MM,Φ,MC ,MI), where1:
• FM = (F ,ϕMMPL) is a feature model.
• MM = (C, FI , I ,WC) is a meta-model with well-formed
structure, called the 150% meta-model (150MM in short)
[2, 10].

• Φ is a tuple of mappings (ΦC ,ΦFI ,ΦWC) from the fea-
ture model to the 150MM. Each mapping ΦX , for X ∈

{C, FI ,WC}, consists of pairs ⟨x,Φx ⟩ mapping an element
(a class, a field, or an invariant) x ∈ X to a propositional

1We use MMPL as the acronym of meta-model product line, and MMPL
(in italics) to denote the tuple name.

formulaΦx over features, called its presence condition (PC).
The PC of a field f must be stronger than that of its own-
ing class Ci (i.e., we have an implication Φf ⇒ ΦCi), and
same for invariants.

• MC is a tuple of sets of cardinality modifiers (µmin, µmax).
The set µmin (resp. µmax) consists of tuples ⟨f ,m,Φmin⟩
mapping a field f ∈ FI to a new minimum (resp. max-
imum) cardinality m, whenever the first-order formula
Φmin (resp. Φmax) is true.

• MI is a tuple of sets of inheritance modifiers (µadd, µdel).
The set µadd (resp. µdel) consists of tuples ⟨Csub,Csuper ,
Φadd⟩ adding (resp. deleting) a superclass Csuper to Csub,
when the first-order formula Φadd (resp. Φdel) is true.
The 150MM collects all elements appearing in the meta-

models of the MMPL. Its elements are decorated with PCs
over the features F in FM . An element becomes present in a
meta-model when its PC evaluates to true. In addition, we
define a derived presence condition for the existence of an
inheritance path between two classes:

Φinherits(Cj ,Ck) =
∨

f ∈paths(Cj ,Ck)

∧
(Ci ,Ci′)∈f

Φ(Ci ,Ci′)

where paths(Cj ,Ck) is the set of paths between class Cj and
Ck in the extended inheritance relation I ∪ {(Csub,Csuper)|
⟨Csub,Csuper , Φadd⟩ ∈ µadd } (i.e., the inheritance relation I
in the 150MM plus all inheritance links added by µadd), and
Φ(Ci ,Ci′) is the PC of the inheritance link between Ci and Ci′

computed as follows:

Φ(Ci ,Ci′) =

Φadd, if (Ci ,Ci′,Φadd) ∈ µadd
¬Φdel, if (Ci ,Ci′) ∈ I and (Ci ,Ci′,Φdel) ∈ µdel
true, if (Ci ,Ci′) ∈ I and (Ci ,Ci′,Φdel) < µdel
false, otherwise

The first case for Φ(Ci ,Ci′) occurs when an inheritance link
is added by an inheritance modifier; the second and third
cases occur when an inheritance link in the 150MM is either
deleted or not deleted by a modifier; the fourth case occurs
when no inheritance link between Ci and Ci′ is present.
Remark. Def. 4 uses modifiers rather than PCs to change a
characteristic of an element. Modifiers are not strictly neces-
sary, as they can be emulated with PCs. E.g., given a modifier
of the cardinality of a field when Φmin is true, it can be rep-
resented as two fields equally named, one with a PC ¬Φmin
and the default cardinality, and the other with a PC Φmin and
the modifier cardinality. However, for practical reasons, we
favour the use of modifiers to be able to reuse existing meta-
model editors to build 150MMs. These editors expect meta-
models with well-formed structure, but are more permissive
w.r.t. the OCL invariants, typically handled as uninterpreted
strings. Without modifiers, we would need editors to accept
classes declaring identically named fields with different PCs
(as in the aforementioned example) as well as inheritance
cycles. Instead, our approach permits attaching any number

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

in

posTokens inv:
self.itokens >= 0

Place
itokens: int

PetriNet

Transition
out

places

Simple

1

* trans *

1

Token

tokens *

1

Object

Object isHierarchical inv:
(self.places→size() > 0 or
self.trans→size() > 0)

implies (self.in→size() +
self.out→size() = 0)

Simple

StateMachine
[min=1, max=1]
StateMachine
[min=1, max=1]

*
*

net net
not Hierarchical
[del]

Figure 3. 150MM annotated with PCs and modifiers.

of modifiers to classes and fields, e.g., as annotations, which
is supported by widely used meta-model editors (e.g., the
Ecore tree editor [43], Xcore [50] or EMFatic [16]). As modi-
fiers can change the inheritance relations, the 150MM may
include invariants referring to fields that become inherited
when a modifier is triggered. Hence, 150MMs need to have
well-formed structure but they may not be well-formed.
Example. Fig. 3 shows the 150MM for the running example.
It is decorated with PCs (blue boxes on top of classes, fields
and invariants) and modifiers (dashed blue boxes on top of
inheritance relations and references). For example, attribute
Place.itokens and invariant posTokens will be present when
the PC Simple is true, while the inheritance relation from
Transition to PetriNet will be deleted (i.e., it will not appear)
when ¬Hierarchical is satisfied. References Transition.in and
Transition.out have two cardinalitymodifiers each; thesemake
the references mono-valued (i.e., with the max cardinality
equal to one) when formula StateMachine is true. Note that
this 150MM has intentional errors, which will be uncovered
with the techniques we propose in the following sections.
Def. 5 (Feature configuration [38]) A valid feature configu-
ration ρ of a product lineMMPL with feature model FM =
(F ,ϕMMPL) is a subset of its features satisfying ϕMMPL, i.e.,
ϕMMPL evaluates to true when each variable f ∈ ϕMMPL is
substituted by true when f ∈ ρ, and false otherwise. We use
P = {ρi }i ∈I for the set of all valid configurations.
Example. Fig. 2 admits eight configurations: P = {⟨Simple⟩,
⟨Object⟩, ⟨Simple, StateMachine⟩, ⟨Simple, Hierarchical⟩, ⟨Simple,
StateMachine, Hierarchical⟩, ⟨Object, StateMachine⟩, ⟨Object,
Hierarchical⟩, ⟨Object, StateMachine, Hierarchical⟩} (only the
leaf features are shown).
Def. 6 (Meta-model derivation) Meta-modelMMρ is derived
from a product lineMMPL using configuration ρ ∈ P if:MMρ
contains exactly those elements from the 150MM whose PCs
are satisfied for the features in ρ; the cardinality of fields is
overridden according to modifiers µmin and µmax when their
formula is true; and inheritance links are added or deleted
according to modifiers µadd and µdel when their formula
is true. We write Prod(MMPL) for the set of all derivable
meta-models from an MMPL.

Example. Fig. 1 shows four meta-models derived from the
MMPL in Figs. 2 and 3, using configurations ρ0 = ⟨Simple⟩
(Fig. 1(a)), ρ1 = ⟨Object⟩ (Fig. 1(b)), ρ2 = ⟨Object, Hierarchical⟩
(Fig. 1(c)), and ρ3 = ⟨Simple, StateMachine⟩ (Fig. 1(d)).

Def. 4 requires the 150MM to have a well-formed structure,
but not necessarily be well-formed. However, a reasonable
requirement of an MMPL is that every derived meta-model
is well-formed. We call these MMPLs “well-formed”.
Def. 7 (Well-formed MMPL) A product line MMPL is well-
formed iff everyMM ∈ Prod(MMPL) is well-formed.

3 Q1: Ensuring MMPLWell-Formedness
A naive approach to checking well-formedness of an MMPL
would generate each MM ∈ Prod(MMPL) and check well-
formedness individually. However, that would be costly and
hardly scalable. Hence, this section shows how to check well-
formedness of an MMPL without deriving each meta-model.
According to Def. 3, to show that all meta-models of an

MMPL are well-formed, we must show that each has (1) a
well-formed structure and (2) syntactically correct invariants.
We address each of these conditions with a separate analysis.

3.1 Well-Formed Structure
To ensure that the product meta-models of an MMPL have a
well-formed structure, we need to check that the four con-
ditions in Def. 3 hold for each product. We show how to
check these conditionswithout enumerating all meta-models,
but formulating the corresponding conditions that can be
checked on the MMPL.
(1) Every field is owned by one class. Each field is owned
by one class in the 150MM, but this ownership relation will
be broken in a product meta-model if the PC of the field is
true while the PC of its owning class is false. By Def. 4, the
PC of a field f is stronger than the one of its owning class
C (i.e., Φf ⇒ ΦC). This ensures that in every configuration
where the field is present, the owning class is present too,
and so this condition holds by construction for all product
meta-models.

(2) Every reference points to a class. A reference r from
classCi toCj in the 150MM will become disconnected from
Cj in a product meta-model if the PC of r is weaker than
the PC of Cj (i.e., Φr ; ΦCj). This can be checked for
all products by ensuring that for each reference r , UN-
SAT (ϕMMPL ∧Φr ∧¬ΦCj), where ϕMMPL is the formula of
the feature model (cf. Def. 1). The predicate UNSAT holds if
the formula is not satisfiable, and so this ensures no meta-
model product contains r but not Cj .

(3) Uniquely determined cardinality and inheritance. A
field has unique min and max values in the 150MM, but
cardinality modifiers can change these values. Hence, we
have to ensure that the values after applying the modifiers
are also unique, i.e., no two modifiers whose condition is
true for the same configuration assign different min (or

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

max) values to the same field:
∀⟨f ,m1,Φmin1⟩, ⟨f ,m2,Φmin2⟩ ∈ µmin•

m1 ,m2 =⇒ ¬(Φmin1 ∧ Φmin2)

This is checked by ensuring that for each twomin modifiers
over a field,UNSAT (ϕMMPL∧Φmin1∧Φmin2) (and similarly
for max modifiers).
Regarding inheritance, we need to ensure that a class has
no conflicting add and del inheritance modifiers:
∀⟨Csub,Csuper ,Φadd⟩ ∈ µadd,∀⟨Csub,Csuper ,Φdel⟩ ∈ µdel•

¬(Φadd ∧ Φdel)

(4) No inheritance cycles. To ensure no meta-model has
cycles, we need to showUNSAT (ϕMMPL ∧ Φinherits(Ci ,Ci))
for all classes Ci of the 150MM, where Φinherits(Ci ,Ci) is the
derived PC of the inheritance paths starting and ending in
class Ci (cf. Sec. 2).

3.2 Syntactically Correct Invariants
To ensure that an invariant in the 150MM is syntactically
correct in every product meta-model, we must show that: (1)
the PC of each element used by the invariant is compatible
with the PC of the invariant, and (2) operators are applied
on fields with appropriate cardinality. The following two
conditions check this:
(1) Stronger implicit PC. An invariant wc in the 150MM
will be syntactically incorrect in some product meta-model
if its PC Φwc is weaker than the PC of some field or class
accessed bywc . For example, the invariant self.itokens >= 0
contains an access to field itokens, while the OCL expres-
sions Token.allInstances() and self.oclIsKindOf(Token) have a
class access each (both to class Token).
Given a field access o. f , f is available for use by o if the
class of o or one of its superclasses own f . Hence, we define
the PC of the field access o. f , Φo.f , as follows:

Φo .f =

{
Φf , if o.class = f.owner
Φf ∧ Φinherits(o.class, f.owner), otherwise

with o.class denoting the class of object o, and f .owner
denoting the class owning f . We build sets accf (wc) and
acccn(wc) of field and class accesses withinwc , and conjoin
their PCs to form the implicit PC ofwc:

φwc =
∧

o .fi ∈accf (wc)

Φo .fi ∧
∧

Cj ∈acccn (wc)

ΦCj

Then, the syntactic correctness ofwc in all product meta-
models requires that Φwc ⇒ φwc holds.

(2) Correct operation typing. A cardinality modifier may
turn a multi-valued field (i.e., with max > 1) into a mono-
valued one. In that case, an invariant that applies an iterator
(e.g., exists) or collection operator (e.g., includes) over the
multi-valued field will be incorrect in any product where
the field becomes mono-valued. To check this condition,
we identify the fields to which an iterator or collection

operator is applied, and collect their cardinality modifiers
that change max to 1. If one of such modifiers can be true
at the same time as the PC of the invariant, there is an error.
Hence, let accmv (wc) be the set of fields to which invariant
wc applies a collection operator. We need to ensure the
following condition for the modifiers that change max of
the fields to 1:

UNSAT (ϕMMPL ∧ Φwc ∧
∨

⟨f ,1,Φmax j ⟩∈µmax
s.t. f ∈accmv (wc)

Φmax j)

Conversely, mono-valued fields may become multi-valued
due to modifiers. Thus, we identify all operators over mono-
valued fields (e.g., + or <) and check the modifiers that
can turn them into collections, leading to an error. This
check is similar to the one above, but considers modifiers
⟨f ,n,Φmax⟩ with n > 1 or n = ∞.

Example. We analyse the syntactic correctness of invariant
isHierarchical in Fig. 3, in all product meta-models. Its set of
field accesses is accf (isHierarchical) = {self.places, self.trans,
self.in, self.out}, where self is typed by class Transition. The PC
of the first two field accesses is Φself.places = Φself.trans = Hi-
erarchical, while the PC of the last two is Φself.in = Φself.out =
true. Hence, the invariant has the implicit PCφisHierarchical =
Hierarchical, while it declares the PC ΦisHierarchical = true in
the 150MM. We require ΦisHierarchical ⇒ φisHierarchical , but
true; Hierarchical, hence the first syntactic correctness con-
dition does not hold. This means that the invariant appears
in meta-models that do not set the feature Hierarchical to true,
in which case it has syntax errors because Transitionwill lack
fields places and trans. We fix the problem by setting the PC
of invariant isHierarchical to Hierarchical in the 150MM.
To analyse operation typing, we compute the fields to

which a collection operator is applied:accmv (isHierarchical) =
{places, trans, in, out}. Both in and out have modifiers chang-
ing max to 1 when StateMachine is true. Assuming the in-
variant has PC Hierarchical, the collection operator size() is
applied over mono-valued fields on configurations where
StateMachine ∧ Hierarchical is true. However, in→size() is a
shorthand for in→asSet()→size(), which converts in into a set
and permits applying operator size() to the result. Therefore,
the invariant is correctly typed in all products.

4 Q2: Analysing Instance Properties
Guaranteeing syntactic correctness is not sufficient for en-
suring a valid meta-model, as we need to assure that the set
of accepted models is the one the designer intends. Given a
meta-modelMM , we write L(MM) to refer to the (possibly
infinite) set of models that are correctly typed byMM and
satisfy its invariants: its language. To validate MM , we need
to check that L(MM) does not contain models considered
invalid, or is missing models considered valid.
Fig. 4(a) shows how this validation process is normally

automated using constraint solving [6, 28, 42] and model

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

MM property P

m1

m1 P

MM1

property PMMPL

MMi

Prod(MMPL)

… MMn
…

L(MM) L(MM1) L(MMn)L(MMi)

(a) (b)

m1

m1 P

(a) meta-model analysis

MM property P

m1

m1 P

MM1

property PMMPL

MMi

Prod(MMPL)

… MMn
…

L(MM) L(MM1) L(MMn)L(MMi)

(a) (b)

m1

m1 P

(b) product line analysis

Figure 4. Analysis of meta-model instance properties.

finders [6, 19, 21, 26]. A model finder is a tool that receives
a meta-model (including its OCL invariants) and a set of
model properties as input, and uses constraint solving to
find a model that conforms to the meta-model and exhibits
the specified properties. Model finders used to validate meta-
models, like the USE Validator [26] and EMFtoCSP [19], per-
mit expressing the desired model properties in OCL.
To check a property on the instances of a meta-model,

the engineer expresses the property P using OCL, and uses
a model finder to look for a model satisfying P within the
search bounds, or determine there are none. Checking if
all models in L(MM) satisfy P is done by checking that no
model satisfies ¬P . In the simplest case, P may be empty,
and the analysis then confirms if a valid model exists (i.e.,
whether L(MM) is not empty). This ensures thatMM has no
conflicting invariants.
Since the analysis of instance properties is a useful and

accepted meta-model validation technique, we propose lift-
ing it to MMPLs, as Fig. 4(b) shows. In Sec. 4.1, we classify
the relevant property types, and in Sec. 4.2, we propose a
method to analyse those properties at the product line level.

4.1 A Classification of Property Types
We begin by describing the different options for specifying
properties on instances of meta-models of an MMPL. They
are depicted as a feature model in Fig. 5.

(1) Property specification. A property P may need to refer
not only to structural elements of the meta-models, but also
to features of the feature model. We call such properties
mixed. For example, the following property checks whether
any model that only contains transitions with one input
place belongs to configurations where feature StateMachine
is true: Transition.allInstances()→ forAll(p | p.in→size() = 1)
implies StateMachine.

(2) Property satisfiability. Given a property P , we may
want to analyse whether some meta-model MM in the
MMPL has at least one model m ∈ L(MM) satisfying P ,
whether it has no model satisfying P , or whether all its mod-
els satisfy P . These options correspond to features existsm ,
notExistsm and forAllm in Fig. 5.

(3) Configuration scope. A property may be analysed just
within a certain configuration scope, e.g., if the property

MMPL instance property check

Property specification

structural mixed

Search strategy

Solutions

Property
satisfiability

Search
scope

Result

model configone all

existsm forAllm
Config
scope

Feature
exercising

totalpartial

notExistsm

Artefact
Decision
condition

existsMM forAllMM

notExistsMM

Type

1

2

3 4 5 6

7

Figure 5. Options for MMPL instance property analysis.

only applies to meta-models of some configurations in the
MMPL. This scope may be explicitly defined, or be inferred
from P . For example, given the property Place.allInstances()→
forAll(p | p.itokens = 0), we can infer that it applies just to
configurations that select the feature Simple, as attribute
itokens is only present when this feature is true.

(4) Feature exercising. To illustrate themeta-model elements
a configuration makes available, to compare configurations,
or to reason about feature interactions, it is useful to pro-
duce models that contain instances of the elements added
due to the selected features. For example, using this option,
models of configurations that select feature Object need to
contain at least one instance of Token, as this class is only
added when this feature is true.

(5) Solutions. The result of the analysis may be a model of
some meta-model in the MMPL satisfying P , or a model of
every meta-model in the MMPL satisfying P . These options
correspond to features one and all in Fig. 5.

(6) Result type. In addition to retrieving a modelm satisfy-
ing P , the analysis may return the feature configuration
that produces the meta-model of whichm is an instance.

(7) Decision condition. The aim of the analysis may be as-
sessing whether some, all or no meta-model of the MMPL
satisfies P . These three analysis questions correspond to
features existsMM , forAllMM and notExistsMM in Fig. 5. The
result in this case is a yes/no answer to each question.

This space of options enables us to express many interest-
ing properties of the MMPL, as shown in Table 1. The table
also includes the (partial) configuration that corresponds to
the given property type, and an example.
Analyses 1–3 study the instantiability (i.e., the existence

of models) of the meta-models in an MMPL. While this is a
basic correctness condition, MMPL validation may require
stronger conditions, like discovering some/all meta-models
without instances (Analysis 4). If a meta-model is not in-
stantiable, it may indicate that the configuration used to
create it contains incompatible features. Actually, even if a
meta-model has instances, it is reasonable to require that
some of them combine objects coming from different fea-
tures in the configuration. To analyse this, we propose using
feature-exercising instance generation to produce models

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

Table 1. Types of instance properties and analyses for MMPLs (partial configurations indicated with ...).

Analysis Description Configuration (cf. Fig. 5) Example (P=property; R=result)
1 MMPL instantiability Finds 1 instantiable configura-

tion
⟨one, existsm , total, config⟩ R: An instantiable configuration: ⟨Object, Hierarchical⟩

2 MMPL instantiability
witness

Finds 1 model of 1 instantiable
MM

⟨one, existsm , total, model⟩ R: A model with a PetriNet and a Place objects

3 Instance generation Finds 1 model of each instan-
tiable MM

⟨all, existsm , total, model,
config⟩

R: Eight example models are populated

4 Vacuous meta-model
discovery

Finds all non-instantiable con-
figurations

⟨all, notExistsm , total,
config⟩

R: Empty set: all configurations are instantiable

5 Vacuous feature
combinations

Finds all configurations where
no model uses every meta-
model element present due to
feature selections

⟨all, notExistsm , total, fea-
ture exercising, config⟩

R: Two configurations: ⟨Simple, StateMachine, Hierarchical⟩, and
⟨Object, StateMachine, Hierarchical⟩

6 Global weak property Checks if a property is satis-
fied by some model of every
meta-model in the MMPL

⟨forAllMM , existsm , ...⟩ P: all meta-models admit models with more transitions than places;
R: false (StateMachines do not)
Transition.allInstances()→size() > Place.allInstances()→size()

7 Local weak property Checks if a property is satis-
fied by some model of some
meta-model in the MMPL

⟨existsMM , existsm , ...⟩ P: some meta-models admit models with a start place; R: true
Place.allInstances()→exists(p |
Transition.allInstances()→forAll(t | t.out→excludes(p)))

8 Global invariant Checks if a property is satis-
fied by every model of every
meta-model in the MMPL

⟨forAllMM , forAllm , ...⟩ P: all models have at least one place; R: false
Place.allInstances()→notEmpty()

9 Local invariant Checks if a property is satis-
fied by every model of some
meta-model in the MMPL

⟨existsMM , forAllm , ...⟩ P: some meta-models only admit models with more places than
transitions; R: false
Place.allInstances()→size() > Transition.allInstances()→size()

10 Global safety property Checks if no model of the
MMPL satisfies a property

⟨forAllMM , notExistsm , ...⟩ P: no model has isolated transitions; R: false
Transition.allInstances()→exists(t |
t.in→isEmpty() and t.out→isEmpty())

11 Local safety property Checks if some meta-model of
the MMPL has no model satis-
fying a property

⟨existsMM , notExistsm , ...⟩ P: some meta-models do not accept models with isolated transitions;
R: true (e.g., for StateMachines)
Transition.allInstances()→exists(t |
t.in→isEmpty() and t.out→isEmpty())

12 Mixed property A property mixing meta-
model elements and features

⟨mixed, ...⟩ P: transitions with one input are only on StateMachines; R: false
Transition.allInstances()→forAll(p | p.in→size()=1) implies StateMachine

with instances of the elements activated by the given config-
uration. Meta-models where no such instances exist typically
reveal a feature conflict (Analysis 5).
Example. To illustrate the usefulness of feature-exercising
instance generation, and the subtle problems it can detect,
consider the following scenario. A model that exercises fea-
ture Hierarchical should contain hierarchical transitions (i.e.,
with non-empty collections places and trans). However, if the
configuration also selects feature StateMachine, the result-
ing meta-model does not accept models with hierarchical
transitions due to the invariant isHierarchical. This shows
that features Hierarchy and StateMachine are incompatible,
and would be discovered by Analysis 5. This problem can be
solved by adding a modifier that sets the min cardinality of
references in and out to 0 when both features StateMachine
and Hierarchy are selected.

More specific analyses focus on the satisfiability of proper-
ties. Depending on the number of models satisfying a prop-
erty, we say the property is weak if some model satisfies the
property, invariant if all models of a givenmeta-model satisfy

the property, and safety if no model satisfies it. Additionally,
we say a weak property is global if it is a weak property for
every meta-model in the scope; while it is local if it is a weak
property for some meta-model. This global/local classifica-
tion also holds for invariants and safety properties. Rows
6–11 in Table 1 show the configuration for these property
types, as well as examples formulated both verbally (to facil-
itate comprehension) and in OCL (to automate validation).

Overall, our novel classification defines different kinds of
lifted instance analyses for MMPLs. Moreover, it also defines
new specification possibilities like mixed properties, with no
counterpart in the analysis of plain meta-models.

4.2 Lifting Instance Analysis to MMPLs
As explained at the beginning of Sec. 4, checking a property
on the instances of a meta-model amounts to finding a model
that conforms to the meta-model and satisfies the property.
This search is typically performed using model finders. How-
ever, the number of meta-models in an MMPL may grow
exponentially, and hence, performing model finding over

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

150-MM FM
MMPL

feature-explicit MM

compile

«instance of»

«instance of»

1

3
[yes]

[no]

end

+

«configuration»

property
search options

2

:PetriNet

:Place

:Token

:FMC

Simple=false
Object=true
Tokens=true
Hierarchical=false
StateMachine=false
PetriNet=true

feature-explicit model
:PetriNet

:Place

:Token

model configuration

+

meta-model

«product of»

extract

p
ro
d
u
ce

model
finder

more
solutions?

extend femm

feature-explicit mm
negated configuration

4

Figure 6. Workflow of instance property analysis.

each single meta-model may become very time-consuming.
For this reason, we lift the analysis over an extended ver-
sion of the 150MM that contains the meta-model elements
introduced by every variant and emulates the feature config-
urations, presence conditions and modifiers using invariants.
We call this meta-model feature explicit meta-model (FEMM).
This way, the problem of checking a property on some/ev-
ery meta-model of the MMPL is recasted to finding one or
more instances of the FEMM. Fig. 6 illustrates the proposed
workflow to analyse the properties introduced in Sec. 4.1.

In Step 1, we compile the 150MM, the feature model, and
the property of interest into a FEMM. This extends the
150MMwith invariants that emulate the semantics of the PCs
and modifiers, an extra class FMC with a boolean attribute
for each feature in the feature model, an invariant stating
the allowed configurations, and the property to check. Fig. 7
shows the FEMM for the running example.

In Step 2, we use a model finder to search for an instance
of the FEMM which exemplifies (or falsifies if no model is
found) the existence of models satisfying the property. If
an instance of the FEMM is found, then it contains both a
model satisfying the property and an object of type FMC
reporting a feature configuration. In Step 3, we extract the
configuration and the model as two separate artefacts. If
required, the configuration can be applied to the MMPL to
produce the meta-model of which the model is an instance.

If the userwants to identify furthermeta-models satisfying
the property, Step 4 extends the FEMM with an invariant
requiring a configuration different from those already found.
For this purpose, the invariant forbids objects of type FMC
to take the same attribute values as the configurations found
so far. Then, a new search is performed.

In the following, we explain the steps to build the FEMM,
and how to perform the analysis of the different property
types. Fig. 7 shows the resulting FEMM for the running
example, and Listing 1 provides a high-level description of
the algorithm to construct it.

in

posTokens inv:
fm.Simple implies self.itokens >= 0

wc-tokens inv:
if not fm.Object
then self.tokens→size() = 0
else self.tokens→size() >= 0
endif

wc-itokens inv:
if not fm.Simple
then self.itokens.oclIsUndefined()
else not self.itokens.oclIsUndefined()
endif

wc-net inv:
not fm.Hierarchical implies
not self.net.oclIsKindOf(Transition)

Place
itokens[0..1]: int

PetriNet

Transition
out

places
1
* trans *

1

Token

tokens *

1

*
*

BC 1
fm

isHierarchical inv:
fm.Hierarchical implies
((self.places→size() > 0 or self.trans→size() > 0)
implies (self.in→size() + self.out→size() = 0))

wc-in inv:
fm.StateMachine implies self.in→size() = 1

wc-out inv:
fm.StateMachine implies self.out→size() = 1

wc-del-inh inv:
not fm.Hierarchical implies
(self.places→size() = 0 and self.trans→size() = 0)

wc-net inv:
not fm.Hierarchical implies
not self.net.oclIsKindOf(Transition)

FMC
Simple: boolean
Tokens: boolean
Hierarchical: boolean
Object: boolean
StateMachine: boolean
PetriNet: boolean

ΦMMPL inv:
PetriNets and Tokens and
((Simple and not Object) or
(not Simple and Object))

wc-Token inv:
not Object implies
Token.allInstances()→size() = 0

net net

Figure 7. FEMM derived from the MMPL in Figs. 2 and 3.

4.2.1 Embedding the Feature Model The FEMM is struc-
turally similar to the 150MM, as it holds the elements in
every possible meta-model variant (lines 2–3 in Listing 1).
In addition, it embeds the feature model, represented as a
class FMC with a boolean attribute for each feature, and an
invariant that corresponds to the propositional formula gov-
erning the allowed configurations (see invariant ϕMMPL of
class FMC in Fig. 7). To make this class accessible from any
other, we create a base class BC for the rest of classes, and
add a reference from this base class to the class representing
the feature model. This way, every class has access to the
attributes in FMC, i.e., to the feature configuration. Lines
6–12 of Listing 1 take care of embedding the feature model.
4.2.2 Emulating the PCs PCs are emulated by extra invari-
ants in the FEMM, built according to lines 15–22 of Listing 1.

First, a PC in a class is converted into an invariant of FMC
which ensures that there are no instances of the class when
the PC is not true. As an example, class FMC in Fig. 7 declares
the invariant wc-Token to represent the PC of class Token.

If the PC affects an invariant, the latter is rewritten so that
it is only checked when the condition is met (see invariant
posTokens in class Place, where the PC Simple is rewritten as
fm.Simple because the feature values are stored in class FMC).

Finally, a PC in a field is represented as an invariant which
ensures that the field is empty (in case of references) or
undefined (in case of attributes) when the PC is false. This
invariant is added to the field’s owner class. Moreover, the
min cardinality of the field is set to 0, as otherwise, the field
could never be empty. As an example, invariant wc-itokens in
class Place is derived from the PC in attribute Place.tokens. The
min cardinality of the attribute, which was 1 in the 150MM,
becomes 0. This way, the invariant requires the attribute to

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

be undefined when the PC is not satisfied, but to have a value
(because of the original min cardinality 1) otherwise.
4.2.3 Emulating the Modifiers Cardinality modifiers are
translated into invariants attached to the field’s owner class.
Such invariants demand the field to satisfy the modified
cardinality when the modifier condition is true, or the cardi-
nality specified in the 150MM otherwise (see lines 25–29 in
Listing 1). For example, invariants wc-in and wc-out in class
Transition are derived from modifiers in references Transi-
tion.in and Transition.out. In addition, the min cardinality of
the field is set to the lowest among its original value, the
values given by its min cardinality modifiers, and 0 if the
field has a PC; while its max cardinality becomes the highest
among its value in the 150MM and its max cardinality modi-
fiers. In the example, Transition.in and Transition.out do not
change their cardinality as they originally had the min and
max possible values ([0..*]).
Inheritance modifiers are handled in lines 30–35 of List-

ing 1. A modifier deleting (resp. adding) an inheritance link
is translated into an invariant in the subclass requiring that
any field inherited through the inheritance link have no
value when the modifier condition is true (resp. false). In
both cases, the inheritance link is added to the FEMM. As
an example, invariant wc-del-inh in class Transition is derived
from the inheritance modifier in the 150MM. Moreover, for
each incoming reference to the superclass or an ancestor,
additional invariants check that the reference does not con-
tain instances of the subclass when the modifier condition
is true (resp. false). Invariants wc-net in classes Place and
Transition are generated for this reason, each one coming
from the incoming reference net to the superclass PetriNet
(the invariants are specific to monovalued references, which
for space constraints are not considered in Listing 1).
4.2.4 Exercising Features Feature exercising allows illus-
trating the meta-model elements specific to the features se-
lected in a configuration. If this analysis option is chosen, we
augment class FMC with invariants enforcing the existence
of instances of the classes and fields activated by the selected
features. A PC on a class becomes an invariant requiring at
least one object of the class when the PC is true. A PC or
modifier on a field is translated into an invariant requiring
that the field has non-empty value in some object when the
presence or modifier condition is true. A modifier deleting
(resp. adding) an inheritance link is translated into an invari-
ant requiring that, when the modifier condition is false (resp.
true), the inherited fields have a non-empty value in some
object (lines 38–44 in Listing 1).
4.2.5 Embedding the Property The property to be analysed
and the configuration scope (when partial) are added as
invariants of class FMC. Even if the property is mixed, it can
be embedded without changes because class FMC defines the
feature values as attributes, so they are accessible from the
added invariant. If it is a global property (i.e., we aim to check

1 buildFeatureExplicitMM (150MM : in, FM : in, FEMM : out)
2 create FEMM = new meta−model
3 add classes, fields, invariants and inheritance in 150MM to FEMM
4
5 −− embed feature model in feature−explicit meta−model
6 create FMC = new concrete class
7 create BC = new abstract class
8 create fm = new reference from FMC to BC, with cardinality [1,1]
9 for each feature f in FM, add boolean attribute f to FMC
10 add invariant to FMC = formula in FM
11 add BC as superclass to all classes with no parent class
12 add FMC, BC and fm to FEMM
13
14 −− emulate presence conditions
15 for each class c with presence condition pc:
16 add invariant to FMC = not pc implies size(c) = 0
17 for each invariant wc with presence condition pc:
18 set wc = pc implies wc
19 for each field f with presence condition pc:
20 set def = min−cardinality(f)
21 add invariant to owner(f) = if not pc then size(f) = 0 else def endif
22 set min−cardinality(f) = 0
23
24 −− emulate modifiers (max cardinality modifiers omitted for brevity)
25 for each field f with cardinality modifier m and condition mc:
26 set def = min−cardinality(f)
27 add invariant to owner(f) = if mc then size(f)>=m
28 else size(f)>=def endif
29 set min−cardinality(f) = minimum(def, min)
30 for each inheritance relation inh with del/add inheritance modifier:
31 for each field f inherited by inh:
32 add invariant to subclass = pc/not pc implies size(f) = 0
33 for each reference r to superclass or ancestor:
34 add invariant to owner(r) = pc/not pc implies
35 not r.exists(o | o.oclIsKindOf(subclass))
36
37 −− exercise features
38 for each class c with presence condition pc:
39 add invariant to FMC = pc implies size(c) > 0
40 for each field f with presence condition or modifier pc:
41 add invariant to FMC = pc implies size(o.f) > 0 for some o
42 for each inheritance relation inh with del/add inheritance modifier:
43 for each field f inherited by inh:
44 add invariant to FMC = not pc/pc implies size(o.f)>0 for some o
45
46 return FEMM

Listing 1. Simplified algorithm to build the FEMM.

whether it is satisfiable for all instances of a meta-model, see
Table 1), then the property is negated.

4.2.6 Analysing the Meta-Model Once the FEMM has been
constructed, we look for an instance of it using a model
finder. We require such an instance to contain exactly one
object of type FMC, which will hold a valid configuration.

To check MMPL instantiability, instance generation with
or without feature exercising, and weak property satisfaction
(feature existsm in Fig. 5), the finder is invoked with the
FEMM as input. If a result is found, it becomes a witness to
the satisfiability of the property by some instance of a meta-
model of the MMPL. Since the finder returns an instance

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

of the FEMM, the actual model and configuration (i.e., the
attribute values in the FMC object) must be extracted from
it, while the model’s meta-model can be produced from the
configuration. This yields a configuration, a corresponding
meta-model, and an instance model satisfying the property.
Example. Fig. 6 illustrates the analysis process: the finder
outputs an instance of the FEMM (lower-right), from which
a model, a configuration and a meta-model are extracted
(lower-left). Further solutions can be found by extending
the FEMM with an invariant that forbids the found config-
urations as solutions, and invoking the finder again. For
example, in Fig. 6, this would amount to adding the follow-
ing invariant to class FMC: not (not Simple and Object and
Tokens and not Hierarchical and not StateMachine and PetriNet).
This process can be iterated until the finder does not return
further solutions.

To analyse vacuous meta-model discovery and safety prop-
erties (feature notExistsm), the model finder is invoked iter-
atively, each time forbidding the configurations previously
found. When the finder does not find new results, the analy-
sis returns the remaining valid configurations that were not
found by the solver. These configurations identify the meta-
models which have no instances satisfying the property.

Finally, checking global invariants (feature forAllm) follows
the same process as for safety properties. The only difference
is that, as explained in Sec. 4.2.5, the property is negated.
Moreover, the set of returned configurations identifies the
meta-models with all their instances satisfying the property.

5 Tool Support
We have realized our approach in an Eclipse plugin called
Merlin, freely available at http://miso.es/tools/merlin. Mer-
lin extends FeatureIDE [30] to create feature models, handle
configurations and build products. It integrates the USE Val-
idator [26] for instance property analysis, EMF for describ-
ing meta-models [43], the Eclipse OCL project [15] for static
analysis of OCL expressions, and Sat4J [4] for the constraint
solving needed by the static analysis.

Fig. 8 shows a screenshot of the tool being used to validate
an instance property on the running example. To build an
MMPL, the user first needs to create a FeatureIDE project,
selecting the Merlin extension. Label 1 in the figure shows
the package explorer with a few Merlin projects. Then, the
feature model is built with FeatureIDE (label 2), and the
150MM is created using a meta-model editor (OCLinEcore
in Fig. 8, with label 3). We provide a set of annotations to
define modifiers and PCs within Ecore-based 150MMs.
The tool supports all syntactic and property analyses we

have presented, and displays results in the Eclipse problem
view (label 4). Furthermore, it allows checking the satisfia-
bility of PCs and the applicability of modifiers. This analysis
performs SAT solving to discover unsatisfiable PCs and mod-
ifier conditions, taking into account the formula implied by

Figure 8. Merlin in action.

the feature model. For example, a PC Simple ∧ Object is not
satisfiable, being reported as an error.
Label 5 in the figure shows the wizard for the instance

property analysis. Here the user can enter structural and
mixed properties, and specify all the different search and
result configuration options. Given a property, the tool can
extract its implied PC, which can be used to reduce the search
scope. Internally,Merlin uses the USE Validator for model
finding, and the results are parsed back into EMF models
and FeatureIDE configuration files.

6 Evaluation
This section evaluates the scalability of our lifted analyses,
compared with checking an explicit enumeration of all meta-
models in theMMPL. Sec. 6.1 evaluates the syntactic analysis,
and Sec. 6.2 evaluates the instance property analysis.

6.1 Efficiency of Syntactic Analysis
In this section, we compare the performance of the lifted syn-
tactic analysis presented in Sec. 3, with respect to checking
every meta-model of the MMPL. The latter requires gener-
ating every meta-model, validating its structure, and type-
checking its invariants.
For this evaluation, we considered 5 MMPLs of different

complexities, ranging from 6 to 48 features. Twowere created
by us (the running example, Automata); one was created
from a set of existing meta-models (Relational DDBB); and
the other two were taken or adapted from the literature
(Graphs, Role modelling). The Graphs product line is a common
benchmark in the SPL community [29], but as we focus on
the language and not on the algorithms, we included features

http://miso.es/tools/merlin

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

Table 2. Lifted and enumeration-based syntactic analyses.

Name #Feats #MMs
#classes/#invs
/#PCs/#modifs

Lifted
time

Enum
time

Running example 6 8 4/2/5/2 0,039s 0,19s
Relational DDBB 10 24 7/0/17/0 0,094s 0,45s

Graphs [29] 16 256 5/6/14/3 0,103s 22,36s
Automata 20 2.016 6/5/18/0 0,135s 102,9s

Role modelling [27] 48 >2.395.000 40/0/32/9 0,735s >1h

related to its structure in order to add some OCL invariants.
TheMMPL Relational DDBBwasmanually created by us, from
9 existing meta-models built by third parties, available in the
ATL meta-model zoo2. All MMPLs used in these experiments
are available at http://miso.es/tools/merlin.
The experiment was made on a Windows 10 computer,

with i7-6500U processor and 16Gb of memory. We repeated
each analysis 5 times both at the MMPL level and using enu-
meration, taking averages. Table 2 summarizes the results.

Our first conclusion is that lifted analysis scales well, even
to large MMPLs (<1s), while the enumerative analysis does
not scale (we interrupted the analysis of the Role modelling
MMPL after 1 hour). We have to stress that, while in the
enumerative approach we checked only well-formedness
of each meta-model (both structure and OCL), in our lifted
analysis we also checked for unused features, PC satisfiability
and modifier applicability. Not only is lifted analysis faster,
but it also makes it easier to provide valuable feedback to
the designer. First, by discovering unsatisfiable PCs and non-
applicable modifiers, we can point to elements in the 150MM
that will never appear in any meta-model. This analysis
would be costly to perform on the meta-model level. Second,
if the MMPL is not well-formed, the enumerative approach
produces wrong meta-models which cannot be persisted
using EMF. This complicates generating useful feedback and
diagnosing the error cause.
Threats to validity. Although the experiment shows much
better scalability of lifted analysis, a more extensive study
with increasing number of modifiers, PCs and invariants
would be needed to better evaluate scalability issues.

6.2 Efficiency of Instance Property Analysis
Our second experiment compares the lifted instance prop-
erty analysis presented in Sec. 4, with respect to an enumera-
tive approach. As a representative case of property type, we
consider the analysis of MMPL instantiability, i.e., finding a
configuration that yields an instantiable meta-model. Using
an enumerative approach, this implies generating one meta-
model of the MMPL at a time, checking its instantiability,
and finishing if it has instances. The sooner an instantiable
meta-model is found, the faster the analysis. This means
the analysis time in the enumerative approach depends on
the percentage of instantiable meta-models in the MMPL: if
2http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

1

10

100

1000

10000

100000

0 20 40 60 80 100

TIME (MS)

% INSTANTIABLE META-MODELS

Lifted average
Enum. average
Enum. best
Enum. worst

Figure 9. Lifted and enumeration-based property analyses.

many meta-models are instantiable, the likelihood of finding
one soon increases. For this reason, this experiment consid-
ers MMPLs with different instantiability ratios.
Specifically, we used for the experiment the Automata

MMPL as it produces a large number of meta-models with
invariants (see Table 2). While all 2016 meta-models in this
MMPL have instances, we manually built 22 modified ver-
sions of the MMPL, each one producing a different percent-
age of instantiable meta-models (i.e., one version had one
instantiable meta-model out of 2016, another had two, and so
on). This was done to emulate MMPLs with different meta-
model instantiability ratios. Then, we used both approaches
(lifted and enumerative) to analyse MMPL instantiability of
each version, 40 times each, computing the average time. In
the enumerative approach, the traversal of the meta-models
in the MMPL was randomized in each analysis.
Fig. 9 shows the average analysis time of each approach

in milliseconds (vertical axis in logarithmic scale) with re-
spect to the ratio of instantiable meta-models in the MMPL
(horizontal axis). It also shows the best and worst times for
the enumerative approach, but not for the lifted one because
they are similar to the average.
The average time of the lifted analysis is lower than the

enumerative one when the percentage of instantiable meta-
models is up to 85%, and when this percentage is under
10%, the lifted analysis is up to 1.000x faster. When more
than 85% meta-models are instantiable, the performance of
the lifted analysis is only slightly lower but still reasonable
(100 vs 120 ms). The best case for the enumerative approach
corresponds to finding an instantiable meta-model at the
first attempt, in which case it is up to 3x faster than the lifted
analysis because the constraint solving problem is easier.
So, the lifted analysis is only slightly slower than the best
case of the enumerated approach (and always below 150
ms), but it is several orders of magnitude faster than the
corresponding worst case, hence confirming its benefits w.r.t.
the enumerative approach.

http://miso.es/tools/merlin
http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

Threats to validity. While these results provide some evi-
dence of the benefits of lifting the analysis of instance prop-
erties to the product line level, a threat to their generality
is the low number of artefacts used in the evaluation, and
the fact that they have been produced synthetically by hand.
Moreover, we have evaluated only MMPL instantiability, but
not the other property types.

7 Related Work
MDE is used to support SPLs in various ways [22], like im-
proving traceability of SPLs [1] or expressing feature mod-
els as meta-models [18], and there are standardization at-
tempts [9]. Conversely, SPLs allow expressing variability
within MDE solutions, as we do in this paper. For example,
model-based product lines can be used as an intermediate
step towards code generation [47], and some companies (e.g.,
in defence, embedded and automotive domains) use SPLs to
manage the variability across their model assets [39, 48, 51].
These works apply SPLs to specific modelling languages, at
the model-level. In contrast, we work at a higher level of
abstraction, on product lines of modelling languages.
Many works recognise the need to express variability in

modelling languages [7, 31]. The UML specification includes
informal but explicit semantic variation points to address dif-
ferent usage contexts [8, 44], and approaches to language
engineering propose documenting semantic variations as fea-
ture models [20]. Beyond mere documentation, MMPLs have
been applied to improve the reusability of domain-specific
modelling languages [49] and their associated transforma-
tions [35]. These works lack means to ensure the resulting
meta-models are correct. However, building MMPLs can be
challenging and error-prone if there are many features or
meta-model invariants. This makes necessary analysis tech-
niques like the ones we propose in this paper.

A key ingredient of model-based SPLs is the mechanism to
express model variability and automate product derivation.
Approaches like delta-modelling [27, 41] or VML∗ [52] are
language-independent and can be applied to SPLs of models
or meta-models. Their focus is on expressivity, being possible
to apply arbitrary operations to synthesize a product. How-
ever, this makes ensuring syntactic and semantic correctness
challenging. In contrast, our approach based on PCs and
modifiers facilitates analysis, and enables instance property
analysis by model finding. Without such techniques, feature
incompatibilities (e.g., StateMachine and Hierarchy) may go
unnoticed and percolate to the final solution, creating errors.
Many analysis techniques have been proposed for SPLs,

such as lifting analyses from single artefacts to the product
line level, or analysing a subset of all derivable products, like
in pairwise testing (see [46] for a classification and survey).
Both syntactic [24, 25] and behavioural analyses (e.g., model
checking [14, 45]) have been lifted to SPLs. The advantage
of lifting is a better efficiency and scalability with respect to

an enumerative approach. In addition, richer specification
means may be obtained (e.g., mixed properties).
Just a few analysis techniques have been developed for

model-based SPLs. In [11], model-based SPLs are analysed
to ensure that each generated model conforms to its meta-
model and fulfils its integrity constraints. This corresponds
to a syntactic analysis lifting. In our case, we work at the
meta-model level, and our lifted analyses ensure that each
product meta-model is syntactically well-formed and has
the required instantiability properties. Moreover, we define
a catalogue of types of instantiability analyses that can be
done at the MMPL level. In [3], the authors present the tool
Clafer, which unifies meta-models and feature models. It
supports the analysis of our MMPL instantiability property
by a compilation into Alloy, but not the lifted analysis of any
other instance property. In [17], the authors synthesize ran-
dom, erroneous model-based SPLs for a modelling language,
to showcase typical errors in the SPL design.
Altogether, analysis of MMPLs at the product line level

are currently lacking. For this reason, we have lifted both
syntactic analyses and meta-model validation techniques
based on constraint solving [6, 42] to MMPLs. To the best of
our knowledge, these liftings, along with the classification
of instance property analyses, are novel contributions.

8 Conclusions and Future Work
In this paper, we have argued for the need to express and han-
dle variability within modelling languages. For this purpose,
we have proposed a notion of MMPL using an annotative
approach extended with modifiers. This approach considers
well-formedness constraints and facilitates analysis. We have
lifted syntactic and instance property analyses to MMPLs,
and proposed a classification for property types. We have
implemented the approach in the Merlin tool, and reported
on experiments showing the scalability benefits, with respect
to an explicit analysis of each product in the MMPL.

We believe that this work opens the door to a wider use of
variability within MDE to foster reusability. We are currently
working on reusable model transformations, combining this
notion of MMPLs with ideas from generic programming [12,
13]. Transformations defined in this manner become product
lines themselves, reusable for each meta-model of the MMPL.

We also plan to expand our analyses to discover subsump-
tion of language variants. For example, in the case of Petri
nets, all StateMachine nets are FreeChoice nets, but not vice
versa [33]. This analysis will help in constraining the feature
model to reduce the configuration space and reflect expected
language relations. Extending our notion of MMPL with type
modifiers that change the type of a field is also future work.

Acknowledgements
Work funded by NSERC, the Spanish MINECO (TIN2014-
52129-R) and the Madrid region (S2013/ICE-3006).

Analysing Meta-Model Product Lines SLE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-

Claude Royer, Andreas Rummler, and André Sousa. 2010. A Model-
Driven Traceability Framework for Software Product Lines. Software
and System Modeling 9, 4 (01 Sep 2010), 427–451.

[2] Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kästner.
2009. Model Superimposition in Software Product Lines. In Proc. of
ICMT’09 (LNCS), Vol. 5563. Springer, 4–19.

[3] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki,
and Andrzej Wasowski. 2016. Clafer: unifying class and feature mod-
eling. Software and System Modeling 15, 3 (2016), 811–845.

[4] Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2.
JSAT 7, 2-3 (2010), 59–6.

[5] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-
Driven Software Engineering in Practice, Second Edition. Morgan &
Claypool Publishers, San Rafael, California (USA).

[6] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2014. On the Verification
of UML/OCL Class Diagrams Using Constraint Programming. Journal
of Systems and Software 93 (2014), 1–23.

[7] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. 2009.
VariabilitywithinModeling LanguageDefinitions. In Proc. ofMDELS’09
(LNCS), Vol. 5795. Springer, Berlin, Heidelberg, 670–684.

[8] Franck Chauvel and Jean-Marc Jézéquel. 2005. Code Generation from
UML Models with Semantic Variation Points. In Proc. of MODELS’05
(LNCS), Vol. 3713. Springer, 54–68.

[9] CVL. 2012. http://www.omgwiki.org/variability/doku.php.
[10] Krzysztof Czarnecki and Michal Antkiewicz. 2005. Mapping Features

to Models: A Template Approach Based on Superimposed Variants. In
Proc. of GPCE’05 (LNCS), Vol. 3676. Springer, 422–437.

[11] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-
Based Model Templates Against Well-Formedness OCL Constraints.
In Proc. of GPCE’06. ACM, New York, NY, USA, 211–220.

[12] Juan de Lara and Esther Guerra. 2013. From Types to Type Require-
ments: Genericity for Model-Driven Engineering. Software and System
Modeling 12, 3 (2013), 453–474.

[13] Juan de Lara, Esther Guerra, Marsha Chechik, and Rick Salay. 2018.
Model Transformation Product Lines. In Proc. of MODELS’18. ACM.

[14] Aleksandar S. Dimovski and Andrzej Wasowski. 2017. Variability-
Specific Abstraction Refinement for Family-Based Model Checking. In
Proc. of FASE’17 (LNCS), Vol. 10202. Springer, 406–423.

[15] Eclipse OCL project. 2018. http://wiki.eclipse.org/OCL.
[16] EMFatic. 2012. https://www.eclipse.org/emfatic/.
[17] João Bosco Ferreira Filho, Olivier Barais, Mathieu Acher, Jérôme

Le Noir, Axel Legay, and Benoit Baudry. 2015. Generating Counterex-
amples of Model-Based Software Product Lines. STTT 17, 5 (2015),
585–600.

[18] Abel Gómez and Isidro Ramos. 2010. Cardinality-Based Feature Mod-
eling and Model-Driven Engineering: Fitting them Together. In Proc.
of VaMoS’10. 61–68.

[19] Carlos A. González, Fabian Büttner, Robert Clarisó, and Jordi Cabot.
2012. EMFtoCSP: A Tool for the Lightweight Verification of EMF
Models. In Proc. of FormSERA’12. IEEE Press, Piscataway, NJ, USA,
44–50.

[20] Hans Grönniger and Bernhard Rumpe. 2010. Modeling Language Vari-
ability. In Proc. of 16th Monterey Workshop on Foundations of Computer
Software. Modeling, Development, and Verification of Adaptive Systems
(LNCS), Vol. 6662. Springer, Berlin, Heidelberg, 17–32.

[21] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and
Analysis. MIT Press, London, England. See also http://alloy.mit.edu/.

[22] J.-M. Jezequel. 2012. Model-Driven Engineering for Software Product
Lines. ISRN Software Engineering 2012, 670803 (2012), 24pp.

[23] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peter-
son. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021. Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA.
[24] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012.

Type Checking Annotation-Based Product Lines. ACM Trans. Softw.
Eng. Methodol. 21, 3 (2012), 14:1–14:39.

[25] Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann,
and Don S. Batory. 2009. Guaranteeing Syntactic Correctness for All
Product Line Variants: A Language-Independent Approach. In Proc. of
TOOLS EUROPE’09. Springer, Berlin, Heidelberg, 175–194.

[26] Mirco Kuhlmann and Martin Gogolla. 2012. From UML and OCL to
Relational Logic and Back. In Proc. of MODELS’12 (LNCS), Vol. 7590.
Springer, Berlin, Heidelberg, 415–431.

[27] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and
Uwe Aßmann. 2014. A Metamodel Family for Role-Based Modeling
and Programming Languages. In Proc. of SLE’14 (LNCS), Vol. 8706.
Springer, 141–160.

[28] Jesús J. López-Fernández, Esther Guerra, and Juan de Lara. 2015.
Example-Based Validation of Domain-Specific Visual Languages. In
Proc. of SLE’15. ACM, 101–112.

[29] Roberto E. Lopez-Herrejon and Don Batory. 2001. A Standard Prob-
lem for Evaluating Product-Line Methodologies. In Generative and
Component-Based Software Engineering, Jan Bosch (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 10–24.

[30] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. 2017. Mastering Software Variability
with FeatureIDE. Springer. See also https://featureide.github.io/.

[31] David Méndez-Acuña, José A. Galindo, Thomas Degueule, Benoît
Combemale, and Benoit Baudry. 2016. Leveraging Software Product
Lines Engineering in the Development of External DSLs: A Systematic
Literature Review. J. Computer Languages, Systems & Structures 46
(2016), 206–235.

[32] MOF. 2016. http://www.omg.org/spec/MOF.
[33] T. Murata. 1989. Petri Nets: Properties, Analysis and Applications.

Proc. IEEE 77, 4 (1989), 541–580.
[34] OCL. 2014. http://www.omg.org/spec/OCL/.
[35] Gilles Perrouin, Moussa Amrani, Mathieu Acher, Benoît Combemale,

Axel Legay, and Pierre-Yves Schobbens. 2016. Featured Model Types:
Towards Systematic Reuse in Modelling Language Engineering. In
Proc. of MiSE@ICSE’16. ACM, New York, NY, USA, 1–7.

[36] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Soft-
ware Product Line Engineering. Foundations, Principles and Techniques.
Springer-Verlag Berlin Heidelberg.

[37] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pieran-
tonio. 2015. Collaborative Repositories in Model-Driven Engineering.
IEEE Software 32, 3 (2015), 28–34.

[38] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Mar-
sha Chechik. 2014. Lifting Model Transformations to Product Lines.
In Proc. of ICSE’14. ACM, New York, NY, USA, 117–128.

[39] Alexander Schlie, DavidWille, Sandro Schulze, Loek Cleophas, and Ina
Schaefer. 2017. Detecting Variability in MATLAB/Simulink Models:
An Industry-Inspired Technique and Its Evaluation. In Proc. of SPLC’17.
ACM, 215–224.

[40] D C Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engi-
neering. Computer 39, 2 (Feb. 2006), 25–31.

[41] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore – A
Model-Based Delta Language Generation Framework. In Modellierung
(LNI), Vol. 225. GI, Bonn, 81–96.

[42] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and
Rolf Drechsler. 2010. Verifying UML/OCL Models Using Boolean
Satisfiability. In Proc. of DATE’10. IEEE Computer Society, 1341–1344.

[43] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2008. EMF: Eclipse Modeling Framework, 2nd Edition. Addison-Wesley
Professional, Upper Saddle River, NJ.

[44] Ali Taleghani and Joanne M. Atlee. 2006. Semantic Variations Among
UML StateMachines. In Proc. of MODELS’06 (LNCS), Vol. 4199. Springer,

http://www.omgwiki.org/variability/doku.php
http://wiki.eclipse.org/OCL
https://www.eclipse.org/emfatic/
http://alloy.mit.edu/
https://featureide.github.io/
http://www.omg.org/spec/MOF
http://www.omg.org/spec/OCL/

SLE ’18, November 5–6, 2018, Boston, MA, USA Esther Guerra, Juan de Lara, Marsha Chechik, Rick Salay

245–259.
[45] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. 2017.

Family-BasedModel Checking withmCRL2. In Proc. of FASE’17 (LNCS),
Vol. 10202. Springer, 387–405.

[46] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. 2014. A Classification and Survey of Analysis Strategies for
Software Product Lines. ACM Comput. Surv. 47, 1 (2014), 6:1–6:45.

[47] Salvador Trujillo, Don S. Batory, and Oscar Díaz. 2007. Feature Ori-
ented Model Driven Development: A Case Study for Portlets. In Proc.
of ICSE’07. IEEE Computer Society, Washington, DC, USA, 44–53.

[48] Salvador Trujillo, Jose Miguel Garate, Roberto Erick Lopez-Herrejon,
Xabier Mendialdua, Albert Rosado, Alexander Egyed, Charles W.
Krueger, and Josune De Sosa. 2010. Coping with Variability in Model-
Based Systems Engineering: An Experience in Green Energy. In Proc.
of ECMFA’10 (LNCS), Vol. 6138. Springer, 293–304.

[49] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S.
Gokhale, and Douglas C. Schmidt. 2009. Improving Domain-Specific
Language Reuse with Software Product Line Techniques. IEEE Software
26, 4 (2009), 47–53.

[50] Xcore. 2018. https://wiki.eclipse.org/Xcore.
[51] Bobbi Young, Judd Cheatwood, Todd Peterson, Rick Flores, and Paul C.

Clements. 2017. Product Line Engineering Meets Model Based Engi-
neering in the Defense and Automotive Industries. In Proc. of SPLC’17.
ACM, 175–179.

[52] Steffen Zschaler, Pablo Sánchez, João Pedro Santos, Mauricio Alférez,
Awais Rashid, Lidia Fuentes, Ana Moreira, João Araújo, and Uirá
Kulesza. 2009. VML* - A Family of Languages for Variability Manage-
ment in Software Product Lines. In Proc. of SLE’09 (LNCS), Vol. 5969.
Springer, 82–102.

https://wiki.eclipse.org/Xcore

	Abstract
	1 Introduction
	2 Meta-Model Product Lines
	3 Q1: Ensuring MMPL Well-Formedness
	3.1 Well-Formed Structure
	3.2 Syntactically Correct Invariants

	4 Q2: Analysing Instance Properties
	4.1 A Classification of Property Types
	4.2 Lifting Instance Analysis to MMPLs

	5 Tool Support
	6 Evaluation
	6.1 Efficiency of Syntactic Analysis
	6.2 Efficiency of Instance Property Analysis

	7 Related Work
	8 Conclusions and Future Work
	References

