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Abstract—The correctness of model transformations is crucial
to obtain high-quality solutions in model-driven engineering.
Testing is a common approach to detect errors in transformations,
which requires having methods to assess the effectiveness of the
test cases and improve their quality.

Mutation testing permits assessing the quality of a test suite by
injecting artificial faults in the system under test. These emulate
common errors made by competent developers and are modelled
using mutation operators. Some researchers have proposed sets
of mutation operators for transformation languages like ATL.
However, their suitability for an effective mutation testing process
has not been investigated, and there is no automated mechanism
to generate test models that increase the quality of the tests.

In this paper, we use transformations created by third parties
to evaluate the effectiveness ATL mutation operators proposed
in the literature, and other operators that we have devised
based on empirical evidence on real errors made by developers.
Likewise, we evaluate the effectiveness of commonly used test
model generation techniques. For the cases in which a test suite
does not detect an injected fault, we synthesize test models able
to detect it. As a technical contribution, we make available a
framework that automates this process for ATL.

Index Terms—Maodel transformations, Mutation testing, ATL.

I. INTRODUCTION

Model transformations enable the model-driven engineer-
ing (MDE) [1] vision of software production by supporting
automated model manipulation. Hence, their correctness is
crucial for the success of MDE projects. Many efforts have
been devoted to the validation and verification of model
transformations [2], including static analysis [3]-[5], spectrum
based techniques [6], backward analysis [7], [8], and results
based on graph transformation [9], among others.

In practice, transformations are often verified by testing [2].
Input test models are created either manually in ad-hoc
ways, or automatically using random instantiators or coverage
criteria over some artefact, like the meta-model [10], [11],
the transformation [12] or transformation contracts [13]-[15].
Similarly, we can check the correctness of the transformation
results either using partial oracles specified as contracts [13],
[15], or full oracles consisting of the expected target model.

Several researchers have reported that transformations are
error-prone [4], [16], while [4] showed that most transforma-
tions in the ATL zoo repository have errors. This evinces the
need for mechanisms to evaluate and improve the quality of
transformation test cases. In this respect, mutation testing [17],
[18] is a well-known technique to evaluate the quality of a test
suite. It is based on the use of mutation operators that inject
artificial flaws in the system under test, emulating errors made
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by competent developers. The result is a set of mutants of the
original system, which are executed against the test suite. If
the test suite detects the injected errors, the mutant is killed;
or else it remains alive. A good test suite should kill most
mutants, as this indicates that it will likely discover real errors;
otherwise, the suite needs to be improved with additional test
cases. Conversely, a mutation operator producing mutants that
are always killed is called trivial and is not useful.

Some works propose the use of mutation testing to evaluate
transformation test suites [19], [20], and define different sets of
transformation mutation operators. However, these operators
do not consider real errors made by competent programmers,
and their efficacy is unknown. Moreover, there are no pro-
posals on how to automatically augment the test suite with
models able to kill live mutants, and there is a lack of publicly
available tools for transformation mutation testing.

This paper tackles these problems for ATL [21], one of the
most widely used transformation languages, making the fol-
lowing contributions: (i) a set of mutation operators mimicking
the most recurrent typing errors made by ATL developers; (ii)
an evaluation of the efficacy of ATL mutation operators and
test case generation techniques, based on six transformations
developed by third parties; (iii) an automated technique to
synthesize input models able to kill live mutants, improving
the quality of a test suite; and (iv) an open-source framework
to automate the mutation testing process for ATL.

Paper organization. Section II introduces mutation testing,
and Section III customizes this technique for ATL. Section IV
describes how to generate mutant-killing models. Section V
reviews mutation operators for ATL, and proposes new oper-
ators mimicking ATL typing errors. Section VII evaluates the
efficacy of the operators, several test generation approaches,
and our technique to improve the quality of test cases. Sec-
tion VIII discusses related works, and Section IX concludes.

II. MUTATION TESTING

Mutation testing [17], [18] is a technique to evaluate and
improve the quality of test suites. It is based on seeding
artificial flaws into the system under test founded on the belief
that, if a test suite is able to detect the injected flaws, it will
probably be good at detecting real errors.

Fig. 1 shows a typical mutation testing process. It assumes
the availability of a set of mutation operators (label 1) that
modify the program under test to emulate programming errors.
The result is a set of mutants of the original program (label 2).
Each mutant is executed against the test suite, and the result is
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Some mutants can be indistinguishable from the original
program. These are called equivalent. For instance, a mutant
that adds “+0” to an arithmetical expression is an equivalent
mutant because even though it is syntactically different from
the original program, no test case can distinguish them.

The quality of a test suite is given by its mutation score. This
is the fraction of the killed mutants divided by the total number
of mutants, disregarding the equivalent ones. The higher the
mutation score, the better the quality of the test suite. If the
mutation score is deemed too low, the tester can add new test
cases to kill some of the live mutants, increasing the mutation
score and therefore the test suite quality. Hence, the automated
synthesis of new test cases that kill live mutants is a challenge.

Mutation testing is computationally expensive due to the
large number of potential mutants. Hence, good sets of mu-
tation operators are required, producing mutants that are not
easy to kill. For example, Offutt and Pan [22] apply selective
mutation techniques that omit the most prevailing mutation
operators, obtaining similar effectiveness with up to a 75%
decrease in execution cost.

Determining mutant equivalence is non-computable in gen-
eral. Since checking equivalence by hand is expensive, several
heuristics to automate this process exist, e.g., based on con-
straints [23], on comparing the binaries of the original and mu-
tant programs [24], or on automata language equivalence [25].

Another challenge in mutation testing is test data selection:
identifying a set of test data that maximizes the number of
mutants killed [26].

test cases

live mutants killed mutants
AN J

v
mutation score

Fig. 1. Mutation testing process.

III. TESTING ATL TRANSFORMATIONS

In this section, we introduce ATL using a running example
(Section III-A), and then adapt the mutation testing process
described in Section II to ATL (Section III-B).

A. ATL by example

Model-to-model transformations are programs which take
one or more input models and produce one or more output
models. One of the most widely used model-to-model trans-
formation languages is the ATLAS transformation language

create OUT : Relational from IN : Class

helper context Class!Attribute def: multiValued : Boolean =
if self.upperBound = —1 then true
else self.upperBound > 1 endif;

helper def: defaultType : String = ’Integer’;

® 9 U AW —

rule Class2Table {

9  from c : Class!Class ( not c.isAbstract )
10 to out : Relational!Table (

11 name <— c.name,

12 col <— Sequence{key} —union(c.att—select(e | not e.multiValued)),
13 key <— Set{key} ),

14 key : Relational!Column (

15 name <— ’objectld’,

16 type <— Class!DataType.alllnstances()—any(e |

17 e.name = thisModule.defaultType))

18}

)
S

rule MultiValuedDataTypeAttribute2Column {
21 from a : Class!Attribute (

2 a.type.oclIsKindOf(Class!DataType) and a.multiValued )

23 to out : Relational!Table (

24 name <— a.owner.nameOrEmpty + ’_’ + a.name,

25 col <— Sequence {thisModule.createldColumn(a.owner), value} ),
26 value : Relational!Column (

27 name <— a.name,

28 type <— a.type )

31 lazy rule createldColumn {
32 from ne : Class!NamedElt
33 to key : Relational!Column (

34 name <— ne.name,

35 type <— Class!DataType.alllnstances()—any(e |
36 e.name = thisModule.defaultType))

7}

Listing 1. Excerpt of ATL program.

(ATL) [21]. Listing 1 shows an excerpt of an ATL program
that we will use as a running example. It is based on a
transformation available in the ATL zoo repository!, which
transforms object-oriented class models into relational ones.

An ATL program declares rules that select objects from the
source model and create objects in the target model. Lines
8-18 in Listing 1 define the rule Class2Table which, given an
object c of type Class (line 9), creates objects out of type Table
and key of type Column. The type of the objects is prefixed by
the meta-model names declared in line 2 (Class and Relational).

Rules can have filters, which are boolean expressions con-
straining the set of source objects to be transformed. For
example, the filter in line 9 (not c.isAbstract) makes the rule
applicable only to Class objects when isAbstract is false. The
created target objects can initialize their attributes through
bindings (e.g., lines 11-13 and 15-17). These are OCL ex-
pressions that may refer to objects read or created by the
rule. Bindings for references (e.g., line 12) can assign objects
of the source model to references in the target one. In such
cases, an implicit binding resolution mechanism determines
the target objects that were created from the given source
objects, and assigns the target objects to the reference. For
example, the binding in line 12 makes the union of the object
key (of type Column) and the Attribute objects in collection c.att;
the latter objects are resolved to Column objects (produced by
MultiValuedDataTypeAttribute2Column) and assigned to col.

Rules Class2Table and MultiValuedDataTypeAttribute2Column are

Uhttps://www.eclipse.org/atl/atl Transformations/#Class2Relational



matched rules. ATL also supports other types of rules, like
lazy rules, which are executed only when explicitly called
from other rules. For example, the lazy rule createldColumn
(lines 31-37) is called from line 25. Finally, helpers are
auxiliary operations written in OCL. In the listing, the helper
multiValuedOrFalse (lines 3-5) is defined on the context of class
Attribute, while defaultType (line 6) is a global helper.

B. Mutation testing for ATL

Testing transformations is hard due to the difficulty of gen-
erating test models conformant to the input meta-model and
providing an oracle [27]. ATL transformations are especially
challenging to test because ATL is a dynamic language, so a
transformation may crash at runtime even when the compiler
does not signal any typing or syntactical error [4].

Mutation testing can help in detecting weak transformation

test cases. However, its realization for a particular transforma-
tion language (e.g., ATL) requires providing support for the
different steps of the process depicted in Fig. 1.
Mutation operators. There are several proposals of mutation
operators for transformations. These include the ones by Troya
et al. [20], Mottu et al. [19], [28], Khan et al. [29] and Sanchez
et al. [4]. However, their effectiveness (i.e., their potential to
produce hard-to-kill mutants) has not been assessed, and they
do not mimic real developer errors.

Test suite. There are different ways to create input test models:
(i) by hand, (ii) using a random instantiator, (iii) using meta-
model coverage criteria [10], [11], (iv) using transformation
coverage criteria [12], or (v) using coverage of transformation
properties or contracts [13]-[15].

Testing oracle. An oracle must determine whether the trans-
formation output is correct. This can be: (i) a total oracle
consisting of the expected target model, or (ii) a partial oracle
stating properties from the expected target model, e.g., in the
form of contracts [13]-[15]. Most works that apply mutation
testing to transformations use the transformation under test as
a total oracle. Hence, given an input test model, they compare
the target models produced by the original transformation and
the mutant transformation to decide whether the mutant is
killed. However, total oracles may give unrealistically high
mutation scores, and may not be practical as it implies
providing the output model for every possible input model.

Killing cause. A mutant transformation can be killed in three
ways: (i) the mutant crashes when executed on a test model,
(ii) the output model does not conform to the target meta-
model, or (iii) the output model is not the expected one, which
can be checked using a total or a partial oracle.

Example. Fig. 2 illustrates some mutation testing steps
for ATL. It shows an application of the mutation operator
“Collection filtering change with perturbation” (CFCP) [19],
which modifies a collection or rule filter, to the example
transformation. While operators are exhaustively applied to
every possible location, the figure shows just one of such
applications to the filter of rule Class2Table. The figure also
shows the execution of the original and mutant transformations

original transformation mutant transformation

rule Class2Table { rule Class2Table {
from c : Class!Class (not c.isAbstract) CFCP; from c : Class!Class (not c.isAbstract
v and c.name=")
to out : Relational!Table ... } to out : Relational!Table ... }
A) T
Min :supers
:Class e :Class

isAbstract=true
name=‘Person”

2 N
Moue :Table i Mo

name=‘Female’

isAbstract=false
name=‘Female’

Fig. 2. Example of mutation testing process for ATL.

over a test model M;,,. The original rule is applied to the non-
abstract class named Female, but the mutant rule is not as it
only applies to unnamed classes; hence, the executions yield
different output models and the mutant is killed.

In the remainder of the paper, we first present a mechanism
to help improving the quality of ATL transformation test suites.
Then, we evaluate the effectiveness of different proposals
(from the literature and this paper) for the realization of the
main steps in the ATL mutation testing process.

IV. SYNTHESIZING MUTANT-KILLING MODELS

Transformation mutation operators perform a change in the
AST of a transformation. If the test suite does not contain
a model exercising the modified part, the mutant will not be
detected and will remain alive, having a negative impact in
the mutation score. In such cases, we propose enhancing the
test suite with an input model that forces the execution of the
mutated code, to increase the probability to kill the mutant.

For this purpose, we build an OCL path condition stating
the constraints that an input model must satisfy to reach (i.e.,
to exercise) the modified part of the transformation. This OCL
path condition and the input meta-model of the transformation
are fed into a model finder, which outputs a model that
conforms to the meta-model and satisfies the OCL condition,
if such a model exists within the search bounds. Several model
finders exist, like Alloy [30] or the USE Validator [31]. We
use the latter in practice (see Section VI).

Example. Fig. 3 illustrates the synthesis of a test model to kill
a mutant that has replaced a true literal by false. The location
of the change is recorded to build the path condition of the
modified expression.

To calculate the path condition, we use the Algorithm 1.
This is similar to the algorithm presented in [4], but the way
to assemble the condition is different (cf. Fig. 3). The input
of the algorithm is the AST element modified by the mutation
operator. The output is a slice of the transformation control
flow graph, representing all the paths that start in matched
rules and lead to the modified location (see Control Flow in
Fig. 3, which contains any rule and helper dependency that
is relevant to reach the modified location [4]). The algorithm
recursively analyses the container of each AST element in the
path to determine the kind of control flow that leads to it and
create the corresponding node. In the example, the input of
the algorithm elem is the modified boolean literal which will
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Fig. 3. Finding a test model that kills a mutant.

be the root node (line 2). Its parent is checked in function
pathToControlFlow (lines 6—13); as it is an IfExp expression, the
creation of the corresponding node is forwarded to pathTolfExp.
In this case, the path flows to the then branch (line 16). The
next container is a helper, which is handled by pathToHelper
(lines 29-35). Hence, we obtain the call sites for the helper
(line 32) to generate the corresponding call nodes. In the
example of Fig. 3, there are two call sites for the multiValued
helper which effectively split the path.

Input: AST node of the element of interest (elem)
Output: root node of the path condition tree (node)
1 def computePath (elem):

2 node = createPathRootNode(elem)

3 pathToControlFlow(elem, node)
4 return node
5 end

6 def pathToControlFlow (elem, node):

7 parent = getParentControlFlowStmt(elem)

8 switch parent do

9 case IfExp do pathToIfExp(parent, elem, node);
10 case Helper do pathToHelper(parent, node);
1 /... similarly LazyRule, MatchedRule, IteratorExp
12 end

13 end

14 def pathTolfExp (ifExp, child, node):

15 branch = nil

16 if ifExp.thenExpr = child then

17 ‘ branch = true

18 else if ifExp.elseExpr = child then

19 |  branch = false

20 else

21 // the path comes from the condition
22 pathToControlFlow(ifExp, node)

23 return

24 end

25 ifNode = new IfNode(ifExp, branch)

26 node.addChildren(ifNode)

27 pathToControlFlow(ifExp, ifNode)

28 end

29 def pathToHelper (helper, node):

30 hNode = new HelperlnvocationNode(helper)
31 node.addChildren(hNode)

32 foreach pcall in helper.invocations do

33 |  pathToCall(pcall, hNode)

34 end

35 end

36 def pathToCall (pcall, node):

37 cNode = new CallExpNode(pcall)

38 node.addChildren(cNode)

39 pathToControlFlow(pcall, cNode)

40 end

Algorithm 1: Computation of a path condition (from [4]).

The OCL path condition is built by traversing the path tree

starting from the leaves, which in ATL represent matched
rules. Each matched rule is mapped to an OCL expression
that follows the pattern InputType.allinstances()—select(<filter>)—
exists(<parent>).

The mapping for a helper call consists of inlining the helper
nodes by replacing the helper parameters with the actual
parameters in the call. In our example, we need to inline
the IfNode condition used in the filters of the matched rules
(self.upperBound = -1), and because the filter of MultiValuedDataTy-
peAttribute2Column calls the helper, we remove the last exists.
Finally, we or-catenate the OCL expressions generated for
each path, in this case corresponding to the paths starting in
rules Class2Table and MultiValuedDataTypeAttribute2Column.

Our approach ensures that executing the mutant transforma-
tion with the generated model will exercise the mutated code,
which is a necessary condition to kill the mutant. However, it
does not guarantee that the original and mutant transformations
will produce different output models, that is, our method is
not sufficient. Hence, in some cases, executing the original
and mutant transformations with the synthesized model yields
indistinguishable output models and lets the mutant alive.
Extending our approach to tackle this case is future work.
Anyhow, Section VII-D will show that, in practice, our method
frequently synthesizes test models that kill the mutants.

V. MUTATION OPERATORS FOR ATL

In this section, we revise mutation operators for model
transformations proposed in the literature (Section V-A), and
then propose a new set of operators emulating the most
frequent typing errors in ATL transformations (Section V-B).

A. Mutation operators in the literature

TABLE I
TROYA’S OPERATORS [20]
(syntactic set).

a) Syntactic operators: There
are different strategies to design
mutation operators for a language.

The first one is covering the lan- Concept | Operator
: Matched | addition
guage meta-model using 'create- rule deletion
update-delete (CUD) operations on name change
its elements. Troya et al. [20] fol- | I andout ] addition
R pattern deletion
low this approach to propose the 18 | element | class change
: : name change
operators in Table I, Whlch create, (g dditon
delete or update the main elements deletion
of the ATL meta-model (matched _— condition change
A Binding addition
rules, in/out rule pattern elements, deletion
rule filters and bindings). The ATL value change
feature change

meta-model coverage is not com-
plete though, as for instance, helpers are not considered. We
call this set of operators syntactic as they only consider the
language abstract syntax.

b) Semantic operators: Another way to design operators
is to mimic common faults a developer may incur. In this line,
Mottu et al. [19], [28] propose the 10 mutation operators in
Table II. These emulate errors in OCL navigation expressions
(e.g., removing the last step in a navigation sequence), in filters
of rules and collections (e.g., deleting a filter), and in creation
operations (e.g., replacing the type of object created by a rule).



These operators are generic for any transformation language.
They were designed based on the authors’ experience in
developing transformations, but not on empirical evidence of
real errors. We call this set of operators semantic as they
modify the transformation semantics.

TABLE 11
MOTTU’S MUTATION OPERATORS [19] (semantic set).

[ Operator

[ Explanation

Navigation operators

Relation to the same class change

Replaces the navigation through one associ-

(RSCC) ation by another to the same class.
Relation to another class change | Replaces the navigation through one associ-
(ROCC) ation by another to a different class.

Relation sequence modification with
deletion (RSMD)

Removes the last step of a navigation se-
quence.

Relation sequence modification with
addition (RSMA)

Adds a navigation step to a navigation se-
quence.

Filter operators

Collection filtering change with per-
turbation (CFCP)

Modifies an existing filter, e.g., acting on a
property or type of a class.

Collection filtering change with dele-
tion (CFCD)

Deletes a filter.

Collection filtering change with addi-
tion (CFCA)

Adds a filter, e.g., returning an arbitrary ele-
ment of a collection.

Creation operators

Class compatible creation replacement
(CCCR)

Replaces the creation of an object by the
creation of an object of a compatible type.

Classes association creation deletion
(CACD)

Omits the creation of a relation between two
objects.

Classes association creation addition
(CACA)

Adds the creation of a relation between two
objects.

c) Typing operators: Sanchez et al. [4] define the 27
operators in Table III, whose aim is testing the anATLyzer
ATL static analyser [4]. The operators inject typing errors (e.g.,
changing the return type of a helper) or faults causing runtime
errors (e.g., deleting a parameter in a called rule). The design
of these operators is guided by the ATL meta-model (though
the set is more complete than Troya’s) and gets inspiration
from mutation operators for other languages (e.g., changing
forAll by select). The operators introduce arbitrary typing errors,
not common developer errors. Moreover, some operators are
not exhaustive but yield different mutant classes. For example,
the “binding creation” operator produces at most five mutants
for each rule, adding to the rule either a duplicate binding, an
attribute or a reference binding with correct value, a binding
with an incorrect value, or a binding for a non-existing feature.
We call them typing operators as they target typing errors.

d) Others: Khan et al. [29] propose 10 ATL operators,
such as adding and removing bindings (present in the previous
operator sets); changing a lazy rule to matched and vice versa;
and some radical mutations like changing the mode of a
transformation to refining, so that modifications to the input
model are done in-place instead of producing an output model.

B. Mutation operators derived from errors in the ATL zoo

Mutation operators should emulate errors made by compe-
tent developers; however, the previous proposals are not based
on empirical evidence of the errors that ATL developers do in
practice. Hence, we next apply that principle to propose a
set of mutation operators based on the most frequent typing
errors found in the ATL zoo — a repository with 101 unique

TABLE III
SANCHEZ’S MUTATION OPERATORS FOR ATL [4] (typing set).

Targets

binding

source/target pattern element

rule inheritance relation

rule, helper

binding

source/target pattern element

rule filter

rule inheritance relation

operation context

formal/actual parameter in operation or called rule
argument in operation invocation

parameter in operation or called rule definition
variable definition

type of source/target pattern element

helper context type, helper return type

type of variable or collection

parameter type of operation or called rule definition
type parameter (e.g., oclIsKindOf(Type))
navigation expression

target of binding

predefined operator (e.g., and) or operation (e.g., size)
collection operation (e.g., includes)

iterator (e.g., exists, collect)

operation/attribute helper invocation

Type
Creation

Deletion

Type
modification

Feature name
modification
Operation
modification

ATL transformations — as reported in [4]. Most errors concern
the creation of ill-formed models that do not conform to
the target meta-model (44.9%), followed by navigation errors
(23.8%), source typing errors (23.4%), rule conflicts (7.4%)
and transformation integrity issues (0.5%).

Table IV shows the 5 most common typing errors in the zoo,
its frequency, and the 7 mutation operators that we propose to
emulate the errors. We call these operators zoo operators.

TABLE IV
ERRORS IN THE ATL Z0OO [4] AND MUTATION OPERATORS (zo0 set).
Error Freq. Operator
No binding for compulsory | 48.8% | Remove binding of compulsory feature
target feature (RBCF)
Invalid actual parameter type | 11.9% | Replace helper call parameter (RHCP)
Feature access over possibly | 11.22% | Remove enclosing conditional (REC), Add
undefined receptor navigation after optional feature (ANAOF)
Feature found in subtype 3.75% | Replace feature access by subtype feature
(RSF)

Binding possibly unresolved | 3.7% Restrict rule filter (RRF), Delete rule (DR)

The most common error, present in 44.8% of the transforma-
tions, is not giving a value to some mandatory field of a created
target object, resulting in an ill-typed target model. To emulate
this error, RBCF deletes a binding of a compulsory feature.
This operator is a particular case of Troya and Sanchez’s
“binding deletion” operator (see Tables I and III).

The second most common error is invoking a helper passing
a parameter whose type is incompatible with the type declared
in the helper (11.9%). This error is due to the dynamic nature
of ATL, which does not check type compatibility at compile-
time. The corresponding operator (RHCP) changes an actual
parameter by another of an incompatible type.

The most typical navigation error is accessing a feature over
a possibly undefined receptor (11.22%). This occurs when a
navigation expression traverses an optional reference without
checking that the reference has a value (e.g., the expression
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Fig. 4. Mutation testing framework for ATL.

obj.ref.feat, where ref is a monovalued reference with lower
bound 0). If the reference is undefined, there may be a runtime
error (a null pointer). We have designed two operators to
emulate this error. The first one (REC) removes a possible
enclosing “if” checking that the reference is defined. The
second one (ANAOF) adds a navigation step to a navigation
expression ending in an optional reference.

The last but one error (feature found in subtype, 3.75%)
occurs when a feature is accessed from an object (e.g., obj.feat),
and the feature is not defined in the type of the object (obj)
but on a subtype, causing a runtime error. For this case, the
operator RSF replaces a feature access from an object, by a
feature declared in a subtype of the object’s type.

Finally, the most common error related to rule conflicts
is having bindings possibly unresolved (3.7%). This happens
when a binding assigns source objects to a target reference,
but no rule transforms e source objects. To emulate this error,
the operator RRF modifies a rule filter to reduce the set of
objects that the rule transforms, and the operator DR deletes
a rule. Troya and Sédnchez also consider the last operator.

VI. ToOL SUPPORT

We have built a Java framework that automates muta-
tion testing for ATL, available at https://github.com/jdelara/
MDETesting. Fig. 4 shows a conceptual model with its
elements. The framework includes all mutation operators
introduced in Section V, organized in types (subclasses of
MutationRegistry). New mutation operators can be added by
extending the base class Mutation. The operators can use the
transformation typing information (e.g., which rules resolve a
binding) provided by the anATLyzer static analyser [4].

The framework supports three techniques for the generation
of models: random instantiation using the EMF random instan-
tiator? programmatically, meta-model coverage, and transfor-
mation path coverage. The latter two techniques, as well as a
facility to generate mutant-killing test models (cf. Section IV),
rely on the USE Validator model finder [31].

For mutation testing, the framework provides a test driver
and implements a differential tester to compare the output
of the original and mutant transformations. Metrics of the

Zhttps://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.
atlanmod.instantiator

mutation process (e.g., mutation score, killed and live mutants,
etc.) are persisted in an XML file.

VII. EVALUATION

This section evaluates the effectiveness of the different steps
in the mutation testing process for ATL. Since mutation testing
is time consuming, an effective process must consider mutation
operators that produce mutants difficult to kill and discard
operators that yield trivial mutants. The quality of the input
test suite is given by the mutation score (efficacy), and when
two test suites have the same mutation score, the smaller one is
preferred as it implies less testing time (efficiency). To analyse
these issues, we address the following research questions:

RQ1  Which operators produce the hardest-to-kill mutants?

RQ1.1 Are mutants mimicking the errors found in the ATL
zoo harder to kill than other mutants?

RQ2 Which test model generation technique produces
higher quality test cases?

RQ3 How effective is our technique to generate models

that kill live mutants?

For this purpose, Section VII-A first describes the evaluation
setup. Then, Section VII-B analyses how hard to kill are
the mutants produced by different mutation operators (RQ1
and RQ1.1). Section VII-C tackles RQ2 for three common
test case generation techniques: random, based on meta-model
coverage, and based on transformation path coverage. Finally,
Section VII-D evaluates the effectiveness of our technique for
generating models that kill live mutants (RQ3).

A. Evaluation setup

Mutation testing requires starting from programs syntacti-
cally correct and without typing errors. Hence, for the evalu-
ation, we selected six ATL transformations from the ATL zoo
having no or few typing errors, in the latter case fixing them
by hand. These transformations provide a wide coverage of
the ATL constructs, including matched and lazy rules, abstract
rules, helpers, rules with several input or output elements, and
so on. Table V shows some metrics for the transformations.

TABLE V
TRANSFORMATIONS USED IN THE EVALUATION.
transf. in/out mm | matched/ | abstract helpers avg in/out bindings
classes lazy rules | rules rule elems

class2table 6/5 7171 0 3 1713 20
uml2intalio | 247 /19 9/0 0 5 1/1.1 14

bt2db 21/8 9/0 0 4 1722 25

cpl2spl 33/77 14/1 0 6 1732 73
hsm2fsm 7177 7/0 0 0 19/1 19

uml2er 4/8 8/0 3 0 1/1 5

We performed the experiments using the tool presented in
Section VI, and considering all mutation operators of the
syntactic, semantic, typing and zoo sets. We excluded the
operators by Khan et al. as these are either included in other
sets, their effects are covered by other operators (e.g., setting
a rule to lazy is equivalent to deleting it), or always produce
a runtime error (e.g., a refining transformation with different
source and target meta-models crashes).



TABLE VI
KILLING STATISTICS OF MUTATION OPERATORS

Identification Applicability Resilience Stubbornness
Id | Type Operator name #Mutants | #Trafo Avg occ. || Total % | Oracle Crash Orc. Norm. || #Models Avg. % Killing
0 |syn InPatternElementDeletion 0 0 0.00 - - - - - - - -
1 |sem CACA 14 2 7.00 14 100.00 | 78.57 2143 100.00 553 98.80 17.87
2 | zoo ReplaceFeature AccessBySubtypeFeature (RSF) 48 3 16.00 48 100.00 | 31.25 68.75 100.00 352 13.96 3.97
3 | typ ParentRuleDeletionMutator 21 1 21.00 21 100.00 | 61.90 38.10 100.00 289 10.76 3.72
4 | typ VariableModificationMutator 48 1 48.00 48 100.00 | 100.00  0.00 100.00 1812 37.75 2.08
5 | sem RSMD 72 3 24.00 72 100.00 | 84.72 1528 100.00 1245 24.16 1.94
6 |typ CollectionModificationMutator 54 3 18.00 54 100.00 | 100.00  0.00 100.00 1951 37.21 1.91
7 | typ HelperContextModificationMutator 65 4 16.25 65 100.00 | 40.00 60.00 100.00 639 11.66 1.82
8 | zoo RemoveEnclosingConditional (REC) 109 1 109.00 109 100.00 | 100.00 0.00 100.00 3617 4791 1.32
9 | syn FilterAddition 117 5 23.40 117 100.00 | 76.07 23.93 100.00 5418  66.94 1.24
10 | sem RSCC 75 2 37.50 75 100.00 | 80.00 20.00 100.00 4603 43.58 0.95
11 | zoo ReplaceHelperCallParameter (RHCP) 162 3 54.00 162 100.00 | 100.00  0.00 100.00 5648 52.38 0.93
12 | typ IteratorModificationMutator 179 4 44.75 179 100.00 | 60.34 39.66 100.00 2778 18.01 0.65
13 | typ Primitive ValueModificationMutator 197 4 49.25 197 100.00 | 100.00  0.00 100.00 7138 36.50 0.51
14 | typ HelperOperationModificationMutator 380 4 95.00 380 100.00 | 79.21 20.79 100.00 8676 24.63 0.28
15| typ CollectionOperationModificationMutator 407 4 101.75 407 100.00 | 76.17 23.83 100.00 9535 24.14 0.25
16 | typ ArgumentModificationMutator 486 5 97.20 486 100.00 | 88.07 11.93 100.00 13060 26.42 0.20
17 | syn MatchedRuleAddition 1367 6 227.83 || 1367 100.00 | 46.89 53.11 100.00 18218 15.99 0.09
18 | typ,syn | InElementCreationMutator 3818 6 365.67 || 3818 100.00 | 82.48 17.52 100.00 133931 43.29 0.03
19 | syn BindingValueChange 279 6 46.50 278  99.64 | 92.09 791 99.61 16426 43.28 0.26
20 | syn BindingFeatureChange 941 6 156.83 938  99.68 | 71.22 2878 99.55 28653  44.98 0.16
21 | typ,syn | BindingDeletionMutator 724 6 72.67 720 99.45 | 100.00 0.00 99.45 36256 46.92 0.13
22 | sem ROCC 861 5 172.20 858  99.65| 58.62 41.38 99.41 14129 26.15 0.19
23 | sem CACD 268 6 44.67 266 99.25| 100.00  0.00 99.25 12626 58.13 0.46
24 | zoo RemoveBindingOfCompulsoryFeature (RBCF) 260 5 52.00 258 99.23 | 100.00 0.00 99.23 17192 62.08 0.36
25 | syn InPatternElementClassChange 1626 6 271.00 || 1615 99.32 | 62.85 37.15 98.93 48096 26.54 0.06
26 | syn BindingAddition 598 6 99.67 591  98.83 93.06 6.94 98.74 30769 85.34 0.28
27 | sem CFCP 1001 6 166.83 991  99.00 | 77.70 22.30 98.72 36744 58.56 0.16
28 | zoo RestrictRuleFilter (RRF) 730 6 121.67 720 98.63 | 78.89 21.11 98.27 33976 52.72 0.16
29 | zoo DeleteRule (DR) 179 6 29.83 176 98.32 | 93.18 6.82 98.20 10694 74.33 0.70
30 | typ RuleDeletionMutator 178 6 29.67 175 9831 | 93.14  6.86 98.19 5322 29.19 0.55
31 | typ,syn | OutElementCreationMutator 3327 6 343.00 || 3269  98.26 | 93.51 6.49 98.14 149822 56.26 0.04
32 | syn MatchedRuleDeletion 113 6 18.83 111 9823 | 91.89 8.11 98.08 7670 5577 0.73
33 | typ ArgumentDeletionMutator 306 5 61.20 302 98.69 | 67.55 3245 98.08 4712 17.39 0.37
34 | syn InPatternElementNameChange 145 6 24.17 1429793 | 83.10 16.90 97.52 14044 51.86 0.37
35 | typ BindingModificationMutator 913 6 152.17 893 97.81 | 8432 15.68 97.41 15831 16.73 0.11
36 | typ PredefinedOperationModificationMutator 1016 6 169.33 995 9793 | 75.68 24.32 97.29 19265 18.50 0.10
37 | syn OutPatternElementClassChange 1244 6 207.33 || 1222 9823 | 6391 36.09 97.26 29111 28.50 0.10
38 | sem RSMA 822 5 164.40 810 98.54 | 4877 51.23 97.05 11404 18.85 0.17
39 | syn OutPatternElementNameChange 207 6 34.50 201 97.10 | 92.54 7.46 96.88 11472 41.11 0.36
40 | typ NavigationModificationMutator 859 6 143.17 836 97.32 80.14 19.86 96.68 19547 20.63 0.11
41 | sem CCCR 1194 6 199.00 || 1165 97.57 | 68.76 31.24 96.51 22265 27.08 0.12
42 | typ OperatorModificationMutator 1092 5 218.40 || 1059 9698 | 67.80 32.20 95.61 20667 18.87 0.09
43 | typ OutElementModificationMutator 439 6 73.17 423 96.36 | 78.01 21.99 95.38 7675 15.55 0.20
44 | typ BindingCreationMutator 570 6 95.00 543 9526 | 90.61 9.39 94.80 10488 19.65 0.19
45 | typ ParentRuleModificationMutator 1424 6 23733 || 1368  96.07 | 70.83 29.17 94.54 32272 22.19 0.07
46 | syn FilterConditionChange 206 6 34.33 196  95.15| 83.67 1633 94.25 13677 48.57 0.36
47 | sem CFCD 100 6 16.67 96  96.00 | 67.71 32.29 94.20 2980 33.10 1.11
48 | typ InElementModificationMutator 266 6 4433 251 9436 | 68.13 31.87 91.94 3705 11.53 0.31
49 | typ HelperReturnModificationMutator 966 6 161.00 882 91.30 | 100.00 0.00 91.30 32304 2693 0.08
50 | typ,syn | FilterDeletionMutator 167 6 15.50 157 9401 | 65.61 34.39 91.15 5091 28.84 0.57
51 | syn MatchedRuleNameChange 120 6 20.00 109 90.83 | 100.00 0.00 90.83 8319 31.58 0.38
52 | typ HelperDeletionMutator 780 6 130.00 704 9026 | 95.74  4.26 89.87 24592 29.10 0.12
53 | typ ParameterDeletionMutator 513 6 85.50 459  89.47 | 100.00  0.00 89.47 16902 24.76 0.15
54 | typ ParameterModificationMutator 570 6 95.00 510 89.47 | 100.00 0.00 89.47 18780 24.76 0.13
55 | zoo AddNavigationAfterOptionalFeature (ANAOF) 44 3 14.67 39 88.64| 64.10 3590 83.33 560 5.83 1.04

A repository with all models, transformations, and the raw
data of the results is available at http://miso.es/ATLmut.

B. Evaluation of mutation operators (RQ1, RQI1.1)

To evaluate the ease to killing the mutants produced by each
operator, we created a test suite per transformation with test
models generated using three techniques: random instantiation,
meta-model coverage, and transformation path coverage. For
random instantiation, we fixed a number of 50 test models
per transformation, while the number of test models generated
with the other techniques ranged from 1 to 710. The size of
the resulting test suites ranged from 82 to 784 test models.

Table VI shows the statistics obtained for each mutation

operator, structured in four blocks:

o The first block includes the id, type (syntactic, semantic,
typing, zoo) and name of each operator. Some operators
(18, 21, 31, 50) belong to two different sets (typ, syn).
Others are similar (e.g., 29, 30, 32) but have slightly

different application conditions.

o The second block shows applicability metrics: the num-
ber of mutants generated by each operator; the number
of transformations that produced some mutant; and the
average number of mutants generated per transformation.



o The third block gives metrics related to mutant resilience:
the number and percentage of killed mutants; the way
in which the mutants were killed, either because the
original and mutant transformations produced different
output models (oracle) or by a runtime error of the mutant
execution (crash); and the percentage of killed mutants
considering only those killed by the oracle (orc. norm.).

« A last block details metrics about mutant stubbornness:
the total and average number of models executed with the
mutants produced by each operator; and the percentage of
models that killed the mutants. We consider that a mutant
is stubborn if it is killed by very few tests [32].

Opverall, we tested more than 32 000 mutant transformations,
performing over one million transformation executions.

Regarding applicability, many of the operators (>61%) were
applicable to all transformations. However, three applied only
to one transformation: ParentRuleDeletionMutator with id 3 (as
only one transformation had rule inheritance), VariableModifi-
cationMutator with id 4, and RemoveEnclosingConditional with id
8; this means that these operators may be useless in many
scenarios. Operator InPatternElementDeletion with id 0 generated
no valid mutants because even though one transformation
had rules with several input elements, deleting any of them
produced non-compiling mutants due to dangling references
from the rule filter or some binding to the deleted elements.

Looking at block Resilience, we observe that the percentage
of killed mutants is high (>88% in column %). The table also
distinguishes the percentage of killed mutants due to discrep-
ancies in the oracle function or due to runtime errors. Crash-
prone mutants are the least helpful as they can be detected
more easily, e.g., using a static analyser like anATLyzer [4]3.
Thus, we focus on mutants killed by the oracle, and order the
table in descending order of the percentage of mutants killed
in this way. Hence, the mutants on top of the table are the
easiest to kill, and those at the bottom are the most resilient.
Specifically, the mutants generated by the first 18 operators
(excluding InPatternElementDeletion) were killed by some test
suite. In contrast, only 83.33% of the mutants produced by
AddNavigationAfterOptionalFeature were killed using the oracle.

An interesting case concerns operators BindingDeletionMutator
(id 21), which deletes any arbitrary binding, and RemoveBindin-
gOfCompulsoryFeature (id 24), which only deletes bindings of
target mandatory features. While both have similar resilience
(99.45% and 99.23%), the latter produces one third less
mutants (724 vs 260); therefore, using the latter is more
efficient without loss of efficacy. Similarly, MatchedRuleDeletion
(id 32) should be slightly preferable to the other two rule
deletion operators (ids 29 and 30).

To analyse mutant stubbornness, the graph in Fig. 5 depicts
the average of oracle-killed mutants of each kind, against
the percentage of test models killing them. Each point in
the graph represents a type of mutant with its id on top,
and a different shape and colour depending on the set where
it belongs to. Mutants on the left-bottom are harder to kill

3anATLyzer is reported to have > 96% precision and > 98% recall.
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Fig. 5. Mutant stubbornness: % of killed mutants vs % of killer test models.

(lower ratio of killed mutants and killer test models), while
those on the upper-right are easier to kill. The graph excludes
CACA because the percentage of test models that kill its
mutants is much higher than the rest (>17%). In general,
most operators generate stubborn mutants as few test models
kill them. Consistently with the last block in Table VI, the
mutants in the left-bottom have ids 52, 53, 54 and 55 (typing
and zoo operators). Operator 55 produces a low percentage
of oracle-killed mutants, but the percentage of killer models
is somewhat high. Conversely, the easiest-to-kill mutants have
ids 1-7 (two semantic, four typing and one zoo operators).

For space constraints, Table VI shows the aggregated results
obtained for the three test model generation techniques. If we
expand the results, we observe that oracle-killed resilience is
100% for all operators when using path-based models, 80%
of the operators when using meta-model coverage, and 36%
of the operators for random models. Operators with similar
resilience in all test generation techniques, like CACA, have
generally lower stubbornness when using path-based models.
The disaggregated data are available in the online repository.

Overall, we can answer RQ1 saying that some typing opera-
tors (especially 52, 53, 54) produce the hardest-to-kill mutants.
The zoo operator 55 is hard but crash-prone, and when killed,
it is killed by many models. Moreover, its applicability is
average. On the other hand, we answer Q1.1 negatively. If we
look at the zoo operators, AddNavigationAfterOptionalFeature (id
55) is one of the hardest to kill, but three other zoo operators
(ids 2, 8 and 11) are among the easiest to kill. The remaining
three (ids 24, 28 and 29) have intermediate values.

C. Evaluation of test case generation techniques (RQ2)

We used three approaches to generate the test models:
random, meta-model coverage, and transformation path cov-
erage. In the first case, we generated 50 random models of
size 100 for each transformation. For meta-model coverage,
we synthesized models covering all input meta-model classes
and features as described in [33]. This approach ensures that
every meta-model element appears in some model. For the
last approach, we automatically extracted the path condition



TABLE VII
EVALUATION OF THE TEST CASE GENERATION TECHNIQUES USING THE MUTATION SCORE

Meta-model Path Random
Test case | #M. Typ Sem Syn Zoo | #M. Typ Sem Syn Zoo | #M. Typ Sem Syn Zoo |
class2table 62 69.98 80.73 100.00 97.14 27 77.53 75.23 100.00 97.14 50 67.15 58.33 59.86 97.14
uml2intalio 200 87.44  31.68 45.54 30.33 18 8247  71.66 89.31 95.08 50 65.64 56.71 48.36 23.58
bt2db 50  81.21 81.44 84.50 97.04 1 84.85 87.37 90.56 99.26 50 6418 81.05 69.01 95.56
cpl2spl 50 98.71 68.52 86.17 100.00 92 98.14 98.60 96.33 100.00 50 99.22 98.33 95.74 100.00
hsm2fsm 710  73.48 82.05 73.37 92.16 24 76.83 84.62 81.41 92.16 50 15.67 65.81 22.22 78.00
uml2er 26 7591 72.84 60.96 87.88 6 82.70 70.37 60.56 87.88 50 21.60 19.28 23.51 45.45
of each independent transformation path, similar to Section IV, TABLE VIII
and used a model finder for model generation. EFFICACY OF OUR TECHNIQUE TO GENERATE MUTANT-KILLER MODELS
We need to make a few precisions. First, since the uml2intalio Typ Sem Syn Z0o
transformation only deals with a small part of the UML meta- Test case | #M. % | #M. % | #M. % | #M. % |
model, we generated its test models using the effective meta- Claslszgtabllff 2%88 g;?i 523 ggg; 4(1)% g;ﬂ ég 13(1)2(7)
. . uml2intalio . . . .
model, 1.e.,.the slice of the UML meta-model touched b}f the bi2db 151 93101 32 10000| 175 9408 | 21 9524
transformation. Second, to avoid excessive execution times, cpl2spl 3161 82.76| 649  71.19 | 5993 78.66 | 65 73.85
we restricted the number of test models generated using meta- hsm2fsm 382 9225| 75 94.67| 363 8676 | 41 9268
uml2er 153 5948 | 42 5476 | 143 58.04 16 43.75

model coverage to 50 for transformations bt2db and cpl2spl.

In order to analyse the quality of the test suites obtained by
the different approaches, we calculated their mutation score
for each transformation. Table VII summarizes the results. We
disregard the mutants killed by crashes because, as abovemen-
tioned, these can be detected using a static analyser.

At a first glance, it is easy to see that transformation path
coverage produced fewer models, most of the times, an order
of magnitude less. Still, this technique yielded the highest
mutation score more frequently (19 out of 24 cases). The test
suites made of random models were the least performant, even
if those models were much larger than those populated by
the other approaches (random produced models with 108.13
objects on average, meta-model coverage with 7.22 objects
and path coverage with 2.55 objects). Hence, having larger test
models does not ensure higher-quality test suites. Actually, as
the test model size has an impact in the transformation exe-
cution time, smaller models are preferable whenever possible.

Overall, from these results, we can answer RQ2 by saying
that the most effective test model generation technique among
the three evaluated is transformation path coverage.

D. Evaluation of test case improvement technique (RQ3)

The last experiment explores the efficacy of our algorithm
to generate test models that kill an intended mutant. For this
purpose, we instrumented the mutant generator to synthesize,
together with each mutant, an associated test model targeting
the modified location, as explained in Section IV. Then, we
executed the mutant and the original transformation against
the test model, and compared the output.

Table VIII reports the results. Overall, our technique gen-
erated models that killed the mutant in 85% of the cases. The
percentage of success (i.e., of killed mutants) was higher than
90% in 12 cases out of 24, and higher than 80% in 17 cases. In
two cases, the test models killed all mutants. The worst results
were obtained for the uml2er transformation, as the synthesized
models killed between 43.75% and 59.48% of the mutants.

Hence, we answer RQ3 by saying that, while our method
only considers reachability constraints, it provides good re-
sults. In the future, we will improve the method by considering
other conditions which may depend on the mutation operator.

E. Discussion and threats to validity

For ATL, a general recommendation derived from our
evaluation is using test models generated by transformation
path coverage, as they produce smaller test suites without
losing efficacy. For mutation testing, none of the analysed
operator sets is more effective than the others, but all of them
contain operators easy to kill, and others which are harder to
kill. Interestingly, the hardest-to-kill operator belongs to the
zoo set, and it emulates a recurrent error committed by ATL
developers, which is accessing a feature over an undefined
receptor object. However, two operators from the same set
are among the easiest to kill, one of them emulating the same
error in another way. As many transformations in the ATL zoo
contain these typing errors, we conclude that transformations
are not tested up to standards for other kinds of software.

There are several threats to validity. First, we did not discard
equivalent mutants for computing the mutation score, as we are
not aware of any method for their automated detection, and
their manual identification was not feasible due to the high
number of generated mutants (>32 000). Retaining equivalent
mutants may result in slightly lower mutation scores. To
mitigate this effect, we used six different transformations.

Another issue with the mutation score is that we used a total
oracle due to the difficulty of finding publicly available partial
oracles. However, total oracles may be unfeasible in practice,
and may produce a mutation score higher than partial oracles.

We were able to reuse an existing implementation of the
typing operators. However, we had to encode all syntactic and
semantic operators based on their descriptions in the literature,



and so, another threat is that we may have misinterpreted some
details producing wrong implementations.

Finally, we have used six third-party transformations. This
number is higher than other works on transformation mutation
analysis [28], [34], which typically use one, but considering
more transformations would provide stronger evidence.

VIII. RELATED WORK

Next, we survey works on analysis of mutation operators,
automated test case generation, and mutation testing in MDE.

Analysing efficacy of operators. Mutation testing is suited to
measure test efficacy, but its computational cost is high [35].
This is why some works aim to identify sufficient operator
sets [22], [36], [37]. These are subsets of operators that pro-
vide a sufficiently accurate measurement of overall mutation
adequacy while reducing the computational cost. Given a test
suite, a subset of the operators is sufficient if a mutation score
of 1 on this subset is likely to produce a high mutation score
on the whole set. This subset can be heuristically computed
based on statistics [37]. Instead, in this work, our interest is
in analysing the ease of killing mutants created by different
operators, and to evaluate test model generation techniques.

Several works analyse which mutation operators are hard to
kill [38], [39]. Visser [38] identifies three factors: reachability,
the operator itself, and the oracle. Using symbolic execution
for simple programs and selected mutation operators, he was
able to assert the percentage of all possible inputs that kill
a mutant. He argues that, once the fault is reached, most
mutants seem easy to kill, hence confirming the rationale of
our mutant-killing model generation strategy.

Mutation-based test case generation. Some researchers have
exploited mutation analysis to generate test cases. Similar to
us, Godzilla [40] relies on constraint solving. This work was
later optimized with dynamic domain reduction techniques to
cover complex input data [41]. Dynamic symbolic execution
overcomes the limitations of symbolic execution, and can be
used in directed automated random testing [42].

Instead of symbolic execution, other methods rely on search.
Botaci [43] uses constraints derived from program mutants
to guide metaheuristic search for test data generation. This
is used in [44] to derive test data using the ant colony
optimization method. uTEST [45] uses genetic algorithms to
construct method call sequences that are effective in detect-
ing mutants, using synthesized oracles. Instead of targeting
one mutant at a time, EVOSUITE [46] uses a search-based
approach to generate a test for all mutants at the same time.
Finally, SHOM [47] combines dynamic symbolic execution
and search-based software testing to generate input data from
mutants generated using high-order operators.

All these works focus on imperative languages like C, Java
and Fortran, and their test data have numeric domains. As a
difference, we target ATL, which is a rule-based language, and
our test data are models having a more complex structure (this
is why we rely on model finders).

Mutation testing in MDE. Some works have proposed ap-
plying mutation testing to model transformations and define

sets of mutation operators [4], [19], [20], [29]. However, none
of them analyse the effectiveness of the operators.

Other works define systematic techniques for creating muta-
tion operators for a specific language like ATL [20], [29] or for
arbitrary languages defined by a meta-model [48], [49]. While
we could have used these works to implement the operators,
we resorted to our own framework as some operators required
using the typing information from a static analyser.

Mutation techniques have been applied to the generation of
input test models for testing model transformations [28], [50].
In [50], mutations (modelled as graph transformation rules)
are used to create model variants. In [28], the authors devise
heuristics to synthesize test models that have a good chance
to kill live mutants generated by some of Mottu’s operators.
However, while that approach does not generalize to arbitrary
operators, our approach based on path conditions does, and we
empirically measure the effectiveness of the method. To our
knowledge, our approach based on path condition constraints
is novel in model transformation testing.

In [34], the authors generate test models based on the input
meta-model footprint, and show that this is more effective than
meta-model coverage. For this, they use mutation analysis over
one transformation and Mottu’s operators. In this work, we
have more transformations, more operators, more test model
generation techniques, and show that transformation coverage
produces fewer models and achieves good mutation scores.

The iterative model generation technique proposed in [11]
allows synthesizing a set of diverse models from different
equivalent classes w.r.t. their graph shape. The technique can
be used to generate test models for DSLs, and it produces more
efficient test suites than using models not created for testing or
created with Alloy for different symmetry breaking predicates.
The technique only considers the DSL meta-model for model
generation. Instead, our algorithm to generate mutant-killing
models also needs to consider the semantics of the ATL
program under test and the path to reach a mutated location.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have paved the way towards an effective
mutation testing process for ATL: we have proposed a set
of mutation operators emulating real errors, measured the
efficacy of these and other operators proposed in the literature,
and measured the efficacy of common test model generation
techniques. We have also proposed a method to synthesize
mutant-killing models, and developed tool support.

In the future, we plan to evaluate the test model generation
methods and the mutation operators using partial oracles. We
are working on methods to detect mutant equivalence and
to improve the generation of mutant-killing models. Finally,
we plan to derive sufficient mutant sets as in [37], and to
generalize the approach to other transformation languages.
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