
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Colouring: Execution, Debug and Analysis of QVT-Relations
Transformations through Coloured Petri Nets

Esther Guerra ⋆, Juan de Lara

Universidad Autónoma de Madrid (Spain), e-mail: {Esther.Guerra, Juan.deLara}@uam.es

Received: date / Revised version: date

Abstract QVT is the standard language sponsored by
the OMG to specify model-to-model transformations. It
includes three different languages, being QVT-Relations
(QVT-R) the one with higher-level of abstraction. Un-
fortunately, there is scarce tool support for it nowadays,
with incompatibilities and disagreements between the
few tools implementing it, and lacking support for the
analysis and verification of transformations. Part of this
situation is due to the fact that the standard provides
only a semi-formal semantics for QVT-R.

In order to alleviate this situation, this paper pro-
vides a semantics for QVT-R through its compilation
into Coloured Petri nets. The theory of Coloured Petri
nets provides useful techniques to analyse transfor-
mations (e.g. detecting relation conflicts, or checking
whether certain structures are generated or not in the
target model) as well as to determine their confluence
and termination given a starting model. Our semantics
is flexible enough to permit the use of QVT-R specifica-
tions not only for transformation and check-only scenar-
ios, but also for model matching and model comparison,
not covered in the original standard.

As a proof of concept, we report on the use of CPN-
Tools for the execution, debugging, verification and val-
idation of transformations, and on a tool chain (named
Colouring) to transform QVT-R specifications and their
input models into the input format of CPNTools, as
well as to export and visualize the transformation re-
sults back as models.

Key words Model Driven Engineering – Model-to-
Model Transformations – QVT-Relations – Coloured
Petri Nets – Validation and Verification

⋆ Present address: Computer Science Department, Univer-
sidad Autónoma de Madrid, 28049 Madrid (Spain)

1 Introduction

Model Driven Engineering (MDE) is a software engineer-
ing paradigm that promotes an active use of models to
conduct the software development process. In this way,
models are not used just as a passive documentation, but
to generate code, test and verify the applications under
construction. Hence, models become first-class citizens,
and their manipulation a key activity in MDE [41].

The purpose of Model-to-Model (M2M) transforma-
tion is translating a model from a source to a target
language. This activity is one of the pillars of MDE,
where it is used to refine and abstract models, for trans-
formation into a semantic analysis domain, or for lan-
guage migration. Among the existing M2M transfor-
mation languages, QVT (for Query/View/Transforma-
tion) [37] stands out for being the transformation stan-
dard proposed by the OMG in the framework of the
Model Driven Architecture [32]. QVT includes three dif-
ferent languages and has a hybrid declarative/impera-
tive nature. The declarative part provides a user-friendly,
high-level language called Relations (QVT-R) whose se-
mantics is given by its compilation into a lower-level lan-
guage called Core (QVT-C). In its turn, the imperative
part provides a language called Operational mappings
(QVT-O).

Despite the popularity of the QVT standard, few
tools support the execution of QVT-R [31,33], and even
less its verification or validation. Furthermore, some au-
thors have reported disagreements of these tools with
respect to semantic issues [43]. This is partly due to the
fact that the semantics of QVT-R is given in terms of
QVT-C, which in its turn is semi-formally defined. In
addition, the fact that several languages with different
semantics are sometimes described as “QVT-like” [4,22]
has also contributed to the confusion with respect to how
QVT-R works. Thus, the MDE community would ben-
efit from a semantics for QVT-R enabling the analysis
of transformations, and a framework that explains and

improves the understanding of how QVT-R transforma-
tions work. Our aim is to contribute in this direction.

The QVT standard defines several usage scenarios for
QVT-R. In the transformation scenario, a QVT-R spec-
ification is used to create a target model from a source
model, whereas in the check-only scenario, it is used to
check whether a target model is consistent with a source
one. Although not considered by the standard, we pro-
pose using the same specification for other purposes as
well, for example in the context of model comparison
and model matching [16,24,27]. In these scenarios, the
aim is generating all possible traces between two models
in order to investigate their similarities, or as a previ-
ous step towards their synchronization (updating both
models to achieve consistency) or merging (producing a
model that merges elements considered equivalent) [25].
While in the transformation and checking scenarios the
evaluation is directional (from source to target), in the
comparison scenario we should consider the source and
target at the same time to create the trace model. How-
ever, this variation is not taken into account in the stan-
dard, and is not supported by existing tools.

Coloured Petri nets (CP-nets or CPNs in short) [18,
19] is a formalism for modelling, simulation and analy-
sis of systems in which concurrency, communication and
synchronization are salient features. They extend nor-
mal Petri nets with data types, allowing tokens to carry
data. CPNs have developed a rich body of theoretical
results that permit analysing dynamic properties of the
systems, like boundedness (number of tokens a net may
have), invariants (properties that hold true in all execu-
tion paths), transition persistence (conflicts) or reacha-
bility of certain states [18]. Many of these properties rely
on the occurrence graph, a representation of the state
space that can be model-checked [7]. The CP-nets com-
munity has developed a number of tools – CPNTools [19]
being the best known one – with a high level of maturity
that makes them usable for industrial projects

If we represent a M2M transformation as a CPN,
we can use these analysis properties to determine many
properties of interest about a QVT-R transformation,
beyond the capabilities of current tools. For example, we
can check whether the transformation terminates given
a starting model by checking if there are terminal states
in the net’s occurrence graph. It is also interesting to
know if the transformation definition may yield different
results. This is called confluence, and can be detected
if, in addition, the terminal state is unique. A QVT-R
transformation may not be confluent if it contains rela-
tions dealing with overlapping concerns in different ways
(e.g., they produce the same kind of object, but with
some difference), and having a conflict: applying one re-
lation disables the other, or makes its result to be dif-
ferent, so that the final result depends on the execution
order. This situation can be detected by analysing tran-
sition persistence. Finally, we may wish to investigate
correctness properties of the transformation, by check-

ing if certain structures are produced or not in the target
models. This can be done by model checking the net’s
occurrence graph.

In the present work, we profit from the theory and
tools developed for CPNs by providing a semantics for
QVT-R in terms of CPNs. Our semantics covers the
transformation and check-only scenarios, and extends
the semantics given in the standard to cover model
matching [24,27] as well. The use of CPNs opens the
door to interesting analysis possibilities, and builds a
bridge between the MDE and the Petri nets communi-
ties. On the practical side, we leverage CPNTools for
the execution, debug and analysis of QVT transforma-
tions, contributing to increase existing tool support for
QVT-R. The explicit and visual nature of CPN mod-
els allows debugging and validating the transformation
execution graphically, while their executable semantics
contributes to better understand the standard. In addi-
tion, the analysis capabilities of CPNTools permit ver-
ifying the transformations. We also report on Colour-
ing [9], a prototype tool chain we have developed atop
the Eclipse Modelling Framework (EMF) [42]. The tool
provides automatic translation of QVT-R specifications,
meta-models and models into the input format of CP-
NTools, allowing the execution, debugging, verification
and validation of transformations. Moreover, the results
of the transformation are translated back and shown to
the user as models and trace models. In particular, we
support the visualization of the generated models, as
well as the trace models and disconformities found by
check-only transformations.

This paper extends our previous work [10] by cov-
ering the check-only and model matching scenarios, by
handling meta-models with inheritance of attributes and
associations, by detailing the compilation procedure, by
providing comprehensive tool support that includes the
generation of EMF models from the final state of the net
and a rich visualization of the transformation results,
and by a comparison with other QVT-R implementa-
tions [2,31,33,45]. Our tool is available at [9], where we
have also included a repository of example QVT-R trans-
formations.

The paper is organized as follows. Sections 2 and 3
give an introduction to QVT-R and CPNs. Section 4
shows the compilation of QVT-R into CPNs for the
transformation scenario, followed by the compilation for
the check-only and model matching scenarios in Sec-
tion 5. Next, Section 6 presents our supporting architec-
ture. Section 7 illustrates the use of CPNs for verification
and validation of transformations. Section 8 discusses re-
lated research, providing a feature-based comparison of
current QVT-R tools. Finally, Section 9 ends with the
conclusions and lines of future work. The paper includes
an appendix detailing the compilation procedures.

2

2 QVT-Relations

QVT-R is the highest-level of abstraction language of the
OMG standard for Query/View/Transformation [37]. It
has a declarative nature and a dual graphical/textual
syntax. A QVT-R transformation is made of relations
with two or more domains (usually two). Domains are
described by patterns made of a set of variables and
constraints – similar to UML object diagrams – that the
model elements to which they are bound must satisfy
to qualify as a valid binding or occurrence for the pat-
tern. They also have a flag to indicate whether they are
checkonly or enforce. Models of enforced domains may
be modified in order to satisfy the relations, whereas
models of checkonly domains are inspected to check for
disagreements but cannot be modified.

Transformations have a direction. When they are ap-
plied in the direction of an enforced domain, the models
of that domain may be modified to obtain a model that,
together with a given model from the other domain, sat-
isfies the transformation specification. If a transforma-
tion is applied in the direction of a checkonly domain,
the execution engine must report the locations where
the model does not conform to the transformation, but
cannot modify the model. The scheme of these standard
scenarios is shown in Fig. 1. In the transformation sce-
nario, the most common situation (and the one most
widely supported by tools [21,26,31]) is that the target
model is initially empty, and then gets populated by the
transformation. We call this scenario batch. In the incre-
mental scenario, the target model may already exist and
gets updated upon changes in the source model. In this
paper we do not tackle the incremental scenario, which
we leave for future work.

source model

S T

transformation

execution

(enforce domain)

disconformities

target model

Scenario 1: transformation

(execution direction: target)

source model

S
(enforce domain)

target model

source model

S T
(checkonly domain)

target model

Scenario 2: check-only

(execution direction: target)

source model

S T
(checkonly domain)

target model

transformation

execution

Fig. 1 Usage scenarios of QVT-R specifications: model-to-
model transformation and check-only.

A relation is satisfied or holds in the source-to-target
direction if, for each valid binding of the source domain
variables to elements in the source model, there is a valid
binding of the target domain variables to elements in
the target model. Besides, relations can include when
and where clauses. The former express conditions under
which a relation needs to hold. They usually refer to
other relations to which they pass the value of bound
variables (i.e. model objects bound by the current re-

lation). Thus, a relation only needs to hold in bindings
which make the when condition hold. Where clauses can
also contain invocations to other relations using bound
variables. In this case, the satisfaction of the relation
requires the satisfaction of the invoked relations in all
bindings containing the passed variables. Finally, rela-
tions can be top or non-top. After executing a transfor-
mation all top-level relations need to hold, and hence
the models of the enforced domains may be changed to
satisfy the relations. Non-top level relations only need
to hold when invoked from the where section of other
relations.

QVT-R supports Check-Before-Enforce (CBE) se-
mantics [37], which allows relations to reuse objects (in-
stead of creating them) if they already exist. Transfor-
mations may declare keys. A key is a statement speci-
fying a number of attributes and references for a given
class, acting as unique identifiers for objects of that type.
These are used by the CBE semantics to decide whether
an object exists and can be reused, or must be created.

Throughout the paper we will use an example trans-
formation from a subset of UML class diagrams into re-
lational database schemas. For the sake of comprehen-
sion, the example is a simplification of the one given in
the QVT standard [37]. The meta-models for both lan-
guages are shown in Fig. 2. The left UML meta-model
declares Packages made of Classes with typed at-
tributes. Packages and Classes have a kind attribute,
used to mark whether they are persistent1. The RDBMS
meta-model to its right defines Schemas, which contain
Tables, and these contain Columns of a given type.

Package

-name:String

-kind:String

Class

-name:String

-kind:String

Attribute

-name:String

-typeAtt:String

namespace+

elements+*

owner+

attributes+*

TinyUML

Schema

-name:String

Table

-name:String

Column

-name:String

-typeCol:String

schema+

tables+*

owner+

columns+*

TinyRDBMS

Fig. 2 Source and target meta-models for our example.

The transformation is shown in Listing 1 in textual
syntax. It defines three relations, two of them being top-
level, and all of them enforcing the RDBMS domain. The
first relation demands that for each persistent package

1 For simplicity, by now we intentionally avoid using class
inheritance in the meta-models. We will show how our
method handles inheritance in Section 4.6.

3

in a UML model, there is a schema with the same name
(given by the n String variable) but preceded by the
prefix ’S’. The second one states that for each persistent
class there must be a table with the same name preceded
by ’T’. In this case, the when section demands this rela-
tion to hold only if relation PackageToSchema holds for
the package and schema containing the class and table.
In addition, the where clause asks the AttributeToCol-
umn relation to hold for the class and the table, which
in its turn requires that for each attribute of the class
there is a column with the same name and type.

1 transformation umlToRdbms(uml:TinyUML,
2 rdbms:TinyRDBMS) {
3 -- maps each package to a schema --------------
4 top relation PackageToSchema {
5 n: String;
6 checkonly domain uml pack:Package {
7 name=n, kind=’persistent’
8 };
9 enforce domain rdbms schema:Schema {

10 name=’S’+n
11 };
12 }
13 -- maps each persistent class to a table ------
14 top relation ClassToTable {
15 n: String;
16 checkonly domain uml class:Class {
17 name=n, kind=’persistent’,
18 namespace=pack:Package{}
19 };
20 enforce domain rdbms table:Table {
21 name=’T’+n,
22 schema=schema:Schema {}
23 };
24 when { PackageToSchema(pack, schema); }
25 where { AttributeToColumn(class, table); }
26 }
27 -- maps each attribute to a column ------------
28 relation AttributeToColumn {
29 n, t: String;
30 checkonly domain uml class:Class {
31 attributes=att:Attribute { name=n, typeAtt=t }
32 };
33 enforce domain rdbms table:Table {
34 columns=column:Column { name=n, typeCol=t }
35 };
36 }
37 }

Listing 1 Example QVT-R transformation.

2.1 Usage Scenarios and Semantics

As stated before, we can use a QVT transformation in
different scenarios. Its execution in the direction of a
domain marked as enforce makes it possible to use the
transformation for forward (or backward) transforma-
tion. We call this scenario transformation scenario. For
simplicity we assume two domains, and call the domain
towards which the transformation is executed the target
domain, and the other one the source domain.

The standard prescribes the execution of the trans-
formation scenario by the compilation of the QVT-R
specifications into QVT-C [37]. This latter is a language
that relies on the creation of traces to guide the transfor-
mation, with a mechanism similar to triple graph gram-
mars [15,39]. Roughly, QVT-C generates one mapping
type for each relation, which contains a reference to

each object in the relation domains. When executing
the transformation, the mechanism creates instances of
these traces together with new elements in the enforced
domain, for each binding of the variables in the source
domain. Hence, for all occurrences of the source part of
the relation pattern in the source model, an occurrence
of the target elements of the relation should exist in the
target model, together with a trace relating them.

Fig. 3 shows to the left an example TinyUML model.
The right of the same figure shows the transformation
of this model into a TinyRDBMS model, together with
the generated traces. As the initial model contains a
persistent package, the relation PackageToSchema is en-
forced, creating a new schema and the corresponding
trace. Next, the relation ClassToTable is enforced be-
cause it is top-level and the when condition holds. In
this way, the table and its trace are created, and the re-
lation AttributeToColumn is explicitly invoked with the
class and table as parameters. Enforcing the latter rela-
tion creates the column and its trace. At this point, the
execution ends as there are no more relations to enforce.

c: Class

kind=‘persistent’

name=‘Person’

a: Attribute

name=‘age’

typeAtt=‘Integer’

p: Package

kind=‘persistent’

name=‘People’

TinyUML

c: Class

kind=‘persistent’

name=‘Person’

a: Attribute

name=‘age’

typeAtt=‘Integer’

p: Package

kind=‘persistent’

name=‘People’

TinyUML Traces TinyRDBMS

: TPackage

ToSchema

: TClass

ToTable

s: Schema

name=‘SPeople’

cl: Column

name=‘age’

typeCol=‘Integer’

t: Table

: TAttribute

ToColumn

name=‘TPerson’

Fig. 3 Initial model (left). Result of applying the transfor-
mation in the TinyUML → TinyRDBMS direction (right).

This example illustrates the generation of a target
model from scratch. In the update or incremental sce-
nario, a previously generated target model may need to
be updated due to changes in the source model. Finally,
in the synchronization scenario, any of the models in-
volved in the transformation may need to be updated
due to changes in the other. In this paper we cover the
transformation scenario, but not the update or the syn-
chronization one, which are left for future work.

The QVT standard also provides another usage sce-
nario called check-only. In this scenario, the transforma-
tion is executed in the direction of a check-only domain,
and it is checked whether the target model is consistent
with the source one, but no model is modified. For this
purpose it is checked whether all top-level relations are
satisfied forwards. As an example, Fig. 4 shows two mod-
els where we want to check whether the target is consis-
tent with the source. The check-only procedure returns
that this is not the case because relation AttributeTo-
Column is not satisfied in objects c, t and a. This is
so because this relation demands a column in the table

4

with the same name as a and type Integer, which does
not exist. As AttributeToColumn is called in the where
clause from ClassToTable, this second relation does not
hold either. Finally, as ClassToTable is top, we can con-
clude that the models do not satisfy the specification.

c: Class

kind=‘persistent’

name=‘Person’

a: Attribute

name=‘age’

typeAtt=‘Integer’

p: Package

kind=‘persistent’

name=‘People’

TinyUML TinyRDBMS

s: Schema

name=‘SPeople’

cl: Column

name=‘name’

typeCol=‘String’

t: Table

name=‘TPerson’

AttributeToColumn violated ClassToTable violated

Fig. 4 Disconformity obtained in a check-only scenario.

In addition to the generation of QVT-C, the stan-
dard provides an informal procedure in pseudocode that
describes how to solve the check-only scenario.

All the aforementioned scenarios assign a direction to
the transformation, which we can interpret as the source
model being the “main” model for the scenarios. Thus,
we first look for all occurrences of the source pattern
of the relations in the source model, and for each one
of them it is enough to find one occurrence of the tar-
get pattern. Hence, conceptually, the source domain of
the relations is quantified with a for all (so that all oc-
currences or bindings of the source pattern are sought),
while the target domain is quantified with an exists (one
valid binding of the target pattern should exist). How-
ever, the practice of MDE has made evident the need to
align models through their comparison in order to check
for similarities or with the purpose of merging them [27,
28]. In this direction, dedicated languages such as the
Epsilon Comparison Language (ECL) [24] have been de-
veloped to populate the traces between models accord-
ing to a set of comparison criteria. We call this scenario
model matching or model comparison, and in this paper
we propose extending the QVT-R semantics to cover it.
All models in this scenario are primary and none is mod-
ified, as the objective is to trace each combination of
occurrences of the source and target patterns according
to the relations in a transformation. Fig. 5 shows the
schema of this scenario. Conceptually, the source and
target models are the “main” models for the scenario,
whereas the trace model is the “target” (i.e. for all oc-
currences of the source and target domain patterns of a
relation, a trace should exist).

As an example, Fig. 6 shows the result of a model
comparison process which relates each occurrence of the
source and target patterns of each relation. In this sce-
nario, the source and target models are given, and the
operational mechanism creates the traces. In particular,

source model

S T

transformation

execution

(checkonly domain)

target model

Scenario 3: model matching

(execution direction: trace model)

(checkonly domain)

source model

S C T
(checkonly domain)

target model

(checkonly domain)

trace model

Fig. 5 Schema of the model comparison scenario.

we find one occurrence of each relation. The class is not
traced with the table t1 because relation ClassToTable
requires relation PackageToSchema to hold for the con-
tainer package and schema, which is not true. If the
schema s1 had the same name as the package with the
prefix ’S’, then they would have been traced, as well as
the class and t1.

c: Class

kind=‘persistent’

name=‘Person’

p: Package

kind=‘persistent’

name=‘People’

TinyUML Traces TinyRDBMS

: TPackage

ToSchema

: TClass

ToTable

s: Schema

name=‘SPeople’

t: Table

name=‘TPerson’

s1: Schema

name=‘SCompany’

t1: Table

name=‘TPerson’

a: Attribute

name=‘age’

typeAtt=‘Integer’

cl: Column

name=‘age’

typeCol=‘Integer’

: TAttribute

ToColumn

Fig. 6 Result of comparing two models: Unique matching.

Fig. 7 shows another example where the compari-
son between the source and target models yields several
matches of the same relation. In particular, both pack-
ages can be matched to each of the two schemas, and
hence four traces are created.

p0: Package

kind=‘persistent’

name=‘People’

TinyUML Traces TinyRDBMS

p1: Package

kind=‘persistent’

name=‘People’

s0: Schema

name=‘SPeople’

s1: Schema

name=‘SPeople’

: TPackage

ToSchema

: TPackage

ToSchema

: TPackage
ToSchema

: TPackage

ToSchema

Fig. 7 Result of comparing two models: Multiple matchings.

Once we have revised QVT-R and its usage scenar-
ios, we next give an overview of CPNs as the semantic
domain to which we will map QVT-R transformations.

5

3 Coloured Petri Nets

CPNs is a popular formalism for describing concurrent
systems, which is both state and action oriented. Here
we give a brief introduction, see [18,19] for more details.

A CPN model can be seen as a bipartite graph
with two kinds of nodes: places and transitions. The
former contain tokens, which collectively represent the
state of the net. Places are depicted as ovals with the
name inside. Transitions model actions and are de-
picted as labelled rectangles. Places can be connected
to transitions, and vice versa, by means of labelled arcs.
As an example, Fig. 8 shows to the left a CPN with
two places (Package and Schema) and one transition
(PackageToSchemaSimplified). The net models a
simplified version of the relation PackageToSchema.

{ id= !ID, name="S"^n }

{ id=p, kind="persistent",
 name=n }

PackageToSchema
Simplified

action inc ID;

Schema

Schema

Package

1`{id=1,kind="persistent",
name="Person"}++1`{id=2,
kind="transient",name="pdta"}

Package

2

1`{id=1,kind="persistent",name="Pe
rson"}++
1`{id=2,kind="transient",name="pdt
a"}

{ id= !ID, name="S"^n }

{ id=p, kind="persistent",
 name=n }

PackageToSchema
Simplified

action inc ID;

Schema

Schema

Package

1`{id=1,kind="persistent",
name="Person"}

Package

1

1`{id=1,name="SPerson"}

1

1`{id=2,kind="transient",name="pdt
a"}

Fig. 8 Example CPN model (left). Net after firing the tran-
sition PackageToSchemaSimplified (right).

Each place has a data type defining the kind of data it
can contain. The name of the data type is usually shown
next to the place (Package and Schema in Fig. 8). Data
types, called colour sets, are declared in a language based
on Standard ML, called CPN-ML [19]. The language al-
lows declaring simple colour sets – like unit, boolean, in-
teger, string and enumerated – and compound ones – like
product, record, list, union and subset. Listing 2 shows
the declarations for the example of Fig. 8, which include
two records called Package and Schema. The former
contains three fields (id, kind and name) of type inte-
ger and string, while the latter contains two fields (id
and name). The listing also declares one global variable
ID, as well as two variables p and n which actually ap-
pear in the net arcs and are used in the binding process
for firing the transition, as explained next.

1 colset Package= record
2 id: INT*
3 kind: STRING*
4 name: STRING;
5

6 colset Schema= record
7 id: INT*
8 name: STRING;
9

10 globref ID=0;
11 var p: INT;
12 var n: STRING;

Listing 2 Colour set declarations for the net in Fig. 8.

The state of a CPN is called its marking, and consists
of a number of tokens located in the different places.
Each token contains data according to the colour set of
the place where it resides. Places contain multi-sets of
tokens (i.e. sets where element repetition is allowed). In
the example, the Package place contains two tokens.
The number of tokens in a place is indicated in a circle
near the place, whereas the cardinality of each token in
a multi-set is shown explicitly before the element value
(e.g. 1 ` {...}).

Transitions are the dynamic elements in the net. A
place connected through an arc to a transition indicates
that the transition, if fired, will remove tokens from
the place. These places are sometimes called “incoming”
places for the transition. Similarly, an arc from a tran-
sition to a place indicates that firing the transition will
put tokens into the place. These places are sometimes re-
ferred as “outgoing”. Arcs are labelled with expressions
used to select the tokens from the incoming places, or to
give values to the produced tokens.

Transitions have a guard, shown between brackets,
which is a boolean expression involving variables typed
on the colour sets. They may also have an associated
action which is executed whenever the transition fires.
The transition in the example does not contain guards.
If it fires, it will execute its action inc ID; which in-
crements the value of the global counter ID, and then it
will remove one token from Package and put one token
into Schema.

A binding of one transition is an assignment of val-
ues to the variables in the incoming arcs and the guard.
A transition is enabled if there is a valid binding for it.
This includes checking: (a) if the incoming places have at
least one token each able to bind the variables appearing
in the incoming arcs, (b) the variables in the guard are
bound, and (c) the guard expression evaluates to true. In
the example, the transition is enabled2 because the arc
from Package demands one token with value “persis-
tent” in its field kind, which exists. Thus, the transition
is enabled with the binding b1 = ⟨n =“Person”, p = 1⟩.

An enabled step is a finite, non-empty multi-set of
bindings enabling transitions. An enabled step can occur,
whereby some of the enabled transitions fires, changing
the marking of the enabled transitions by the multi-set.
In particular, the tokens needed to bind the incoming
arcs of the transitions are removed, while tokens are cre-
ated in the output places according to the expressions
of the outgoing arcs. In our example, the only enabled
step is made of the binding b1 shown before. Firing the
transition removes one token from Package, and adds
one token to Schema having as id the value of variable
ID and as name the name of the removed token preceded

2 CPNTools depicts enabled transitions by highlighting
them in green colour.

6

by ’S’ (string concatenation is written “ˆ” in CPN-ML).
The result of the firing is shown to the right of Fig. 8.
The resulting net has no available binding as the incom-
ing arc to the transition demands a token with value
“persistent” in its field kind, which does not exist.

In addition to execution, CPNs have developed a rich
body of theoretical results enabling analysis. Some of
them are based on the occurrence graph, which is a rep-
resentation of the set of reachable markings in the form
of a graph [18]. As an example, Fig. 9 shows the reacha-
bility graph of the net in Fig. 8, automatically computed
by CPNTools. The graph shows that from the initial
marking (upper node of the graph), the model can only
reach one possible state (lower node in the graph). The
graph nodes show the marking of the state they rep-
resent, and the graph edges stand for fired transitions
and their binding. Section 7 will use some CPN analysis
techniques to verify properties of transformations.

1:1->2 PackageToSchema'PackageToSchema_Simplified 1: {n="Person",p=1}

1
0:1

1:

PackageToSchema'Package 1: 1`{id=1,kind="persistent",name="Person"}++

1`{id=2,kind="transient",name="pdta"}

PackageToSchema'Schema 1: empty

1:

PackageToSchema'Package 1: 1`{id=1,kind="persistent",name="Person"}++

1`{id=2,kind="transient",name="pdta"}

PackageToSchema'Schema 1: empty

2
1:0

2:

PackageToSchema'Package 1: 1`{id=2,kind="transient",name="pdta"}

PackageToSchema'Schema 1: 1`{id=1,name="SPerson"}

2:

PackageToSchema'Package 1: 1`{id=2,kind="transient",name="pdta"}

PackageToSchema'Schema 1: 1`{id=1,name="SPerson"}

Fig. 9 Reachability graph for the net to the left of Fig. 8.

CPNTools offers additional hierarchical and modu-
lar modelling capabilities to tackle scalability. A large
net can be divided into pages that can be connected
by means of Fusion Places and Substitution Transi-
tions. Hence, pages serve as a modularization mechanism
favouring comprehension, easy visualization and debug-
ging, and avoid having to draw large nets in a single
diagram. Substitution transitions are hierarchical tran-
sitions that contain inside a whole page of the net struc-
ture. Their use allows a hierarchical decomposition and
visualization of the net. Fusion places are references for
the same place appearing in several pages, and simply
cross-reference the place in the different pages. Thus, a
fusion place is equated with one or more other places,
so that the fused places act as a single place with a sin-
gle marking. We say that all these places belong to the
same fusion set. Altogether, these mechanisms allow the
modelling in different levels of abstraction (with the sub-
stitution transitions) and using multiple views (with the
pages and fusion places).

4 Compiling QVT-Relations into CPNs:
Transformation Scenario

After reviewing the semantics of QVT-R and CPNs,
one realizes that the transformation scenario of a QVT-
R specification can be naturally represented as a CPN

model by mapping the QVT relations into CPN transi-
tions, and encoding the models as tokens inside places
whose associated coloured sets represent the types in
the source and target meta-models. Each transition will
be enabled for some binding whenever the correspond-
ing QVT relation needs to be enforced at a given oc-
currence (i.e. at a valid binding of the variables in the
source pattern). Firing a transition amounts to enforce
a relation for a valid binding. Thus, the concurrent, non-
deterministic nature of CPNs permits modelling several
relations to be enforced at different bindings.

In this section we describe the compilation of QVT-
R specifications into CPNs for the transformation sce-
nario. In order to output a modular, hierarchical CPN
promoting understandability, easy visualization and de-
bugging, we split the net in different pages and levels of
abstraction. In particular, we create: three pages with
places that store the objects of the source, target and
trace models; one page for each relation in the transfor-
mation; a high-level view of the transformation with one
substitution transition for each relation and places de-
picting the when and where dependencies between them;
and one page with the needed infrastructure to load the
initial marking (i.e. the initial source model) from files.

The next subsections explain the compilation proce-
dure using the running example, whereas the appendix
provides the pseudocode formalizing the different trans-
formation steps.

4.1 Compiling the meta-models and the initial model

The first step is to compile the source and target meta-
models into colour set declarations. We start assuming
that the meta-models do not contain inheritance rela-
tionships, as we will explain how to handle inheritance
later in Section 4.6. Our compilation generates a record
for each class and association in the meta-models. The
record declares one field for each attribute in the class,
plus an additional field id to store a unique object iden-
tifier. In case of an association, the record contains the
identifier of the classes in each association end, as well
as the attributes if it is an associative class.

As an example, Listing 2 shows the declarations for
classes Package and Schema in lines 1–8. As we will see
in the next subsections, further definitions will be added
to store the traces and parameters of the relations.

Next, we create one place for each record, which will
hold tokens representing the objects in the source and
target models, and store the value of their attributes. We
split the places of the source and target meta-models in
two different pages to enhance readability. Each place is
assigned a fusion set so that it can be referenced from
other pages. The details of this step of the compilation
are shown in Section A.1 of the appendix.

In addition, a further page is generated to read the
initial marking (i.e. the initial source model) from files.

7

This latter is a technical issue related to CPNTools, as
we need to generate one auxiliary transition that will
read these files when the transition gets fired, by execut-
ing an associated action.

As an example, the upper part of Fig. 10 shows a
TinyUML model to be transformed, whereas the corre-
sponding generated places and initial marking are shown
below. The fusion set names are depicted inside small
rectangles to the lower left of each place. The model
contains two classes with equal names (since the meta-
model allows this3) having one attribute each with equal
name but different type.

2: Class

kind=‘persistent’

name=‘c1’

4: Attribute

name=‘a1’

typeAtt=‘Integer’

1: Package

kind=‘persistent’

name=‘p1’

3: Class

kind=‘persistent’

name=‘c1’

5: Attribute

name=‘a1’

typeAtt=‘Boolean’

Class

Package
uml Package

Class
uml Classuml Class

Attribute
uml Attributeuml Attribute

Class_
elements_namespace

_Package

uml Class_elements_namespace_Packageuml Class_elements_namespace_Package

Attribute_
attributes_owner

_Class

uml Attribute_attributes_owner_Classuml Attribute_attributes_owner_Class

uml Package

Attribute_attributes_owner_Class

Class_elements_namespace_Package

Package

Attribute

1

1`{id=1,kind="persistent",name="p1
"}

2

1`{id=2,kind="persistent",name="c1
"}++
1`{id=3,kind="persistent",name="c1
"}

2

1`{id=4,name="a1",typeAtt="Integer
"}++
1`{id=5,name="a1",typeAtt="Boolea
n"}

2

1`{elements=2,namespace=1}++
1`{elements=3,namespace=1}

2

1`{attributes=4,owner=2}++
1`{attributes=5,owner=3}

Fig. 10 Initial source model (above). Places and initial
marking generated from the model (below).

4.2 Compiling the relations

Next, we compile the relations. In this section we restrict
to relations with the source domain checkonly and the
target domain enforced, and neglect CBE semantics and
keys for the moment. We also assume that relations do
not have when and where clauses, which we tackle in
Section 4.3.

The scheme of the compilation is shown in Fig. 11.
In particular, for each relation we create a transition
that will inspect the information in the source domain
(hence the arc self-loops) and will produce elements in
the target domain. Moreover, we use a tracing mecha-
nism similar to the one in QVT-C. Such a mechanism is
implemented by a place that stores the identifier of the

3 The purpose of this somewhat artificial example is to
show the effect of the CBE semantics in Sections 4.5 and 7.

transformed elements and prevents executing the transi-
tion at the same binding twice. This is actually ensured
by invoking a generated ML function in the transition
guard.

…
…

LTrel

source

domain

target

domain

trace for rel

[containsrel_pre(…)=0]
relation rel {

checkonly domain…

enforce domain…

…

}

rel

Fig. 11 Schema for the compilation of relations.

More in detail, for each relation, we create a page
that includes a transition with the same name as the re-
lation. For each object and link in the relation domains,
we add a place from the fusion set corresponding to the
type of the element. If the domain is checkonly, the place
is connected to the transition with a self-loop, whereas
if it is enforced, only the transition is connected to the
place. The arc inscriptions contain variables with the
same name as in the QVT relation, binding the different
fields of the record. Finally, in order to store the traces of
the relation, we generate a colour set with the identifiers
of all objects appearing in the relation. This conforms
to how trace classes are generated from relations in the
QVT-R to QVT-C mapping, as it is defined in the stan-
dard [37]. We also add to the page one place with a type
equal to a list of the aforementioned colour set, storing
the traces of the relation (place LTrel in Fig. 11). The
transition inspects this place in order to check that the
identifiers of the objects in the checkonly domain are
not in the list, which is checked by the guard function
containsrel pre(...). This avoids enforcing a re-
lation more than once for the same binding. When the
transition fires, it creates tokens for the objects in the
target domain, adding a new element to the list of traces
with the processed objects. The pseudocode of this com-
pilation is given in the Appendix A.2.

We also make the following optimization in the check-
only domain: if the attributes of an object are not ac-
cessed, and the object is connected to another through
a link l, then we do not test if the object is present, but
just that there is a link l. This is possible as we only
need the identifier of the object, and the link l already
contains it.

Fig. 12 shows the transition generated for relation
PackageToSchema. The trace place is initialized with
one token with the empty list. The read arc takes such
list, the guard checks that a record with the identifiers
of the involved source objects is not present (function
containsPackageToSchema pre), and the write arc
adds the record to the list when the transition fires (list
concatenation is written “ˆˆ” in CPN-ML). The created

8

schema is given a unique identifier that is calculated by
incrementing the global counter ID when the transition
gets fired. Then, the new value of this counter is written
in the tokens through the arc expressions.

1`[]

{ id= !ID,
 name="S"^n }

{ id=pack,
 kind="persistent",
 name=n }

action inc ID;

Schema
rdbms Schemardbms Schema

Package
uml Packageuml Package

SchemaPackage

Trace
PackageToSchema

I/OI/O LTPackageToSchema

tr_PackageToSchema^^
[{pack=pack, schema= !ID}]tr_PackageToSchema

PackageToSchema

[containsPackageToSchema_pre
 (pack, tr_PackageToSchema)=0]

1

1`{id=1,kind="persistent",name="p1
"}

1 1`[]

Fig. 12 Generated transition from relation Package-
ToSchema.

A QVT transformation can be executed source-to-
target or target-to-source. Our method produces two dif-
ferent compilations depending on the chosen direction.
This is similar to the approach taken in ModelMorf [33],
where Java code is produced instead.

4.3 Compiling the when and where clauses

After generating one transition per relation, we process
the when and where clauses. The latter can include as-
signment expressions, as well as calls to other relations
using as parameters bound objects of the current rela-
tion. In order to pass the required objects from the caller
to the called relation, we create one intermediate place
storing all parameter values, as Fig. 13 shows. Thus,
for each relation invoked in the where clause (relA, ...,
relB in the figure), we define a colour set with fields
corresponding to the passed parameters (ParamrelA,
..., ParamrelB), and create a place with that type in a
new fusion set. We also add an arc from the transition to
the place, which writes one token with the given parame-
ter values when the transition fires. Another place in the
same fusion set is added to the page of the called rela-
tion, and connected to the transition in that page with
self-loop arcs. In this way, the passed parameters are
not consumed, and the called relation can be enforced
as many times as bindings of the source elements exist.
Finally, if the called relation receives elements from the
target domain as parameters, it does not have to create
them, and therefore the arcs reading those objects will
be self-loops.

As an example, Fig. 15 shows the transition gener-
ated for the relation ClassToTable. The upper places cor-
respond to objects and links of the source and target do-
mains. The places for the source domain are read-only

rel

relA

relation rel {

…

where { relA(…);

…

relB(…); }

}

ParamrelA

relB

ParamrelB

…

Fig. 13 Scheme for the compilation of where clauses.

and hence are connected with self-loops. The places for
the target domain are for creation of elements and are
connected through outgoing arcs (except the elements
received as parameters which are connected through self-
loops as well). Please notice that there is no place for
Packages because we have applied the previously men-
tioned optimization. The ParamAttributeToColumn
place is used to pass the two parameters (the class
and the created table) to the relation AttributeToCol-
umn. The guard in the transition uses the function
containsClassToTable pre to avoid transforming
the same class twice, as the function checks whether a
trace exists for a given class, its package and the corre-
sponding schema. The marking shows the situation af-
ter firing the transition once, which creates a table with
the name Tc1. The transition remains enabled because
there is a class that has not been processed, so its fir-
ing will create another table also with the name Tc1.
For the moment we do not take into account the CBE
semantics, which would prevent the creation of the sec-
ond table as there is already one with the same name.
We will describe how to modify the net to obtain this
behaviour in Section 4.5.

The transition for the relation AttributeToColumn is
shown in Fig. 16, where the passed parameters are read
from the place ParamAttributeToColumn. The pa-
rameters are not deleted from the place as, in general,
a relation may need to be enforced more than once. In
addition, we have made the following simplification: if
an object comes as a parameter from a where clause, its
attributes are not accessed, and is connected to some
other object, then we do not use the place for the object
but the one for the link, since the link stores the object
identifier. This is why the places for Table and Class
are omitted in the figure.

The when clause is handled by querying the trace
places, as shown in Fig. 14. In particular, for each rela-
tion relX in the when clause of a relation rel, a self-loop
arc reading the trace place LTrelX of relX is attached
to the transition of rel. Then, the transition of rel is
added a guard demanding the existence of a trace in that
place for the objects given by the parameters of relX.
For this purpose, we use the ML function mem, which
allows checking the membership of a given element in a
list. Finally, all write arcs adding tokens to a place of the
enforced domain, which correspond to elements passed
as parameters in some relX, are replaced by self-loops.
This is so as these objects already exist and do not have

9

to be created. The details of the compilation of when
and where are presented in Section A.3 of the appendix.

relation rel {

…

when { relA(…);

…

relB(…); }

}

LTrelA LTrelB

…

traces of relA, …, relB

rel
[mem tr_relA{...} andalso...

mem tr_relB{...}]

Fig. 14 Scheme for the compilation of when clauses.

As an example, the transition generated from
ClassToTable in Fig. 15 reads the list of traces from
place TracePackageToSchema. The guard checks
that this list contains a record indicating that the
package and the schema have already been processed
(checked by the function mem). Moreover, the place
corresponding to the schema is not added tokens (i.e.
it has a self-loop from the transition) as the schema
is a parameter in the when clause, and therefore the
transition does not need to create it.

4.4 Adding a high-level view of the transformation

In order to hide the implementation details of each rela-
tion, we provide a high-level view of the transformation.
This view contains a substitution transition for each
QVT relation, referring to the page with the relation
details. It also shows the places for the when and where
clauses, so as to depict the execution flow and parame-
ter passing between relations, allowing the identification
of dependencies. We can use this high-level view for de-
bugging purposes, following the flow of created objects
and traces, as well as the parameters passed between re-
lations. In order to obtain detailed information of how
each individual relation works, the user can open the
page with the associated transition.

Fig. 17 shows the high-level view of the example,
where the top-level relations are depicted with thicker
border. Although ClassToTable is top-level, it depends
on PackageToSchema as the latter appears in the when
clause of the former. Relation AttributeToColumn is
not top-level and can only be executed when it re-
ceives a token with the parameters produced by rela-
tion ClassToTable. Note how the comments in the QVT
transformation are visualized in the net in order to im-
prove understandability.

The target model that results from executing the
transformation can be inspected in the page correspond-
ing to the target meta-model. From our example initial
model we obtain one schema, two tables with same name,
and two attributes. However, this result is not yet consis-
tent with the CBE semantics. The next section explains
how to take the CBE semantics into account in the com-
pilation procedure.

maps each attribute to a column

maps each persistent class to a table

maps each package to a schema

AttributeToColumn

AttributeToColumn

ClassToTable

ClassToTable

PackageToSchema

PackageToSchema

Param
AttributeToColumn

ParamAttributeToColumn ParamAttributeToColumn

Trace
PackageToSchema

TracePackageToSchema

1`[]

LTPackageToSchema
TracePackageToSchema

ParamAttributeToColumn

PackageToSchema

ClassToTable

AttributeToColumn

<<WHERE>>

<<WHEN>>

2

1`{class=2,table=2}++
1`{class=3,table=4}

1

1`[{pack=1,schema=1}]

Fig. 17 High-level view of the transformation.

4.5 Check-before-enforce semantics and keys

The CBE semantics ensures that, if an object matching
the constraints in a relation already exists in an enforced
model, such object will not be newly created. QVT al-
lows defining when two objects are considered equal by
means of the Key statement. Up to now, the presented
compilation has not taken this semantics into account.
Even though traces avoided enforcing a relation more
than once for the same objects (i.e. for the same bind-
ing), we always created objects in the enforced domain
instead of reusing them whenever possible. Next we con-
sider such semantics.

The idea is to generate several transitions for each
relation. These transitions are mutually exclusive – at
most one can fire at any given step – and each one tries to
reuse increasingly bigger parts of the enforced domain.
Hence, we build a partial order of graphs, the bottom
element being the relation parameters (i.e. no reuse),
and the top one the graph equal to the enforced domain
(i.e. maximal reuse). The keys specify which attributes
of an object need to be compared in order to decide
whether an object already exists. The handling of traces
remains the same, creating a trace each time a transition
fires. Recall that the parameters received from a where
invocation and those passed to another relation in the
when clause are never created, and hence are reused.

The generated transitions should check if some ob-
jects are not present. Negative tests are problematic in
CPNs, as the normal arcs test the existence of tokens,
not their absence. As inhibitor arcs are not supported by
CPNs, we use tokens containing lists of records instead
of records. Hence, each place in the enforced domain
contains exactly one token with the list of existing ob-
jects of a certain type. In this way, testing if an object is
not present amounts to ensuring that the corresponding
record is not in the list.

Fig. 18 shows the two transitions generated from
PackageToSchema. The upper one creates a new
schema if it is not found on the list schemas taken
from place Schema, actually checked by the function
containsSchema (which should return 0) in the tran-

10

tr_PackageToSchema{ class=class,
 table= !ID }tr_ClassToTable

tr_ClassToTable^^
[{pack=pack,
schema=schema,
table= !ID,
class=class}]

{ tables= !ID,
 schema=schema }

{ id=schema,
 name=schema_name }

{ id= !ID,
 name="T"^n }

{ elements=class,
 namespace=pack }

{ id=class,
 kind="persistent",
 name=n }

ClassToTable

[containsClassToTable_pre(pack, class, schema, tr_ClassToTable)=0
andalso (mem tr_PackageToSchema {pack=pack,schema=schema})]

action inc ID;

Trace
PackageToSchema

I/O

1`[]

LTPackageToSchema

Param
AttributeToColumn

Out
ParamAttributeToColumn

Trace
ClassToTable

TraceClassToTable

1`[]

LTClassToTable

Schema_
schema_tables

_Table

rdbms Schema_schema_tables_Table
Schema_schema_tables_Table

Schema
rdbms Schema

Schema

Table
rdbms Table

TableClass_
elements_namespace

_Package
uml Class_elements_namespace_Package

Class_elements_namespace_Package

Class
uml Class

Class
uml Class uml Class_elements_namespace_Package

rdbms Table

rdbms Schema

rdbms Schema_schema_tables_Table

TraceClassToTable Out I/O

<<WHERE>> <<WHEN>>

1

1`[{pack=1,schema=1}]

1

1`{class=2,table=2}

1

1`[{pack=1,schema=1,table=2,class
=2}]

1

1`{tables=2,schema=1}
1

1`{id=1,name="Sp1"}

1

1`{id=2,name="Tc1"}

2

1`{elements=2,namespace=1}++
1`{elements=3,namespace=1}

2

1`{id=2,kind="persistent",name="c1
"}++
1`{id=3,kind="persistent",name="c1
"}

Fig. 15 Generated transition from relation ClassToTable.

{ class=class,
 table=table }

tr_AttributeToColumn

tr_AttributeToColumn^^
[{att=att,
column= !ID,
table=table,
class=class}]

{ columns= !ID,
 owner=table }

{ id= !ID, name=n, typeCol=t }

{ attributes=att,
 owner=class }

{ id=att,
 name=n,
 typeAtt=t }

AttributeToColumn

[containsAttributeToColumn_pre
 (att, class, table, tr_AttributeToColumn)=0]

action inc ID;

Param
AttributeToColumn

I/O
ParamAttributeToColumn

Trace
AttributeToColumn

TraceAttributeToColumn

1`[]

LTAttributeToColumn

Column_
columns_owner

_Table

rdbms Column_columns_owner_Table
Column_columns_owner_Table

Column
rdbms Column

ColumnAttribute_
attributes_owner

_Class

uml Attribute_attributes_owner_Class
Attribute_attributes_owner_Class

Attribute
uml Attribute

Attribute
uml Attribute

uml Attribute_attributes_owner_Class

rdbms Column

rdbms Column_columns_owner_Table

TraceAttributeToColumn I/O

<<PARAM>>1

1`{class=2,table=2}

1

1`[{att=4,column=3,table=2,class=2
}]

1

1`{columns=3,owner=2}

1

1`{id=3,name="a1",typeCol="Intege
r"}

2

1`{attributes=4,owner=2}++
1`{attributes=5,owner=3}

2

1`{id=4,name="a1",typeAtt="Integer
"}++
1`{id=5,name="a1",typeAtt="Boolea
n"}

Fig. 16 Generated transition from relation AttributeToColumn.

sition guard. The lower one is executed if the schema
exists (containsSchema returns an index different
from 0) and reuses the schema instead of creating it.
In this case, the function getExistingSchemaId ob-
tains from the list schemas the identifier of the schema
to be reused, in order to generate a trace for the package
and schema.

Fig. 19 shows the high-level view of the transforma-
tion with all transitions generated by the CBE seman-
tics. The key for the table is its name and schema, and for
the column its name and table. The marking shows some
traces after executing the net, where only one table and
one column are created, in conformance with the CBE
semantics. Please note that we currently do not consider
possible value clashes in attribute assignments caused by
the reuse behaviour of the CBE semantics, that is, we do
not detect when the same attribute may be assigned two
different values by two different rules, which should be
reported as an error according to the specification [37].

4.6 Handling inheritance in the meta-models

The inclusion of inheritance relationships in the meta-
models has an impact both on the initial marking gen-

erated from models and on the CPN transitions gener-
ated from the QVT relations. We will illustrate the way
of handling inheritance through a simple transformation
example that involves the meta-model shown to the left
of Fig. 20. This meta-model defines one class A with a
child class B that inherits all attributes and associations
from its parent. The center of the figure shows an in-
stance of this meta-model.

Regarding the compilation of meta-models with in-
heritance, we create colour sets and places for the
meta-model types as explained in Section 4.1, including
records for the inherited attributes as well. The genera-
tion of the initial marking from a model is slightly differ-
ent, as we consider that an object with a given type can
be seen as an object of any of its supertypes. Therefore
we generate additional tokens with the same identifier in
the places of the supertypes. In our example, from any
object with type B, we generate one token in place B and
another in place A, both sharing the same identifier as
they refer to the same object. Fig. 20 shows to the right
the initial marking generated for the model to its left.

A QVT relation may contain variables of non-leaf
classes, which should be bound to objects of the class
or of any of its subtypes. The way in which we generate

11

schemas

tr_PackageToSchema

schemas^^[{id= !ID,name="S"^n}]
{id=pack,
 name=n,
 kind="persistent"}

PackageToSchema

[containsPackageToSchema_pre
(pack, tr_PackageToSchema)=0 andalso
containsSchema("S"^n, schemas)=0]

action inc ID;

Trace
PackageSchema

I/O

1`[]

LTPackage2Schema

Schema
uml Schema

1`[]

LSchema

Package
uml Package

Package
uml Package uml Schema

I/O

tr_PackageToSchema^^
[{pack=pack, schema= !ID}]

schemas

tr_PackageToSchema

PackageToSchemaCheck
[containsPackageToSchema_pre
(pack, tr_PackageToSchema)=0 andalso
containsSchema("S"^n, schemas)<>0]

Schema
rdbms Schema

1`[]

LSchema

Trace
PackageSchema

I/O

1`[]

LTPackage2Schema

Package
uml PackagePackageuml Package

I/O

rdbms Schema

tr_PackageToSchema^^
[{pack=pack,
 schema=getExistingSchemaId("S"^n,schemas)}]

{id=pack,
 name=n,
 kind="persistent"}

1

1`[]

1

1`[{pack=1,schema=1}]

Fig. 18 Two transitions generated from relation Package-
ToSchema due to CBE semantics.

<<WHERE>>

<<WHEN>>

AttributeToColumnCheck
AttributeToColumnCheck

ClassToTableCheck

ClassToTableCheck

PackageToSchemaCheck

PackageToSchemaCheck

ClassToTable

ClassToTable

PackageToSchema

PackageToSchema

AttributeToColumn

AttributeToColumn

Trace
PackageToSchema

1`[{pack=1,schema=1}]

LTPackage2Schema

Param
AttributeToColumn

1`{class=2,table=2}++
1`{class=3,table=2}

ParamAttributeToColumn

AttributeToColumn

PackageToSchema

ClassToTable

PackageToSchemaCheck

ClassToTableCheck

AttributeToColumnCheck

1

1`[{pack=1,schema=1}]

2

1`{class=2,table=2}++
1`{class=3,table=2}

Fig. 19 High-level view considering CBE semantics.

A

att1: Integer

MMA

B

att2: Integer

1:A

att1= 2

2:B

att1=3

att2=4 B

A
source A

A
source A

B
source Bsource B

2

1`{id=1,att1=2}++
1`{id=2,att1=3}

1

1`{id=2,att1=3,att2=4}

Fig. 20 Meta-model with inheritance (left). Instance of
meta-model (center). Generated marking (right).

the marking, adding tokens to the places of every super-
type, ensures this behaviour in the checkonly domain.
However, in the enforced domain, we have to modify our
compilation procedure as follows: whenever we create
one object, apart from adding a token to the place of
the object’s type, we also add one token to the places of
the supertypes of the created object.

For instance, Listing 3 shows a transformation be-
tween two models conformant to the MMA meta-model
shown in Fig. 20. Its unique relation maps each A object
to a B object, and thus applies to any object of type A
or B in the source model.

1 transformation MMAtoMMA (source:MMA, target:MMA) {
2 -- maps each A to a B ------------------------
3 top relation AtoB {
4 value: Integer;
5 checkonly domain source a:A {
6 att1=value
7 };
8 enforce domain target b:B {
9 att1=value, att2=value*2

10 };
11 }
12 }

Listing 3 Example QVT-R transformation.

The generated transition, shown in Fig. 21, reads and
transforms objects of types A and B because any object
of type B is also stored in place A. Moreover, the created
B object is stored in both places B and A2 4, although in
the latter case only with the attributes defined in class
A. Please note that since the source and target meta-
models are the same, we differentiate the places of the
source and target models through the name of the fu-
sion set (source A, target A and so on). Thus, two
collections of fusion sets are generated in the example to
store the source and target objects separately.

tr_AtoB tr_AtoB^^[{b= !ID, a=a}]

{ id= !ID,
 att1=value }

{ id= !ID,
 att1=value,
 att2=value*2 }

{ id=a,
 att1=value }

AtoB
[containsAtoB_pre(a, tr_AtoB)=0]

action inc ID;

Trace
AtoB

TraceAtoB

1`[]

LTAtoB

A2
target A

A

B

target B B
A

source A
A

source A target B target A

TraceAtoB

1
1`[]

2

1`{id=1,att1=2}++
1`{id=2,att1=3}

Fig. 21 The resulting CPN net.

Fig. 22 shows the result of executing the net, which
creates a target model with two B objects, one for each
object in the initial model. Fig. 23 shows the final mark-
ing in the form of a model.

Our way of handling inheritance purposely replicates
objects and attributes in order to simplify the structure
of the generated net. We could avoid data replication,
i.e. not storing the attributes of A objects in B objects.
However, in such a case, the transitions should inspect
the value of inherited attributes in the places of the su-
pertypes, thus increasing the number of read arcs and
making the final net less understandable and less effi-
cient.

4 A2 stores objects of type A, but we use a different name
because CPNTools does not allow duplicated place names in
the same page.

12

tr_AtoB tr_AtoB^^[{b= !ID, a=a}]

{ id= !ID,
 att1=value }

{ id= !ID,
 att1=value,
 att2=value*2 }

{ id=a,
 att1=value }

AtoB
[containsAtoB_pre(a, tr_AtoB)=0]

action inc ID;

Trace
AtoB

TraceAtoB

1`[]

LTAtoB

A2
target A

AB

A
source A

A
source A target A

TraceAtoB

B

target Btarget B

1
1`[{b=1,a=2},{b=2,a=1}]

2

1`{id=1,att1=3}++
1`{id=2,att1=2}

2

1`{id=1,att1=2}++
1`{id=2,att1=3}

2

1`{id=1,att1=3,att2=6}++
1`{id=2,att1=2,att2=4}

Fig. 22 Execution result.

source

1:A

att1= 2

2:B

att1=3

att2=4

2:B

att1=2

att2=4

1:B

att1=3

att2=6

:AtoB

:AtoB

targettraces

Fig. 23 Resulting models.

5 Compiling QVT-Relations into CPNs: Model
Matching and Check-Only Scenarios

In this section we explain our approach to solve the
model matching and check-only scenarios. In the former,
the aim is generating a trace for each valid binding of
the source and target variables of QVT relations. Intu-
itively, these are the traces that all possible executions
of a forward and a backward transformation would gen-
erate. In the check-only scenario, we use these traces to
check if a relation is satisfied in the forward or back-
ward direction. For this purpose we generate a number
of transitions that seek all bindings of the source resp.
target domain where a relation should be satisfied (i.e.
the relation is “enabled”), and then look if there is a
trace for the relation at such bindings (i.e. the relation
is “satisfied”). If there is no trace, then the relation is not
satisfied, and we report the location where the relation
does not hold.

5.1 Model matching scenario

The aim in model matching is creating a trace for each
valid binding of the source and target variables of the re-
lations in a QVT specification. The net for model match-
ing is similar to the one for transformation, but the arcs
from places both in the source and target domain are
self-loops, as in this case both domains are check-only.
Hence, transitions only take care of creating traces, but
do not create source or target objects. Fig. 24 illustrates
the compilation scheme of this scenario.

As an example, Fig. 26 shows the page gener-
ated from relation ClassToTable in model match-
ing. Firing the transition just adds a new trace to
the place TraceClassToTable, and passes parame-
ters to relation AttributeToColumn through the place

… …

LTrel

source

domain

target

domain

trace for rel

[containsrel_pos(…)=0]
relation rel {

checkonly domain…

checkonly domain…

…

}

rel

Fig. 24 Compilation scheme for the matching scenario.

ParamAttributeToColumn. Please note that the
condition on the names of the class and table is checked
in the first line of the transition guard. In addition, as
before, we generate a high-level view of the net.

As discussed in Section 2, the standard semantics of
QVT-R does not consider this scenario. The reason is
that model matching demands a universal occurrence of
both the source and target patterns of relations at the
same time, and for each combination, the corresponding
trace. On the contrary, the QVT-R semantics demands
an existential occurrence in a given direction. In this way,
in forward transformation, each occurrence of the source
pattern demands the existence of one occurrence of the
target. Nonetheless, we believe that the model matching
scenario could be easily incorporated into the standard
and in supporting tools like MediniQVT and ModelMorf,
hence enabling the use of QVT-R as a model comparison
language [16,24,27].

5.2 Check-only scenario

The check-only scenario does not create source or target
elements, but just checks whether two models satisfy a
transformation and, if this is not the case, reports which
relations are not satisfied and where. Like the transfor-
mation scenario, this one also has a direction, and thus it
is possible to check whether a target model is consistent
with a source model (forward checking) and vice versa
(backward checking).

The standard provides a procedure for this scenario
which is independent of the existence of traces between
the two models. Besides, the standard also proposes a
compilation of QVT-R into QVT-C that relies on the
creation of traces. Our way to proceed is based on the ob-
servation that model matching generates all traces that
would be generated either in forward or backward trans-
formation. Therefore, in order to check a transformation
source-to-target, we first perform model matching of the
source and target models, and then check that all traces
that should exist if we would have performed a forward
transformation actually exist. For the missing traces, we
collect the identifiers of the objects involved in each non-
satisfied relation, and output these as feedback to the
user. For this purpose we make use of additional places
that store these identifiers as traces.

Altogether, in this scenario we generate the net for
model matching, plus one additional transition for each

13

relation which detects valid bindings of the relation pre-
condition that are not satisfied. The scheme of these
transitions is depicted in Fig. 25. Each new transition
is connected with self-loop arcs to the places of elements
in the relation pre-condition (i.e. elements in the source
domain of the relation, or elements in the target domain
that are received as parameters or used in the when
clause). The transition is also connected to the trace
places of any relation in the when clause, although we
do not show it for simplicity. Finally, we add an “error”
place (LTrel err) where the transition writes traces
storing the identifier of the objects that belong to a bind-
ing of the pre-condition that is not satisfied. The tran-
sition guard must check the following two conditions:
(i) there is no matching trace that includes the relation
pre-condition (so a missing trace is detected), and (ii) the
error place does not include the missing trace yet (so the
missing trace is not added twice). Note that since check-
only transformations have a direction, the pre-condition
for the backward case is different from the one in Fig. 25,
taking all elements of the target domain instead of the
source.

rel_err

…

LTrel_err

trace for errors for rel

source domain

elements of target

domain (when, invocations)

forward pre-condition

LTrel

trace for rel

[(i) pre-condition not in LTrel and

(ii) pre-condition not in LTrel_err]

relation rel {

checkonly domain…

checkonly domain…

…

}

…

Fig. 25 Transitions detecting missing traces.

As an example, Fig. 27 shows the additional
transition generated from relation ClassToTable
for the check-only scenario, in the TinyUML →
TinyRDBMS direction. All places are read-only ex-
cept TraceClassToTable err, whose list token gets
increased with a new record when the transition fires.
Each of these records represents a location where the
relation is enabled and should be enforced but it is not.
The guard in the transition checks that: (i) there is no
trace of relation ClassToTable containing the forward
pre-condition made of the package, class and schema;
(ii) there is not an error trace with these objects yet;
and (iii) the package and the schema satisfy the Pack-
ageToSchema relation, which is checked by looking for
a trace of the relation with their identifiers. Note that
in contrast to the transitions for the transformation and
matching scenarios, this transition does not include a
place for the table as this does not belong to the pre-
condition of the relation (i.e. the table is the element
that the forward transformation should create).

There is a second source of non-satisfaction of re-
lations which comes from the non-satisfaction of their

where clauses. The previous transitions only detect miss-
ing traces, that is, occurrences of the pre-conditions for
which no occurrence of the complete graphical pattern
is found. However, they do not consider that even if we
find the complete pattern, a relation may not hold due
to its where section.

To solve this problem we generate additional transi-
tions that propagate missing traces up the chain of where
calls. Thus, if a relation calls in its where clause another
relation that does not hold, then the caller relation does
not hold either. In particular, given a relation, we gener-
ate one additional transition for each invocation from its
where section. These transitions are similar to the previ-
ous check-only ones, but they also require that the place
for missing traces of the invoked relation contains a trace
with the objects passed as parameters in the invocation.

Fig. 28 shows the schema of these transitions, which
detect error traces in the invoked relations, and add these
traces to their own trace place for errors. Their guard
checks that there is a trace which includes all elements
in the binding of the source and target of the relation
(condition (i)), that there is no error trace with the for-
ward pre-condition objects yet (condition (ii)), and that
there is an error trace in some relation called from the
where clause (relA in the figure) using objects in the
relation binding as parameters (condition (iii)).

rel_err

LTrel_err

traces for errors

of rel

LTrel

trace for rel

[(i) binding in LTrel and

(ii) pre-condition not in LTrel_err and

(iii) where objects in LTrelA_err]

LTrelA_err

trace for

errors for relA

relation rel {

…

where { relA(…); }

}

…

source domain

…

target domain

Fig. 28 Transitions propagating missing traces.

As an example, Fig. 29 shows the transition for
relation ClassToTable and the invoked AttributeToCol-
umn. In contrast to the transition shown in Fig. 27, this
also reads the place TraceAttributeToColumn err
and checks whether it contains an error trace that
involves the class and table (checked by function
contains where AttributeToColumn err). The
transition also has as input the places of the “created”
elements, as in this case the transition checks that
the relation actually holds and therefore a table exists
(checked by function containsClassToTable pos).

Please note that our method reports all bindings
where a relation is not satisfied, regardless of whether
the relation is top or not. However, for a transformation
to be satisfied globally, it is enough that all its top-level
relations hold.

14

Class_elements_namespace_Package
Class

Trace
PackageToSchema

I/OI/O

Param
AttributeToColumn

OutOut

{ class=class,
 table=table }

1`[] 1`[]

Class
uml Classuml Class

Trace
ClassToTable

TraceClassToTableTraceClassToTable

tr_ClassToTable^^
[{pack=pack,
schema=schema,
table=table,
class=class}]

LTClassToTable ParamAttributeToColumn LTPackageToSchema

Table
Schema_schema_tables_Table

Schema
rdbms Schemardbms Schema

Table
rdbms Tablerdbms Table

Class_
elements_namespace

_Package

uml Class_elements_namespace_Packageuml Class_elements_namespace_Package

{ id=class,
 kind="persistent",
 name=n }

ClassToTable

Schema_
schema_tables

_Table

rdbms Schema_schema_tables_Tablerdbms Schema_schema_tables_Table

{ id=table,
 name=table_name }

tr_ClassToTable

{ id=schema,
 name=schema_name }

tr_PackageToSchema

Schema

{ tables=table,
 schema=schema }

{ elements=class,
 namespace=pack }

[table_name="T"^n
andalso containsClassToTable_pos(pack, class, schema, table, tr_ClassToTable)=0
andalso (mem tr_PackageToSchema {pack=pack,schema=schema})]

1

1`[]

1

1`[]

Fig. 26 Generated matching transition from relation ClassToTable.

1`[]1`[]
Trace

ClassToTable

TraceClassToTable

1`[]

Class_elements_namespace_Package

Class
uml Classuml Class

TraceClassToTable

Class
Schema

Trace
ClassToTable_err

TraceClassToTable_errTraceClassToTable_err

ClassToTable_err
[containsClassToTable_pre(pack, class, schema, tr_ClassToTable)=0
andalso containsClassToTable_err(pack, class, schema, tr_ClassToTable_err)=0
andalso (mem tr_PackageToSchema {pack=pack,schema=schema})]

{ id=class,
 kind="persistent",
 name=n }

{ id=schema,
 name=schema_name }

Class_
elements_namespace

_Package

uml Class_elements_namespace_Packageuml Class_elements_namespace_Package

{ elements=class,
 namespace=pack }

Schema
rdbms Schemardbms Schema

tr_ClassToTable_err^^
[{pack=pack, class=class, schema=schema}]tr_ClassToTable

Trace
PackageToSchema

TracePackageToSchemaTracePackageToSchema
tr_ClassToTable_err

tr_PackageToSchema

LTClassToTable LTPackageToSchema LTClassToTable_err

1

1`[]

1

1`[]

1

1`[]

Fig. 27 Generated check-only transition from relation ClassToTable.

Schema_schema_tables_TableClass_elements_namespace_Package

Class
uml Classuml Class

{ id=class,
 kind="persistent",
 name=n }

1`[] 1`[] 1`[]
1`[]

ClassToTable_err

Trace
ClassToTable

TraceClassToTableTraceClassToTable

Trace
AttributeToColumn_err

TraceAttributeToColumn_errTraceAttributeToColumn_err

tr_ClassToTable tr_PackageToSchema tr_AttributeToColumn_err

Trace
PackageToSchema

TracePackageToSchemaTracePackageToSchema
LTClassToTable LTPackageToSchema LTAttributeToColumn_err

Trace
ClassToTable_err

TraceClassToTable_errTraceClassToTable_err

tr_ClassToTable_err^^
[{pack=pack, class=class, schema=schema}]

Class

Class_
elements_namespace

_Package

uml Class_elements_namespace_Packageuml Class_elements_namespace_Package

{ elements=class,
 namespace=pack }

Schema

Schema
rdbms Schemardbms Schema

Table

Schema_
schema_tables

_Table

rdbms Schema_schema_tables_Tablerdbms Schema_schema_tables_Table
Table

rdbms Tablerdbms Table

{ id=table,
 name=table_name }

{ id=schema,
 name=schema_name }

{ tables=table,
 schema=schema }

tr_ClassToTable_err

LTClassToTable_err

[table_name="T"^n
andalso containsClassToTable_pos(pack, class, schema, table, tr_ClassToTable)=1
andalso containsClassToTable_err(pack, class, schema, tr_ClassToTable_err)=0
andalso contains_where_AttributeToColumn_err(class, table, tr_AttributeToColumn_err)=1
andalso (mem tr_PackageToSchema {pack=pack,schema=schema})]

1 1`[] 1 1`[]1 1`[] 1 1`[]

Fig. 29 Generated check-only transition from relation ClassToTable and its where clause.

6 Tool Support

We have developed a tool chain called Colouring, based
on Eclipse and EMF [42], which supports the presented
approach: it transforms QVT-R specifications and EMF
models into the input format of CPNTools, and then
transforms back the results of CPNTools into EMF mod-
els. If the chosen scenario is model transformation, the
user gets back the transformed model in EMF format.
If the scenario is model matching, the user is able to in-
spect the generated trace model, which is visualized as
an EMF model that refers to the matched models. In the
check-only scenario, the user is informed of the locations
where any relation is not satisfied.

Fig. 30 shows a scheme of this architecture. In step
1, the engineer specifies the transformation using the

textual format of QVT-R, and the source and target
meta-models in ecore. In this step he uses common MDE
tools and may even use MediniQVT to edit and validate
the transformation syntactically. In step 2, he chooses
the desired scenario (transformation, model matching or
check-only), and then our tools generate the necessary
input files for CPNTools. In particular, we have built a
code generator that parses the QVT-R specification by
using the MediniQVT parser [31], and then generates the
CPN corresponding to the chosen scenario through JET
templates5 [20]. We have also developed another gener-
ator that, given an EMF model, generates a marking in
a separate file that is read by the CPN. This has the

5 Currently, our generator does not consider CBE seman-
tics or optimizations of places. This is left as future work.

15

Transform.

Engineer

.ecore

.qvt

.xmi

meta-models

transformation

initial models

QVT PARSER

MediniQVT

XMI PARSER

EMF

.xmi

tr
an

sf
orm

at
io

n

matching

2Step1Step

.cpn

.cpn

.cpn

check-only

.ml

initial marking

Select scenario

and compile

Design

transformation Analysis

3Step

Analysis/Execution

CPNTools

target model

.xmi

models, traces

.xmi.xmi

Transform.

Engineer

4Step

results (yes/no)

disconformities

.xmi.xmi

Visualization of

results in EMF

Fig. 30 Architecture of the tool chain.

advantage that there is no need to recompile the whole
transformation for different initial models.

Once the CPN is generated, the engineer can analyse
it using CPNTools (step 3). The direct use of CPNTools
for validation and verification is explained in Section 7.
Nonetheless, this step is not necessary if no analysis or
debugging is wanted, but just the execution of a trans-
formation for a given scenario.

In step 4, the engineer obtains feedback from the ex-
ecution in terms of the original EMF models. In case of a
transformation, the user is returned the resulting target
model in EMF format. This is possible due to a parser
we have built that translates the final CPN marking into
XMI files. In case of model matching, the user obtains
a trace model connecting the related source and target
elements. This can be visualized in a unified view as a
Modelink6 file, as Fig. 31 shows. In this visualization, the
source and target models are shown to the left and right,
whereas the trace model is in the middle. By clicking on
a trace the engineer can inspect which elements the trace
relates, as they are highlighted.

Finally, in check-only scenarios, the engineer is in-
formed of the locations where some relation is not sat-
isfied. Again, the non-satisfied relations are visualized
with Modelink. Fig. 32 shows the result of a check-only
scenario for the two models shown in the left and right
panels. In this case, the traces in the middle correspond
to occurrences of relations that are not satisfied. For in-
stance, the selected (shaded) trace indicates that rela-
tion AttributeToColumn was not satisfied for the shaded
class, attribute (to the left) and table (to the right).
Below, the tool summarizes all relations in the transfor-
mation and whether they are satisfied or not. A proto-
type of our tools and some examples can be downloaded
from [9].

6 Modelink is part of the GMT Epsilon project, available
at http://www.eclipse.org/epsilon/doc/modelink/

7 Verification and Validation of QVT-Relations

One benefit of compiling QVT-R into CPNs is that we
can profit from the large body of analysis methods and
tools developed by the Petri nets community. This sec-
tion presents important verification and validation tech-
niques that are possible once a specification is expressed
in CPNs, concentrating in those supported by CPN-
Tools. While verification is concerned with the detection
of errors (i.e. is this transformation right?), validation
aims at checking whether a transformation behaves as
expected (i.e. is this the right transformation?).

7.1 Verification

Many verification techniques for CPNs are based on the
computation of the occurrence graph [18], a graph-based
representation of the space of possible markings. In our
case, such graph summarizes all possible execution paths
of the transformation given an initial model. Fig. 33
shows the occurrence graph for the running example,
considering the forward transformation scenario, CBE
semantics, and taking the initial source model shown
to the left of Fig. 34. The arrows are labelled with the
abbreviated name of the executed relation, and in some
cases part of the binding. At a certain stage, several rela-
tions can be simultaneously enabled, and the occurrence
graph shows all possible orders for their execution.

The nodes without outgoing edges (from 15 to 20) are
final states. Each one of them corresponds to a possible
transformation result. As an example, Fig. 34 shows in
the right two of the possible resulting target models cor-
responding to the terminal nodes 15 and 16. For clarity,
we omit the traces and the source model, but they are
also part of the marking.

Next, we describe some interesting transformation
properties that can be analysed using CPNTools.

16

Fig. 31 Result of model matching. The source and target models are shown to the left and right. The traces are shown in
the middle. By clicking on a trace we inspect which elements the trace relates.

Fig. 32 Result of check-only scenario: the source and target models are shown to the left and right, and the traces of non-
satisfied relations in the middle. By clicking on a trace we inspect the elements belonging to a non-satisfied binding of a
relation.

3
1:2

4
1:2

6
1:2

5
1:1

9
1:1

15
1:0

10
1:1

11
1:1

17
1:0

7
1:1

12
1:1

18
1:0

8
1:2

13
1:1

14
1:1

19
1:0

20
1:0

2
1:2

1
0:1

16
1:0

PackageToSchema

ClassToTable …c=3… ClassToTable …c=2…

AToC CToTCheck

CToTCheck

AToCCheck

AToC

…a=4…
AToC

…a=5…

AToCCheck AToCCheck AToCCheck AToCCheck AToCCheck

AToC CToTCheck

CToTCheck
AToC

…a=4…
AToC

…a=5…

Boolean Integer Boolean Integer Integer Boolean

Fig. 33 Occurrence graph for the transformation scenario
with CBE semantics.

Confluence. A transformation is confluent if it yields a
unique result for each possible initial model. We can in-
vestigate confluence for a given initial model by inspect-
ing the terminal nodes of the occurrence graph. In our
example we obtain six terminal nodes, which altogether
contain two different models (the other four are replicas
of these but differ in the object identifiers). Therefore,
the transformation is non-confluent. It always creates
one table (as both classes have equal name) with one
column. However, processing the Boolean attribute first
creates a Boolean column (nodes 15, 17 and 20 in the
graph), whereas processing the Integer first creates an
Integer column (nodes 16, 18 and 19). This is so be-
cause the key for attributes only considers their name

2: Class

kind=‘persistent’

name=‘c1’

4: Attribute

name=‘a1’

typeAtt=‘Integer’

1: Package

kind=‘persistent’

name=‘p1’

3: Class

kind=‘persistent’

name=‘c1’

5: Attribute

name=‘a1’

typeAtt=‘Boolean’

:Schema

name=“Sp1”

:Table

name=“Tc1”

:Column

name=“a1”

typeCol=“Integer”

16:Schema

name=“Sp1”

:Table

name=“Tc1”

:Column

name=“a1”

typeCol=“Boolean”

15

Fig. 34 Initial source model (left). Two possible transfor-
mation results for this initial model (right).

and class but not their type, as discussed in Section 4.5.
Considering also the column type solves this problem.
Note however that CPNs only allows investigating con-
fluence on individual initial models, but not in general.

The occurrence graph shows all theoretically possible
results. Nonetheless, a particular tool implementation
can still be deterministic by using a particular strat-
egy to select the enabled bindings of relations. Thus, in
a non-confluent scenario, two different tools can yield
two different results, both of them correct. In our exam-
ple, the non-confluent behaviour actually causes value
clashes in attribute values (i.e. changes in the value of
an attribute of a reused object), which should be re-
ported as an error of the QVT specification. We plan to
tackle the detection of such errors at run-time (i.e. with-
out performing state space exploration) in future work.

Another source of non-confluence is attribute com-
putation using queries on enforced domains. For in-
stance, if the column name is computed as name=if
(owner.columns->size() = 1) then ‘ ’+n

17

else n; we have non-determinism. This is so be-
cause the first column to be processed would be added
a prefix ‘ ’, and the choice of this column can be
non-deterministic. In fact, if the table is added several
columns, adding the prefix to the first column is wrong.
Since QVT-R is declarative, the expression name=...
is to be interpreted as an invariant. However, it may
yield a different result when evaluated during the trans-
formation than at the end of the transformation. In
this way, if a table is added two columns, then the
prefix should not be added to the name of any of them.
Thus, “constructive” operational mechanisms would
run into troubles and produce a conflict between the
transformation scenario and the check-only one. That
is, performing a model transformation yields a tar-
get model, but testing whether such target model is
a correct translation of the source returns failure. In
our approach, we forbid attribute computations using
queries on enforced domains7.
Termination. This property is undecidable for graph
and term rewriting systems [11]. QVT-R transforma-
tions can be non-terminating e.g. due to a recursive re-
lation which creates new elements and passes them to
the next step in the recursion in the where section. If
the occurrence graph is finite and has no cycles, then we
can conclude that the transformation always terminates
for the given starting model. Thus, our example trans-
formation is terminating for the given initial model.
Relation Conflicts. Two relations are in conflict if they
deal with overlapping concerns (i.e., they produce a com-
mon set of elements) in different ways, so that executing
one may disable the execution of the other or cause its
result to be different. It is a source of non-confluence.
Transition persistency [29] allows discovering conflicts
between relations. A transition is persistent if its firing
does not disable other enabled transitions, and weakly
persistent if it may disable itself at a different binding.
If a transition is not persistent, this means that it has
conflicts with other transitions and may lead to non-
confluence. Still, even if there is a conflict, one can have
confluence if the paths stemming from the conflict in the
occurrence graph lead to a unique final result. Please
note that this is similar to the analysis of critical pairs
in graph transformation [17].

A conflict in QVT-R may arise for different reasons.
First, the execution of some relation may depend on a
query on an enforced domain. Second, when the CBE
semantics is assumed, two relations may transform dif-
ferent objects into an equivalent one according to the
keys (but still with some difference), so that executing
the first relation disables the other or makes it produce a
different result due to the CBE semantics (hence the fi-
nal result depends on the chosen execution order). Third,

7 MediniQVT does not prevent these queries and may pro-
duce target models that together with the source one would
not pass the check-only scenario.

two relations may transform a common set of elements
differently (e.g., they produce objects C and D given an
element A), and executing one disables the other (e.g.,
because the produced elements are placed in a collection
with maximum cardinality of one). Fourth, when a rela-
tion A can be executed only if some other B has not (by
placing “not B(. . .);” in A’s when section). Except in the
last case, where explicit conditions are set in the when or
where clauses, relations should be non-conflicting, lead-
ing to weakly persistent transitions in the CPN model.
Checking for conflicts allows for a fine-grained detection
and analysis of the reasons for non-confluence, identi-
fying the conflicting relations causing the problem. All
transitions in our example are weakly persistent as none
disable others but may disable themselves due to the
CBE semantics. Persistency can be efficiently checked
using the occurrence graph, and a sufficient condition for
persistence exists by statically checking the underlying
uncoloured net [35]. This kind of analysis is independent
of the initial marking (i.e. of the initial models).
Boundedness and Invariants. We can investigate
bounds on the creation of elements, as well as invari-
ants of the transformation. In CPNs, a net is bounded
if the number of tokens of all places remains bounded
in all possible executions. This analysis is automated
by CPNTools and is useful to identify sources of non-
termination as well as the maximum number of objects
of a certain type that can be created. If the resulting
net is unbounded, it means that there is at least one ex-
ecution path that does not terminate. The converse is
not true in general: if the net is bounded, it can still be
non-terminating due to cycles, e.g. a recursive call in a
where clause passing the same parameters it receives.

Invariants are expressions on the marking that re-
main true in all reachable states. In the context of a
transformation, this means expressions that hold true
during all steps in the transformation execution. For the
analysis of QVT-R transformations, we found useful an
invariant consisting in the non-creation of some type of
element in enforced domains. Thus, we can check for ex-
ample whether for a TinyUML model without attributes
it is an invariant that no column is generated. These in-
variants are called synchronization invariants [12] and
can be automatically computed.
Model Checking. Sometimes, we are interested in for-
mulating properties about the creation or not of certain
patterns in the target model. We can use reachability
analysis to investigate whether some structure can be
produced in the enforced domain, given an initial model.
This procedure can be automated since CPNTools allows
expressing properties to be checked on the occurrence
graph by means of a CTL-like logic called ASK-CTL [6].
This logic allows formulating queries about states and
state changes (e.g. the occurrence of certain transitions).
This search is useful to check whether a certain structure
is created sometimes or always in each possible result.

18

For instance, in order to check whether trans-
forming our example initial model always pro-
duces a Boolean column, we can use the command
eval node INV(POS(NF("Has Bool Column",
hasColumn))) InitNode, which returns false as
we may obtain an Integer column instead. In the pre-
vious command, InitNode is the initial marking,
hasColumn is a user-defined function that checks
whether a given marking contains a boolean col-
umn, POS(A) demands property A to be eventu-
ally satisfied, and INV(A) demands A to be satis-
fied in all possible paths. Checking whether some-
times such column is obtained is done through com-
mand eval node POS(NF("Has Bool Column",
hasColumn)) InitNode, which returns true.

Other interesting properties include whether we al-
ways or sometimes obtain the same number of columns
as attributes (false in both cases), the same number of
tables as classes (false), the same number of schemas as
packages (true), or whether a certain relation is always
or sometimes executed.

While the previous analysis methods are primarily
useful for transformation scenarios, they can be used for
model matching and check-only scenarios as well. For
example, in model matching we may wish to investi-
gate whether an element is traced more than once by
a relation or not traced at all, with the purpose of out-
lining possible ways of merging two models. This can
be checked using boundedness and invariant analysis. In
check-only scenarios we may wish to check the causes of
failure of a relation, either lack of target objects or fail-
ure of a relation called in the where section. For this pur-
pose we can visualize the disconformities (see Fig. 32), or
perform boundedness and invariant analysis associated
to the error places.

Altogether, the compilation of QVT-R into CPNs
(instead of into a programming language such as Java,
as ModelMorf does) has the advantage that we have the
chance to use the analysis methods developed by the
Petri nets community, bridging the research done both
in MDE and Petri nets.

7.2 Validation of transformations with CPNTools

As we have seen, the theory of CPNs offers techniques to
verify transformation properties. However, as any other
software, transformations should also be validated by
checking that they behave according to their require-
ments. In order to validate a transformation we can use
CPNTools to perform run-to-completion execution, as
well as a step-by-step visual simulation for debugging.
Moreover, the multi-view and hierarchical features of
this tool permit visualizing the execution flow in the
high-level page, and checking the created elements in
the pages corresponding to the meta-models and traces.

Fig. 35 shows CPNTools being used to validate the
running example transformation. In particular, the user

has decided to have three views of the transformation,
each one shown in a different panel. The left panel (Top)
shows the high level view of the transformation and
the dependencies between its relations. The panel in
the middle (PackageToSchema) shows the details of the
PackageToSchema relation, which has just been fired,
resulting in the creation of a schema and its correspond-
ing trace. The right panel (TinyRDBMS rdbms) shows
the marking for the target model, which contains the
created schema. The user may also show or hide the
pages containing the source model (TinyUML uml in the
left column of declarations at the back window), the set
of traces (Traces), and the other relations in the trans-
formation (second and third tabs in the middle panel).
Moreover, as stated in previous sections, we also gener-
ate a page to load the initial marking from files (Load
TinyUML uml).

In addition, similar to breakpoints in programming
environments, the user can set monitors establishing
conditions (e.g. the marking exceeds a certain size, a
transition fires a number of times or a place becomes
empty) under which some action is performed (e.g. pause
the execution or write to a file). They can also be used
to encode the OCL constraints of the target language in
order to detect their violation. Actually, our generator
makes use of monitors to automatically save the final
marking into a file, which is subsequently transformed
into an EMF representation.

Finally, simulation and verification can be combined
using the occurrence graph, as this can be created incre-
mentally and visually inspected. Each node in the graph
can show the marking, and it is possible to set the net
in the state of a given node.

Altogether, the use of CPNs as target semantic do-
main has the advantage that we can use existing tools
developed for this formalism, such as CPNTools, in or-
der to profit from powerful visual environments for exe-
cution, debugging and analysis of transformations.

8 Related Work

Next we review the features of a number of tools for
QVT-R, and then discuss other related research.

8.1 Feature-based comparison of QVT-R tools

TROPIC [45] is a tool aimed at debugging QVT-R spec-
ifications visually. The TROPIC language is inspired by
CPNs although it does not follow their standard seman-
tics, but a tailored semantics more appropriate for trans-
formation where tokens are never consumed by transi-
tions. This fact hinders the use of the standard CPN
theory to analyse TROPIC models, but yields simpler
nets as e.g. checkonly domains only need read arcs in-
stead of loops. The representation of QVT-R concepts in
TROPIC also differs from the one we have presented. For

19

Fig. 35 CPNTools being used to validate the transformation. The left panel contains the high-level view of the transformation,
the middle panel contains one QVT relation, and the right panel contains the target model.

instance, they represent classes and attributes in sepa-
rate places, which produces more complex nets, but at
the same time, it avoids data duplication when handling
meta-models with inheritance. Finally, to our knowl-
edge, TROPIC does not support CBE semantics, model
matching or check-only scenarios.

MediniQVT [31] is a freeware Eclipse plug-in for
QVT-R specifications in textual syntax (indeed we have
used its parser in our implementation). It includes useful
step-by-step debugging capabilities using the standard
Eclipse debugger, however it only supports the trans-
formation scenario. ModelMorf [33] is another tool that
supports QVT-R, developed by Tata Research Develop-
ment and Design Centre. The tool has a command line
interface and supports both check-only and transforma-
tion scenarios. However, lacking user interface, the tool
is harder to use than MediniQVT, and it does not pro-
vide debugging support. Finally, MOMENT-QVT [2] is
an academic prototype built on top of the rewriting logic
engine Maude, with very basic functionality only.

Table 1 compares the main features of these QVT-
R tools. The first four rows analyse the supported sce-
narios (transformation, check-only, model matching and
incremental update). The next three rows show the sup-
port for validation and verification. It is worth mention-
ing that MediniQVT and TROPIC have dedicated de-
bugging environments, whereas our approach uses CP-
NTools directly. All approaches generate some artefact
for the traces, for example MediniQVT and ModelMorf
generate files, while TROPIC puts tokens in certain
places. However, ours is the only approach where both
traces and relation disconformities can be visualized and
explored graphically. The last three columns show ad-
vanced concepts like support for OCL, CBE semantics
and others.

Table 1 Comparison of different QVT-R tools.

C
o
lo
u
ri
n
g

M
ed

in
iQ

V
T

M
o
d
el
M
o
rf

T
R
O
P
IC

M
O
M
E
N
T
-Q

V
T

Transformation
√ √ √ √ √

Check-only
√

−
√

− −
Matching

√
− − − −

Incremental update −
√ √

− −
Debugging

√ √
−

√
−

Verification
√

− − − −
Trace display

√
− − −

√

OCL support −
√ √ √

−
CBE semantics

√ a √b √
− −

Others − −
√ c − −

a Our theory supports CBE semantics, though this feature
is under development in our tool

b Requires an explicit setting of keys
c Sequence and set patterns, transformation inheritance,

rule overriding

One can observe that our approach contributes to
improve the understanding and support for QVT-R, en-
ables the application of QVT-R to scenarios not consid-
ered in the standard like model matching, and allows
for the implementation of “low-cost” QVT-R engines al-
lowing execution and analysis (using CPNTools as un-
derlying infrastructure). As drawbacks, our main limita-
tion is the support of complex OCL constructs, which is
left as future work. Regarding existing tools, ModelMorf
seems the one with more advanced concepts, but also
the most difficult to use. TROPIC and MOMENT-QVT
have been evaluated by reference to the literature, as
they are not available for download. It can be noted that

20

no tool supports nowadays the standard compilation of
QVT-R into QVT-C and its subsequent execution.

We have also evaluated the performance of CPNTools
used as a transformation tool, by executing the running
example transformation with input models of increasing
size. Our findings are that CPNTools has good perfor-
mance for small input models, with an execution time
lower than 1 second up to 100 objects. Unfortunately, the
performance is exponential on the size of the models, as
Fig. 36 shows. Interestingly, the same exponential curve
has been reported for MediniQVT in [44] (although with
smaller times than ours, which was expected because
CPNTools is not a dedicated tool for model transforma-
tion). Thus, the development of an efficient tool with
a non-exponential performance on the size of the input
models remains a challenge for the QVT-R transforma-
tion community. Nonetheless, the capabilities of CPN-
Tools to debug, analyse and verify transformations still
makes our approach valuable.

0

100

200

300

400

500

600

100 200 300 400 500 600

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Model size (number of objects)

Execution time vs Model size

1s 6s
29s

80s

176s

508s

Fig. 36 Execution time for the running example.

Regarding the correctness of our compilation into
CPNs, we have run the suite of transformation cases
in [9] and [43] with ModelMorf, MediniQVT and Colour-
ing, obtaining the same results in all cases. This does not
prove that our semantics is correct, but it provides evi-
dence in favour of such a hypothesis.

8.2 Related research

We now review some existing formalizations of QVT-R,
not necessarily supported by tools, with special attention
to the features listed in Table 1.

Inspired by the standard compilation of QVT-R into
QVT-C, in [15] the authors translate QVT-R into triple
graph grammars (TGGs), so that TGGs play the role of
QVT-C. Being based on graph transformation [11,39],
TGGs have a formal, theoretical basis. They are also
supported by well-established tools like MOFLON [34]
and Fujaba [13]. Hence, this work serves as a basis for ex-
ecuting QVT-R atop graph grammar-based tools. How-
ever, the paper aims at comparing TGGs with QVT-C

for the transformation scenario, and does not discuss the
CBE semantics or analysis techniques.

Rewriting logic, and Maude [8] in particular, has also
been used for expressing the semantics of QVT-R. In [3,
30], the authors formalize QVT-R transformations by
using rewriting logic and Maude; however there is no
comment about CBE semantics and no discussion on
termination or confluence. In [43], the author proposes
a formalization for QVT-R check-only transformations
based on game theory. This approach is higher-level than
the previous ones as it does not give a semantics for pat-
tern matching, but relies on suitable oracles instead. The
process of checking the conformance between two models
and a transformation specification is described as a game
between a verifier and a refuter, which at each state of
the game pick bindings in the source and target domains
of the relations under evaluation. The approach serves
well in clarifying some aspects of the check-only seman-
tics of QVT-R, like the ∀-∃ alternation when bindings are
sought in the source and target domains, but it does not
consider the transformation or model matching scenar-
ios. Similar to our work, we believe that using a formal
semantic domain (game theory in [43]) is beneficial as it
enables the reuse of theory and analysis methods.

The work in [14] uses OCL for representing the static
semantics (well-formedness rules) and provides a transla-
tion of QVT transformations into Alloy. Although Alloy
permits execution and analysis, no discussion on analy-
sis is given. The approach is similar to our previous work
in [5], where we translated QVT-R into OCL and used
a constraint solver for execution and analysis. In that
case, the kind of possible analyses is different, as they
are based on “model finding”. For example, we tested
whether a transformation is satisfiable, or whether a
source model produces a valid target model (i.e. con-
formant to the target meta-model and its integrity con-
straints). In our approach with CPNs, the validity of the
target model has to be checked by loading and validat-
ing the model in the modelling tool, or by setting CPN
monitors. However, CPNs allow the visual step-by-step
execution and debugging of the transformation, which is
not possible with constraint solvers.

In [38], the authors translate QVT-R into QVT-
O, so that it is possible to use QVT-O tools like
SmartQVT [40] to execute the relations. The approach
only supports the transformation scenario, but takes into
account the CBE semantics. A similar experiment is pro-
posed in [23], where QVT-R is transformed into the in-
put language of the ATL virtual machine.

Finally, some other works propose extensions to
QVT-R. For example, in [36], domain patterns can in-
clude numeric inequalities involving attribute values (in
addition to attribute assignments) which are solved by a
constraint solver. However, the work does not address
inter-model constraints relating source and target at-
tributes, which would be very useful for bidirectional
transformations. To the best of our knowledge, no pre-

21

vious work has proposed an extension of the QVT-R
semantics for its use in model comparison.

9 Conclusions and Future Work

In this paper we have presented an approach for the
execution, verification and validation of QVT-R spec-
ifications by their compilation into CPNs. The ap-
proach supports meta-models with inheritance, when
and where clauses, CBE semantics, as well as transforma-
tion, check-only and model matching scenarios. We have
shown how to use the occurrence graph to check termi-
nation and confluence, how to analyse relation conflicts
by transition persistence, and how to test the creation
of objects in enforced domains using model checking, in-
variants and boundedness analysis. We have also demon-
strated that CPNTools can be used for the execution,
verification and validation of transformations.

In addition, we have developed an EMF-based tool
chain, named Colouring, which automates the genera-
tion of CPNs from QVT-R transformations, and trans-
lates the transformation results back as EMF models.
We support the visualization and exploration of traces
in model matching, and report relation disconformities
in check-only scenarios. In general, the results of Colour-
ing are in line with those of tools like MediniQVT and
ModelMorf.

One limitation of our proposal is the full support for
OCL, which would require a complex compilation into
ML. Up to now we support arithmetic operations and
string concatenation. Complex queries involving nega-
tion would require using tokens with lists also in check-
only domains. Other features that we currently do not
support are: more than two domains in relations, ar-
bitrary expressions of relation invocations in when and
where clauses, set templates, attribute value clashes pro-
duced by the CBE semantics, transformation extensions
and rule overriding.

With respect to future work, an immediate goal is
the technical improvement of Colouring, for example to
make it an Eclipse plug-in. We are also interested in
exploring QVT-R for in-place transformations, as sup-
ported by ModelMorf. This would require equating the
source and target models by assigning a unique fusion
set to the same class in the source and target domains.
The extension of our framework to cover update trans-
formation is also under consideration.

Besides, it would be interesting to develop a high-
level language to specify the properties to be model-
checked. The use of CPNs opens the door to other useful
techniques, such optimizing the CPN [12] and translat-
ing the optimizations into QVT, or the verification of
properties independently of the marking (like termina-
tion [1]). We also plan to analyse information preserva-
tion, i.e. whether a forward transformation followed by
a backward transformation recreates the original model.

Complementing our analysis techniques with the synthe-
sis of initial markings for the nets in order to automate
transformation testing is also future work.

Finally, it might be interesting to apply our compila-
tion to other languages like ATL or TGGs, so that their
semantics is given in terms of CPNs. This would enable
the comparison of their semantics on the basis of a com-
mon domain, as well as the combination of heterogeneous
transformations at the CPN level.

References

1. K. Barkaoui, C. Dutheillet, and S. Haddad. An effi-
cient algorithm for finding structural deadlocks in col-
ored Petri nets. In APN’93, pages 69–88, 1993.

2. A. Boronat. MOMENT: A formal framework for MOdel
managemMENT. PhD thesis, Universitat Politècnica de
Valencia, 2007. See also http://moment.dsic.upv.
es/content/view/34/75/. Last accessed: Nov. 2010.

3. A. Boronat, J. A. Carśı, and I. Ramos. Algebraic speci-
fication of a model transformation engine. In FASE’06,
volume 3922 of LNCS, pages 262–277. Springer, 2006.

4. A. Boronat, R. Heckel, and J. Meseguer. Rewriting logic
semantics and verification of model transformations. In
FASE’09, volume 5503 of LNCS, pages 18–33. Springer,
2009.

5. J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verifica-
tion and validation of declarative model-to-model trans-
formations through invariants. Journal of Systems and
Software, 83(2):283–302, 2010.

6. A. Cheng, S. Christensen, and K. H. Mortensen. Model
checking coloured Petri nets exploiting strongly con-
nected components. InWODES’96, pages 169–177, 1996.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. L. Talcott, editors. All About Maude
- A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic, vol-
ume 4350 of LNCS. Springer, 2007.

9. Colouring. http://astreo.ii.uam.es/∼eguerra/
tools/colouring/main.htm. Last accessed: July
2011.

10. J. de Lara and E. Guerra. Formal support for QVT-
Relations with coloured Petri nets. In MoDELS’09, vol-
ume 5795 of LNCS, pages 256–270. Springer, 2009.

11. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of algebraic graph transformation. Springer,
2006.

12. S. Evangelista, S. Haddad, and J.-F. Pradat. Syntactical
colored Petri nets reductions. In ATVA’05, volume 3707
of LNCS, pages 202–216. Springer, 2005.

13. Fujaba. http://www.fujaba.de/. Last accessed:
Nov. 2010.

14. M. Garćıa. Formalization of QVT-Relations: OCL-based
static semantics and Alloy-based validation. In MDSD
today, pages 21–30. Shaker Verlag, 2008.

15. J. Greenyer and E. Kindler. Comparing rela-
tional model transformation technologies: Implement-
ing Query/View/Transformation with triple graph gram-
mars. Software and System Modeling, 9(1):21–46, 2010.

22

16. E. Guerra, J. de Lara, and F. Orejas. Inter-modelling
with patterns. Software and System Modeling, In press,
2011.

17. R. Heckel, J. M. Küster, and G. Taentzer. Confluence
of typed attributed graph transformation systems. In
ICGT, volume 2505 of LNCS, pages 161–176. Springer,
2002.

18. K. Jensen. Coloured Petri nets basic concepts, analy-
sis methods and practical use (Monographs in theoretical
computer science). Springer, 1997.

19. K. Jensen, L. M. Kristensen, and L. Wells. Coloured
Petri nets and CPN tools for modelling and validation
of concurrent systems. STTT, 9(3-4):213–254, 2007. See
also http://cpntools.org. Last accessed: July 2011.

20. JET. http://www.eclipse.org/modeling/m2t/
?project=jet. Last accessed: Nov. 2010.

21. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of Com-
puter Programming, 72(1-2):31–39, 2008. See also
http://www.emn.fr/z-info/atlanmod/index.
php/Main_Page. Last accessed: Nov. 2010.

22. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Val-
duriez. ATL: a QVT-like transformation language. In
OOPSLA’06, pages 719–720. ACM, 2006.

23. F. Jouault and I. Kurtev. On the architectural align-
ment of ATL and QVT. In SAC’06, pages 1188–1195,
2006. See also http://www.eclipse.org/m2m/atl/
usecases/QVT2ATLVM/.

24. D. S. Kolovos. Establishing correspondences between
models with the Epsilon Comparison Language. In
ECMDA-FA’09, volume 5562 of LNCS, pages 146–157.
Springer, 2009.

25. D. S. Kolovos, R. F. Paige, and F. Polack. Merging mod-
els with the Epsilon Merging Language (EML). In MoD-
ELS’06, volume 4199 of LNCS, pages 215–229. Springer,
2006.

26. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon
Transformation Language. In ICMT’08, volume 5063 of
LNCS, pages 46–60. Springer, 2008.

27. D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F.
Paige. Different models for model matching: An anal-
ysis of approaches to support model differencing. In
CVSM’09, pages 1–6. IEEE CS, 2009.

28. A. Königs and A. Schürr. Tool integration with triple
graph grammars - a survey. ENTCS, 148(1):113–150,
2006.

29. L. H. Landweber and E. L. Robertson. Properties
of conflict-free and persistent Petri nets. J. ACM,
25(3):352–364, 1978.

30. F. J. Lucas and J. A. T. Álvarez. Model transformations
powered by rewriting logic. In CAiSE Forum, volume
344 of CEUR Proc., pages 41–44, 2008.

31. MediniQVT. http://projects.ikv.de/qvt/. Last
accessed: Nov. 2010.

32. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Dis-
tilled. Addison-Wesley Object Technology Series, 2004.

33. ModelMorf. http://www.tcs-trddc.com/trddc_
website/scripts/project_detail.php?lab=
SWRD&project_id=44. Last accessed: Nov. 2010.

34. MOFLON. http://www.moflon.org/. Last accessed:
Nov. 2010.

35. A. Ohta and K. Tsuji. On some analysis properties of
colored Petri net using underlying net. In MWSCAS’04,
volume 3, pages 395–398. IEEE CS, 2004.

36. A. Petter, A. Behring, and M. Mühlhäuser. Solving con-
straints in model transformations. In ICMT’09, volume
5563 of LNCS, pages 132–147. Springer, 2009.

37. QVT1.1. http://www.omg.org/spec/QVT/. Last ac-
cessed: May. 2012, 2011.

38. R. Romeikat, S. Roser, P. Müllender, and B. Bauer.
Translation of QVT relations into QVT operational map-
pings. In ICMT’08, volume 5063 of LNCS, pages 137–
151. Springer, 2008.

39. A. Schürr. Specification of graph translators with triple
graph grammars. In WG’94, volume 903 of LNCS, pages
151–163. Springer, 1994.

40. SmartQVT. http://sourceforge.net/projects/
smartqvt/. Last accessed: June 2010.

41. T. Stahl and M. Volter. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wi-
ley & Sons, 2006.

42. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd

Edition. Addison-Wesley Professional, 2008. See also
http://www.eclipse.org/modeling/emf/. Last
accessed: Nov. 2010.

43. P. Stevens. A simple game-theoretic approach to check-
only QVT relations. Software and System Modeling, In
press, 2012.

44. M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires.
Performance in model transformations: Experiments
with ATL and QVT. In ICMT’11, volume 6707 of LNCS,
pages 198–212. Springer, 2011.

45. M. Wimmer, G. Kappel, J. Schönböck, A. Kusel,
W. Retschitzegger, and W. Schwinger. A Petri net
based debugging environment for QVT relations. In
ASE’09, pages 3–14. IEEE CS, 2009. See also http:
//www.modeltransformation.net/. Last accessed:
Nov. 2010.

A Appendix

A.1 Compilation of meta-models into colour sets

Listing 1 shows the procedure to compile meta-models
with and without inheritance into colour sets. We assume
that we can access the name of meta-models, classes
and associations through the dot notation “.⟨name⟩”,
the name of the variable associated to the meta-model
M in a QVT-R specification S through “M.⟨id⟩”, the
ancestors of a class through the dot notation “.⟨anc⟩”,
and assume binary associations with named roles at both
ends. If a role is missing, we take as role the name of the
class in the association end. We assume that the two
roles of an association have different names.

In the compilation, step 1 creates a page for the meta-
model, step 2 creates a record and a place of the record
sort for each class, and step 3 does the same for each
association. Records associated to classes include an ob-
ject identifier and one field for each attribute in the class
or its ancestors. Records derived from associations store

23

Given a meta-model M and a QVT spec. S:

1 Create a page called M.⟨name⟩+M.⟨id⟩.
2 ∀ Class c ∈ M:

2.1 Create a record r called c.⟨name⟩.
2.2 Add a field ID of sort INT to r.
2.3 ∀ Attribute a ∈ {c ∪ c.⟨anc⟩}:

2.3.1 Add a field a.⟨name⟩ of sort a.⟨type⟩ to r.
2.4 Create a Place p called as r of sort r.
2.5 Create a Fusion Set called M.⟨id⟩+c.⟨name⟩ and

include p in it.
3 ∀ Association n with roles r1 and r2 ∈ M:

3.1 Create a record r called r1.⟨type⟩+‘‘ ’’+
r1.⟨name⟩+‘‘ ’’+r2.⟨name⟩+‘‘ ’’+r2.⟨type⟩.

3.2 Add two fields r1.⟨name⟩ and r2.⟨name⟩ of sort INT
to r.

3.3 ∀ Attribute a ∈ n:
3.3.1 Add a field a.⟨name⟩ of sort a.⟨type⟩ to r.

3.4 Create a Place p called as r of sort r.
3.5 Create a Fusion Set called M.⟨id⟩+r.⟨name⟩ and

include p in it.

Listing 1: Compiling a meta-model into CPN colour sets.

the identifier of the objects in each association end. The
name of the records for the associations is given by the
concatenation of names of the source and target types
and roles.

A.2 Compilation of relations: Graphical pattern

The compilation of the relations in a QVT-R specifi-
cation consists of two steps: the creation of colour sets
and places to store the execution traces, and the gen-
eration of transitions modelling the relations. Listing 2
shows the pseudocode for the first step assuming rela-
tions without when and where clauses, which are handled
in Section A.3 of this appendix. We assume that we can
access the variable name of an object in a relation by
using the dot notation “o.⟨id⟩”, and all objects in both
domains of a relation r through “r.⟨domains⟩”. Accord-
ing to the standard, the traces store the identifier of all
objects involved in a relation.

Given a QVT specification S:

1 Create a page called ‘‘Traces’’.
2 ∀ Relation r ∈ S:

2.1 Create a record t called ‘‘T’’+r.⟨name⟩.
2.2 ∀ Object o ∈ r.⟨domains⟩:

2.2.1 Add a field o.⟨id⟩ of sort INT to t.
2.3 Create a record called ‘‘LT’’+r.⟨name⟩ of sort list

‘‘T’’+r.⟨name⟩.
2.4 Create a variable called ‘‘tr ’’+r.⟨name⟩ of sort

‘‘LT’’+r.⟨name⟩.
2.5 Create a Place p called ‘‘Trace’’+r.⟨name⟩ of sort

‘‘LT’’+r.⟨name⟩.
2.6 Create a Fusion Set called ‘‘Trace’’+r.⟨name⟩ and

add p in it.

Listing 2: Generating colour sets for the relation traces.

Listing 3 shows the translation of each relation into
a CPN transition. The handling of identifiers for the
created objects is managed through the use of a global
counter called ID, which gets incremented each time the
transitions fire (step 8). In particular, firing a transition

increments the counter as many units as objects the re-
lation creates. Then, if a relation creates several objects
oi, their identifier is assigned the value ID − i.

Given a QVT specification S:
∀ Relation r ∈ S:

1 Create a page called r.⟨name⟩.
2 Create a transition t called r.⟨name⟩.
3 ∀ Domain d ∈ r.⟨domains⟩:

3.1 ∀ Object o ∈ Domain d:
3.1.1 Let P(o)={p: Place | p is called o.⟨type⟩ and

belongs to the fusion set d.⟨id⟩+o.⟨type⟩} be
the set of places associated to Object o.

3.1.2 if Domain d is enforced, include in P(o) a
place for each supertype st of o.⟨type⟩, with
name st and fusion set d.⟨id⟩+st.

3.1.3 Create all places in the set P(o).
3.1.4 Create a variable named o.⟨id⟩ of sort INT.
3.1.5 Add an arc from t to each p ∈ P(o), labelled

with the variables and conditions in r. The
field ID is read from variable o.⟨id⟩ if
the domain is checkonly, or from the global
counter ID if the domain is enforced.

3.1.6 If the domain is checkonly, add an arc from
each p ∈ P(o) to t. Label such arc with the
variables and conditions in r.

4 Create a place q named ‘‘Trace’’+r.⟨name⟩ of sort
‘‘LT’’+r.⟨name⟩.

5 Add an arc from q to t, labelled ‘‘tr ’’+r.⟨name⟩.
6 Add an arc from t to q, labelled with the

concatenation of ‘‘tr ’’+r.⟨name⟩ and a record with
the identifier of all objects in r (the field ID of
each object is obtained as in step 3.1.5).

7 Add a guard to the transition that checks that
the selected binding of objects is not in the list
‘‘tr ’’+r.⟨name⟩.

8 Add an action to the transition that increments
the global counter ID as many units as objects the
relation creates.

Listing 3: Compiling the relations into CPNs.

A.3 Compilation of relations: When and where

In order to handle the when and where sections of a
relation, we have to perform the following modifications
to Listing 3:

– For each relation r invoked in the where clause,
we create an additional place and colour set called
“Param”+r.⟨name⟩ to store the identifier of the ob-
jects used in the invocation. The calling relation is
connected to the place with a write arc. The called
relation r is connected to the place with a self-loop
arc.

– For each relation r inspected in the when clause, we
add a self-loop arc from the place “Trace”+r.⟨name⟩
of the inspected relation to the transition of the ac-
tual relation.

– If a relation is invoked from a where clause from
which it receives certain parameter objects, then the
arcs that write tokens to the places for these objects
are not created (i.e. step 3.1.5 in Listing 3 is not per-
formed for the received objects).

– If a relation checks certain object in the when clause,
then the arc that writes tokens to the place for this

24

object is not generated (i.e. step 3.1.5 in Listing 3 is
not performed for the checked objects).

In our current compilation, we restrict to when and
where sections that contain sequences of calls to other
relations, but not arbitrary formulae involving relations.

A.4 Model matching scenario

The procedure for generating transitions in the model
matching scenario is similar to Listing 3, but both do-
mains are checkonly, and hence places of both domains
are connected to the transition with self-loop arcs. More-
over, we do not make use of the global counter ID, so
that transitions are not added any action (i.e. step 8 is
not performed) and arcs always use the variables used
in the relation (i.e. in steps 3.1.5 and 6, the object iden-
tifiers are read from the corresponding variable).

25

