
A Tool for Domain-Independent Model Mutation

Pablo Gómez-Abajo, Esther Guerra, Juan de Lara

Modelling & Software Engineering Research Group
http: // miso. es

Computer Science Department

Universidad Autónoma de Madrid (Spain)

Mercedes G. Merayo

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid (Spain)

Abstract

Mutation is a systematic technique to create variants of a seed artefact by means
of mutation operators. It has many applications in computer science, like soft-
ware testing, automatic exercise generation and design space exploration. Typ-
ically, mutation frameworks are developed ad-hoc by implementing mutation
operators and their application strategies from scratch, using general-purpose
programming languages. However, this is costly and error-prone.

To improve this situation, we propose Wodel: a domain-specific language
and tool for model-based mutation that is independent of the domain meta-
model. Wodel enables the rapid development and application of model muta-
tions. It provides built-in advanced functionalities like automatic generation of
seed models, and static and dynamic metrics of operator coverage and appli-
cability. It offers extension points, e.g., to post-process mutants and describe
domain-specific equivalence criteria. As an example, we illustrate the usage of
Wodel for the mutation of security policies, and present an empirical evaluation
of its expressiveness.

Keywords: Model-driven engineering, domain-specific languages, model
mutation, mutation footprint, model synthesis

1. Introduction

This paper presents Wodel, an extensible software tool for model mutation
that consists of: (1) an editor to define mutation operators and their applica-
tion policies, featuring code completion and code validation; (2) a compiler of

Email addresses: Pablo.GomezA@uam.es (Pablo Gómez-Abajo), Esther.Guerra@uam.es
(Esther Guerra), Juan.deLara@uam.es (Juan de Lara), mgmerayo@fdi.ucm.es (Mercedes G.
Merayo)

Preprint submitted to Science of Computer Programming March 21, 2018

http://miso.es


Wodel programs into executable Java code implementing the defined operators;5

(3) metrics for mutation footprints which provide information about the static
coverage of a meta-model by a mutation program, as well as about the effects
of the dynamic execution of a mutation program on a given set of models; (4)
a seed model synthesizer to automatically generate seed models ensuring the
application of the defined operators; and (5) an extensibility mechanism that10

allows pipelining external applications to Wodel programs.
The rest of this paper is organized as follows. First, Section 2 identifies some

limitations of existing mutation frameworks to define mutation-based applica-
tions. Then, Section 3 describes the architecture and main functionalities of
Wodel, and Section 4 gives details of its implementation. Section 5 illustrates15

Wodel using an example in the domain of security policies [1]. Finally, Sec-
tion 6 evaluates the expressiveness of our proposal, and Section 7 ends with the
conclusions and lines of future work.

2. Motivation and background

Model mutation is the process of generating variants (i.e., mutants) of a seed20

model by the application of a set of mutation operators. Mutation is essential
to applications like mutation testing [2, 3], where a program is modified and
then used to assess the quality of a test suite; automated generation of mod-
elling exercises [4], where variations of a correct solution model are presented to
students, who must identify the injected errors; model-driven design space ex-25

ploration [5, 6], where the goal is to heuristically find a model optimizing some
property, and the model population is generated by mutation; and synthesis of
a diversity of test models which are generated by mutating some given seeds [7].

Although there are some frameworks for model mutation, their scope is
limited to either a particular language (e.g., logic formulae [8]) or application30

domain (e.g., testing [9, 10]). Moreover, mutation operators must be defined
using general-purpose programming languages not tailored to the definition and
creation of mutants. Hence, developing domain-specific applications that rely
on mutation (liked the abovementioned ones) becomes costly and error-prone,
because existing tools do not facilitate the creation and analysis of mutation35

operators for arbitrary languages and application domains.
In order to fill this gap, we propose a model-based mutation approach where

the artefact to be mutated is represented as a model conformant to a domain
meta-model, and the mutation operators are defined using a domain-specific
language called Wodel. Wodel provides high-level primitives to simplify the def-40

inition of mutation operators and their application strategies, and it supplies
some built-in services to facilitate the generation of mutants, like a registry
of applied mutations, the ability to detect duplicated or malformed mutants,
debugging support, and synthesis of seed models that exercise the operators.
The framework provides handy integration with external applications through45

a compilation into a general-purpose programming language. Moreover, it is ex-
tensible with post-processing actions that can use the generated mutant models,
like mutation testing or exercise generation [4].

2



3. Software framework

Figure 1 shows the modular, component-based architecture of our mutation50

framework. The typical workflow is as follows. First, since our approach is
domain-independent, the user needs to describe the domain concepts by means
of a domain meta-model (label 1 in the figure). For example, in order to mutate
automata, the user should provide a meta-model including the concepts of state,
transition and alphabet symbol, as well as how they relate to each other.55

seed
models

domain
meta-model

p
o
st
P
ro
c

mutant
models

WODEL
program

«conforms»

check

mutation
registry

«refers-to»«refers-to»

3

2

4

5

6

seed
models

synthesizer
mutation
footprints

WODEL engine
eq

u
iv
al
en

ce

1
WODEL

extension
points

Figure 1: Architecture of the Wodel development environment

Next, the user defines the desired mutation operators and their execution
details, like how many times each mutation operator should be applied, or the
mutation execution order. We call this specification a Wodel program (label 2).
Wodel is meta-model independent, which means that it can be used to define
mutation operators for arbitrary meta-models. Nonetheless, Wodel programs60

must refer to a domain meta-model to allow type checking – to assure the
program only refers to valid meta-model types and features – and to ensure the
resulting mutants are valid.

Once created, a Wodel program can be applied to seed models conforming
to the given domain meta-model (label 3). For convenience (e.g., to exercise the65

defined operators and assess their correct implementation), we provide a seed
model synthesizer that is able to generate seed models to which all mutation
operators in the program are applicable.

The execution of a Wodel program produces mutant models from the seed

3



models (label 4), as well as a mutation registry keeping trace of the modified70

elements and applied mutation operators (label 5). In addition, the tool offers
two extension points (label 6) to further customize Wodel for a domain or appli-
cation. The first extension point permits specifying domain-specific equivalence
criteria to avoid the generation of duplicate mutants. The second extension
point allows registering application-specific post-processors for the generated75

mutants, e.g., for mutation-based testing or automated exercise generation [4].
Next, we describe the functionalities that Wodel offers to facilitate the defi-

nition and generation of mutants:

• Wodel provides nine mutation primitives for object creation and deletion,
reference redirection, attribute modification, object retyping, and shallow80

and deep object cloning, among others. The primitives can define a range
m..M to indicate they must be applied a random number of times be-
tween m and M , and can be combined into composite mutations with
transactional semantics. The mutation candidate objects can be selected
according to different strategies, like randomly, based on some property85

value, or to all objects satisfying certain property.

• The engine verifies that each generated mutant is a valid model (i.e., it
conforms to the domain meta-model and satisfies its integrity constraints).
Non-conformant mutants are discarded, in which case, the engine attempts
to generate another mutant up to a configurable maximum number of re-90

tries. Wodel programs can include OCL invariants [11] that any produced
mutant is enforced to satisfy.

• When generating the mutants, the engine takes care of assigning an ap-
propriate value to any mandatory attribute or reference not initialized
by the Wodel program. Similarly, new objects are automatically placed95

in a suitable container, if no explicit container is stated. This way, pro-
grams become more compact, and the likelihood to obtain valid mutants
is higher.

• Wodel includes a mechanism to identify and avoid duplicate mutants. En-
suring uniqueness of mutants is useful in some applications, like the auto-100

mated generation of exercises [4] or mutation testing. By default, mutant
equivalence is syntactic, but users can provide their own equivalence cri-
teria (e.g., behavioural) through an extension point.

• The execution of a Wodel program produces a registry of applied muta-
tions and objects affected by them (label 5 in Figure 1). This registry105

can be used to replicate the mutation process, or for application-specific
purposes. For example, we have used it to synthesize a natural language
description of the mutations, in order to include it in automatically gener-
ated exercises [4]. The registry is stored as a model, and can be compacted
to eliminate mutations that cancel each other (e.g., a mutation that creates110

an object, and another that deletes it).

4



• An optional post-processing step can be used to generate domain-specific
artefacts tailored to particular applications (label 6 in Figure 1), like mu-
tation testing or exercise generation [4].

• Wodel provides some metrics that help in analysing the behaviour of muta-115

tion programs. On the one hand, the static footprint of a Wodel program
identifies the meta-model classes and features touched by the program, and
the kind of changes it performs (creation, deletion or modification). This
information is computed statically, and is useful to identify immutable
types or undesired mutation side effects. On the other hand, Wodel pro-120

grams are stochastic, as each mutation operator can be configured to be
applied a random number of times at random locations. To ascertain
the actual operators applied to build a mutant, the dynamic footprint
of the program execution can be inspected. There are two types of dy-
namic footprints: net (i.e., net effect of the program execution calculated125

by differencing the seed model and the mutant) and debugging (i.e., de-
tailed enumeration of applied operators). This information can help to
locate program errors by identifying parts of the seed model that were not
mutated as expected. The footprints are available via dedicated Eclipse
views with drill-drown tables showing the information organized either by130

meta-model element or by mutation operator, and where cells use different
colours to easily distinguish between creation, modification and deletion
actions.

• To facilitate the evaluation of Wodel programs and exercise their oper-
ators, the IDE permits the automatic synthesis of seed models ensuring135

that all instructions in the program will be applicable to the models (if
any such models exist within a given search bound).

4. Implementation

Wodel is available as an Eclipse plugin. It includes an Xtext1 editor for
Wodel programs which features syntax highlighting, automatic code comple-140

tion, and type-checking of programs against the specified domain meta-model
to ensure only valid meta-model types and features are used. The underly-
ing modelling technology is the Eclipse Modelling Framework (EMF) [12], the
de-facto standard for modelling within Eclipse nowadays.

Wodel programs are compiled into Java using an Xtend2 code generator. The145

produced Java code, which is in charge of creating the mutants from the seed
models, can be transparently executed from the IDE, or in a separate stand-
alone application. Being able to execute Wodel programs outside the IDE may
be needed by some applications, and is the reason why we opted for a compiled
approach.150

1http://www.eclipse.org/Xtext/
2http://www.eclipse.org/xtend/

5

http://www.eclipse.org/Xtext/
http://www.eclipse.org/xtend/


The seed model synthesizer relies on model finding, a technique based on
constraint solving over models [13]. In particular, the synthesizer produces a
description of the domain meta-model and its OCL integrity constraints, en-
riched with additional OCL invariants derived from the Wodel program. The
invariants express the requirements that a seed model must fulfil to enable the155

application of each mutation operator in the program. For example, the Wodel

instruction remove one ElementType requires the seed model to contain an instance
of ElementType to ensure the instruction is applicable, which is encoded as the
OCL invariant ElementType.allInstances()->size() >0. Then, the enriched meta-model
is fed into the USE Validator [14] model finder, which searches for models that160

are valid instances of the domain meta-model and satisfy the invariants. Users
can customize the search by providing a search scope (minimum and maximum
number of objects in the seed models), additional model requirements expressed
with OCL, or a seed EMF model for the search.

Figure 2 is a screenshot of Wodel which shows its editor (label 1), the Java165

code generated from a Wodel program (label 2), a domain meta-model and some
seed models (label 3), several mutants generated from the seed models (label 4),
and the static and dynamic footprints of the program (label 5). The different
artefacts in the screenshot correspond to an example in the domain of security
policies, which we will develop in the next section.170

As the figure shows, the static footprint view counts the number of explicit
and implicit creations (C, IC), modifications (M, IM) and deletions (D, ID) of each
meta-model class and feature (upper-left view), or performed by each muta-
tion operator (lower-left view). The cells corresponding to classes aggregate the
actions performed on the class and its features. For instance, the cell for the175

explicit creation of class Rule contains 1c 2f because the program contains one
explicit creation of Rule objects and two explicit creations of its features. The
first row of the tables displays the average class coverage for each type of ac-
tion. For example, the explicit creation percentage is 14% because the program
explicitly creates 1 out of the 7 classes in the domain meta-model.180

The dynamic footprints to the right (net and debug) have columns stating
the number of elements actually created (C), modified (M) and deleted (D) by
the execution of the Wodel program over two seed models (LibraryOrBAC and
LibraryRBAC), and the effects of each mutation operator on the models.

5. Example185

Next, we illustrate Wodel with an example in the context of mutation testing
for security policies. Here, the goal is measuring the quality of a set of test
cases by injecting errors in the artefact under test (a security policy), and then
checking whether the test cases detect the injected errors. We have chosen this
application scenario because it is concise, but still, it will allow demonstrating190

all features of our tool.
We base the example in the work of Mouelhi and collaborators [1]. They pro-

6



1

2

3

4

5

Figure 2: The Wodel IDE in action

pose a meta-model to represent both access control languages – like RBAC3 and
OrBAC4 – and security policies expressed with them. Hence, this meta-model
contains classes like RuleType or PolicyType to represent access control languages,195

and classes like Rule or Policy to specify security policies. In addition, the au-
thors define five mutation operators for security policies expressed with this
meta-model, so that the operators are independent of the concrete access con-
trol language (i.e., RBAC or OrBAC). Table 1 shows their proposed generic
mutation operators.200

We can use Wodel to define the operators in this table. As an example,
Listing 1 shows the Wodel program that implements the PPD mutation op-
erator. This mutation replaces one rule parameter with one of the parameter
descendants. Line 1 states that mutants are to be generated in folder out, from
the seed models in folder models. The number of mutants generated from each205

3Role-Based Access Control
4Organization-Based Access Control

7



Table 1: Mutation operators for security policies (from [1]).

RTT: Selects two rule types with the same parameter types. Then modifies the type
of a rule whose type is the first selected rule type with the second rule type

PPR: Replaces a rule parameter with a different one (of same type)

ANR: Creates a new rule using a selected rule type

RER: Removes a rule

PPD: Replaces a parameter on a rule with one of its descending parameters (using the
children reference)

seed is configurable. Line 2 indicates the meta-model the seed models conform
to. Lines 5–10 define the PPD mutation operator. In particular, line 6 selects
one Rule having at least one parameter with descendants, and stores the rule in
variable r. Since Rule.parameters is a collection, Rule.parameters.children collects the
children of each Parameter object in reference parameters, and flattens the result in210

a single collection. Then, line 7 selects one parameter of rule r with non-empty
children, and line 8 selects one descendant of the selected parameter. By using
the function closure, which iteratively collects all reachable elements through a
reference, we consider both direct and indirect descendants of the parameter.
Line 9 removes the parameter selected in line 7 from rule r, and adds the param-215

eter descendant selected in line 8 to r. In line 10, the range [1..2] allows applying
the operator once or twice at random.

1 generate mutants in ”out/” from ”models/”
2 metamodel ”http://SecurityPolicy.com”
3220

4 with commands {
5 PPD = [
6 r = select one Rule where {parameters.children <> null}
7 p = select one Parameter in r.parameters where {children <> null}
8 c = select one Parameter in closure(p.children)225

9 modify r with {parameters −= p, parameters += c}
10 ] [1..2]
11 }

Listing 1: Wodel program encoding the PPD mutation operator

Figure 3 shows an application of this operator to a seed model. The operator
selects one rule having a parameter with children (Personnel), and replaces such230

a parameter by one of its descendants (Secretary). The objects selected in lines
6–8 of the listing (r, p, c) are marked in the figure.

The screenshot in Figure 2 corresponds to this example. The editor (label 1)
contains the definition of all operators in Table 1, although only RTT is visible.
The static footprint (label 5) shows that the operators do not mutate classes235

PolicyType, RuleType and ElementType, which is sensible as those classes are used to
model the access control language. However, the footprint also uncovers that
no object of type Parameter is created, modified or deleted, and its feature Param-

eter.children is neither mutated. Since this class is used to define security policies,
this suggests the need for further mutation operators dealing with Parameters and240

their hierarchies.
In the same screenshot, the dynamic footprint shows that the RTT operator

8



:RuleType

name= “RolePermission”

:PolicyType

name= “RBAC”

:Policy

name= “LibraryRBAC”

:Rule

name= “R5”

:type

:type

:rules

:ruleTypes

:p
ar

am
et

er
s

seed model

:ElementType

name= “Role”
hierarchy= true

:type

:ElementType

name= “Constraint”
hierarchy= false

:type

:ElementType

name= “Permission”
hierarchy= false

:type

:Parameter

name= “Personnel”

:Parameter

name= “WorkingDays”

:Parameter

name= “ModifyUser”

:p
ar

am
et

er
s

:e
le

m
en

ts

:Parameter

name= “Director”

:Parameter

name= “Secretary”

:children

:RuleType

name= “RolePermission”

:PolicyType

name= “RBAC”

:Policy

name= “LibraryRBAC”

:type

:type

:rules

:ruleTypes

:p
ar

am
et

er
s

mutant

:ElementType

name= “Role”
hierarchy= true

:type

:ElementType

name= “Constraint”
hierarchy= false

:type

:ElementType

name= “Permission”
hierarchy= false

:type

:Parameter

name= “Personnel”

:Parameter

name= “WorkingDays”

:Parameter

name= “ModifyUser”

:p
ar

am
et

er
s

:e
le

m
en

ts

:Parameter

name= “Director”

:Parameter

name= “Secretary”

:children

PPD

:Rule

name= “R5”

r r

p p

c c

Figure 3: Example of application of the PPD mutation to a security policy in RBAC

could not be applied on the RBAC seed model (LibraryRBAC). If we inspect the
RBAC language definition, we realise that RBAC only defines two rule types
with different parameter types. Since RTT requires a rule pair with same pa-245

rameters, it cannot be applied to any security model expressed with RBAC.
This can be confirmed by generating additional seed models for RBAC using
the seed model synthesizer.

Altogether, this example illustrates how Wodel simplifies the definition of
mutation operators (e.g., the definition of the PPD operator using Kermeta250

requires three times more LOCs [1]), and how it permits analysing the defined
operators using footprints and seed generation.

6. Empirical results

To evaluate the expressiveness and usefulness of Wodel, we have used it to
define and analyse sets of mutation operators proposed in the literature. We255

have implemented mutations for automata [4, 15] with the purpose of auto-
mated exercise generation; and mutations for probabilistic automata [16], class
diagrams [17], BPEL [18] and security policies [1] for mutation testing. The
purpose of this experiment is to assess the expressiveness of Wodel to deal with
realistic mutation operators, and to show the usefulness of its metrics to evaluate260

sets of mutation operators.
Table 2 summarizes the results. The columns show the number of imple-

mented mutation operators (we show in parenthesis the number of operators
proposed in the original publication); the meta-model size in classes; the muta-
tion percentage including both explicit and implicit Creation, Modification, and265

Deletion actions; and the percentage of non-mutated concrete classes (column
unmodified). The encoding of the operators is available at http://gomezabajo.

9

http://gomezabajo.github.io/Wodel/samples.html
http://gomezabajo.github.io/Wodel/samples.html
http://gomezabajo.github.io/Wodel/samples.html


Table 2: Evaluating sets of mutation operators.

#mutation
operators

#mm
classes

static footprint

C M D unmodified

Automata [4] 10 (10) 4 50% 75% 50% 25%

Automata [15] 4 (4) 4 25% 75% 0% 25%

Prob. automata [16] 4 (4) 4 25% 75% 0% 25%

Class diagrams [17] 50 (50) 49 47% 37% 82% 16%

BPEL [18] 18 (26) 133 13% 20% 44% 50%

Sec. policies [1] 5 (5) 7 14% 28% 14% 57%

github.io/Wodel/samples.html. The metrics shown in the table have been
statically computed by Wodel.

The column unmodified reveals none of these works provide full mutation cov-270

erage with respect to the domain meta-model, i.e., they do not mutate all meta-
model classes and features. The first two sets of automata mutations [4, 15],
which are used to automate exercise generation, do not mutate the class Symbol.
Hence, the alphabet of the automata cannot get changed, although this would
be useful to generate more variety of exercises.275

The mutations for probabilistic automata in [16] provide even less coverage:
they do not change the alphabet either, there are no deletion mutations, and
there are creation mutations only for Transitions. Hence, these mutations yield
mutants with same alphabet as the seed, same states, and emulate faults by
changing transition targets, their probabilities, the initial state, or adding extra280

transitions. However, for mutation testing, it would be interesting to add new
states, or to delete transitions re-adjusting the siblings’ probabilities.

The class diagram mutations in [17] are quite complete, as indicated by the
low percentage of unmodified elements (16%).

The BPEL mutations in [18] have low meta-model coverage, as they do285

not mutate 50% of the meta-model concrete classes. The reason for this low
coverage is that the mutations aim at modelling programming mistakes when
implementing WSBPEL 2.0 compositions using graphical tools. From the pro-
posed 26 mutations, we were able to encode 18. The remaining 8 were related to
expressions, and we could not define them because the meta-model represents290

expressions as external objects.
The mutations for security policies [1] have low coverage, but this is because

they do not mutate the classes to specify access control languages, but only
those to define security policies, which is sensible. Anyhow, we miss being able
to mutate Parameters and their hierarchical organization, which would be useful295

for testing.
Altogether, we could specify most mutations (91/99) in the analysed works

using Wodel, demonstrating its expressiveness. The footprints Wodel provides
helped in identifying omissions for automata, security policies and BPEL, but
confirmed a reasonable coverage for class diagrams.300

10

http://gomezabajo.github.io/Wodel/samples.html
http://gomezabajo.github.io/Wodel/samples.html


7. Conclusions and future work

Mutation has many applications in computer science, but there is currently
a lack of general approaches to define mutation operators. Wodel fills this
gap using a model-based approach to mutation. It has the advantage of being
domain-independent, enabling the rapid development of mutation operators us-305

ing a dedicated domain-specific language. The tool offers advanced functionality
for the automatic generation of seed models, and to calculate the static and dy-
namic footprints of Wodel programs. We have used our tool to define collections
of mutation operators defined in the literature, identifying limitations in those
sets and showing the usefulness of footprints in practice.310

In the future, we plan to extend Wodel with OCL helpers, as well as with
smart synthesis of mutation operators that maximize the coverage of the static
footprint. We plan to work on further static analysis techniques, e.g., to detect
operator conflicts and dependencies. Finally, we are working on a dedicated
Wodel post-processor for mutation testing.315

Acknowledgements

Work partially funded by project FLEXOR (Spanish MINECO, TIN2014-
52129-R), project DArDOS (Spanish MINECO/FEDER TIN2015-65845-C3-1-
R) and the R&D programme of the Madrid Region (S2013/ICE-3006).

References320

[1] T. Mouelhi, F. Fleurey, B. Baudry, A generic metamodel for security poli-
cies mutation, in: Proc. ICST, IEEE, 2008, pp. 278–286.

[2] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection:
Help for the practicing programmer, IEEE Computer 11 (4) (1978) 34–41.

[3] L. du Bousquet, J. S. Bradbury, G. Fraser, Special section on mutation325

testing (mutation 2010), Sci. Comput. Program. 78 (4) (2013) 343–344.
doi:10.1016/j.scico.2012.07.002.

[4] P. Gómez-Abajo, E. Guerra, J. de Lara, A domain-specific language for
model mutation and its application to the automated generation of exer-
cises, Computer Languages, Systems & Structures 49 (2017) 152 – 173.330

[5] Á. Hegedüs, Á. Horváth, D. Varró, A model-driven framework for guided
design space exploration, Autom. Softw. Eng. 22 (3) (2015) 399–436.

[6] D. Strüber, Generating efficient mutation operators for search-based model-
driven engineering, in: Proc. ICMT, Vol. 10374 of LNCS, Springer, 2017,
pp. 121–137.335

11

http://dx.doi.org/10.1016/j.scico.2012.07.002


[7] S. Sen, B. Baudry, Mutation-based model synthesis in model driven engi-
neering, in: Second Workshop on Mutation Analysis (Mutation 2006 - IS-
SRE Workshops 2006), 2006, pp. 13–13. doi:10.1109/MUTATION.2006.12.

[8] C. Henard, M. Papadakis, Y. L. Traon, Mutalog: A tool for mutating logic
formulas, in: ICST Workshops Proceedings, IEEE CS, 2014, pp. 399–404.340

[9] V. Aranega, J. Mottu, A. Etien, T. Degueule, B. Baudry, J. Dekeyser,
Towards an automation of the mutation analysis dedicated to model trans-
formation, Softw. Test., Verif. Reliab. 25 (5-7) (2015) 653–683.

[10] A. Bartel, B. Baudry, F. Munoz, J. Klein, T. Mouelhi, Y. L. Traon, Model
driven mutation applied to adaptative systems testing, in: ICST Work-345

shops, 2011, pp. 408–413.

[11] Object Management Group, UML 2.4 OCL Specification,
http://www.omg.org/spec/OCL/ (2014).

[12] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Mod-
eling Framework 2.0, 2nd Edition, Addison-Wesley Professional, 2009.350

[13] D. Jackson, Software Abstractions - Logic, Language, and Analysis, MIT
Press, 2006.
URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&

tid=10928

[14] M. Kuhlmann, M. Gogolla, From UML and OCL to relational logic and355

back, in: MODELS, Vol. 7590 of LNCS, Springer, 2012, pp. 415–431.

[15] D. Sadigh, S. A. Seshia, M. Gupta, Automating exercise generation: A step
towards meeting the MOOC challenge for embedded systems, in: WESE,
ACM, 2013, pp. 2:1–2:8.

[16] R. Hierons, M. Merayo, Mutation testing from probabilistic and stochastic360

finite state machines, Journal of Systems and Software 82 (11) (2009) 1804–
18.

[17] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, O. Pastor, Mutation
operators for UML class diagrams, in: Proc. CAiSE, Vol. 9694 of LNCS,
Springer, 2016, pp. 325–341.365

[18] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J. Domı́nguez-
Jiménez, A. Garćıa-Domı́nguez, Quality metrics for mutation testing with
applications to WS-BPEL compositions, Softw. Test., Verif. Reliab. 25 (5-
7) (2015) 536–571.

12

http://dx.doi.org/10.1109/MUTATION.2006.12
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928


Current executable software version370

Nr. (executable) Software
metadata description

S1 Current software version 1.1
S2 Permanent link to executables

of this version
http://gomezabajo.github.io/Wodel/

S3 Legal Software License EPL-1.0 License
S4 Computing platform/Operat-

ing System
Microsoft Windows 7 64-bit or later, Linux

S5 Installation requirements & de-
pendencies

Eclipse

S6 If available, link to user manual
- if formally published include a
reference to the publication in
the reference list

http://gomezabajo.github.io/Wodel/

S7 Support email for questions pablo.gomeza@uam.es

Table 3: Software metadata

Current code version

Nr. Code metadata description
C1 Current code version 1.1
C2 Permanent link to code/reposi-

tory used of this code version
https://github.com/gomezabajo/Wodel

C3 Legal Code License EPL-1.0 License
C4 Code versioning system used git
C5 Software code languages, tools,

and services used
Eclipse Modelling Tools Oxygen Release
(4.7.1a), EMF 2.13.0, Java 1.8, Xtext 2.8.4,
Xtend 2.8.4, Sirius 5.0.2, EMF Compare
3.3.2, OCL Examples and Editors SDK
3.4.5, USE ModelValidator 4.2.0

C6 Compilation requirements, op-
erating environments & depen-
dencies

Microsoft Windows 7 64-bit or later, Linux

C7 If available Link to developer
documentation/manual

http://gomezabajo.github.io/Wodel/

C8 Support email for questions pablo.gomeza@uam.es

Table 4: Code metadata

13

http://gomezabajo.github.io/Wodel/
http://gomezabajo.github.io/Wodel/
https://github.com/gomezabajo/Wodel
http://gomezabajo.github.io/Wodel/

	Introduction
	Motivation and background
	Software framework
	Implementation
	Example
	Empirical results
	Conclusions and future work

