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Conversational agents, or chatbots, have become popular to access all kind of software services. They provide
an intuitive natural language interface for interaction, available from a wide range of channels including social
networks, web pages, intelligent speakers or cars. In response to this demand, many chatbot development
platforms and tools have emerged. However, they typically lack support to statically measure properties of
the chatbots being built, as indicators of their size, complexity, quality or usability. Similarly, there are hardly
any mechanisms to compare and cluster chatbots developed with heterogeneous technologies.

To overcome this limitation, we propose a suite of 21 metrics for chatbot designs, as well as two clustering
methods that help in grouping chatbots along their conversation topics and design features. Both the metrics
and the clustering methods are defined on a neutral chatbot design language, becoming independent of the
implementation platform. We provide automatic translations of chatbots defined on some major platforms
into this neutral notation to perform the measurement and clustering. The approach is supported by our tool
Asymob, which we have used to evaluate the metrics and the clustering methods over a set of 259 Dialogflow
and Rasa chatbots from open-source repositories. The results open the door to incorporating the metrics
within chatbot development processes for the early detection of quality issues, and to exploit clustering to
organise large collections of chatbots into significant groups to ease chatbot comprehension, search and
comparison.

CCS Concepts: • Software and its engineering→ Software design engineering; Extra-functional properties;
• Computing methodologies→ Natural language processing.
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1 INTRODUCTION

Conversational agents (also known as chatbots) have become a popular way to access all kinds of
software services – like services for customer support, banking, tourism, health and e-commerce –
using conversation in natural language [40, 61]. Their use is rising because they lower the entry
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barrier to the services and can be ubiquitously used from many channels – from web sites to social
networks and intelligent speakers – without the need to install dedicated applications. Chatbots
are also used to assist workers in different domains, like software engineering [29, 45].
In response to this demand, many platforms have been created to construct chatbots [48], like

Google’s Dialogflow [14], Amazon Lex [30], IBM’s Watson [66], and Rasa [52], among many others.
Overall, Gartner estimates that there are more than 2000 natural language technology providers,
with a significant number of them offering facilities to create chatbots [20]. Many of these solutions
are low-code platforms covering the design, deployment and operation of the defined chatbots.
However, their support for quality assurance is generally limited [40, 48].

Since chatbots are a kind of software, their construction should follow sound software engineering
principles. In this regard, some recent approaches [5–7, 15] propose methods and tools for testing
chatbots. However, while testing is essential to ensure the quality of the resulting chatbot, it requires
having a functional deployed chatbot, it demands a high effort for creating testing phrases and
oracles, and it is time-consuming.

We claim that the use of metrics can help to guide and control the quality of chatbots throughout
their development andmaintenance, becoming a complement to testing. However, to our knowledge,
there are hardly any metric proposals for chatbot designs. Metrics are an accepted mechanism for
assessing and controlling properties of software products and processes [17]. Chatbot static metrics
can be useful to detect potential problems related to user experience (e.g., complex conversation
flows, hard-to-read chatbot answers); as indicators of chatbot complexity; to compare properties of
heterogeneous chatbots (i.e., built with different technologies); to discover commonalities and cluster
similar chatbots; and to understand how different implementation platforms can impact on the
chatbot design. Ultimately, the availability of metrics may have notable impact on current chatbot
development practices and tools, helping to increase the quality of chatbots and the efficiency of
their production processes.

Moreover, the wide variety of tools with which chatbots are built makes it difficult to search and
compare chatbots. This calls for mechanisms to measure the similarity or dissimilarity between
chatbots – even if developed with different technologies – to understand their commonalities and
enable searching for chatbots akin to a given one, e.g., as a first step towards the reuse of existing
chatbots. While clustering techniques are suitable for this purpose [58], they have not been applied
to chatbot designs yet.
To improve this situation, we propose a suite of 21 static metrics for chatbot designs, and two

methods for clustering chatbots. The first method groups similar chatbot designs according to
a selected set of metrics, which enables the identification of chatbots with (dis)similar design
features (e.g., size, complexity of conversation paths, verbosity). This is useful, e.g., to classify
chatbots according to their design properties; to discover potentially problematic chatbots; or to
reason about the design features of large chatbot repositories (e.g., to analyse if chatbots built with
different technologies have similar design characteristics). The second method performs a semantic
clustering of chatbots along conversation topics, based on the frequency of the words appearing in
the chatbot issued and expected phrases. This is useful, e.g., to identify chatbots on the same topic
for their reuse; to facilitate the construction of recommender systems for chatbots; to organise
large chatbot repositories according to their domain; or to facilitate chatbot search.
Both the metrics and the clustering methods are defined over a neutral design notation called

Conga [46, 47]. This way, they become technology-independent and do not need to be reimple-
mented for each chatbot technology. Our proposal is available as a web platform named Asymob at
http://miso.ii.uam.es/asymobService. Asymob features a chatbot repository, and provides importers
from several chatbot platforms into our neutral design language to enable measuring and clustering
chatbots developed with heterogeneous technologies. The platform is directed to two target groups.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

http://miso.ii.uam.es/asymobService


Measuring and Clustering Heterogeneous Chatbot Designs 1:3

First, chatbot developers, who can upload their chatbots (privately or publicly) into Asymob, so
that they can be measured and compared against the other chatbots in the repository, built with the
same or different technology. This way, developers can assess chatbot quality metrics during the
development process, as well as search chatbots with certain design features or conversation topics,
which can then be reused. Second, chatbot researchers, who can use our platform to analyse and
compare characteristics of existing chatbot ecosystems built with diverse technologies. To assess
our proposal, we report on an evaluation applying the metrics and the clustering methods over
Dialogflow and Rasa chatbots retrieved from public repositories.
This paper is an extension of our preliminary works [9, 33]. Previously [9], we introduced a

suite of 20 chatbot design metrics, proposed their technology-independent definition atop Conga,
made their implementation available via an API, and evaluated their suitability on 12 chatbots.
Subsequently [33], we developed a web interface to facilitate the usage of the API, and enabled
clustering chatbots based on their metrics and vocabulary, in the latter case, using a simple bag-of-
words model. The present paper extends these previous works as follows:

• We have refined our suite of metrics, including a new readability metric, and expanding the
explanations and rationale of the metrics.

• We have improved our metrics-based clustering by using principal component analysis.
• We have improved our vocabulary-based clustering by applying stemming (which improves
efficiency as it reduces the dimensionality of the chatbot vector representation), extracting
descriptive terms for each chatbot cluster, and calculating the term frequency-inverse doc-
ument frequency (TF-IDF) [57] of the chatbots’ vocabulary (which improves our previous
implementation based on bag-of-words by considering the importance of words according to
their frequency of appearance).

• We report on a thorough, extended evaluation of the metrics on a dataset of 259 chatbots (≈22x
more than in our previous work [9]), which is available at https://github.com/asym0b/Dataset.
To the best of our knowledge, this is the first large-scale evaluation of open-source chatbots
reported in the literature.

• We detail a novel evaluation of our semantic clustering method.
The rest of this paper is organised as follows. Section 2 introduces the core concepts behind

chatbots and motivates our work. Section 3 overviews related work. Section 4 introduces our
proposed metrics suite, and Section 5 our two methods to cluster chatbots. Section 6 describes
tool support. Section 7 reports on the results of our evaluation. Finally, Section 8 finishes with the
conclusions and prospects for future work.

2 BACKGROUND ANDMOTIVATION

This section provides some background on task-oriented chatbots (Section 2.1) and motivates our
work (Section 2.2).

2.1 Background on task-oriented chatbots

Chatbots are conversational software systems with a natural language interface. They can work
in open domains – like OpenAI’s ChatGPT [42] or Google’s Bard [21] – or be task-oriented. The
latter are typically built to access existing software services like those in banking or shopping; or
to automate human services, like those for customer support. In this work, we are interested in
task-oriented chatbots.

Figure 1 shows a diagram with the typical working schema of a task-oriented chatbot. The user
normally starts the interaction by providing an utterance – a phrase in natural language – via
some channel (step 1). The interaction can be using text (e.g., if the chatbot is deployed on a social
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network like Telegram1) or voice (e.g., if the chatbot is deployed on smart speakers like Amazon
echo2). Then, the chatbot processes the utterance to give a proper response (step 6). This involves
several steps, which we detail next.
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Fig. 1. Chatbot working schema.

First, the chatbot analyses the ut-
terance to discover the user goals.
For this purpose, most chatbots are
designed around a set of intents
(step 2 in the figure). These are con-
versation topics the chatbot aims
at recognising, related to the of-
fered functionality. Depending on
the implementation platform, intents
are defined either using regular ex-
pressions and templates (e.g., as in
Pandorabots [43]) or with train-
ing phrases that become interpreted
using natural language processing
(NLP). Intents can also include pa-
rameters, identifying relevant infor-
mation pieces to be extracted from
the user utterances (step 3).
As an example, a chatbot for a cafeteria would include an intent to recognise the users’ orders.

This intent would be activated upon a phrase like “I’d like a medium cappuccino”, from which the
chatbot would extract two parameters: the type of drink (cappuccino) and its size (medium). If the
parameters are mandatory, but the user does not provide them, the chatbot explicitly prompts
the user for their value. Parameters are typed by entities, which can be either pre-existing in the
platform (e.g., dates or numbers), or defined for a specific domain by the chatbot developer as a list
of literals with synonyms (e.g., the type and size of drinks).
When the chatbot receives a user utterance, it matches the more likely intent. If no matching

intent is recognised, the chatbot can trigger a fallback intent to ask for clarification. Otherwise,
if an intent is matched, the chatbot performs the actions associated to the intent. These actions
always include a text response (step 5), which may incorporate media elements (e.g., images, links)
or widgets supported by the specific channel (e.g., buttons in Telegram). Other possible actions are
accessing a backend service (e.g., to store the drink order, step 4) or performing a computation.
Finally, conversations are structured into flows that intertwine user utterances and chatbot

responses. As an example, when the user says “I’d like a medium cappuccino”, the chatbot may
answer “Would you like something to eat?”, leading to a new user interaction (e.g., “No thanks”), and
so on, according to the defined conversation flow. Flows may bifurcate into different conversation
paths depending on the user utterance.

Moore and Arar [37] propose a classification of chatbots based on their conversation style. System-
centric chatbots answer user queries or interpret commands by means of two-turn conversations
(i.e., each user turn starts a new conversation, and the chatbot lacks state). Content-centric chatbots
provide a conversational interface for FAQs, typically supplying long document-like responses
that may be unsuitable for voice-based interfaces or mobile devices with small screens. Visual-
centric chatbots facilitate user interaction via buttons and other widgets, in a style borrowed from
mobile phones. Finally, conversation-centric chatbots mimic human dialogs, offering conversation

1 https://telegram.org/ 2 https://en.wikipedia.org/wiki/Amazon_Echo
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management utterances (e.g., “What do you mean?”) and short responses. This kind of chatbots are
normally preferred because their conversation style suits a wider variety of devices and engages
better in natural conversations.
Implementation-wise, most chatbot development tools support a declarative style of nearly

all parts of the chatbot, sometimes complemented with imperative code. For instance, Rasa is a
framework to develop chatbots using Python, markdown and YAML. A chatbot definition in Rasa
comprises the following files: config.yml, which specifies configuration properties like the chatbot
language or the used natural language prediction model; data/nlu.md declares the entities and the
training phrases for the intents; domain.yml defines the chatbot intents, as well as the actions that
the chatbot can perform (showing text messages, images, buttons, or custom actions defined in
the Python file actions.py); and data/stories.md defines the conversation flows. Listings 1 and 2
in Section 6.2.2 show examples of some of these files. Once defined, a Rasa chatbot needs to be
manually deployed on a server to become operative. In contrast, Dialogflow also has a declarative
style to the construction of chatbots, but these are defined by means of forms through a low-code
platform, and are directly hosted on Google Cloud. In addition, Dialogflow permits downloading
the chatbot specification as a zip archive containing JSON files.

2.2 Motivation

Chatbot development should follow sound engineering principles, including early quality assess-
ment. However, in early development stages, the chatbot may not be fully functional, making
testing impossible. To overcome this problem, we propose design metrics that can be applied on
chatbot designs – even if partially defined – and can help detecting quality issues. Among other
issues, the proposed metrics can help detecting problems in the chatbot conversation (e.g., repeated
or redundant conversation flows), the chatbot responses (e.g., responses that the users may find
difficult to understand, or exceeding the limits of the deployment channel), or the chatbot intents
(e.g., an intent with few training phrases, or two intents with similar training phrases). For example,
an intent trained with the only phrase “I’d like a medium cappuccino”might not be able to recognise
rewordings such as “Would it be possible to order a regular capuchino?”, hence frustrating the user.
Metrics can help uncovering such issues prior to the chatbot deployment, hence contributing to
assess the chatbot design maturity, to guide the design towards good practices, and to save effort
in later development phases. Section 4.2 details the metrics and their potential impact on chatbot
usability.

Nowadays, there are many heterogeneous chatbot development tools, as we illustrated above for
Rasa and Dialogflow. Therefore, it makes sense to define the metrics over a neutral chatbot design
language, so that they become independent of any chatbot development tool and can be reused.
Section 4.1 introduces our proposal for such a neutral language, and Section 6.2 explains how to
map it to Dialogflow and Rasa.
As in other software domains, chatbot development can benefit from reuse to achieve shorter

times and higher quality. Clustering techniques can help in this respect, as they permit grouping
objects (chatbots in our context) that are similar in some sense (e.g., having similar design features
or conversation topics). Given a chatbot repository, a developer aiming to create a new chatbot could
group the stored chatbots according to some criterion of interest (e.g., conversation topic), and then
would pick a chatbot from one of the groups for its reuse (e.g., from a cluster containing chatbots
for cafeterias, if that is the developer’s goal). With this aim, Section 5 proposes novel semantic and
metrics-based clustering mechanisms for chatbots. They are defined atop our proposed neutral
chatbot design notation to make them applicable to chatbots of any chatbot development tool.
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Finally, research on chatbots requires from repositories of chatbots that can be analysed and
compared. Our tooling provides such facilities, and to benefit the community as much as possible,
the tool is deployed publicly, and the datasets and code are released as open source.

3 RELATEDWORK

In order to show the novelty of our contributions, this section reviews the state of the art on chatbot
quality assessment (Section 3.1) and chatbot clustering (Section 3.2).

3.1 Chatbot quality assessment

Since the early days of conversational systems [67], researchers have proposed ways to evaluate
their quality. For example, PARADISE [65] is an early framework for the evaluation of spoken
dialogue agents, based on the correlation of performance and user satisfaction.
More recently, the popularity of chatbots has raised concerns on proper conversational design.

For example, IBM’s Natural Conversation Framework [38] relies on conversation patterns [39] and
conversation design principles [37, 59], such as recipient design (i.e., provide multiple conversation
paths for different user types), minimization (i.e., design concise chatbot answers), and repair (i.e.,
provide support for clarifications). In this line, Chatbottest [11] defined guidelines for identifying
chatbot design issues in categories like answering, error management, intelligence, navigation,
personality and understanding. This evaluation is enacted via the Alma chatbot, which interactively
asks the chatbot designers about the features of interest. However, the burden is on the developer
to manually test whether the chatbot fulfils the guidelines.
Literature reviews [44, 51] have also identified chatbot quality properties and ways to assess

them. Radziwill and Benton [51] aligned chatbot quality attributes with the ISO-9241 notion of
usability [22] (efficiency, effectiveness and satisfaction), while Peras [44] added further categories
(e.g., information retrieval, affect). Generally, the assessment of these quality properties relies on
the dynamic execution of the chatbot, on collecting statistical data, or on subjective evaluations [12,
18, 25, 36, 53].

In their survey, Motger et al. [40] identified some chatbot research challenges, like advanced
testing features and analysis methodologies to improve chatbot quality attributes. In this line, some
chatbot testing approaches have been proposed to assess chatbot quality and find defects. Tools
like Botium [5] or OggyBug [15] support test automation, and some works target the generation of
challenging test user utterances [6, 7]. ChatEval [60] targets testing readability, which can be done
automatically by applying metrics – like BLEU2 and average cosine similarity [31] – to the chatbot
responses, and interactively by launching tasks for human evaluation in Mechanical Turk.

Testing, being a dynamic technique, is complementary to our metrics, which are static and can be
used earlier in the development process. Testing requires a functional chatbot, which usually entails
having a backend (e.g., a service to which the chatbot sends requests) fully developed, whereas our
metrics can be applied on partial, unfinished chatbot designs. Moreover, testing requires defining
test scenarios with expected user utterances and chatbot replies, a burden that our metrics lack. In
any case, metrics should not be seen as a substitute for testing, but as a complement to it.

Finally, the NLP community has developed useful readabilitymetrics [31, 49] that can be applied to
chatbots. Pitler and Nenkova [49] combined lexical, syntactic, and discourse features in a predictive
model of human readers’ judgements of text readability. This model associates features like the
average number of verb phrases per sentence, the number of words in the text, and the vocabulary,
with human assessments of how well a text is written. Liu et al. [31] evaluate metric weaknesses
based on qualitative and quantitative results, and provide recommendations for future chatbot
evaluation systems.
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Table 1. Summary of chatbot quality assurance approaches.

Approach Method Nature Aspects considered Automated Platform
Independ.

Chatbottest [11] Questionnaire Dynamic Answering, error management, No Yes
intelligence, navigation, onboarding,
personality, understanding

Radziwill and Benton [51] N/A Dynamic Performance, functionality, humanity, No Yes
affect, ethics & behaviour, accessibility

Coniam [12] Human (indiv.) Dynamic Spelling, grammar No Yes
Jian and Ahuja [25] Human (crowd) Dynamic Informativeness, fluency, humanlikeness No Yes
ChatEval [60] Metrics, Dynamic Readability Yes Yes

Human (crowd)
Finch et al. [18] Human (indiv.) Dynamic Consistency, emotion, understanding, No Yes

engaging, grammar, informativeness,
quality, proactivity, relevance

MeMo [36] Testing Dynamic Usability N/A Yes
Botium [5] Testing Dynamic Functional correctness Yes Yes
OggyBug [15] Testing Dynamic Functional correctness Yes Yes
Asymob Design metrics Static Design size, conversation, outputs, Yes Yes

expected inputs, vocabulary

Table 1 summarises the main approaches to chatbot quality assurance, classified with respect to
the used method (testing, metrics, questionnaires, individual or crowd-based human evaluation),
the nature of the method (static, dynamic), the chatbot aspects considered, the degree of automation,
and whether the approach is independent of any chatbot tool. Most approaches treat the chatbots as
black-boxes and require their execution (i.e., they are dynamic), so they cannot be applied at early
design phases. Moreover, many of them rely on a subjective human judgement of the quality of
the chatbot conversation. Overall, we observe a lack of static quality assurance mechanisms – like
metrics – specific to task-oriented chatbot designs that can be evaluated statically, automatically,
and independently of the chatbot implementation platform. Our goal is to fill this gap by proposing
a white-box method able to perform measurements on chatbot designs.

3.2 Clustering techniques

A means to facilitate finding artefacts of interest (chatbots in our case) is to organise them into
meaningful groups. This way, a developer who wants to create a new artefact can profit from
reusing existing artefacts in a cluster of interest.
Clustering is an application of unsupervised machine learning to organise items according to

some criteria (e.g., a concrete metric like the number of intents in case of clustering chatbots).
Some popular clustering algorithms are K-means, hierarchical clustering [24] and density-based
spatial clustering of applications with noise (DBSCAN) [16]. All of them must be configured with a
distance measure. In addition, both K-means and hierarchical clustering require setting the number
of clusters as hyperparameters, while DBSCAN has other parameters like the neighbourhood
distance and the minimum number of points required to form a dense region.
Clustering has been used in several areas of software engineering [62]. For example, some

works [27, 34] relied on clustering to analyse and provide insights on source code. For this purpose,
these works derive topics from the vocabulary used in the code (i.e., identifier names, comments),
and then use latent semantic analysis (LSA) to compute the linguistic similarity between source
artefacts (i.e., functions, classes) and cluster them according to their similarity. In a similar vein,
MUDABlue [26] used LSA to cluster (open-source) software systems along categories, which
are determined automatically. As we will see, our semantic clustering uses similar concepts, but
extracting the vocabulary from the chatbot phrases. In the chatbots field, Xu et al. [68] clustered
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chatbot sessions based on similarity metrics at two levels: user responses and whole chat sessions.
Their goal was providing feedback to the administrator to refine the chatbot logic. Instead, our
goal is to use clustering to enable comparison of chatbot designs along similar design metrics or
conversation topics.

Clustering has also been employed to organise model and meta-model repositories. For instance,
Babür et al. [3] represented meta-models as vectors based on their vocabulary, and used hierarchical
clustering to organise and visualise collections of models and meta-models. MDEForge [4] uses a
similar approach to facilitate model search. AURORA [41] uses supervised machine learning to
classify meta-models into a fixed set of categories. In our proposal to chatbot clustering, we use
similar encodings and techniques, but focus on chatbot designs instead of meta-models.
Other approaches group software artefacts based on metric values. For example, Arshad and

Tjortjis [2] used 7 metrics to cluster C# programs with the aim of identifying potential problems in
the code. Zhong et al. [71] combined clustering with expert input (to inspect and label clusters) for
analysing software quality. In this case, the clustering is based on 13 code metrics like lines of code,
branch count, comments or cyclomatic complexity.
In summary, while both metrics and word embeddings have been used to obtain meaningful

clusters of software artefacts, to the best of our knowledge, clustering for chatbot designs has
not been studied yet in the literature. Moreover, we adapt two clustering techniques to chatbots:
one based on design metrics, and another based on the chatbot vocabulary. Both techniques are
complemented with methods aiming at explaining the results: principal component analysis in the
first case, and a method to obtain the most descriptive terms of each cluster in the second.

4 MEASURING CHATBOT DESIGNS

In this section, we propose a suite of metrics tailored to chatbot designs. To define the metrics
independently from the chatbot implementation technology, we use a neutral design notation to
represent chatbots, over which the metrics can be computed. Section 4.1 starts by introducing the
chatbot design notation, and then, Section 4.2 details our proposed metrics.

4.1 A neutral notation for chatbot designs: Conga

Since our aim is to develop metrics for chatbot designs, we need a concrete notation over which
to define the metrics. For this purpose, we rely on the chatbot neutral notation we proposed in
our previous work [46, 47], called Conga. We opt for this neutral notation since its definition is
based on a thorough review of 15 widely used chatbot development platforms [46]. This means that
the design concepts in Conga can be mapped from and to all these platforms. Hence, by defining
the metrics over Conga, they become platform-agnostic as well as significant for many chatbot
development platforms. As we will see in Section 6, another practical implication is that one can
build importers from different platforms into Conga to measure and cluster existing chatbots built
with different technologies.

Figure 2 depicts the meta-model of Conga. It permits representing a chatbot by a Chatbot object
that contains a set of Intents, user-defined Entities, chatbot Actions, and conversation Flows. Conga
supports multi-language chatbots (attribute Chatbot.lang), and so each intent can declare Training-
Phrases per defined language. The phrases can include Parameters, declared on the intent defining
the phrase. Parameters are typed either by predefined entities (enumeration PredefinedEntity) or by
user-defined Entity objects. Entities can be Simple, Regex (regular expressions) or Composite, and for
each language (EntityLanguage), they declare the literals and synonyms making up the entity. For
example, a chatbot can declare a simple entity for drink sizes with literals small, medium and large
in English, and additionally define synonyms regular for medium and big for large.
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Fig. 2. Meta-model for chatbot design (from Cañizares et al. [9]).

A chatbot can define one or more Actions of type Image, Text, HttpRequest, HttpResponse and Empty.
The first two types are used to compose responses combining images and text. HttpRequest and
HttpResponse allow configuring the chatbot communication with external services in the backend.
The Empty action is a wildcard for other platform-specific actions.

The conversation flow between the chatbot and the users is modelled by Flow objects consisting
of user and chatbot turns (classes UserInteraction and BotInteraction). The user turn has a reference to
the intent to be recognised in the interaction (reference UserInteraction.intent). The bot turn specifies
the actions that the chatbot must perform (reference BotInteraction.actions).

4.2 A metrics suite for chatbot designs

Table 2 shows our proposed suite of 21 metrics for chatbot designs. All metrics measure internal
attributes of chatbots. Our guiding principles were to quantitatively measure (quantities, lengths)
every aspect of the design (intents, parameters, flows, etc.), and to contribute metrics able to provide
insights on the quality, tone, similarity and complexity of the textual elements (training phrases,
chatbot responses, entities) used to define the chatbot. The latter are qualitative in nature, serving
as a means to assess whether the chatbot outputs and expected user utterances suit the target users
and the chatbot deployment channel, or to warn about intents that a chatbot may confuse because
they declare similar training phrases. However, we do not consider our suite of metrics closed, but
expect the community to contribute with new metrics in the future.

Overall, we considered three sources when designing these metrics:

• Some of them, like INT (the number of intents) or ENT (the number of user-defined entities),
are calculated by taking statistics of concepts covered by the meta-model in Figure 2. Our
previous analysis [46] shows that these concepts are common to many chatbot development
frameworks.

• Some other metrics, like VPTP, READ and OPRE, have been adapted from the NLP literature [8,
19, 31, 49] to assess the readability of the chatbot responses, their estimated reading time, or
the complexity of the expected user utterances.
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Table 2. Chatbot design metrics. Column Dimension uses abbreviations for Effectiveness, efficiencY and
Satisfaction.

Metric Description Type Dimension
Global metrics

INT # intents design size E
ENT # user-defined entities vocabulary size S
FLOW # conversation entry points conversation diversity E
PATH # conversation paths conversation complexity S,Y
CNF # confusing phrases bot understanding E,S
SNT # positive, neutral, negative output phrases user experience S

Intent metrics
TPI # training phrases per intent topic complexity E,S
WPTP # words per training phrase topic complexity Y
VPTP # verbs per training phrase topic complexity S,Y
PPTP # parameters per training phrase topic complexity E
WPO # words per output readability S,Y
CPO # characters per output readability S,Y
VPOP # verbs per output phrase readability S
READ reading time of the output phrases readability Y
OPRE output phrase readability readability S, Y

Entity metrics
LPE # literals per entity vocabulary complexity S
SPL # synonyms per literal vocabulary complexity S
WL word length readability Y,S

Flow metrics
FACT # actions per flow bot response complexity E,S
FPATH # conversation paths per flow conversation complexity S,Y
CL conversation length conversation complexity Y

• Finally, we use conversation design principles [37, 59], and Moore and Arar’s classification of
chatbots [37], to interpret the value of some metrics such as PATH (the number of conversation
paths), FLOW (the number of conversation entry points) and WPO (the number of words per
chatbot output).

Our metrics can be used within software quality models such as the product quality model of
the ISO/IEC 25010:2011 [23]. Our internal metrics target the chatbot design, which influences the
quality in use of the system, but enable an early assessment. In particular, the fourth column of
Table 2 classifies the potential impact of the metrics on usability (as defined in the ISO 9241-11 [22])
in terms of Effectiveness (i.e., accuracy and completeness with which users achieve their goals),
efficiencY (i.e., time and resources that users expend to achieve their goals) and Satisfaction (i.e.,
comfort and acceptability of use). This mapping of metrics to quality properties embodies the
consensus among five experts (the authors) based on their experience in both software quality
assessment and chatbots, as well as a thorough review of works on chatbot usability from experts
in the literature. Table 2 also classifies metrics depending on their target: either global design
properties, or specific aspects of intents, entities or conversation flows. Non-global metrics can be
computed per element (intent, entity, flow) or averaged for all elements of a kind.

4.2.1 Global metrics. We start explaining global metrics. These measure the number of intents
(INT), entities (ENT) and conversation flows (FLOW, PATH), and also include understanding and user
experience metrics (CNF, SNT).

INT is an indicator of design size and functionality, since each intent contributes functionality
offered to the user. The larger INT is, the more functionality the bot offers, potentially impacting
effectiveness. ENT measures the size of the chatbot vocabulary and the conversation topic diversity,
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which may affect satisfaction. FLOW counts the number of conversation entry points for users, being
an indicator of conversation diversity. Since each entry point might correspond to a functionality,
FLOW may impact effectiveness. PATH is a global metric that informs on the overall number of
conversation paths the chatbot can take, which is an indicator of conversation complexity. If
PATH=FLOW, all conversations are linear, while if PATH>FLOW, some conversation splits into
several paths.

As an example, Figure 3 shows two small excerpts of chatbot designs conformant to the Conga
meta-model. The chatbot design (a) depicts a linear flow (i.e., FLOW=PATH=1). Linear flows enable
simple conversations, typically request/response, which may indicate a system-centric chatbot [37].
The chatbot design (b) shows a conversation flow that splits after the bot interaction (FLOW=1,
PATH=2). This kind of flows permits non-linear conversations with multiple turns and dialogue
alternatives, typical of conversation-centric chatbots [37].

c: Chatbot 

f1: Flow 

u1: User 
Interaction 

b1: Bot 
Interaction 

flows 

init 

i: Intent 

intents 

intent 

t: Text 

user> What’s the size of drinks? 
bot>   Small, medium and large 

(a)                        (b) 

next 

c: Chatbot 

f2: Flow 
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t: Text 

user> A small cappuccino 
bot>  Take away? 
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u3: User 
Interaction 

u4: User 
Interaction 

user> A small cappuccino 
bot>  Take away? 
user> Yes please 

... 

... 

next 
path1 
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path2 lin

ea
r 

p
a

th
 

next 

Fig. 3. Chatbot design excerpts illustrating (a) a linear conversation flow, (b) a forked conversation flow.

The combined use of FLOW and PATH can help detecting deviations of some conversation design
principle. The recipient principle [59] advices to design for the target users, from experts (who may
give all information at once) to novices (where the bot needs to prompt for more information).
In turn, the repair principle [59] recommends supporting clarifications in the conversation, and
multiple paths may be an indication of this. Moreover, having several paths per flow potentially
results in more natural conversations (impacting satisfaction) but less predictable for the user
(likely impacting the user effort or efficiency).

The CNF metric measures the semantic distance between the training phrases of different
intents [10]. For this, the training phrases are tokenised and converted into 512-dimensional vectors
using sentence embedding. Then, the semantic distance between two phrases is given by the cosine
similarity between their embedding vectors. This metric is used to detect similar phrases that may
confuse the bot to make it identify a wrong intent. Since this may cause errors, the metric is related
to effectiveness and satisfaction.
The last global metric, SNT, measures the sentiment of the chatbot output phrases, classifying

the phrases into positive, negative and neutral. This sentiment analysis uses a compositional model
over trees based on deep learning [63]. Specifically, sentences are parsed into binary trees, where
all leaves correspond to a word – represented as a vector – and each node receives a sentiment
score. Then, the sentiment is calculated by recursive neural models that compute parent vectors in a
bottom up fashion using several compositionality functions. The SNTmetric is related to satisfaction,
since a bot that outputs mostly negative phrases may cause a negative user experience [53].
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4.2.2 Intent metrics. Intent metrics measure quality properties of each intent with respect to the
expected user utterances and the bot output phrases.

Related to user utterances, TPI is the number of training phrases that an intent defines. The larger
TPI is, the more precise the intent recognition might be, but this may also indicate a complex intent.
WPTP measures the length of the training phrases in words. Long phrases are not adequate or even
possible in social networks (e.g., Twitter restricts the message length), and are more difficult to
understand for the chatbot. Therefore, large WPTP values might be problematic. VPTP measures
the number of verbs per training phrase. This is an indication of interaction complexity, since
composite phrases with several verbs can be more difficult to elaborate for the user [49]. PPTP
counts the number of information items (i.e., parameters) the user needs to provide in a phrase,
and high values signal intents involving complex domain concepts.

Regarding chatbot outputs,WPOmeasures the number of words per chatbot output. According to
the minimization principle [37], the bot answers should be concise. Large phrases are more difficult
to understand and can be problematic in social networks. The latter is more concretely targeted
by CPO (characters per output), since high values may require scrolling (e.g., in mobile devices)
and long reading times (with the risk that the user may not read the phrase completely [37]).
Long outputs are especially problematic for voice-based chatbots, since speaking takes longer than
reading [37]. Hence, large CPO values may decrease user satisfaction and efficiency. Similarly, VPOP
is another indicator of the complexity of the bot responses, given by the number of verbs per output
phrase. A chatbot can answer several phrases in a single output, and VPOP is computed for each
phrase separately to better assess phrase complexity. READ gives an estimation of the reading time
of the bot responses, which is related to efficiency. It is calculated as the ratio between the number
of words per output, and the number of words that an average person can read per minute [8].
Finally, OPRE computes the readability of the chatbot responses using the Flesch Reading Ease
Formula [19]. This metric yields a number ranging from 0 to 120, and the higher the number, the
easier the chatbot responses are to read. Hence, OPRE may affect both satisfaction and efficiency.

4.2.3 Entity metrics. Entity metrics target user-defined entities representing domain concepts. LPE
(literals per entity) and SPL (synonyms per literal) are indicators of the complexity of the concepts
managed by a chatbot, impacting satisfaction. High LPE and SPL values signal elaborate concepts,
but since SPL counts synonyms, a large number may improve recognition in user utterances (better
satisfaction). A narrow vocabulary (low SPL) may constrain the way users communicate with the
chatbot, and may lead to frustration if the chatbot does not recognise important parameters within
user utterances. WL measures the length of words (i.e., the literals within the entities), and like
CPO, it contributes to readability and may impact user satisfaction and efficiency.

4.2.4 Flow metrics. Flow metrics consider features of the conversation flows. FACT counts the bot
actions (presenting images, text, calling backends) in each conversation flow. The more actions,
the more sophisticated tasks can be achieved. Moreover, rich controls can help to reduce the
user cognitive load and speed up the completion of the intended task. Hence, FACT may impact
effectiveness and satisfaction.

FPATH measures the number of possible paths per conversation flow. High values signal complex
conversations (i.e., more natural-sounding but less predictable). Note that, while the global metric
PATH counts the overall number of conversation paths a chatbot can take, FPATH calculates the
paths per each given flow. This way, PATH can be calculated by adding up FPATH for each flow.

Finally, CL measures the length of each path within a flow, as the number of bot and user turns.
This is an indicator of conversation complexity. Longer paths require more time to complete –
which affects efficiency – and are typical of conversation-centric chatbots [37].
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Fig. 4. Metrics-based clustering process.

5 CLUSTERING CHATBOTS

In this section, we propose two methods to cluster chatbots based on two disjoint criteria: metric
values (Section 5.1) and chatbot vocabulary (Section 5.2). The former allows grouping chatbots by
internal quality features (e.g., complex/simple conversations, large/succinct outputs). The latter
groups chatbots by conversation topic.

5.1 Metrics-based clustering

Metrics-based clustering is useful to identify groups of chatbots with (dis)similar design features.
For this purpose, the chatbots are characterised based on the value of one or more metrics of interest.
For example, clustering by metric INT (i.e., number of intents) would create groups of chatbots with
similar size complexity, whereas if the user performs the clustering using metrics FLOW and PATH,
then the chatbots would be grouped according to the complexity of their conversations.
Figure 4 shows the steps in our metrics-based clustering process. First, the process transforms

the chatbots of interest into the Conga neutral notation (step 1). Then, the user selects a subset
of the metrics proposed in Section 4.2, which are applied to the chatbots (step 2). This way, each
chatbot becomes represented by a vector of size n, where n is the number of metrics selected by
the user, and each position of the vector contains the value of a selected metric for the chatbot.
Next, the process calculates the clusters by applying the k-means algorithm on the chatbot metric
vectors (step 3). The number of clusters to create (i.e., the k-value) can be either specified by the
user or automatically computed using the silhouette coefficient [56]. Our process also performs a
principal component analysis (PCA) of the metric vectors (step 4). PCA is a method to reduce the
dimensionality of data while minimising information loss. In our case, it produces new variables
(the components) that compress information of the metrics so that the first few components explain
most of the variance of the metric values. We use PCA with two purposes. On the one hand, to
project the clusters into a two or three-dimensional space for visualisation, by selecting the two or
three principal components (step 5). On the other hand, to identify sets of related metrics (step 6).
The latter is possible since PCA permits explaining how each metric contributes to each component,
by providing the loading factor of the metric for the component. This effectively groups the metrics
that contribute the most to each component.

As an example, Figure 5 shows the result of clustering a set of 54 chatbots3 by using the metrics
PATH, INT, FLOW, WL, PPTP and FPATH. In the graphic, each dot represents a chatbot, and the shape
of the dot identifies the cluster where the chatbot belongs. Overall, the process yields 3 clusters
with sizes 28, 4 and 22. The table in Figure 5 shows the average metric value for the chatbots in
each cluster. At a first glance, one can see that clusters 1, 2 and 3 contain chatbots with low, high
and medium values of PATH, INT and FLOW; low, medium and high values of WL and PPTP; and
high, low and low values of FPATH.
3 Dataset available at https://github.com/ASYM0B/SmallDataSet2.
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Cluster 1 Cluster 2 Cluster 3
Size (#chatbots) 28 4 22

PATH 7.18 88.75 11.05
INT 10.46 77.5 11.81

FLOW 3.54 73.25 9.77
WL 0 5.15 9.19
PPTP 0.21 1.13 1.55
FPATH 3.34 1.25 1.24

Fig. 5. Cluster projection into three dimensions, and average metric values for the chatbots in each cluster.

Table 3. Explained variance per component, and loading matrix, for the metrics and clusters in Figure 5.

Components
C1 C2 C3

Explained variance (%) 48% 27% 16%
Cumulative explained variance (%) 48% 75% 91%

Loading matrix
PATH 0.58
INT 0.57
FLOW 0.57
WL 0.66
PPTP 0.63
FPATH 0.88

Table 3 shows the first three components found by PCA, their eigenvalues (the percentage of
variance they explain), and their loading factors (the table omits factors lower than 0.42). The
results confirm our previous intuition: the first component (C1) aggregates metrics PATH, INT and
FLOW; the second one (C2) aggregatesWL and PPTP; and the third (C3) includes FPATH. These three
components explain 91% of the variance (cf. cumulative explained variance).

The projection in Figure 5 uses these three components to provide a position to each chatbot in
a three-dimensional space. Roughly, the C1 axis positions chatbots according to their PATH, INT
and FLOW metric values; axis C2 according to WL and PPTP; and axis C3 according to FPATH.

We can interpret this information to summarise the chatbots that are in each cluster. Specifically,
the first component (C1) distinguishes cluster 2 from clusters 1 and 3. The metrics with the highest
weight in C1 are PATH, INT and FLOW, which measure the conversation flow paths, the intents, and
the conversation entry points. The table in Figure 5 shows that cluster 2 has the highest values
for these metrics, so we conclude that the chatbots in this cluster are bigger than the rest, in the
sense that they take into account more conversational contexts. Looking again at Figure 5, we can
see that the second component (C2) separates clusters 1 and 3. The metrics that impact C2 the
most are WL and PPTP, which measure the average word length of entities and the parameters per
training phrase. We observe that the chatbots in cluster 1 have very low values for these metrics.
In particular, they have zero words per entity, likely because most of them are defined using Rasa,
where entities can be implicitly defined in Python code, and not caught by our Conga model.
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In summary, cluster 2 contains complex chatbots, cluster 1 contains Rasa chatbots, and cluster 3
includes the rest of chatbots.

5.2 Vocabulary-based clustering

In addition to our metrics-based clustering, which groups chatbots depending on their internal
design properties, we provide another clustering method based on the chatbot conversation topics.
For example, chatbots for ordering food are likely to be in the same cluster, since their vocabulary
is similar. For this purpose, we use a technique similar to Latent Semantic Analysis (LSA) [28] to
compute the distance between chatbots.
Figure 6 describes our process for vocabulary-based clustering. The input to the process is a

set of chatbots, which may have been developed with different technologies. Then, the process
performs the following steps.
(1) Inject. The first step is the same as for metrics-based clustering, and transforms the chatbots

into the Conga neutral notation.
(2) Extract vocabulary. Next, the process extracts the vocabulary that each chatbot uses. This

is made of the training phrases of the intents, the chatbot output phrases, and the literals and
synonyms in entities.

(3) Pre-processing. The extracted vocabulary is tokenised to retrieve the words in phrases, and
then normalised as follows. Stop words such as prepositions, articles and conjunctions are
removed, since they do not provide relevant information. Moreover, the Porter2 stemming
algorithm [50] is applied to the words to keep just their morphological root (i.e., the stem).
This way, two words that only differ in their inflected forms are considered equal. Overall,
stemming reduces the dimensionality of the chatbot vector representations, and it is useful
for our purposes since it permits considering two chatbots using the same stemmed words as
similar.

(4) TF-IDF. Next, to quantify the relevance of a word to a chatbot, the process computes the
term frequency-inverse document frequency (TF-IDF) [57]. This is one of the most popular
term-weighting methods today, widely used in information retrieval, text mining and analysis,
and clustering of source code [27]. Specifically, each chatbot 𝐶 is represented as a vector,
where each position in the vector represents a (stemmed) word𝑤 , and contains the weight
𝑊 (𝑤,𝐶) of the word𝑤 for the chatbot𝐶 . This weight is calculated considering the frequency
𝑓 (𝑤,𝐶) of the word𝑤 in the chatbot 𝐶 and in the set of chatbots R to be clustered, as given
by the formula:

𝑊 (𝑤,𝐶) = 𝑓 (𝑤,𝐶)
𝑚𝑎𝑥{𝑓 (𝑡,𝐶) | 𝑡 ∈ 𝐶} · 𝑙𝑜𝑔

(
|R |

|{𝐷 ∈ R | 𝑤 ∈ 𝐷}|

)
(1)

A word 𝑤 receives a high weight when 𝑤 has a high appearance frequency in the given
chatbot𝐶 , and a low appearance frequency in the whole set of chatbots 𝑅. Hence, the weights
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tend to filter out common terms. Note that the weight vector of small chatbots may have
many zeros.
Overall, the output of this step is a term-document matrix, where each row corresponds
to a chatbot, each column corresponds to a (stemmed) word, and each cell of the matrix
contains the TF-IDF weight of a word for a chatbot. Other chatbot representations, such as
bag-of-words, or embeddings like Word2Vec [35], are also possible. We experimented with
the former representation in previous work [33] (with worse results than using TF-IDF, as
Section 7.5 will show). Using Word2Vec would require a very large corpus of chatbots for
training, and it is left as future work.

(5) Similarity. The term-document matrix is used to measure the similarity between each two
chatbots. For this purpose, we use the cosine similarity, which computes the angle between
the vectors representing the two chatbots. To optimise this computation, each TF-IDF vector
is normalised so that the only operation to do is multiplying the weights of each word. The
cosine similarity yields a number between 0 and 1. Chatbots having analogous conversation
topics will have a similarity close to 1, while chatbots of very different domains will obtain a
low similarity tending to 0.

(6) Cluster. Next, our process uses agglomerative clustering [55] to group the chatbots based
on their vocabulary-based similarity. This algorithm relies on a notion of distance. In our
case, the distance 𝑑 between two chatbots𝐶1 and𝐶2 is defined as 𝑑 (𝐶1,𝐶2) = 1− 𝑠𝑖𝑚(𝐶1,𝐶2),
where 𝑠𝑖𝑚(𝐶1,𝐶2) is the cosine similarity of the chatbots. The algorithm creates clusters
by merging successively the two nearest chatbots 𝐶1 and 𝐶2 to yield a new element 𝐶12.
The distance 𝑑 (𝐶12,𝐶3) from this new element 𝐶12 to another chatbot 𝐶3 is defined by
𝑑 (𝐶12,𝐶3) = 𝑑 (𝐶1,𝐶3 )+𝑑 (𝐶2,𝐶3 )

2 . This way, at each iteration, the algorithm removes the entries
corresponding to 𝐶1 and 𝐶2 from the distance matrix, and adds a new element 𝐶12. The
algorithm stops when there are no more elements with a distance less than a given threshold
𝑡 . This step yields two outputs: a clustered similarity matrix having chatbots as rows and
columns, where each position (𝑖, 𝑗) in the matrix contains the distance (a value between 0
and 1) between chatbots 𝑖 and 𝑗 ; and a dendrogram with the cluster hierarchy.

(7) Explain. To understand the obtained clusters, a final step extracts the most descriptive terms
for each cluster. A term is descriptive with respect to a cluster if it has a high appearance
frequency in the cluster, in comparison to its frequency in the whole corpus of chatbots.
Formally, we define the importance 𝐼 of a term 𝑡 in a cluster C with respect to the set of
chatbots R as:

𝐼 (𝑡)C,R =
1
|C|

∑︁
𝐶∈C

𝑊 (𝑡,𝐶) − 1
|R |

∑︁
𝐶∈R

𝑊 (𝑡,𝐶)

where𝑊 (𝑡,𝐶) is the weight of the term 𝑡 for the chatbot 𝐶 in the term-document matrix (cf.
Equation 1). This way, the importance of a term for a cluster is greater the more it appears in
the cluster, and the less it appears in the chatbots outside the cluster.

As an example, Figure 7 shows the clustered similarity matrix resulting from step 6 for a set of
54 chatbots4. The matrix uses colours to represent chatbot similarity, where higher similarities
(i.e., lower distance values) are depicted with darker colours. In addition, the figure represents the
grouping of clusters by means of dendrograms. The number of clusters can vary depending on the
used threshold. For example, a threshold of 0.87 yields 17 non-singleton clusters.

Table 4 shows the size of the eight biggest clusters, as well as their five most representative terms
obtained as explained in step 75. These terms enable recognising common topics of the chatbots
4 Dataset available at https://github.com/ASYM0B/SmallDataSet. This dataset is different from the one used in the example
of Section 5.1, as it serves to illustrate better vocabulary-based clustering. 5 Additionally, there are nine clusters with size
two, and the rest are singletons.
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Fig. 7. Clustered similarity matrix of chatbots. Each cell represents the distance between two chatbots by
colour intensity, where darker colours mean lower distance (i.e., higher similarity).

Table 4. Most descriptive (stemmed) terms in the eight biggest clusters.

Top terms
Clusters Size #1 #2 #3 #4 #5
Cluster 1 4 restaur food indian north serv
Cluster 2 4 transact payment transfer pay account
Cluster 3 4 student graduat bachelor ec faculti
Cluster 4 4 room book hotel reserv breakfast
Cluster 5 4 flight return leav travel book
Cluster 6 3 virus corona covid spread coronavirus
Cluster 7 3 news headlin latest bbc australia
Cluster 8 3 ticket movi concert theater cinema

that belong to a same cluster. For example, we can guess that the clusters contain chatbots related to
restaurants (cluster 1), banking (cluster 2), teaching (cluster 3), hotels (cluster 4), air travel (cluster
5), covid (cluster 6), news (cluster 7) and leisure (cluster 8).
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6 TOOL SUPPORT

We have built a tool called Asymob supporting the measurement and clustering of chatbot designs
specifiedwithConga. The tool is deployed as aweb platform at http://miso.ii.uam.es/asymobService.
Its code is open source and available at https://github.com/PabloCCanizares/asymob.

Next, Section 6.1 presents the architecture of Asymob, including its main features and underlying
technologies; Section 6.2 details the conversion of chatbots implemented in two mainstream
platforms (Dialogflow and Rasa) into Conga; and Sections 6.3 and 6.4 describe the usage of the
tool for chatbot measurement and clustering.

6.1 Overview of Asymob

Asymob supports uploading chatbot specifications of heterogeneous technologies into a common
repository. Such specifications can be either a zip file containing the chatbot implementation (e.g., a
Rasa project, Dialogflow JSON files) or a Conga model in XMI format [64]. The uploaded chatbots
are then measured using the metrics presented in Section 4.2. Asymob provides statistics of the
metrics across all chatbots in the repository. In addition, users can query the repository to search
for chatbots within certain metric bounds and compare them against each other according to their
metric values. The platform also allows clustering chatbots by their metric values (cf. Section 5.1)
or by the conversation topics as given by the words appearing in their training phrases, chatbot
responses and entities (cf. Section 5.2).

Figure 8 depicts the architecture of Asymob. Its functionality is offered via a web interface, which
interacts with a service layer via a REST API. The front-end is implemented in HTML and JavaScript,
and supports the interactive presentation of metrics and clusters using the libraries Plotly6 and
Cytoscape7, while word clouds for describing chatbots and clusters are visualised with JQCloud8.
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Fig. 8. Architecture of Asymob.

The service layer (the Asymob core) implements the functionality related to measuring and
clustering chatbots. This core has an extensible design, which makes it easy to add new types of
metrics, clustering criteria and chatbot technologies. To support chatbots from different platforms,
6 https://plotly.com/ 7 https://cytoscape.org/ 8 https://mistic100.github.io/jQCloud/
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it relies on the neutral chatbot design notation Conga, introduced in Section 4.1. Conga is built
atop the Eclipse Modeling Framework (EMF) [64]. This way, Asymob computes the metrics on
Conga models, independently of any chatbot implementation platform. To measure chatbots
from a specific platform, an importer from the platform into Conga must be provided. Currently,
Asymob has importers from Dialogflow and Rasa. Section 6.2 provides more details about these
two importers.

Asymob supports some third-party technologies to simplify the implementation of new metrics.
Specifically, it uses the library Stanford CoreNLP9 to perform sentiment and syntactic analysis of
the chatbot training and output phrases. The metrics SNT and VPTP use this library. In addition,
Asymob uses textstat10 – a Python library to obtain statistics from text – to calculate the metric
OPRE, as well as Deep Java Learning (DJL)11 and TensorFlow12 to detect confusing phrases between
intents using the cosine similarity and calculate the metric CNF based on this algorithm. The chatbot
clustering functionality uses other Python libraries like NLTK13, SKLearn14 and SciPy15.

The service layer has a REST API, which we have used to create the web platform (i.e., the front-
end). This API also permits integrating our services in custom chatbot construction platforms, or
within custom in-house development workflows (e.g., using Github actions, continuous integration
servers like Jenkins, or DevOps processes).
An additional backend layer provides persistence. This stores the uploaded chatbots in the

filesystem of the machine where the Asymob core is deployed, and uses MongoDB16 for storing
the data produced in the service layer (i.e., the metric values and the information required for
conducting clustering).
As Figure 8 shows, when a chatbot is uploaded into the platform, it is converted to Conga

and immediately measured, storing the results in a MongoDB database. In addition, the TF-IDF
frequency of each word in the chatbot is calculated and stored in a database as well. These are
background processes that do not slow down the uploading process, but reduce the response time
of future requests of chatbot measurement, comparison and clustering.

6.2 Importing chatbots into Conga

Next, we provide details of the importers that Asymob provides to convert chatbots from two
representative and widely used chatbot platforms (Dialogflow and Rasa) into Conga.

6.2.1 Importer from Dialogflow to Conga. Dialogflow [14] is a low-code development platform to
create chatbots using a graphical interface within the browser. Chatbots so defined can be exported
as JSON files, which our importer converts into Conga models.
In the JSON-based representation of a Dialogflow chatbot, the file Agent.json describes global

chatbot features, like its name, definition languages, or connection data to external services (the
webhook). The latter include details such as the URL of the service, headers, and authentication
credentials. Our importer creates a Conga Chatbot object using the agent’s name and languages,
and an HttpRequest action with the webhook data.
Entities in Dialogflow can be predefined or user-defined. The latter data are described either

by a regular expression, a list of literals with synonyms, or a composite entity. Each user-defined
entity becomes exported as a JSON file containing the entity name and configuration information
(if it is a regular expression or a composite entity), and one file per definition language with the
corresponding literals. Our importer converts these files into Conga Entity objects.
Intents in Dialogflow have a name, training phrases, responses, parameters, and an indication

of whether they are fallback or enable a webhook, among other features. Intents are exported
9 https://stanfordnlp.github.io/CoreNLP/ 10 https://pypi.org/project/textstat/ 11 https://djl.ai/
12 https://www.tensorflow.org/ 13 https://www.nltk.org/ 14 https://scikit-learn.org/ 15 https://scipy.org/
16 https://www.mongodb.com/
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1 ## intent:order
2 − I'd like a [medium]{"entity": "size", "value": "medium"} [cappuccino](type)
3 − I want a [small]{"entity": "size", "value": "small"} [latte](type)
4 − Can I order a [large]{"entity": "size", "value": "large"} [black](type) coffee?
5 ## synonym:small
6 − little
7 − short
8 ## synonym:medium
9 − regular
10 − median
11 ## synonym:large
12 − big
13 − extra

Listing 1. Example of data/nlu.md Rasa file

1 ## story1
2 ∗ order
3 − utter_confirm_order

Listing 2. Example flow from data/stories.md Rasa file

into JSON files. For each intent definition file, our importer creates a Conga Intent object with
its Parameters and TrainingPhrases, as well as the necessary Actions to compose each response. We
currently support text and image responses, and convert other custom responses into Empty actions
(but this does not affect the defined metrics).

Finally, Dialogflow controls the conversation flow via contexts. These can be input/output to
intents, and can store relevant conversation state. Our importer uses the contexts and the responses
of the related intents to generate Conga Flow objects.

6.2.2 Importer from Rasa to Conga. Rasa [52] is a framework to develop chatbots combining
Python, markdown and YAML. The definition of Rasa chatbots comprises several files. The con-
fig.yml file defines configuration properties, like the chatbot language or the used NL prediction
model. The data/nlu.md file contains training phrases for the intents, together with entities and
synonyms or regular expressions. As illustration, the data/nlu.md file in Listing 1 defines an intent
called order (lines 1–4). The parameters in the training phrases are defined within square brackets
and are followed by the entity name either in parenthesis (e.g., [cappuccino](type)) or within curly
brackets (e.g., [medium]{"entity": "size", "value": "medium"}). The listing also declares synonyms for
literals small (lines 5–7), medium (8–10) and large (11–13).

The file domain.yml defines the chatbot intents, entities and actions. Actions can be text, images,
buttons, or custom actions defined in the Python file actions.py. Finally, the file data/stories.md
specifies the conversation flows. Listing 2 shows a flow example, specifying that matching the
intent order triggers the response utter_confirm_order.
We have built an importer that reads the chatbot language from the config.yml file and creates

Conga intents and entities from the data/nlu.md file, Conga actions from the domain.yml file,
and Conga flows from the data/stories.md file. As in the case of Dialogflow, our importer from
Rasa supports text and image responses, and converts Rasa custom actions into Conga empty
actions. As a limitation, entities in Rasa can also be defined using Python code, instead of using the
declarative, explicit approach shown in Listing 1. In this case, our importer is not able to produce
Conga entities, and signals this fact using a warning.
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6.3 Measuring chatbots with Asymob

When a chatbot is uploaded, Asymob computes its metrics and displays their value in a table and
also in interactive graphs that compare these values with statistics of the chatbots in the repository.
Figure 9 shows the graph for metric INT. The left bar displays statistics of the chatbot repository,
and the bar to the right displays the metric value for the uploaded chatbot. We observe that the
new chatbot can be considered small since it has 4 intents, while the average number of intents
of the chatbots is around 15 (with a median of 7). The computed metrics are persisted to speed
up the generation of statistics when new chatbots are uploaded, and to facilitate the following
functionalities.

Fig. 9. Chatbot measurement.

First, Asymob offers statistics of the metrics of all chatbots in the repository (average, minimum,
maximum, median and 1st and 3rd quartiles). They are displayed as a table, as a graph, and
side-by-side with the metric values of a specific chatbot, as Figure 9 shows.

Asymob permits comparing a collection of chatbots based on a set of metrics selected by the user,
as shown in Figure 10. In the upper graphic, the x-axis displays the selected metrics (13 in the figure),
and the y-axis shows their value for the chatbots selected from the repository (10 bots in this case).
The lower graphic permits zooming on the values for one of the selected metrics (bars to the right)
and comparing them with the average metric value in the repository (bar to the left). In the figure,
the user has zoomed on the values for metric INT. We can see that Car and recruitment-bot-rasa
stand out in this metric, meaning that they have more conversation alternatives (intents). This
comparison can also be performed for several versions of the same chatbot (if different versions
were uploaded into the repository) to reason about the evolution between chatbot versions in terms
of metrics.
The platform also includes a metric-based chatbot search facility, where users can specify the

lower and upper limits for the value of some metrics of interest, and Asymob displays the chatbots
in the repository with metric values within these boundaries. This is useful to obtain sets of
chatbots with certain characteristics, e.g., simple chatbots with few intents and no defined entities,
or complex chatbots with many intents and complex conversation flows.

6.4 Clustering chatbots with Asymob

Asymob supports the metrics-based and vocabulary-based clustering methods described in Section 5.
In both cases, the user starts by selecting the chatbots to cluster. Then, the result depends on the
clustering method.
In the case of metrics-based clustering, the tool displays the resulting clusters in a table and

graphically, as Figure 11 shows. The graph can display two or three dimensions, so if the user selects
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Fig. 10. Chatbot metrics comparison.

more than three metrics as clustering criteria, the platform reduces the number of dimensions using
PCA. The graphic represents each chatbot as a dot, and uses a different colour for each cluster
of chatbots. The graphic is interactive, supporting rotation, zooming, and visualisation of each
chatbot name. In Figure 11, there are 4 clusters with 161, 82, 9 and 7 chatbots. A table displays the
average of the selected metrics of each cluster. This page also enables the inspection of each cluster
(displaying the chatbots within the cluster in a table), and the information of the PCA (explained
variance and loading matrix).

Fig. 11. Metrics-based clustering.

With regards to vocabulary-based clustering, in addition to the chatbots, the user can select a
similarity threshold for the agglomerative clustering algorithm. Then, the resulting clusters are
shown in a table, in an interactive hierarchical graph, and it is also possible to visualise the clustered
similarity matrix on demand (cf. Figure 7). In the hierarchical graph visualisation, the first graph
layer has a node per cluster, and clicking on a cluster shows the bots it contains. As an example,
Figure 12 shows the chatbots within a cluster, and a word cloud with the most frequent words of
the chatbots in the cluster. The most relevant words for the cluster can also be displayed on a table.
The width of the edges in the graph is proportional to the similarity between the two connected
chatbots. Clicking on a chatbot displays its metrics on a table.
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Fig. 12. Vocabulary-based clustering.

7 EVALUATION

This section reports on an empirical study whose goal is assessing the usefulness of our metrics and
the efficacy of our vocabulary-based clustering. First, Section 7.1 overviews the followed research
methodology and states the research questions (RQs). Then, Section 7.2 describes the experiment
setting, and Sections 7.3–7.5 answer the RQs. Section 7.6 elaborates on threats to validity. Finally,
Section 7.7 discusses the main findings in the studies, providing actionable insights for researchers,
practitioners and tool builders.

7.1 Research methodology

Our evaluation aims to answer the following RQs:
RQ1 How do chatbots in the wild compare with respect to their size, conversation style, outputs,

expected inputs and vocabulary?
RQ1.1 Do design metrics for Rasa and Dialogflow chatbots follow the same distributions?
RQ2 Can the defined metrics detect quality issues in real chatbots?
RQ3 Can the vocabulary-based clustering create meaningful groups of semantically related chat-

bots?
With this aim, we followed the research methodology depicted in Figure 13. Firstly, we created

a dataset of Rasa and Dialogflow third-party chatbots, obtained from several relevant sources.
Section 7.2 characterises this dataset. Then, we applied different research methods to answer each
RQ.
The study of RQ1 aims to obtain a panorama of the features of chatbots in the wild, and RQ1.1

pursues to assess if metrics could serve as a means to analyse the impact of the used implementation
platform in the features of the underlying chatbot designs. To answer both questions, we used
Asymob to import the dataset of chatbots into Conga, and take measurements. Then, we compared
different dimensions of the chatbots (size, conversation style, responses, expected user utterances
and vocabulary) based on the chatbots’ metric values. We also compared the minimum, maximum
and average values of each metric per technology. Finally, we conducted some equality tests to
analyse whether the metrics have the same probability distribution of values in Dialogflow and
Rasa. Section 7.3 reports on this analysis.

The goal of RQ2 is to evaluate whether the proposed metrics can help to statically detect potential
problems (“bad smells”) in chatbot designs.We do not expect every discordantmetric value to signal a
real problem, but instead, we are interested in assessing the usefulness of metrics as an inexpensive
chatbot quality assurance mechanism (e.g., compared to testing) that can be used early in the
development process. To answer this question, we analysed the obtained measurements to identify
statistical outliers for each metric (i.e., metric values that largely differ from the other metric values).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



1:24 Pablo C. Cañizares, Jose María López-Morales, Sara Pérez-Soler, Esther Guerra, and Juan de Lara

chatbot sources

Github Dialogflow Rasa Kommunicate

ASYMOB

259 chatbots
Dialogflow / Rasa

dataset

metric i

chatbot 1

metric i

chatbot 259

…

RQ1
•metric value comparison
•min / max / avg metric value
•equality test (Dialogflow/Rasa)

RQ2
•metric outliers
•chatbots with metric outliers

vocab.-based
clustering

manual
clustering

RQ3
•accuracy of vocab.-based clustering

comparison
of vocab.-based

clusters and 
manual clusters

metric values

http://miso.ii.uam.es/asymobService

https://github.com/ASYM0B/Dataset

Results data at: https://github.com/asym0b

Fig. 13. Research methodology for our evaluation.

After that, we looked at the chatbots with outlier values for some metric, to identify whether these
values signalled a design error. Section 7.4 identifies the metric outliers per technology, reporting
the percentage of those that present problems.
Finally, the aim of RQ3 is evaluating the extent to which our semantic clustering can produce

groups of chatbots that are meaningful. To answer this, we performed the clustering of all chatbots
in the dataset using our vocabulary-based approach on the one hand, and manually on the other
hand. Then, we computed the accuracy with which the vocabulary-based clusters mimic the manual
clusters built by a human. Section 7.5 reports the results.

7.2 Experiment setting

The dataset for our evaluation contains as many Rasa and Dialogflow third-party chatbots as
possible, coming from four sources: Github, Dialogflow, Rasa and Kommunicate17. The chatbots
from Github were obtained via Github Search18, using dedicated search queries for each technology.
For Rasa, we used the following query, which searches software repositories containing some of
the standard files in Rasa projects: rasa AND (path:/stories.md OR path:/nlu.md). Similarly, the query
to retrieve Dialogflow chatbots was dialogflow AND (path:agent.json OR path:dialogflow*.zip). Then,
we analysed the repositories returned by the queries, to assess that they actually contained chatbot
definitions. Moreover, from the retrieved chatbots, we filtered out those that were malformed or
were not defined for the English language. Note that we did not remove toy or incomplete chatbots,
since one of our goals was to check whether our metrics could detect unfinished or partial designs
(e.g., intents missing training phrases)19. Finally, to complement this set of chatbots, we added to
our dataset all predefined chatbots that the platforms Dialogflow, Rasa and Kommunicate offer to
their users.
Table 5 describes our dataset, available at https://github.com/asym0b/Dataset. It contains 259

chatbots, classified either as open source if they were located in an open-source repository, or
17 https://www.kommunicate.io/ 18 https://github.com/search 19 The interested reader can
find the results of our experiment for RQ2 without toy/incomplete chatbots in the dataset at:
https://github.com/PabloCCanizares/asymob/tree/master/MetricsOutliers/Filtered
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predefined if they were available as prebuilt agents in some platform. Predefined chatbots typically
illustrate the platform capabilities in an application domain, and can be reused and modified to fit
specific needs. The dataset is balanced in terms of technologies (117 Dialogflow chatbots, 142 Rasa
chatbots), but predefined chatbots are a minority in the dataset (24 predefined chatbots, 235 open
source chatbots).

Table 5. Description of the chatbots dataset.

Technology Source Kind #Chatbots

Dialogflow
Github Open source 96

Dialogflow Predefined 14
Kommunicate Predefined 7

Rasa Github Open source 139
Rasa Predefined 3

259

7.3 RQ1 & RQ1.1: Chatbot comparison and metrics distribution across technologies

To answer RQ1 and RQ1.1, we applied the metrics suite to all chatbots in our dataset. The detailed
metric values for each chatbot are available at https://github.com/asym0b/Dataset. Table 6 displays
a summary of the results. The table shows the minimum, maximum, average and median values for
eachmetric, distinguishing between Dialogflow chatbots, Rasa chatbots, or globally (i.e., considering
Dialogflow and Rasa chatbots together). Intent, entity and flow metrics are calculated averaging
the values over the number of intents, entities and flows in each chatbot. An exception is CL, which
takes the maximum conversation length in the chatbot to be more informative. The sentiment
metric SNT is disaggregated into positive (SNT+), neutral (SNT=) and negative (SNT−). The last two
columns of the table display the result of two nonparametric tests used to identify differences
between the distribution of metric values in Dialogflow and Rasa (for RQ1.1, cf. Section 7.3.6).
Next, we exploit the metrics to compare the chatbots based on their size, conversation style,

outputs, expected inputs, vocabulary (pertinent for RQ1) and implementation platform (RQ1.1).

7.3.1 Size. Metrics can be used to compare and classify chatbots based on their size. In particular,
metric INT (number of intents) is a good indicator for chatbot size. Figure 14 shows the distribution of
this metric across the chatbots’ set, where the bars are divided between Rasa andDialogflow chatbots.
The global median is 8 intents, 90% of chatbots have less than 24 intents, just 13 chatbots (4%) have
more than 40 intents, and 29 chatbots (11%) have 3 intents or less. Some of the smallest chatbots
may be toy examples built to experiment with the technology, most frequently in Dialogflow.

7.3.2 Conversation. Metrics also serve to compare and classify chatbots based on their conversation
style [37]. Some chatbots are prepared to hold a wider variety of conversations according to their
number of intents (INT), conversation flows (FLOW) and conversation paths (PATH). Figure 15
projects the dataset along these three metrics. We observe that there is high correlation between
the metrics (0.76 correlation between INT and FLOW, 0.62 between INT and PATH, and 0.69 between
FLOW and PATH). Naturally, chatbots with more intents tend to have more flows, and therefore,
more paths.

Conversations are fully linear in 46% of the chatbots (FLOW=PATH), and the remaining 54% chat-
bots support more complex conversations (FLOW<PATH). Most chatbots with linear conversations
(69.2%) have medium-to-low size (8 intents or less). Figure 15 highlights the chatbot iLearn, as
it is the largest chatbot with linear conversation, having 89 intents, flows and paths, and built
using Dialogflow. Regarding chatbots with non-linear conversations, they have an average of 4.2
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Table 6. Summary of metric values for the chatbots in the dataset.

Metric Dialogflow Rasa Global Equality tests
Type Name Min Max Avg Median Min Max Avg Median Min Max Avg Median MW KS

Global
metrics

INT 1.0 89.0 10.9 6.0 2.0 143.0 15.4 9.0 1.0 143.0 13.37 8.0 ≤ 10−3 ≤ 10−3
ENT 0.0 37.0 2.44 0.0 0.0 9.0 0.39 0.0 0.0 37.0 1.31 0.0 ≤ 10−3 ≤ 10−3
FLOW 1.0 89.0 9.27 5.0 1.0 102.0 6.96 3.0 1.0 102.0 8.01 4.0 ≤ 10−3 ≤ 10−3
PATH 1.0 117.0 10.51 5.0 1.0 207.0 15.04 7.0 1.0 207.0 13.0 6.0 0.029 0.070
CNF 0.0 1606.0 87.42 3.0 0.0 10532.0 190.27 10.0 0.0 10532.0 143.81 7.0 ≤ 10−3 ≤ 10−3
SNT+ 0.0 38.0 6.68 4.0 0.0 58.0 17.65 17.0 0.0 58.0 12.69 12.0 ≤ 10−3 ≤ 10−3
SNT= 0.0 100.0 47.38 64.0 34.0 100.0 73.55 73.0 0.0 100.0 61.73 70.0 ≤ 10−3 ≤ 10−3
SNT− 0.0 100.0 16.03 17.0 0.0 51.0 8.8 6.0 0.0 100.0 12.07 10.0 ≤ 10−3 ≤ 10−3

Intent
metrics

TPI 0.0 94.67 9.04 5.56 0.0 235.17 18.46 8.09 0.0 235.17 14.21 6.75 ≤ 10−3 ≤ 10−3
WPTP 0.0 9.62 2.72 2.41 0.0 5.37 3.03 2.83 0.0 9.62 2.89 2.75 0.007 ≤ 10−3
VPTP 0.0 1.76 0.55 0.44 0.0 1.33 0.6 0.55 0.0 1.76 0.58 0.52 0.053 0.004
PPTP 0.0 8.33 0.65 0.33 0.0 1.6 0.32 0.25 0.0 8.33 0.47 0.27 0.008 0.036
WPO 0.0 23.11 6.02 5.79 2.25 87.63 9.37 6.63 0.0 87.63 7.86 6.27 0.001 ≤ 10−3
CPO 0.0 125.56 27.23 23.56 10.82 440.1 43.87 28.4 0.0 440.1 36.35 26.06 ≤ 10−3 ≤ 10−3
VPOP 0.0 3.56 0.91 1.04 0.17 3.52 1.26 1.2 0.0 3.56 1.1 1.12 0.004 ≤ 10−3
READ 0.0 19.0 4.84 4.0 1.0 75.0 7.56 5.0 0.0 75.0 6.33 5.0 0.002 ≤ 10−3
OPRE 0.0 92.0 54.69 75.0 44.0 113.0 89.3 89.5 0.0 113.0 73.67 84.0 ≤ 10−3 ≤ 10−3

Entity
metrics

LPE 0.0 1177.13 22.06 0.0 0.0 0.0 0.0 0.0 0.0 1177.13 9.97 0.0 ≤ 10−3 ≤ 10−3
SPL 0.0 7.13 1.25 0.0 0.0 0.0 0.0 0.0 0.0 7.13 0.57 0.0 ≤ 10−3 ≤ 10−3
WL 0.0 36.0 3.87 0.0 0.0 0.0 0.0 0.0 0.0 36.0 1.75 0.0 ≤ 10−3 ≤ 10−3

Flow
metrics

FACT 1.0 8.0 1.88 2.0 1.0 3.92 1.31 1.1 1.0 8.0 1.57 1.31 ≤ 10−3 ≤ 10−3
FPATH 1.0 3.5 1.11 1.0 1.0 57.0 4.01 1.67 1.0 57.0 2.7 1.13 ≤ 10−3 ≤ 10−3
CL 1.0 8.0 1.51 1.0 1.0 211.0 7.46 4.0 1.0 211.0 4.77 3.0 ≤ 10−3 ≤ 10−3
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Fig. 14. Distribution of the number of INTents per chatbot.

paths per flow (average of 𝑃𝐴𝑇𝐻
𝐹𝐿𝑂𝑊

, or FPATH20). As Figure 15 shows, some extreme cases include
rasa-workshop-pydata-berlin (37 paths per flow) and dong5854 (57 paths in its unique flow). These
chatbots feature very complex conversations, offering many choices to the user to continue the
conversation, which might be confusing. Other big chatbots supporting non-linear conversations
are more balanced, like finbot-master (41 intents, 22 flows, 207 paths, 9.4 paths per flow), Tiara-A-
Chatbot (71 intents, 12 flows, 23 paths, 1.92 paths per flow) or identity-cloning-toolkit (114 intents,
102 flows, 115 paths). The latter chatbot is almost linear, with 1.13 paths per flow.

Additionally, Figure 16 shows the maximum conversation length (CL) of the analysed chatbots.
In 92 chatbots, conversations are limited to one user-bot interaction (CL=1), and hence, they can
be classified as system-centric [37]. Within this set, chatbots providing long responses are likely
content-centric. Just two chatbots – nep-chatbot and FAQ_RASA_NLU – can be classified within
this category. Both were built with Rasa and have over 54 words per output in average (WPO>54).
Other chatbots allow longer conversations with more turns (CL>1). Chatbots with non-linear
conversations (FLOW<PATH) have necessarily more than one turn (CL>1) and can be classified as

20 In Table 6, FPATH is calculated for all chatbots, not only for those with non-linear conversations.
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conversation-centric [37]. In our dataset, the global median of CL is 3. Moreover, CL is 12 or less in
96% of the chatbots, and 6 or less in 84% of them.
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Fig. 16. Distribution of the chatbots’ (maximum) conversation length (CL).

7.3.3 Outputs. Chatbots can be compared based on their responses to users. Interestingly, 35
chatbots (a 13.5% of the total) have no output phrases. In some cases – like the Car or Food-delivery
predefined agents of Dialogflow – this is because the chatbot is a template agent that the developer
needs to complete with custom outputs. In other cases – like the MysteryAnimal chatbot game built
with Rasa – it is because a backend API generates the output dynamically.

Metrics WPO (words per output) and CPO (characters per output) help to compare the verbosity
of the chatbots. The global median of WPO is around 6 words per output, and CPO is around 26
characters per output. These metrics take high values on verbose chatbots. For example, Tiara-A-
Chatbot has over 87 words per output. As we will see in Section 7.4, this may indicate a quality
problem. On the other end, two Dialogflow chatbots – fulfillment-temperature-converter and fulfillment-
multi-locale – reply 2 words or less on average.
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The OPREmetric captures the readability of phrases [19]. Its formula was designed to yield scores
between 0 and 100, but it is possible to reach a maximum value of 120. The higher the value, the
more readable the phrase. The dataset has a global average for OPRE above 73, which suggests
easy-to-read output phrases in general. However, two chatbots – fulfillment-temperature-converter
and fulfillment-multi-locale – have values of 17 and 35, hinting poor readability.

Regarding the sentiment of the output, we observe that, globally, most outputs have neutral tone
(SNT= is 61.73%), while outputs with positive (SNT+) and negative (SNT−) tone are roughly equally
distributed.

7.3.4 Expected inputs. Similarly as with the chatbot outputs, one can compare the complexity
of the expected user inputs. Metrics WPTP and VPTP measure the words and verbs per training
phrase. With a global average of 2.89 words and 0.58 verbs per phrase, chatbots generally expect
uncomplicated user utterances. In addition, PPTP counts the number of parameters (i.e., pieces of
information) that users should provide in each phrase. We find that 84 chatbots (32.4%) do not
require users to provide any parameters (PPTP=0), 146 chatbots (56.3%) require an average number
of parameters equal or less than 1 in user utterances (0<PPTP≤1), and only 29 chatbots (11.1%)
expect more than 1 parameter in average, peaking at 8.33 parameters in the predefined chatbot
template Dining-Out. Hence, chatbots are typically designed so that users have to provide very little
information, if any, in each interaction.

With regards to the size of the training phrase set, TPI measures the average number of training
phrases per intent. The global average is 14 phrases per intent. A total of 14 chatbots (5.4%) have a
value of TPI equal or below 1, which may result in intent recognition problems when the chatbots
are deployed. On the other extreme, 15 chatbots (5.8%) have an average of 50 training phrases or
more per intent. This may signal complex intents that require many examples for accurate intent
recognition, or overly specified intents.

7.3.5 Vocabulary. Entity metrics allow comparing the richness of the vocabulary that chatbots can
recognise. Globally, 31% of the analysed chatbots define at least one entity (ENT>0). The average
number of entities per chatbot is 1.31, with extreme cases of chatbots raising to 37 entities in
Dialogflow (chatbot MysteryAnimal) and 9 in Rasa (chatbot Foodie-Rasa-Chatbot). High ENT values
indicate a wide variety of domain-specific terms (e.g., animals in case of MysteryAnimal, or food
types in case of Foodie-Rasa-Chatbot).
We can look deeper into each entity using metrics LPE (literals per entity), SPL (synonyms per

literal) and WL (word length). These metrics are 0 in Rasa chatbots because Rasa can defer the
recognition of entity literals to Python methods (which our approach cannot handle), in addition
to being explicitly declared in a text file (supported by our approach). We can see that the latter
option is hardly ever used. As for Dialogflow chatbots, their average LPE value is just over 22,
though a remarkable case is the Dining-Out chatbot with more than 1000 literals per entity. This
chatbot recommends bars and restaurants, so its entities define long lists of cocktails, food types,
and specific bars and restaurants. The next subsection discusses this and other chatbot platform
differences in more detail.

7.3.6 Metric distribution across technologies. Our approach enables the measurement of chatbots
built with different technologies. To assess whether a given metric has the same probability distri-
bution of values in Dialogflow and Rasa, we applied the Mann-Whitney U (MW) and Kolmogorov-
Smirnov (KS) equality tests on the metric values obtained for each technology. The last two columns
of Table 6 report the p-values returned by these two statistical tests. A p-value >0.05 in either of
the two columns indicates that the metric follows the same probability distribution of values in
both technologies.
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The results show that the Dialogflow and Rasa chatbots in our dataset follow different distribu-
tions for all metrics but PATH and VPTP (i.e., these two metrics are the only ones with p-values of
either MW or KS above 0.05). For the rest of metrics, we have that:

• Rasa chatbots have more intents (INT) than Dialogflow chatbots, as well as more confusing
phrases (CNF), higher percentages of positive and neutral phrases (SNT+, SNT=), and higher
values of TPI, WPTP, WPO, CPO, VPOP, READ, OPRE, FPATH and CL.

• Dialogflow chatbots havemore conversation flows (FLOW), phrases with negative tone (SNT−),
parameters per training phrase (PPTP), and actions per flow (FACT), than Rasa chatbots. The
data also show that Dialogflow chatbots have more entities (ENT) than Rasa chatbots, but the
latter may be due to Conga’s limitation in dealing with entities in Python code.

Overall, Rasa chatbots in our dataset are globally bigger (higher INT, cf. Figure 14); were trained
with more examples (TPI) but including more confusing phrases (CNF); have less negative phrases
(SNT−); are more verbose (WPO, CPO) leading to higher reading times (READ) but where phrases
are easier to read (OPRE); and maintain longer conversations (higher CL, cf. Figure 16) where users
can take more paths (FPATH). As discussed in Section 7.3.5, entity metrics are 0 for Rasa chatbots
due to the encoding of entity literals in Python methods.

Regarding Dialogflow chatbots, they have more conversation entry points (FLOW); issue a higher
percentage of negative phrases (SNT−); require users to provide more data in utterances (PPTP);
and perform more actions per flow (FACT).
Note that, as a sanity check, we used the MW and KS tests to assess that chatbots of a same

technology have the same distribution. For this purpose, we randomly split the dataset of each
technology in two subsets, and applied the tests on the subsets. In all cases, we obtained p-values
greater than 0.05, which implies an underlying distribution of metric values of Dialogflow chatbots,
and also of Rasa chatbots.

7.3.7 Answering RQ1 and RQ1.1. With respect to RQ1, as detailed in Sections 7.3.1–7.3.5, our
metrics permit comparing chatbot size using INT; conversation style along Moore and Arar’s
taxonomy [37] using FLOW, PATH, FPATH and CL; chatbot outputs using WPO, CPO, VPOP, OPRE
and SNT; expected user inputs using WPTP, VPTP and PPTP; and chatbot vocabulary size using ENT,
LPE, SPL and WL. Moreover, since metrics are defined over Conga, they are applicable to different
technologies and enable the comparison of heterogeneous chatbots. Regarding RQ1.1, as described
in Section 7.3.6, we found that, for our dataset of chatbots, all metrics but PATH and VPTP follow
different distributions for Dialogflow and Rasa.

7.4 RQ2: Detection of quality issues

The previous section hints that metrics can reveal chatbot design issues. Now, to answer RQ2 more
precisely, we show in Table 7 the outliers of the metrics separated by technology. For each metric,
high outliers are values above 𝑄3+1.5· 𝐼𝑄𝑅, and low outliers are values below 𝑄1-1.5· 𝐼𝑄𝑅 (with 𝑄1
and𝑄3 the first and third quartiles, and 𝐼𝑄𝑅 the interquartile range). Since all our metrics have low
outliers below 0, we identify instead chatbots with low metric values below 𝑄2/3.

The table columns show the metric type, metric name, median, high outliers (cut-off value𝑄3+1.5·
𝐼𝑄𝑅, percentage of chatbots with a metric value above the cut-off, and two outlier chatbots), and
low metric values (cut-off value 𝑄2/3, percentage of chatbots with a metric value below the cut-off,
and two sample chatbots). For each sample chatbot, the table shows its name and the metric value
in parentheses.
Next, we analyse the outliers to detect possible problems related to chatbot size, conversation

style, outputs, expected inputs, and vocabulary. The process for identifying problems has been as
follows. First, one author checked all outlier chatbots for potential problems. Then, another author
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Table 7. Metric outliers per technology.

High outliers Low values
Type Metric Median Cutoff Chatbot% Sample chatbots (max. 2) Cutoff Chatbot% Sample chatbots (max. 2)

Dialogflow

Global

INT 6 26.5 5.1% iLearn (89), Car (77) 2 7.7% ChronoGG (1), fulfillent-importer (2)
ENT 0 7.5 8.5% MysteryAnimal (37), googleChallenge (34) 0 52.14% iLearn (0), insurance_Bot (0)
FLOW 5 20.5 7.7% iLearn (89),MysteryAnimal (62) 1.66 1.7% ChronoGG (1), Buddy-G7 (1)
PATH 5 24 7.68% Car (117), iLearn (89) 1.66 1.70% ChronoGG (1), Buddy-G7 (1)
CNF 3 75 17.09% Car (1606), iLearn (1599) 1 40.17% airportagent (0), basic-slotfilling (0)
SNT+ 4 27.5 0.85% BikeShop (38) 1.33 45.29% dialogflow-silly-name-maker (0), fulfillment-temperature-converter (0)
SNT− 17 62.5 2.56% dialogflow-google-sign-in (100), dialogflow-ssml (100) 5.66 35.04% defaults-chatfuel (0), defaults-manychat (0)

Intent

TPI 5.56 20.17 6.83% Dining-Out (94.67), Hotel-Booking (50.67) 1.85 17.94% hackathon-group-10 (0.33), in-my-seats-jovo (0.33)
WPTP 2.41 6.59 1.7% googleChallenge (9.60), Car (6.8) 0.8 5.98% fulfillment-multi-locale (0.5), hackathon-group-10 (0.67)
VPTP 0.44 1.56 0.85% googleChallenge (1.76) 0.14 12.82% libsample-advanced (0.03), dialogflow-webhook-boilerplate (0.06)
PPTP 0.33 2.08 5.12% Dining-Out (8.33), Hotel-Booking (5) 0.11 29.91% airportagent (0), keijiban (0)
WPO 5.79 20.15 3.41% HHandoffDAgent (23.11), Education_Chatbot (22.89) 1.93 30.76% Car (0), fulfillment-temperature-converter (1.5)
CPO 23.56 86.42 6.83% Education-Chatbot (125.56), googleChallenge (105.16) 7.85 29.91% Car (0), ChronoGG (0)
VPOP 1.04 3.42 0.85% fulfillment-telephony (3.56) 0.35 31.62% libsample-advanced (0.1), HOTEL-BOOKING-AGENT2 (0.29)
READ 4 15 5.12% Education-Chatbot (19), HHandoffDAgent (19) 1.33 31.62% fulfillment-temperature-converter (1), fulfillment-multi-locale (1)

Entity
LPE 0 12.5 11.11% Dining-Out (1177.13), ekgsBot (359.86) 0 52.13% iLearn (0), airportagent (0)
SPL 0 5.92 1.70% Formats (7.13), iotairblower (6.83) 0 54.70% iLearn (0), airportagent (0)
WL 0 17.95 1.70% gordobbot (36), ekgsBot (20.61) 0 54.70% iLearn (0), airportagent (0)

Flow
FACT 2 3.85 2.56% HOTEL-BOOKING-AGENT2 (8), keijiban (4.71) 0.66 0% -
FPATH 1 1 16.23% Dining-Out (3.5), HR-Bot (2.33) 0.33 0% -
CL 1 3.5 4.27% enoreese (8), Food-Ordering-Chatbot (7) 0.33 0% -

Rasa

Global

INT 9 28.12 9.15% covid-19-chatbot (143), identity-cloning-toolkit (114) 3 2.1% 07_survey_bot (2), 04_feedback_bot (3)
ENT 0 0 17% Foodie-Rasa-Chatbot (9), insurance-en (4) 0 83% covid-19-chatbot (0), identity-cloning-toolkit (0)
FLOW 3 11.4 10.6% identity-cloning-toolkit (102), small-talk-rasa-stack (86) 1 16.9% covid-19-chatbot (1), dong5854 (1)
PATH 7 26.5 14.78% finbot-master (207), identity-cloning-toolkit (115) 2.33 7.74% concertbot (1), formoriginal (1)
CNF 10 93.12 13.38% covid-19-chatbot (10532), identity-cloning-toolkit (3461) 3.33 18.30% 04-feedback-bot (0), 07-survey-bot (0)
SNT+ 17 46.87 0.7% yassinelamarti (58) 5.66 12.67% 09-news-api (0), Ali (0)
SNT− 6 36.8 1.4% FAQ-RASA-NLU (51), trackncov19 (44) 2 38.73% 05-event-bot (0), yassinelamarti (0)

Intent

TPI 8.08 29.21 12.67% aniketbangar (235.17), sokkalingam (214.33) 2.69 12.67% concertbot (0), Tiara-A-Chatbot (1)
WPTP 2.83 6.23 0% - 0.94 1.40% concertbot (0), Tiara-A-Chatbot (0.88)
VPTP 0.55 1.44 0% - 0.18 5.63% 07-survey-bot (0), 09-news-api (0)
PPTP 0.25 1.30 1.40% flight-booking (1.6), Foodie-Rasa-Chatbot (1.5) 0.08 40.14% rasa-faq-bot (0), 02-lead-bot (0)
WPO 6.63 13.94 7.04% Tiara-A-Chatbot (87.63), Data-Mining-Chatbot (73.37) 2.21 0% -
CPO 28.39 68.56 8.45% Tiara-A-Chatbot (440.1), Data-Mining-Chatbot (382.9) 9.46 0% -
VPOP 1.2 2.16 5.63% Data-Mining-Chatbot (3.52), FAQ-RASA-NLU (3.33) 0.4 2.11% Chatbot-Banking (0.17), WeatherBot (0.2)
READ 5 11.5 7.04% Tiara-A-Chatbot (75), Data-Mining-Chatbot (62) 1.66 0.70% concertbot (1)

Flow
FACT 1.1 1.88 10.56% Data-Mining-Chatbot (3.92), concertbot (3.5) 0.36 0% -
FPATH 1.67 5.46 14.78% dong5854 (57), rasa-workshop-pydata-berlin (37) 0.55 0% -
CL 4 1.33 7.74% aniketbangar (211), covid-19-chatbot (73) 1.33 7.74% 01-smalltalk-bot (1), 07-survey-bot (1)

assessed the chatbots flagged as problematic by the first author. In case of divergence of opinion,
the case was discussed in more detail by all authors, and if no consensus was reached, then the
problem was dismissed as spurious.

7.4.1 Size. Intents (INT) provide an estimation of the chatbot size. On the low side, 7.7% of Di-
alogflow chatbots (9 chatbots) have 2 intents or less, while 3 Rasa chatbots have 3 intents or less.
This may be an indication of incomplete chatbots, probably built to experiment with the technology
(e.g., ChronoGG to experiment with Dialogflow and Firebase, and 07_survey_bot to experiment with
Rasa).
On the high side, 5.1% of Dialogflow chatbots have more than 26 intents, and 9.15% of Rasa

chatbots have more than 28 intents. The extreme cases reveal complex chatbots and may signal
redundant intents. As Section 7.4.4 will show, covid-19-chatbot (143 intents) and identity-cloning-toolkit
(114 intents) have many confusing phrases (CNF) suggesting the existence of similar intents that
could have been reused.

7.4.2 Conversation. High outliers of metrics FLOW and PATH may reveal chatbots with unusually
wide conversation options. Some of these chatbots, like identity-cloning-toolkit (102 flows, 115 paths),
small-talk-rasa-stack (86 flows, 92 paths), finbot-master (22 flows, 207 paths) and iLearn (89 flows,
89 paths) are ELIZA-style chatbots [67] or emulate chit-chat conversation with many possible
user entry points. In turn, large values of FPATH signal complex conversations with many possible
bifurcations. The chatbots dong5854 (FPATH=57) and rasa-workshop-pydata-berlin (FPATH=37), both
performing chit-chat conversations, stand out in this metric. Finally, high outliers of CL (conversa-
tion length) may uncover accessibility problems and errors in the conversation design. For instance,
aniketbangar, a chatbot to find restaurants, has the highest CL value (211) but only a conversation
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entry point (FLOW=1). On inspection, we found that the chatbot is erroneous since it concatenates
all flows into one, so that when the chatbot answers with the restaurants, the flow continues with
a user greeting, starting the search for restaurants again.

On the other side of the spectrum, low values of FLOW, PATH and FPATH may suggest restricted
conversation options or incomplete chatbot designs. For example, Buddy-G7 defines 10 intents but
only one conversation flow involving the fallback intent, hence missing conversation options that
use the other intents. On inspection, we found that the chatbot has an erroneous setup of the intent
contexts in Dialogflow.

7.4.3 Outputs. High outliers of metrics VPOP, CPO, WPO and READ may indicate problematic
chatbot outputs. For instance, the chatbot fulfillment-telephony has 3.42 verbs per output phrase
(VPOP), which is an indicator of complex chatbot responses. It defines outputs like “I’m sorry I
didn’t catch that do you want to continue making a reservation or would you prefer to be transferred
to the main line?”, which lacks punctuation marks separating the phrases within the output.

Fig. 17. Long response of Tiara-A-
Chatbot in a mobile in Telegram.

The CPO of Tiara-A-Chatbot is 440 characters. This may cause
accessibility and readability problems, as large answers require
scrolling in mobile devices, long reading times (1 minute and
15 seconds according to its READ value), and cannot be fully
displayed on social networks like Twitter due to their message
length constraints. As an example, Figure 17 shows a response of
this chatbot deployed on Telegram using a mobile phone, which
requires scrolling as the response has more than 30 lines. This is
an example of a content-centric chatbot to access a covid-19 FAQ.
However, according to Moore and Arar [37], conversation-centric
chatbots with short answers and a natural conversation style are
usable in more platforms. Another chatbot with the same prob-
lem though to a lesser extent is Education-Chatbot (CPO=125.56,
READ=19).
The sentiment of the chatbot responses can also affect the

user experience. The chatbots dialogflow-google-sign-in, dialogflow-
ssml and FAQ-RASA-NLU have 100%, 100% and 51% of negative
responses (SNT−). The responses of FAQ-RASA-NLU are related
to covid-19 spread, so many have a negative tone. Chatbots that
issue a broad variety of error messages may also have a high
percentage of negative responses. For example, dialogflow-ssml
only defines 3 responses, but all of them report that the chatbot
was not able to access an external service (e.g., “Sorry, I couldn’t
get a response for the Welcome intent from your webhook.”). A
similar situation occurs with the dialogflow-google-sign-in chatbot. Finally, low values for SNT+

may be problematic depending on the chatbot domain, like those for chit-chat. Fifteen chatbots (7
Dialogflow chatbots, and 8 Rasa ones) have no responses with positive tone, none of which are
chit-chat bots.

7.4.4 Expected inputs. Outliers of metrics concerning expected user utterances (TPI, WPTP, VPTP,
PPTP, CNF) may also signal problems.

The chatbots with the fewest training phrases per intent (TPI) are hackathon-group-10 and in-my-
seats-jovo. Their average TPI is 0.33, which may affect the chatbot’s ability to understand users.
Instead, in their analysis of NL engines [1], Abdellatif et al. recommend at least 10 training phrases
per intent. Other chatbots, like Tiara-A-Chatbot, define training phrases for a few intents but leave
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others empty, signalling an unfinished implementation. In general, incomplete chatbots can be
more accurately detected by looking if their minimum value of TPI is zero, than observing their
average TPI. With respect to high outliers of TPI, they may be due to the need to recognise complex
sentences, but other times they are indicative of an unnecessarily large training set. For example,
sokkalingam (TPI=214.33) defines training phrases with many combinations of dates, number of
tickets and person names; however, dates and numbers are predefined entities, which makes such
an exhaustive training unnecessary. Similarly, aniketbangar (TPI=235.17) has training phrases with
many combinations of Indian locations, while defining an entity for those locations would yield a
more succinct design.
The length of the training phrases (WPTP) may affect the chatbot understandability. Some

chatbots define extraordinarily short training phrases, like fulfillment-multi-locale (0.5), which is a
toy example to experiment with multi-language chatbots (English and French). The high outliers of
WPTP in the dataset are only for Dialogflow chatbots and do not seem problematic.

High values of PPTP (parameters per training phrase) may point to inputs that are too demanding
for the user. An extreme case is Dining-Out, a predefined Dialogflow chatbot for obtaining recom-
mendations to dine out, with 8.33 PPTP. The chatbot demands data like location, dish, beverage,
venue type, etc., in many training phrases. This may lead to users having to input long phrases or
having to answer many follow-up prompts from the chatbot.
Related to user experience, high outliers of metric CNF may reveal chatbot understanding

problems due to the existence of similar training phrases in different intents, which may confuse
the chatbots. Overall, 17.09% of Dialogflow chatbots and 13.38% of Rasa chatbots have confusing
phrases in different intents, with extreme cases such as covid-19-chatbot (10532), identity-cloning-
toolkit (3461), Car (1606) and iLearn (1599). For example, several intents of Car have similar training
phrases, such as “turn down the heater for each seat in the car” and “turn off the heating in my
car”. Other chatbots with confusing training phrases are small-talk-rasa-stack (“I am very bored” /
“I’m bored of you”), googleChallenge (“What is the time duration for completing Masters in Artificial
Intelligence?” / “Completion period for masters in AI?”), Dining-Out (“now cafe” / “find cafe”), and
BikeShop (“Can you fix my road bike?” / “Can you service my bike?”). High values of CNF are more
frequent in chatbots with many intents, as this increases the probability of having similar intents.
Sometimes, high CNF values stem from an incorrect interpretation of what training entails. For
example, covid-19-chatbot sometimes uses tags (e.g., coronavirus, covid, corona) instead of full-
fledged phrases, which may hamper correct intent recognition since these tags overlap in many
intents. This way, CNF helps detecting intents that a chatbot may mismatch, without resorting to
intensive dynamic testing. High CNF values can also be an indicator that some intents could be
merged. For example, chatbot covid-19-chatbot has several intents to express that the user has tested
positive in covid, and these intents could be merged.

7.4.5 Vocabulary. Entity metrics provide insights on the chatbot vocabulary and may uncover
problems in it.
In Table 7, the median and low cut-off value of metrics LPE, SPL and WL is zero in Dialogflow.

This is because more than a half of the Dialogflow chatbots lack entities, which can be considered
normal. However, chatbots that define entities (ENT>0) but have few literals per entity (LPE) indicate
poorly defined entities. This is the case of the Dialogflow chatbot your_song, which defines entities
with just one literal, e.g., for music genres, which may compromise a correct entity recognition. In
other cases, chatbots may have entities but LPE is zero because the entities are defined via regular
expressions or functions. This is the case for the 17 Rasa chatbots defining entities in the dataset.
In addition, WL helps detecting unusually long entity literals. As an example, the Dialogflow

chatbot gordobbot defines entities for food origins or cooking utensils, and its WL value is 36.
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Inspecting the definition of these entities reveals a misconception on the use of entity literals, as
instead of providing synonyms for literals, the definition provides explanatory phrases.

7.4.6 Answering RQ2. To answer RQ2, we have manually checked all chatbots with low or high
metric outliers to assess if they have problems. Table 8 summarises the results. For each metric,
columns 4 to 7 show the number of problematic Dialogflow and Rasa chatbots, and the percentage
they represent in the set of outliers for the metric. The last two columns describe the problem
found and its type. Detailed information on the discovered problems are available at https://github.
com/ASYM0B/MetricsOutliers. Overall, we detected 16 types of problems implying design errors,
usability problems, or poor designs that could be improved by re-designs. We refrain from reporting
usability problems that require a subjective evaluation, like chatbot responses with a negative tone,
or possibly confusing phrases between intents, like “I am very bored” / “I’m bored of you” in chatbot
small-talkrasa-stack, or “What is the time duration for completing Masters in Artificial Intelligence?” /
“Completion period for masters in AI?” in chatbot googleChallenge.

Table 8. Summary of problems detected in chatbots with high metric outliers or low metric values. Legend:
n/a indicates an empty set of outliers; ∗ indicates the percentage is taken on the whole dataset of chatbots.

Aspect Metric Value # Problems, Outlier% Problem description Problem typeDialogflow Rasa

Size INT
low 9 100% 3 100% Incomplete/Toy chatbot Incomplete design, Usability
high 2 33.4% 5 55.6% Redundant intents (when CNF high) Re-design

Conversation

FLOW
low 2 100% 5 20.9% Incomplete/Toy chatbot Incomplete design, Usability
high 0 0% 7 46.7% Repeated or redundant flows Design error, Re-design

PATH
low 2 100% 6 54.6% Incomplete/Toy chatbot Incomplete design, Usability
high 0 0% 16 76.2% Repeated or redundant paths Design error, Re-design

FPATH
low n/a n/a n/a n/a Incomplete/Toy chatbot Incomplete design, Usability
high 1 5.3% 15 71.5% Repeated or redundant paths Design error, Re-design

CL
high 0 0% 1 9.1% Long conversation (hard to complete) Usability
high 0 0% 9 81.9% Error in conversation design Design error

Outputs

VPOP high 1 100% 2 25% Missing punctuation signs Usability
CPO high 0 0% 4 33.4% Long responses (>280 chars) Usability, Deployability
WPO high 0 0% 5 50% Long responses (>50 words) Usability, Comprehensibility
READ high 0 0% 5 50% Long reading times (>30 secs) Usability, Efficiency

Inputs
TPI

low 11 52.4% 4 100% Intents poorly trained (≤4 phrases) Usability
13 11.2%∗ 45 31.7%∗ Intents without training phrases Incomplete design, Re-design

high 2 25% 14 77.8% Repeated or redundant phrases Re-design
WPTP low 7 100% 2 100% Bad quality of training set Usability, Incomplete design
CNF high 7 35% 5 27.8% Confusing intents Usability

Vocabulary LPE low 3 100% n/a n/a Ill-defined entities (when ENT>0) Usability
WL high 1 50% n/a n/a Bad use of entity literals Design error

As the table shows, low values for INT, FLOW and PATH typically revealed incomplete or toy
chatbots. Conversely, high INT values, in combination with high CNF values, uncovered redundant
intents. Some chatbots with extremely high values for FLOW, PATH and FPATH had repeated
or redundant flows or paths that could be deleted or simplified to improve the design quality.
Inspecting chatbots with high CL values uncovered design errors (concatenated conversation flows)
or conversations unlikely to occur in practice (e.g., a chit-chat chatbot that expects the user to jump
over unrelated topics in long conversation flows).

Regarding chatbot outputs, some high VPOP values were due to missing punctuation signs, while
large values of CPO, WPO and READ can cause usability problems (inability to deploy the chatbot
in certain channels, or sentences that are long or difficult to understand). The table shows the
problematic chatbots taking thresholds of 280 characters (Twitter’s maximum message size), 50
words and 30 seconds. Still, other thresholds can be used depending on the target channel, chatbot
domain and audience [37].
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Regarding chatbot inputs, low values of TPI revealed some poorly trained intents, which either
could be removed or were indicative of incomplete designs. We set the bar on 4 training phrases
(a bare minimum which makes tools like Dialogflow complain) but other thresholds are possible
(e.g., 10 as Abdellatif et al. recommend [1]). The table also shows the chatbots with empty intents
(i.e., the minimum value of TPI is zero for any of the chatbot intents). Other problems discovered
when checking metric outliers were the presence of redundant phrases which only varied in their
parameter values (high TPI), low-quality training phrases made of one or two words (low WPTP),
and overlapping intents with many similar training phrases (high CNF).

Finally, the vocabulary metrics only apply to Dialogflow. They helped uncovering under-defined
entities (low LPE) and erroneous literals (high WL).
Overall, from the set of chatbots in the dataset with metric outliers, the percentage of those

with problems range from 5.3% to 100% depending on the metric and technology (more than 50%
in average). Still, to assess the effectiveness of inspecting outliers to find problems, we need to
analyse the prevalence of such problems in the population of chatbots without metric outliers.
Table 9 shows the result of this analysis. The percentage of problematic chatbots without metric
outliers is generally much lower than the percentage of problematic chatbots with metric outliers.
Among non-outliers, the percentage of chatbots with problems range from 0% to 39.2% depending
on the metric and technology, though it is typically below 4%. Dialogflow has a few spurious cases
where this percentage is slightly higher for non-outliers: 1 chatbot with redundant paths, 1 with
long conversations, and 3 with errors in the conversation design (compared to 0 in the outliers set).
However, the metric outliers catched the most problematic chatbots. In Dialogflow, we found 61
problems among the outliers (18 among non-outliers), and in Rasa, we found 153 problems among
the outliers (106 among non-outliers).

Table 9. Summary of problems detected in chatbots with no high metric outliers or low metric values.

Aspect Metric Value # Problems, Non-outlier% Problem descriptionDialogflow Rasa

Size INT low 0 0% 1 0.8% Incomplete/Toy chatbot
high 0 0% 0 0% Redundant intents (when CNF high)

Conversation

FLOW low 0 0% 1 0.9% Incomplete/Toy chatbot
high 0 0% 1 0.8% Repeated or redundant flows

PATH low 0 0% 1 0.8% Incomplete/Toy chatbot
high 1 1% 4 3.4% Repeated or redundant paths

FPATH low 0 0% 1 0.8% Incomplete/Toy chatbot
high 0 0% 4 3.4% Repeated or redundant paths

CL high 1 0.9% 5 3.9% Long conversation (hard to complete)
high 3 2.7% 5 3.9% Error in conversation design

Outputs

VPOP high 0 0% 0 0% Missing punctuation signs
CPO high 0 0% 2 1.6% Long responses (>280 chars)
WPO high 0 0% 2 1.6% Long responses (>50 words)
READ high 0 0% 2 1.6% Long reading times (>30 secs)

Inputs

TPI low 11 11.5% 54 39.2% Intents poorly trained (≤4 phrases)
high 2 1.9% 21 17% Repeated or redundant phrases

WPTP low 0 0% 2 1.5% Bad quality of training set
CNF high 0 0% 0 0% Confusing intents

Vocabulary LPE low 0 0% 0 0% Ill-defined entities (when ENT>0)
WL high 0 0% 0 0% Bad use of entity literals

In conclusion, we can answer RQ2 positively, since a substantial amount of chatbots with outliers
in their metric values presented problems. Focussing on analysing outliers is effective since, in
our dataset, most considered problems occurred among the outlier chatbots. Moreover, the most
common problem among non-outlier chatbots – intents poorly trained, with less than 5 phrases –
can be easily caught with metrics.
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7.5 RQ3: Chatbot clustering

To answer this research question, we performed a similar experiment to the one by Basciani and
collaborators [4], which was directed to evaluate a clustering method for meta-models.
First, one voluntary manually labelled the 259 chatbots in the dataset with their domain, such

as “hotels”, “basic conversations” or “food”. Each chatbot could be assigned several labels (e.g.,
a chatbot for searching restaurants could be labelled with both “search” and “restaurant”). This
manual labelling yielded 43 clusters, 6 of them with a single chatbot (so-called singleton clusters).
Table 10 characterises the manual clusters, which have sizes ranging from 1 to 32 chatbots, with an
average size of 7.7 and median 5. Further details of the clusters are available at https://github.com/
ASYM0B/SemanticClusteringEvaluation.

Table 10. Comparison of manual clustering and best vocabulary-based clustering.

Manual clustering Voc.-based clustering
#Clusters 43 29
Max labels per chatbot 3 1
#Singleton clusters 6 3
Size of smallest cluster 1 1
Size of largest cluster 32 43
Average cluster size 7.7 9.2
Median cluster size 5 15

Next, we applied our automated vocabulary-based clustering to the same chatbots. As explained
in Section 5.2 (step 6), our clustering algorithm works by iteratively combining the “closest” pair of
chatbot clusters into a single cluster. For this purpose, it can use different methods, called linkage
methods, to calculate the distance between two clusters. For instance, in single-linkage, the distance
between two clusters is equal to the distance of the pair of elements (one in each cluster) that are
closest to each other, while in complete-linkage, it is the distance of the pair of elements that are
farthest away (see [55] for a description of other linkage methods). In the experiment, we used
different linkage methods and distance thresholds (from 0.01 to 0.99 with 0.01 increments) to form
the clusters. Then, for each combination of linkage method and distance threshold, we computed
the balanced accuracy of the returned clusters as we explain below. Table 10 summarises the
vocabulary-based clustering with the best balanced accuracy (0.664). It yields 29 clusters containing
between 1 and 43 chatbots (9.2 chatbots in average, median of 15, and 3 singleton clusters). An
inspection of the clusters shows that they group chatbots about hotels, insurance and banking,
news, restaurants, food ordering, time zones, shopping, education, health, songs, and weather,
among others.

In the following, we explain our method to identify the vocabulary-based clustering configuration
with the most accurate result. Specifically, we used the metric balanced accuracy to quantify the
percentage of chatbot pairs correctly sharing or not a cluster, taking the manual clusters as the
ground truth. For this purpose, given a set of (manually or automatically) clustered chatbots
C = {𝑐1, ..., 𝑐𝑛}, we built its clustering matrix𝑀C as follows:

• 𝑀C𝑖 𝑗 = 1 if 𝑐𝑖 and 𝑐 𝑗 belong to a same cluster
• 𝑀C𝑖 𝑗 = 0 otherwise
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Then, we compared the manual clustering matrix 𝑀 with each vocabulary-based clustering
matrix 𝑉 21, counting how many chatbot pairs (𝑐𝑖 , 𝑐 𝑗 ) belonged to one of four possible sets:

• Correctly grouped: 𝐶𝐺 = |{(𝑐𝑖 , 𝑐 𝑗 ) | 𝑉𝑖 𝑗 = 𝑀𝑖 𝑗 = 1}| is the number of true positives.
• Correctly separated: 𝐶𝑆 = |{(𝑐𝑖 , 𝑐 𝑗 ) | 𝑉𝑖 𝑗 = 𝑀𝑖 𝑗 = 0}| is the number of true negatives.
• Incorrectly grouped: 𝐼𝐺 = |{(𝑐𝑖 , 𝑐 𝑗 ) | 𝑉𝑖 𝑗 = 1 ∧𝑀𝑖 𝑗 = 0}| is the number of false positives.
• Incorrectly separated: 𝐼𝑆 = |{(𝑐𝑖 , 𝑐 𝑗 ) | 𝑉𝑖 𝑗 = 0 ∧𝑀𝑖 𝑗 = 1}| is the number of false negatives.

Next, we calculated balanced accuracy as:

𝐵𝐴 =
1
2
·
(

𝐶𝑆

𝐶𝑆 + 𝐼𝐺
+ 𝐶𝐺

𝐶𝐺 + 𝐼𝑆

)
The second term of the formula ( 𝐶𝐺

𝐶𝐺+𝐼𝑆 ) is the percentage of correct 1’s returned by the clustering.
The first term ( 𝐶𝑆

𝐶𝑆+𝐼𝐺 ) is the percentage of correct 0’s returned by the clustering. For non-overlapping
clusters, 𝐵𝐴 is just normal recall, because a 100% recall of 1’s implies a 100% recall of 0’s, and vice
versa. However, for overlapping clusters, a 100% recall of 0’s does not imply a 100% recall of 1’s.
This is why we balance both terms in the formula for 𝐵𝐴.

We use balanced accuracy to quantify the accuracy of our clustering approach because the
matrices𝑀 and 𝑉 are sparse (i.e., unbalanced):𝑀 has 94% of 0’s, and the most accurate 𝑉 has 93%
of 0’s. Instead, using precision would give more importance to guessing 0’s than to guessing 1’s.
For example, a 𝑉 matrix that only contains 0’s would obtain a precision close to 1, which does not
fit our purposes. The formula 𝐵𝐴 eliminates this bias.

Figure 18 depicts the value of 𝐵𝐴 for each linkage method and distance threshold. As a summary,
Table 11 shows the distance threshold that permits obtaining the highest balanced accuracy for each
linkage method. The best accuracy (0.664) was achieved using weighted linkage and a threshold
of 0.97. Even though all linkage methods achieved similar accuracy, the weighted and average
methods performed slightly better than the rest. For this reason, our tool uses the weighted linkage
method.

Table 11. Best balanced accuracy for each linkage method.

Linkage method Distance threshold Best bal. accuracy
Single 0.71 0.615
Complete 0.97 0.619
Average 0.96 0.641
Centroid 0.67 0.607
Weighted 0.97 0.664
Median 0.73 0.622

Finally, we have compared our clustering approach with four baselines: a clustering matrix
containing only 0’s, another containing only 1’s, a third one with binary values randomly generated,
and our previous bag-of-words method [33]. The balanced accuracy of the first two cases is 0.5, the
one of the third case is 0.502, and the fourth is 0.4. In comparison, the balanced accuracy of our
clustering approach was 0.664, which is a significant increase w.r.t. the baselines, and shows the
benefits of using TF-IDF over bag-of-words.

21 The vocabulary-based clustering matrices𝑉 represent a reflexive, symmetric, transitive relation between chatbots, since
the clusters are disjoint. Instead, the manual clustering matrix𝑀 may not be transitive, since we allowed chatbots with
several manual labels. This means that our vocabulary-based clustering will not be able to produce the clusters of the
manual matrix, if the manual clusters are not disjoint.
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Fig. 18. Balanced accuracy of vocabulary-based clustering depending on the selected linkage method and
distance threshold.

7.5.1 Answering RQ3. Overall, we can answer RQ3 positively: vocabulary-based clustering can
create meaningful groups of semantically related chatbots (e.g., groups of chatbots about hotels,
restaurants, or weather, among others). To have a quantitative assessment, we measured the fraction
of correctly clustered chatbot pairs using balanced accuracy, and compared against four baselines
obtaining a substantially higher balanced accuracy (0.664 vs 0.502).

7.6 Threats to validity

Next, we discuss threats to the internal and external validity of our evaluation. Internal validity is
the extent to which the findings of an experiment truly represent a cause-and-effect relationship.
External validity is concerned with the extent to which the results of a study can be generalised.

7.6.1 Internal validity. Regarding RQ1, a limitation of our evaluation is the use of custom-made
importers from existing platforms into Conga. In particular, Rasa permits programming some
aspects of chatbots in several ways. For example, one may train a chatbot on the fly instead of using
training phrases, or change the conversation flow using Python. Our importer does not handle
such code-based functionality variants, which may affect the metric values.

Regarding RQ2, we detected evident problems in some chatbots using metrics. However, we did
not confirm those problems with the chatbot authors. Even if this would be desirable, according to
their profile, the authors are frequently hobbyist programmers or students, which may hamper
confirming the problems. We did not perform any cleaning (e.g., of small chatbots) in the dataset,
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utilizing all chatbots we found. As a consequence, the dataset may contain unfinished chatbots.
This is intentional since we argue that metrics can serve for quality assurance during chatbot
development, and so, we want our metrics to detect problems related to incomplete designs.
With regards to RQ3, one author of the paper labelled the chatbots manually. To avoid any

bias, this labelling was performed before the execution of the vocabulary-based clustering. Even
if a labelling process involving more than one person may be somewhat different, our labelling
reflects the expectations of a potential user for which our clustering method provided a reasonable
grouping. A labelling made by several people also has the risk of using dissimilar criteria for
labelling. Actually, a challenge for the community is the proposal of tools helping the manual
labelling of chatbot datasets, in the style of [32].

7.6.2 External validity. Wemitigate external threats by defining our metrics and clustering methods
on a neutral notation (Conga) which has been designed out of 15 well-known chatbot development
platforms, and using a dataset of third-party chatbots. While the use of Conga increases our
confidence on the applicability of our proposal to the most common chatbot development platforms,
we cannot claim generality as there may be other platforms supporting specific chatbot features or
idioms not captured by Conga.

Regarding RQ1, the limited size of the dataset does not allow claiming differences or similarities
between the technology or source of the chatbots, for whichwewould need a larger scale experiment.
Instead, our goal was to hint at the convenience of the proposed static chatbot metrics.

Related to RQ2, while metrics can detect problems in chatbots, problems need to be confirmed by
inspection. Not all possible chatbot problems can be detected by metrics, for which a combination
of static analysis and testing would be desirable. In addition, the results in Table 8 show a higher
number of problems in Rasa chatbots than in Dialogflow chatbots. However, these problems cannot
be directly attributed to the usage of a particular technology, for which a wider study would be
needed. Finally, RQ2 has assessed the effectiveness of metrics but not their usefulness or value for
chatbot developers. The latter would require conducting a user study asking chatbots developers to
identify possible issues with and without the metrics. Such a study is left for future work.

As for RQ3, we show that our vocabulary-based clustering has better accuracy than four baseline
methods. This experiment considers 259 third-party chatbots to avoid any bias and promote
generality. However, using a different set of chatbots may result in a different accuracy value.

7.7 Discussion of findings

We conclude this section by a qualitative discussion of the results, outlining actionable insights for
chatbot researchers, tool builders, and practitioners.
Investigation on conversation design (researchers, practitioners). Sections 7.3 and 7.4 showed
that our metrics can help gaining valuable knowledge from chatbot repositories. In particular,
metrics can be used to detect common conversation design patterns, or deviations from good
conversational practices. As an example, if we take Moore and Arar’s classification of conversation
styles [37], we identify that 46% of the chatbots in our dataset have linear conversations, most of
them just one-turn (being system-centric), and just two chatbots output large amounts of information
on a topic (being content-centric).
Choosing a chatbot development tool (tool builders, practitioners). Our metrics enable
comparing chatbots built with heterogeneous technologies. For the dataset considered in our
experiments, Section 7.3 revealed differences on the metric values depending on the chatbot
technology. In our dataset, Rasa chatbots have more intents, confusing phrases, and training
phrases per intent; whereas Dialogflow chatbots have more conversation flows, phrases with
negative tone, and parameters. It would be interesting to investigate whether, in general, these
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differences could be attributed to the technology used, as well as to identify what features can
make chatbot development tools less prone to user errors. For example, Rasa specifications consist
of text files, which eases the creation of variations of training phrases (higher TPI), but where
copy-and-paste actions may result in duplicated training phrases (higher CNF). Instead, training
phrases in Dialogflow are introduced by means of forms, and include facilities to define phrase
parameters (higher PPTP). In the future, our findings, based on metrics, should be complemented
with user studies to find causes for these differences within tools.
Integrated quality assurance (tool builders, practitioners). Section 7.4 has demonstrated
that some quality issues can be detected statically, at design time. For this reason, we foresee the
integration of metrics within chatbot tools, e.g., to detect low number of training phrases, repeated
phrases, long responses, or confusing phrases. Alternatively, practitioners could make use of our
metrics to gain insights of their designs. For this matter, we are currently working on deploying
the calculation of metrics as a Github action22, which can be easily integrated into custom software
development workflows.
Chatbot reuse (tool builders, practitioners). Both Dialogflow and Rasa provide predefined
chatbot templates for different domains, which users can complete and adapt to their needs. In
addition to this kind of planned reuse, we also advocate for enabling the unanticipated reuse of
existing chatbots. Chatbot clustering, as presented in this paper, is a first step towards this goal.
As Section 7.5 showed, our clustering mechanism is able to create meaningful groups of related
chatbots by conversation topic. In the future, several improvements could be developed atop our
clustering proposal to achieve a better reuse mechanism, such as a facility to find sets of chatbots
by topic – so that developers may choose the most appropriate starting point for their chatbot –
and automated support to adapt existing chatbots to the reuser needs.
On chatbots based on Large LanguageModels (tool builders). The advances in Large Language
Models (LLMs) [70] has prompted the appearance of open-domain chatbots like ChatGPT or Bard.
Those LLMs have been trained on enormous amounts of data, and use generative technologies
to synthesise outputs from given user prompts. However, building a reliable LLM-based chatbot
using prompts alone is challenging [69]. To facilitate this task, a natural move for chatbot tool
vendors may be to integrate LLM technology into task-oriented chatbot construction tools23. This
will trigger the need to migrate existing intent-based chatbots into LLM-based chatbots. We argue
that a neutral chatbot design language would be helpful for this task. While chatbots defined with
Conga are currently based on intents, we are working on its expansion to consider chatbots based
on prompts, which will enable an automated migration.

8 CONCLUSION AND FUTUREWORK

Chatbots are increasingly relevant nowadays, so techniques for assessing, comparing and clustering
chatbots before their deployment are required. To this aim, we have proposed a suite of metrics and
two clustering mechanisms applicable over heterogeneous chatbot designs independently of their
implementation technology. Our proposal is supported by the tool Asymob, which can be used
both as a web platform and via its REST API for integration within specific chatbot platforms or
development processes. We have evaluated the approach on a dataset of 259 chatbots, demonstrating
the usefulness of the metrics – for chatbot quality assurance and detecting problems – and the
clustering.

In the future, wewould like to study how developers perceive and value ourmetrics by conducting
qualitative studies, such as surveys. We also plan to study correlations between our metrics, with
other development metrics like effort, and with usability metrics collected dynamically. The latter

22 https://docs.github.com/en/actions 23 An improvement that has been already announced for Rasa.
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would allow us to assess empirically the influence of our internal design metrics to external quality
factors related to effectiveness, efficiency and satisfaction. Ultimately, we would like to derive
metric thresholds to guide developers during chatbot construction. On a more general setting,
we would like to investigate the definition of custom quality models for assessing the quality of
chatbots, including both internal metrics and quality in-use metrics (e.g., in the style of [54]). We
would like to conduct larger-scale studies to better understand the type of errors in chatbots, and
their links to the technologies used. For this, we plan to use a combination of metrics and static
design analysis. We are also interested in supporting other chatbot representations for semantic
clustering. These may include the use of embeddings like Word2Vec or pre-trained language models
like BERT [13]. At the tool level, we are working on presenting warnings about outliers, and on a
graphical editor to inspect chatbot designs. Finally, finding chatbots is cumbersome with current
search engines. For this reason, we would like to propose a dedicated crawler and search engine
for chatbots, able to accurately find chatbot projects for a given technology.

DATA AND CODE AVAILABILITY

The data and code that support the findings of this paper are openly available at:
• Deployed Asymob service: http://miso.ii.uam.es/asymobService
• Asymob core code: https://github.com/PabloCCanizares/asymob
• Datasets and experiment results: https://github.com/asym0b
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