
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 1

A Component Model for Model
Transformations

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Abstract—Model-Driven Engineering promotes an active use of models to conduct the software development process. In this
way, models are used to specify, simulate, verify, test and generate code for the final systems. Model transformations are key
enablers for this approach, being used to manipulate instance models of a certain modelling language. However, while other
development paradigms make available techniques to increase productivity through reutilization, there are few proposals for the
reuse of model transformations across different modelling languages. As a result, transformations have to be developed from
scratch even if other similar ones exist.
In this paper, we propose a technique for the flexible reutilization of model transformations. Our proposal is based on generic
programming for the definition and instantiation of transformation templates, and on component-based development for the
encapsulation and composition of transformations. We have designed a component model for model transformations, supported
by an implementation currently targeting the Atlas Transformation Language (ATL). To evaluate its reusability potential, we report
on a generic transformation component to analyse workflow models through their transformation into Petri nets, which we have
reused for eight workflow languages, including UML Activity Diagrams, YAWL and two versions of BPMN.

Index Terms—Model-Driven Engineering, Model Transformation, Reusability, Genericity, Component-Based Development.

F

1 INTRODUCTION

Model transformations are programs that take one
or more models as input, and produce a number
of output models. The aim of transformations is au-
tomating model manipulation when possible, while
reducing the number of errors in this manipulation.
This technology is key in Model-Driven Engineering
(MDE) [1], where it is used to implement model
refactorings, model refinements, model synchroniza-
tion mechanisms, and translators of models into other
formalisms for analysis, among other tasks.

The increasing adoption of MDE is leading to the
construction of model transformations of raising com-
plexity. However, building new transformations from
scratch is costly, error prone, and requires special-
ized skills. Hence, transformation developers would
benefit from mechanisms enabling the construction of
new transformations by reusing proven, existing ones,
adapted to the particular problem to be solved.

In current MDE practice, there is a proliferation of
meta-model variants for the same languages. This is
partially caused by the focus of MDE on domain-
specific languages (DSLs), and due to simplifications
or variations introduced in large meta-models (like
UML class diagrams and BPMN-like process mod-
elling languages) to make them fit for the project pur-
pose. For instance, the ATL meta-model zoo1 includes

• J. Sánchez Cuadrado, E. Guerra and J. de Lara are with the Department
of Computer Science, Universidad Autónoma de Madrid, Spain.
E-mail: {jesus.sanchez.cuadrado, esther.guerra, juan.delara}@uam.es

1. http://www.emn.fr/z-info/atlanmod/index.php/Ecore

11 different meta-models for Petri nets, 14 meta-
models describing conference organization systems,
and 6 variations of the Java meta-model. This variety
hampers reuse because transformations are developed
for a particular meta-model and cannot be reused for
other related ones. Appropriate mechanisms for trans-
formation reutilization would alleviate this problem,
and we claim that they are essential for the success of
the MDE paradigm at industrial scale.

Kusel at el. [2] identify the barriers that hinder the
reuse of transformations, including: (1) transforma-
tions are tight to concrete meta-models, and it is not
possible to reuse them for semantically related meta-
models, (2) lack of meta-information and missing
repositories, which makes it difficult to search and
find transformations, (3) challenging and limited spe-
cialization of existing transformations, which limits
the adaptation of a transformation to unforeseen con-
texts, and (4) insufficient integration support. Thus,
the most used approach in MDE is code scavenging.
Developers typically search for related transforma-
tions, pick some rules and adapt them to the meta-
models at hand. Integration is usually done ad-hoc by
creating a build script (e.g., with ANT) that configures
the transformation within a transformation chain for
its execution over concrete models and meta-models.

Component-Based Software Development (CBSD)
advocates the construction of systems by systemati-
cally reusing and adapting pre-built software units or
components. The expected benefits are increased reuse,
reduced production cost and shorter time to market.
As noted in [3], any CBSD methodology has an under-
lying component model defining “what components are,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 2

how they are constructed, how they can be composed and
how they can be deployed”. While component models
have been defined for several application domains [4],
[5], there are no appropriate proposals for MDE. A
component model for model transformations requires
a mechanism for the adaptation of transformations to
different contexts (i.e., use of different meta-models),
as well as composition and integration mechanisms
to allow creating transformation components that are
truly reusable by third-parties, who may create new
components as composites of existing ones.

In previous works [6], [7], we applied ideas from
generic programming to the definition of generic,
reusable model transformation templates. Transfor-
mation templates are not defined over concrete meta-
models, but over concepts [8], [9], [10] which gather
the requirements that a meta-model should fulfil to
yield a proper template instance. A concept is similar
to a meta-model, but its elements (classes, references,
attributes) are interpreted as variables that need to
be bound to elements of specific meta-models. The
binding induces a retyping and adaptation of the
transformation template, so that it becomes applica-
ble to the instances of the bound meta-models. As
concepts can be bound to several meta-models, they
become reusable for all of them.

A concept can be seen as a pivot meta-model [11].
In general, to reuse a transformation defined over
a pivot with a new meta-model, one must create a
transformation from the meta-model to the pivot, and
then chain both transformations. Instead, we provide
an alternative with three main advantages: (1) there is
no need to generate an intermediate instance model
of the pivot, but the template gets adapted to the new
meta-model, being more efficient in terms of perfor-
mance and memory footprint, (2) traceability between
the source and target models of the transformation is
automatic because there is no intermediate step, and
(3) there is support to bind meta-models and concepts,
which is normally simpler than using a full-fledged
transformation language. Thus, a key element in our
approach to be practical is the expressiveness of the
binding, for which we use a dedicated DSL.

In this paper, we improve our binding DSL to con-
sider more complex adaptations, and propose a com-
ponent model for model transformations based on the
notion of generic transformation. The model supports
both simple and composite components, which are
treated in a unified way by using concepts as their
interfaces. Simple components encapsulate a transfor-
mation template and expose one or more concepts
specifying the requirements that meta-models need to
fulfil to apply the component. Components may also
expose features [12], which can be used to configure
the behaviour of the transformation template, or to se-
lect between different execution paths in a composite
component. Composite components allow instantiation
and integration of existing components, so that from

the reuse perspective, there is no difference between
simple and composite components.

We frame our proposal into the four dimensions for
software reuse proposed by Krueger [13]: abstraction,
selection, specialization and integration. Driven by
these dimensions, and with the aim of addressing the
shortcomings identified in [2], we discuss how con-
cepts are a suitable abstraction to define the interface
between transformation components, we propose an
approach to find and select components, a mechanism
to adapt components to particular meta-models, and
we show how to integrate components to perform
complex transformation tasks.

We have implemented our component model in
a tool, called Bentō, contributed as open source at
http://www.miso.es/tools/bento.html. We have used
Bentō to evaluate our proposal by building a generic
component to analyse workflow models by their
transformation into Petri nets, being able to apply this
component to eight out of nine relevant modelling
languages. Additionally, we have studied the suitabil-
ity of concepts as abstraction mechanism, finding that
they tend to be simpler and easier to comprehend than
full-fledged meta-models.

Paper organization. Section 2 introduces model trans-
formations, motivating the need for reuse mecha-
nisms. Section 3 overviews our component model,
which is detailed in the following sections: Section
4 proposes concepts as a way to abstract transforma-
tions, Section 5 explains how to specialize transfor-
mations for different meta-models, Section 6 presents
mechanisms to facilitate component selection, and
Section 7 discusses their composition mechanisms.
The different sections are illustrated using a compo-
nent to transform workflow languages into Petri nets
for analysis. In Section 8, we evaluate our proposal
with respect to its reusability potential, and the ab-
straction power of concepts. Finally, Section 9 com-
pares with related research and Section 10 presents
the conclusions and future work. Two appendices
available in the online supplemental material describe
the rules to adapt an ATL template according to a
binding, and contain the complete running example.

2 MODEL TRANSFORMATION

MDE proposes an active use of models in the different
phases of the software development. The allowed
structure of models is normally described through
meta-models, which are models describing the ab-
stract syntax of the modelling language. Hence, meta-
models define the allowed classes, relations and at-
tributes that can be instantiated in models.

In MDE, model manipulation is automated through
model transformations [14]. The kind of transforma-
tions we tackle in this paper are model-to-model,
which transform a source model conforming to a
source meta-model, into a target model conforming

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 3

to another meta-model. Alternatively, transformations
can also be used to manipulate models in-place.

Several model-to-model transformation languages
exist. In this paper, we use the Atlas Transformation
Language (ATL) [15] as it is one of the most widely
used in practice. ATL transformations are made of
rules. Each rule defines the way in which some
configuration of objects in the source model should
be used to produce certain configuration of objects
in the target model. Moreover, the attributes and
references of the objects created in the target model
are initialized using OCL expressions [16].

As an example, Listing 1 shows part of an ATL
transformation from BPMN models into Petri nets.
The goal is being able to analyse some properties of
the input BPMN models, like the absence of deadlocks
or incorrect executions due to unfinished paths in
parallel splits, by using some available Petri net tool.
The source meta-model of the transformation is the
Intalio’s implementation of the BPMN meta-model2,
partially shown in Figure 1. Thus, the transforma-
tion is only expected to work with models that are
instances of this meta-model. The target meta-model
for Petri nets, shown in Figure 2, is hand-made.
1 module intalio2pn;
2 create OUT : PN from IN : BPMN;
3

4 −− the start event is transformed into a place with 1 token
5 rule start event {
6 from activity : BPMN!Activity (activity.activityType = #EventStartEmpty)
7 to place : PN!Place (
8 name <− ’Initial’,
9 tokens <− 1)

10 }
11

12 −− each task is transformed into a place without tokens
13 rule task {
14 from activity : BPMN!Activity (activity.activityType = #Task)
15 to place : PN!Place (
16 name <− activity.name,
17 tokens <− 0)
18 }
19

20 −− edges connecting 2 activities that have been converted into places,
21 −− are transformed into transitions
22 rule place place {
23 from edge : BPMN!SequenceEdge (
24 edge.source.toPlaceAsOutput and
25 edge.target.toPlaceAsInput)
26 to transition : PN!Transition (
27 in <− edge.source,
28 out <− edge.target)
29 }

Listing 1. Excerpt of an ATL transformation from
Intalio’s BPMN meta-model to Petri nets.

Vertex

BpmnDiagram

author:String

title:String

NamedBpmnObject

documentation:String

name:String

ncname:String

Activity

activityType:ActivityType

looping:Boolean

<< enumeration >>

ActivityType

Task:int

SubProcess:int

EventStartEmpty:int

GatewayParallel:int

EventEndEmpty:int

EventEndTerminate:int

GatewayDataBasedExclusive:int

GatewayEventBasedExclusive:int

GatewayDataBasedInclusive:int

SequenceEdge

isDefault:Boolean
outgoingEdges

*

source

incomingEdges

*

target

Pool

pools*

Graph
vertices

*

Fig. 1. Excerpt of Intalio’s BPMN meta-model.

2. See http://www.intalio.com/products/bpms.

�����������	

��������	�

����	��� ����

�

����

�������	��

�����	�	��
	�

�
���

�

Fig. 2. Petri nets meta-model.

The listing shows just three rules. The first two map
activities to places, marking the place with a token if
the activity is initial, which is given by the value of
the activityType attribute. The third rule creates a Petri
net transition for each BPMN edge connecting two ac-
tivities. Its filter uses two OCL helpers (toPlaceAsOutput
and toPlaceAsInput) to check that the source and target
activities that the edge connects correspond to places
(as some activity types, like parallel gateways, are
transformed into transitions and need to be connected
in a different way by other rules). The complete
transformation is significantly more complex, since
it needs to deal with challenging mappings such as
gateways that may take more than one path, thus
requiring deep knowledge of workflow and Petri net
languages and advanced ATL developing skills.

Hence, an issue is that this transformation is tied
to the Intalio’s BPMN meta-model, and cannot be
used with other BPMN meta-models, like the OMG
standard BPMN2.0 meta-model [17]. Should we want
to transform other workflow-like languages like UML
Activity Diagrams or Grafcet [18] diagrams into Petri
nets, we would need to develop similar transforma-
tions, but we cannot reuse the one in Listing 1 because
it is defined over the types in the Intalio’s meta-model.
The only current option is to adapt the transformation
manually to the new context, which is error prone
because the developer needs to understand all details
of the original transformation to rewrite it.

In this scenario, it would be useful to have a
reusable component which transforms similar work-
flow languages into Petri nets. The next section de-
scribes an approach to the creation of such generic
transformation components.

3 A COMPONENT MODEL FOR MODEL
TRANSFORMATIONS

In CBSD, systems are built by reusing components
and composing them. We apply this view to MDE by
contributing a component model for model transfor-
mations. Our model satisfies the features expected by
any CBSD approach [3]: components are pre-existing
reusable units that can be used quicker than writing
code from scratch, they are instantiable in different
contexts to maximize reuse, they are composable, and
different parties can produce and use them.

In the simplest setting, our transformation compo-
nents contain a reusable transformation template, and
its expected input and output models are exposed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 4

via typed ports. The type of ports is described either
by a meta-model or by a concept. A concept is a
description of the structural requirements that a meta-
model needs to fulfil to allow the instantiation of
the component with the meta-model. Thus, a com-
ponent can be used with any meta-model that fulfils
the requirements of its associated concepts. Concepts
resemble meta-models, and transformation templates
are standard transformations defined over the types
declared in the concepts. For the moment, we will
consider transformation components as black boxes
with well-defined interfaces given by concepts.

Figure 3(a) shows the graphical representation of a
reusable component to transform workflow languages
(like BPMN and UML Activity Diagrams) into Petri
nets. The input model of the component must be
compatible with the FD concept, which includes vari-
ables representing workflow elements such as task,
gateway and edge (not shown in the figure). The
component generates a Petri net that is described by
the PN concept. We use the “lollipop” notation and
decorate input ports with required interfaces (e.g., FD),
and output ports with provided ones (e.g., PN).

FlowDiagram to
PetriNet PNFD

a) Simple component b) Connectors

BPMN FD

FlowDiagram to
PetriNet

PN
Analysis

PN PN

BPMN Analysis

PetriNet PNFD AnalysisPNBPMN Analysis Analysis

c) Composite component

Fig. 3. Transformation component example.

The context of use of a component is defined by
means of connectors that wire its exposed ports with
the ports of other components or with concrete meta-
models. In the latter case, the connector is realized by
binding each element in the concept to some element
in the meta-model. This induces an adaptation of the
transformation template inside the component, be-
coming applicable to the model instances of the bound
meta-model. Figure 3(b) shows the graphical notation
used to specify a connector binding the FD concept to
the BPMN meta-model. If two ports declare the same
meta-model or concept, no binding is needed, and
their connector is depicted by a line.

A transformation component can be directly used
to transform models, or it can be combined with
other components to build composite ones. Figure 3(c)
shows a composite component to analyse BPMN
models. It includes the FlowDiagram to PetriNet compo-
nent, specialized for BPMN by binding the FD concept
to the BPMN meta-model, and chained with the PN
Analysis component, which analyses the Petri net that

results from the transformation. The resulting BPMN
Analysis component can be integrated in further chains.

Our component model is described by the meta-
model excerpt of Figure 4. A Component is an abstract
entity that performs an operation on a set of source
and target models. The component interface is given
via ports that declare the Meta-Model of the manipulated
models. A Concept is a special kind of meta-model
that admits bindings to meta-models. A simple compo-
nent (TransformationComponent) encapsulates a transfor-
mation template, created using some transformation
language. While we support ATL and Java templates,
adaptation through bindings is only available for ATL.
A CompositeComponent is made of several components,
simple or composite, interconnected using a compo-
sition language (subclasses of CompositionStep, omitted
in the figure).

Fig. 4. Excerpt of the meta-model representing the
component model for model transformations.

We have framed this component model into the
four dimensions of reuse proposed by Krueger [13]:
abstraction, specialization, selection and integration.
We use them to present the details of our model in the
rest of the paper, but first, we briefly introduce them
with respect to the meta-model presented above.

In our approach, concepts are the abstraction mech-
anism, becoming the reuse interface of components.
Thus, components are black-boxes, as users only need
to understand the attached concepts to reuse a com-
ponent. Components may be configured via features
(class Feature) to select between different behaviours.
Concepts and features are presented in Section 4.

Our specialization mechanism is the binding, which
is a mapping between a concept and a meta-model.
It is specified through a dedicated language (class
BindingSpecification) that bridges some structural hetero-
geneities between the concept and the meta-model.
The binding induces an adaptation of the transforma-
tion template to make it compatible with the bound

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 5

meta-model. Bindings are presented in Section 5.
To enable selection of components, both concepts

and transformations may attach Tags. Moreover, trans-
formations can be described textually or more for-
mally through a contract using the PAMOMO trans-
formation specification language [19] (class Contract).
These mechanisms are explained in Section 6.

Finally, we provide a composition language that al-
lows the integration of different transformations com-
ponents to build a transformation chain (class Compo-
sitionStep). This language is presented in Section 7.

As a running example, we use our component
model to make the transformation presented in Sec-
tion 2 reusable. Our goal is to create a reusable
component for the Petri net-based analysis of work-
flow languages, as several researchers have proposed
transformations from their particular workflow lan-
guages into Petri nets [20]. In order to illustrate
composite components (Section 7) we use a generic
Petri net analysis component and two graph layout
components, which are used to build a complete
analysis component for workflow languages. The rest
of the paper is presented with relevant excerpts of this
component, while the complete example is available
online, in the supplemental material.

4 ABSTRACTION MECHANISMS FOR
REUSABLE TRANSFORMATIONS

Abstraction is the primary mechanism of reuse, as an
abstraction ultimately describes a related collection
of reusable entities of some nature [21]. Abstractions
provide a higher-level view of an artefact, suppressing
low-level details. Hence, they have a visible part,
either fixed or variable, and a hidden part [13].

Our components hide the implementation details
of a transformation, and make visible a concept,
configuration parameters and a description. While
the concept and parameters are variable parts of the
component abstraction, the description is fixed. Thus,
concepts abstract a family of languages, and allow
the specialization of a transformation template for a
language of the family by means of a binding (see
Section 5). In addition, components can have parame-
ters to configure certain aspects. These two abstraction
mechanisms are explained in the next subsections.

4.1 Transformation concepts

A transformation concept gathers the requirements
that a meta-model should fulfil to serve as source or
target of a transformation template. In our approach,
concepts have the form of a meta-model; however,
their elements (classes, attributes, references) are vari-
ables that need to be bound to elements of a specific
meta-model. Additionally, concept classes can be an-
notated with a cardinality [6], which is an interval
specifying the minimum and maximum number of

bindings that can be provided for the class. The de-
fault cardinality is [1..1], meaning that the concept class
needs to be bound to exactly one meta-model class.
A lower bound 0 indicates that the concept class can
be left unbound, that is, it is not mandatory and may
have no correspondence in a specific meta-model. The
upper limit * means there is no upper bound.

In the running example, the source concept must
abstract the common elements found in workflow
languages that the transformation needs to deal with.
Figure 5 shows the designed concept. Workflows are
made of interconnected nodes, some of them repre-
senting tasks or activities, while others are gateways
in charge of routing the process flow. Tasks and the
different types of gateways are modelled as subclasses
of an abstract class Node. We include as gateways the
homonymous patterns in the well-known catalogue of
control workflow patterns of van der Aalst et al. [22],
as the semantics of these patterns is well-documented
and precisely defined. All types of gateway have
cardinality 0..1 because the pattern they represent may
be present or not in a particular modelling language.

����

����

�����	
����

�������	�������

��������

��� ��

�

� ����

�

��������

��������
���

������������ ������ �!����

����"����

"���!����

����#�����

������ ������

����

����

����

����

����

����

�$����������	$�������

����

Fig. 5. A concept for workflow languages

The semantics of final tasks depends on the par-
ticular modelling language. While in languages like
YAWL, reaching a final task concludes the execution
of the workflow, in BPMN the execution only finishes
when all active branches terminate. There are also
languages which accommodate both semantics. For
example, Activity Diagrams have both FlowFinalNodes
for ending just a certain execution branch, and Activ-
ityFinalNodes which end the complete execution. Our
concept abstracts both options by means of the class
FinalTask, which owns the flag isTerminating to indicate
whether reaching an object of the bound type con-
cludes the workflow execution. The cardinality 0..* al-
lows class FinalTask to be bound to several meta-model
classes, enabling final tasks with different semantics.

Hence, a concept provides a canonical represen-
tation for the features of a family of meta-models
(e.g., the different ways to represent a final task in
workflow languages), and the transformation tem-
plate is written for this common representation using

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 6

the regular constructs of the transformation language.
The heterogeneities between the concept and each
particular meta-model will be bridged by establishing
a binding between them (see Section 5).

While concepts are syntactically similar to plain
meta-models (except for the cardinality on classes),
conceptually, there is an important difference. While
a concept is the interface of a transformation tem-
plate and contains only the elements accessed by the
template, meta-models reflect the complexity of some
domain and may contain many elements irrelevant for
the particular transformation. For instance, the meta-
model of OMG’s BPMN defines more than 130 classes,
while our workflow concept has 10. Thus, concepts
are usually simpler than domain meta-models, and
therefore transformations over concepts tend to be
simpler as well, as they do not contain accidental
details of the domain. An evaluation of the abstraction
power of concepts is provided in Section 8.2.

4.2 Transformation variants
The behaviour of some transformations may depend
on features that are tacit knowledge of the source
domain. For example, initial tasks are mandatory in
languages like YAWL, but they are optional in others
like BPMN. The same happens with final tasks. These
different options result in different translations into
Petri nets. While we need to be able to choose the
right option for the concrete input meta-model, such
options do not naturally fit in a concept because they
are not structural properties of single objects, but they
belong to the language semantics. Thus, we model
those variants as a feature model [12] attached to the
component, as the meta-model in Figure 6 shows.

Fig. 6. Slice of the component meta-model of Figure 4:
describing transformation variants.

As an example, Figure 7 shows a transformation
component exposing a feature model with two op-
tions for initial and final states: optional and mandatory.

FlowDiagram to

PetriNet PN FD

initialState

optional mandatory

finalState

optional mandatory

Fig. 7. Component with features.

When executing the component, the transformation
template can inspect the values of the selected features

through a model that is dynamically generated. A
generic library is provided to facilitate looking up
feature values in the transformation template.

5 SPECIALIZATION

A transformation component must be specialized or
adapted to its context of use. In our case, the special-
ization consists in making the constituent transforma-
tion template applicable to an existing meta-model.
This is achieved by specifying a binding between
the interface of the component (i.e., the concept) and
the meta-model, in order to identify the meta-model
elements that play the different “roles” required in the
concept. This binding induces an adapted component
that is applicable to the instances of the bound meta-
model. Figure 8 shows this working schema.

transformation component

concept

Msrc Mtar

from to

«conforms to» «conforms to»

template

execution

MMsrc
template

instance

to

binding

MMtar

HOT

transformation

template

from

final user

developer

(with reuse)

developer

(for reuse)

1

2 3

4

Fig. 8. Transformation adaptation through binding.

Thus, a transformation template is defined over a
concept (label 1 in the figure). When this concept is
bound to a specific meta-model MMsrc (label 2), the
binding induces a rewriting of the template, so that a
transformation specialized for the specific meta-model
is obtained. This rewriting is performed by a high-
order transformation (HOT) (label 3). In this way, the
transformation template becomes reusable as it can be
bound to different meta-models and therefore used in
different contexts. The figure shows a binding of the
source concept of the transformation template, while
the target is a fixed meta-model. Having a concept
in the target is also possible, though the binding of
target concepts is more restricted than those in the
source (see [7]). For simplicity, in the following we
assume a binding for the source and a fixed target.

5.1 Binding concepts to meta-models
In the simplest case, the binding is a direct mapping
from the elements in the concept to elements in a
meta-model, which induces a type renaming in the
transformation template. This is enough for meta-
models that contain a part structurally equal to the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 7

concept; however, this is uncommon. Thus, to enable
the reuse of a transformation component with a wider
range of meta-models, we provide a flexible binding
mechanism that is able to fix some structural hetero-
geneities between a concept and a meta-model.

To facilitate the definition of such bindings, we
have designed a DSL that improves the one presented
in [6], [7] by supporting more complex bindings (Sec-
tion 5.2) and binding inference (Section 5.3). Listing 2
shows an example of its usage to define part of the
binding from the Workflow concept (Figure 5) to the
Intalio’s BPMN meta-model (Figure 1). Lines 2–3 refer
to the files with the definition of the concept and the
bound meta-model. Lines 5–7 define three bindings
for classes. The first one maps the concept class
FlowDiagram to the meta-model class BpmnDiagram. Lines
9–12 show a class binding that includes a when OCL
expression to select only those BPMN Activity instances
satisfying the expression. Lines 14–15 bind the feature
FlowDiagram.nodes to an OCL expression. The context
of the expression (self) is BpmnDiagram, as this is the
meta-model class to which FlowDiagram is bound to. The
result of evaluating the expression is a collection of
Vertex, which is compatible with the type Node expected
by the collection, as Node is bound to Vertex (line 6).
Line 17 defines a renaming feature binding, and line
18 a feature binding to an OCL expression stating that
an Intalio task is initial when its attribute activityType
equals the enumerate literal EventStartEmpty. The rest of
the binding specification is similar. Notably, the same
pattern is repeated in the class bindings of gateways,
in which we need to use OCL expressions to select
Activity instances according to their activityType, as well
as their incoming and outgoing edges.

1 binding intalio2fd {
2 concept FD : ”FlowDiagram.ecore”
3 metamodel BPMN : ”IntalioBPMN.ecore”
4

5 class FlowDiagram to BpmnDiagram
6 class Node to Vertex
7 class FlowEdge to SequenceEdge
8

9 class ParallelSplit to Activity when
10 self.activityType = #GatewayParallel and
11 self.incomingEdges−>size() = 1 and
12 self.outgoingEdges−>size() > 1
13

14 feature FlowDiagram.nodes =
15 self.pools−>collect(p | p.vertices)−>flatten()
16

17 feature Node.outs is outgoingEdges
18 feature Task.isInitial = self.activityType = #EventStartEmpty
19 ...
20 }

Listing 2. Binding for Intalio’s BPMN meta-model.

The primitives of our DSL for bindings are de-
scribed by the meta-model shown in Figure 9. We
support three kinds of bindings (subclasses of Bind-
ing) which allow mapping classes, “virtual classes”
defined inline as part of the binding, and features.

First, a ClassBinding maps a class in the concept to
zero or more classes in the meta-model, according
to its declared cardinality. Mapping several classes in

Fig. 9. Meta-model to describe bindings.

the concept to the same meta-model class is allowed.
This binding type may include an OCL expression
(whenClause), evaluated in the context of the bound
meta-model class, to rule out certain instances from
the mapping. As an example, lines 9–12 of Listing 2
show a class binding with a whenClause.

A VirtualClassBinding maps a class in the concept to
a user-defined virtual class. Virtual classes are used
when there is some mandatory class in the concept
for which there is no meta-model class counterpart,
but the meta-model represents the same information
using other more complex structure. In such a case,
a VirtualClass can be defined as part of the binding
specification (we omit this relation in the meta-model
for simplicity), and its instances are created by means
of an OCL expression (init) that is evaluated before
executing the instantiated transformation.

A FeatureBinding defines the binding for a feature
(attribute or reference) of a concept class. If this class is
bound to several meta-model classes, then the binding
must be qualified with the concrete meta-model class
in order to disambiguate (relation qualifier). There are
three kinds of feature bindings: RenameBinding, OclBind-
ing and NoneBinding. RenameBinding establishes a direct
mapping with a feature in the bound meta-model.
OclBinding maps the feature to an OCL expression,
which is evaluated in the context of the bound meta-
model class and must return a suitable value for the
binding (i.e., of compatible type with the feature). We
call this kind of binding adapters. NoneBinding is used
to let a feature unmapped, but is only allowed for
bindings of target concepts. For instance, in Listing 2,
line 17 is a rename binding, while line 18 is an adapter.

Regarding the inheritance relations appearing in the
concepts, they do not need to be mapped, as our
binding is actually a structural mapping, in the line of
structural subtyping in programming languages [23].
This means that the binding is defined for a flattened
version of the concept, and it is only compulsory to
map the leaf classes in inheritance hierarchies together

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 8

with their features (both owned and inherited).
Table 1 summarizes the well-formedness rules that

bindings should obey (adapted from [7]). In the table,
X.ancestors is the set of ancestors of class X, includ-
ing X itself, while X.features is the set of attributes
and references defined in class X. Condition 1 states
that the features defined by a concept class, can be
bound to owned or inherited features of the mapped
meta-model class. Condition 2 states that the binding
should preserve the subtyping relations, i.e., subtype
classes in a concept should be mapped to subtype
classes in the bound meta-model, and similar for
non-subtype classes. Conditions 3–6 are requirements
for the type and characteristics of references and
attributes (we use � to denote subtyping). These con-
ditions only apply to RenameBindings, as heterogeneities
(e.g., regarding cardinality and type of references and
attributes) can be solved through adapters.

TABLE 1
Well-formedness conditions for bindings.

Scope Condition

1 features Given a class A ∈ concept, and a feature f ∈
A.features, then bind(f) ∈ X.features for some
class X ∈ bind(A).ancestors

2 subtyping Given two distinct classes A,B ∈ concept s.t.
bind(A), bind(B) are defined, then
A ∈ B.ancestors ⇒ bind(A) ∈ bind(B).ancestors
∧
A /∈ B.ancestors ⇒ bind(A) /∈ bind(B).ancestors

3 composition Given a composition reference r ∈ concept,
then bind(r) is a composition

4 type of
attributes

Given an attribute a ∈ concept, then
bind(a).type � a.type

5 type of
references

Given a reference r to a class A ∈ concept,
then bind(r).target � bind(A)

6 cardinality Given a reference r ∈ concept, then
bind(r).mincard ≥ r.mincard ∧ r.maxcard ̸= *
⇒ bind(r).maxcard ≤ r.maxcard

5.2 Bridging heterogeneities

A key feature of our approach is the ability of bind-
ings to fix a wide range of heterogeneities between a
concept and a meta-model, in order to increase the
reuse opportunities of a given template. From the
experience gained by defining bindings to complex
meta-models (see Section 8), we have built a clas-
sification of heterogeneities that our DSL can solve.
Table 2 introduces the most common ones, using ex-
amples based on possible concepts and meta-models
for class diagrams, and giving a binding that solves
the heterogeneity. This classification is not exhaustive
since the use of adapters may fix other unforeseen
heterogeneities. Section 8 evaluates to what extent
these heterogeneities appear in practice. The online
supplemental material includes the rules to adapt a
transformation template according to a binding.

5.3 Inference of adapters
Even though adapters are a general mechanism to
resolve heterogeneities, there are recurring hetero-
geneities that require writing boilerplate OCL adap-
tation code. Some of these patterns are discussed
in [24]. To avoid encoding such bindings repeatedly,
we have extended our DSL for the automatic inference
of the adaptation code. This is done by analysing
the differences between a concept feature and the
corresponding meta-model feature, and generating
the OCL code that resolves the heterogeneity. Table 3
summarizes the supported inference rules. For exam-
ple, an automated filtering occurs when a collection in
the concept (e.g., ownEls) is mapped to another one of
a supertype, so that an expression is generated that
selects only the elements of the right type, filtering
out the objects of sibling classes. The last column of
the table shows the generated adapter, which replaces
the feature binding in the third column.

Other binding adapters inferred by our DSL convert
multiplicities (widening from the meta-model to the
concept), resolve differences in the direction of a refer-
ence, or split/merge references (reference merging is
a collection of multiple automated filterings). There are
also special cases of these adapters when references
have cardinality 0..1 or 1 (instead of “*”).

5.4 Restricting transformation applicability
Normally, meta-models are bigger than the concept
they get bound to. While these extra elements may
be unimportant for the transformation, sometimes
they have an impact. For example, rich workflow
languages may have more primitives than the ones
supported by our Workflow concept. This is the case
of the XOR-join (or multi-merge) gateway, present in
BPMN but not in our concept. A model that contains
instances of the ignored primitives may be incorrectly
transformed into a Petri net, because either these in-
stances will not be transformed, or alternatively, they
may be treated as Nodes (should Nodes have assigned
a default transformation rule), which may not reflect
the semantics of the primitives. To solve this problem,
our solution reports warnings when an input model
contains instances of a type which is not mapped to
any element in the concept, but some of its supertypes
are mapped. This may indicate that the concrete meta-
model contains elements with a special semantics not
foreseen by the concept, whose presence in a model
may trigger an incorrect transformation.

Additionally, the developer of the binding can de-
fine OCL constraints to restrict the input models to
which the adapted transformation will be applicable.
This is useful when the provided binding does not
support some feature of the mapped meta-model.
For example, while in BPMN it is possible to start
a process via an Event-Based Exclusive Gateway, the
developer may decide to postpone this possibility to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 9

TABLE 2
Natively resolvable heterogeneities.

Name Description Binding Diagram (concept to the left)

Class split A concept class is mapped to more
than one meta-model class. This means
that several meta-model classes play the
same role as a concept class, but they
lack a common ancestor that can be
mapped to the concept class.

class Attr to Attr, Port
−− In this case the example also includes
−− reference split (see Table 3)
feature Class.atts is atts, ports

Class
Component

Port

Attr
*

atts

ports *

*

atts
Attr

[1..*]

Flatten
hierarchy

An abstract superclass is not mapped. In
this case, mapping only the leaf classes is
allowed, whenever all features inherited
from the superclass are mapped. Some
leaf classes can be mapped to none if
their lower cardinality is 0.

class Class to Class
class Field to Attribute
class Method to Method
class InnerClass to NONE

feature Field.name is attName
feature Method.name is name

Class Member

name

m

Field MethodInnerClass

Class Attr ibute

attName

atts

Method

name
methods

[0..1]

*

*
*

Class
merge

Two or more classes in the concept,
belonging to different hierarchies, are
mapped to a unique meta-model class.
This means that the meta-model class
has several distinct behaviours.

class Package to Class
class Class to Class
feature Package.pkgName is name
feature Class.className is name
feature Package.elems is scoped

Association
to class

An association in the concept is repre-
sented as an intermediate class in the
meta-model (special case of association to
navigation expression).

class Class to Class
feature Class.parents =

self.generals−>collect(g | g.’class’)

Class to
association

A class in the concept is represented
as an association in the meta-model. A
user-defined virtual class mapped to the
concept class is created. Its instances are
populated by means of an OCL expres-
sion over the meta-model. The virtual
class can be normally used as a standard
meta-model class, though it is only avail-
able at run-time.

class VirtualGeneral {
ref src: Class
ref tgt: Class

} init = Class::allInstances()−>collect(c1|
c1.parents−>collect(c2|

#VirtualGeneral { src = c1, tgt = c2 }))

class Class to Class
class Generalization to virtual VirtualGeneral

feature Generalization.’class’ is tgt
feature Class.generals =

VirtualGeneral::allInstances()−>select(g|
g.src = self)

Association
to
navigation
expression

A reference in the concept is represented
by other means in the meta-model.

class Class to Class
class Method to Method
feature Class.meths =

Method::allInstances()−>
select(m | m.className = self.name)

Subclass to
enumerate

A class hierarchy in the concept is repre-
sented in the meta-model using a single
class with an attribute that takes value
from an enumerated type.

class Class to Class
class Attr to Feature when self.kind = #ATTR
class Ref to Feature when self.kind = #REF

Attribute
conversion

Conversion between primitive
datatypes, and from non-primitive
to primitive datatypes.

class Class to JClass
feature isPublic = not self.isPrivate
feature methodCount = self.methods−>size()

Class

isPublic:bool

methodCount:int

Method
meths

JClass

isPrivate: bool

JMethod
methods

**

facilitate the definition of the first versions of the
binding. For this purpose, he must provide an OCL
constraint, so that the system notifies that any model
containing this gateway is not supported.

6 SELECTION OF COMPONENTS

Selection is the process by which users are able to
locate and select a reusable artefact from a collection.
It is typically facilitated by concise abstractions, which
can be understood and compared easily. In our case,
concepts are abstractions of meta-models that only
comprise the elements used by a transformation tem-
plate. In this way, concepts characterise the required
structure of the input and output meta-models of a

component, and can be used to discriminate between
different components in a collection.

In addition, we propose three ways to characterise
components: their tagging by keywords, text-based
documentation, and contract-based documentation.
The latter is realised using PAMOMO [19], [25], a
formal, pattern-based, declarative language to express
transformation contracts. These describe what a trans-
formation does, abstracting from its concrete imple-
mentation by a transformation template. PAMOMO
contracts can include three kinds of properties: pre-
conditions that any input model to the transformation
must fulfil, postconditions that any model generated by
the transformation satisfies, and invariants specifying

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 10

TABLE 3
Adapter inference.

Name Diagram (concept to the left) Binding Induced adapter

Automated filtering class Package is JPackage
class Class is JClass
feature Package.ownEls is elems

feature Package.ownEls =
self.elems−>select(e |

e.oclIsKindOf(JClass))

Multiplicity conversion
(0..1 to 0..n)

Class JClass
 *

supers

 0..1

parent

class Class is JClass
feature Class.supers is parent

feature Class.supers =
Sequence { self.parent }−>

excluding(OclUndefined)

Opposite navigation
direction Class JClass

Feature JAttribute

 *

feats owner

 *

class Class is JClass
class Feature is JAttribute
feature Class.feats is JAttribute.owner

feature Class.feats =
JAttribute::allInstances()−>

select(a | a.owner = self)

Reference split
Class

Ref

Attr
*

atts

refs *

Class Feature
*

f

Attr Ref

Feature

class Class to Class
class Attr to Attr
class Ref to Ref
feature Class.f is atts, refs

feature Class.f =
self.atts−>union(self.refs)

Reference merge class Package to JPackage
class Class to JClass
class Interface to JInterface
feature Package.ownCls is elems
feature Package.ownInts is elems

feature Package.ownCls =
self.elems−>select(e |

e.oclIsKindOf(JClass))
feature Package.ownInts =

self.elems−>select(e |
e.oclIsKindOf(JInterface))

relations between the input and output models which
follow the pattern “if the input model contains the given
graph structure, the transformation generates a certain
output graph structure”. In all cases, it is possible to
indicate whether the property is positive to express
expected graph configurations, or negative to indicate
forbidden ones. Moreover, properties can be defined
to hold only when certain combinations of features
are selected, or independently of any feature selection
(the default).

Figure 10 shows part of the contract for our running
example, containing one precondition, one postcon-
dition and two invariants. The precondition OneS-
tartEvent is positive – indicated by the letter P before
the precondition’s name – and it is associated to the
value of the feature initialState. The property states
that if the variant mandatory for the feature initialState
is selected, then any input model to the instantiated
transformation component should have an initial task.
The remaining properties in the figure hold regardless
of the selected features. The postcondition InitialPlace
is negative – indicated by the letter N before the
postcondition’s name – and expresses that in the gen-
erated net, the places that contain some token do not
have incoming arcs. Finally, the two invariants corre-
spond to the actual transformation of synchronization
objects (Synchronization) and exclusive choice objects
(ExclusiveChoice). The interested reader can consult
PAMOMO’s formal semantics at [25].

Contracts serve as documentation, and can be used
to automate the testing of the transformations (see [26]
for details). They may also facilitate the construction

PRE. POST.

INVARIANTS

N(InitialPlace)
pl

t: Task

isInitial=true

P(OneStartEvent)

P(Synchronization)

t1: Task

t1.name = pl1.name and

t2.name = pl2.name

t2: Task

: Synchronization

pl2 pl1

t1.name = pl1.name and

t2.name = pl2.name and

t3.name = pl3.name and

tr1.in.size() = 1 and tr1.out.size() = 1 and

tr2.in.size() = 1 and tr2.out.size() = 1 and

tr3.in.size() = 1 and tr3.out.size() = 1

P(ExclusiveChoice)

t1: Task

: ExclusiveChoice

t2: Task t3: Task

pl2

pl

pl1

tr1

tr2

pl3

tr3

initialState =

#mandatory

feature

Fig. 10. Some properties of the transformation.

of chains of components by identifying whether the
postconditions of a given component are compatible
with the preconditions of a subsequent one. An au-
tomation of this checking is left for future work.

7 INTEGRATING TRANSFORMATIONS

Integration allows creating a software system by com-
bining reusable artefacts. In an MDE setting, it is
achieved by linking the output models of a transfor-
mation with the input models required by another,
forming a transformation chain. Our transformations
are encapsulated in components, and expose concepts
and meta-models which can be seen as a specification
of the compositionality requirements for a component.
Hence, we can chain a component c1 to c2 if the output
concept/meta-model of c1 can be bound to the input

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 11

concept of c2, or is the same. Thus, our approach
seamlessly supports composite components, as they
have the same interface as simple components.

Figure 11 shows a slice of our component meta-
model with the main elements of the integration lan-
guage. To facilitate the creation of rich composite com-
ponents, we support three composition constructs:
component instantiation, sequencing and variant se-
lection, which correspond to meta-classes Apply, Seq
and Xor. Seq allows the definition of a sequence of com-
position steps. Xor permits selecting a transformation
path using a simple expression language (subclasses
of Expression). Apply is used to instantiate a component,
linking the formal parameters (models declared in
the called component) with the actual parameters
(models declared in the callee). The following three
subsections give examples of these constructs.

Fig. 11. Slice of the component meta-model of Fig-
ure 4: component integration.

7.1 Component instantiation
A component is instantiated by wrapping it into a
composite component, and linking the input/output
models of the former component to the input/output
models of the composite one. As part of this linking,
it is possible to indicate a binding, which induces an
automatic adaptation of the instantiated component.
Additionally, it is possible to assign a value to the
feature variants exposed by the component.

Listing 3 instantiates the component for transform-
ing workflow languages into Petri nets, using a bind-
ing to the Intalio meta-model. The listing declares
the composite component in line 1, imports the com-
ponent to be instantiated in line 2 (fd2pn.gcomponent),
and the binding used for the instantiation in line 3
(bindIntalio.gbind, partially shown in Listing 2). Bindings
have a name (bindIntalio in line 3) that is used to apply
the binding (line 10). Lines 5–8 declare the component
interface. In this case, the source of the composite
component is the Intalio meta-model (line 5). The
actual instantiation of the fd2pn component is done in
lines 10-12. The syntax bindIntalio(in) applies the binding

of the Intalio meta-model to the workflow concept,
while fd2pn(bindIntalio(in)) induces the adaptation of the
fd2pn component using the binding. Finally, the with
keyword introduces pairs feature = value to select the
component variants.
1 composite component Intalio2PN {
2 uses ”fd2pn.gcomponent”
3 binding bindIntalio = ”bindIntalio.gbind”
4

5 source metamodel Intalio : ”Intalio.ecore”
6 target concept PN : ”PetriNet.ecore”
7 source model in : Intalio
8 target model out : PN
9

10 compose apply fd2pn(bindIntalio(in)) −> (out)
11 with initialState = #optional,
12 finalState = #optional
13 }

Listing 3. A composite component with binding.

The instantiation mechanism permits creating a
concrete component that can be readily executed. This
is the case of the example, as all variable parts of the
component (i.e., concepts and variants) are given a
concrete value. Alternatively, it is possible to create a
composite component that needs to be further instan-
tiated by leaving some variable element unbound.

7.2 Sequencing components
Component sequencing permits connecting a series of
components, which are executed in sequence.

Figure 12 shows how to chain the transformation
component for workflow languages with an analysis
component – named PNAnalysis and implemented in
Java – which encapsulates invocations to the PIPE2
tool [27]. The Petri net model produced by the Flow-
Diagram to PetriNet component is directly passed to the
analyser since it exposes the same concept PN as
input port. Then, the analyser generates two models:
one reports problems regarding workflow completion,
reachability, etc. (Analysis), and the other contains the
reachability graph to allow its visualization or further
analysis (StateSpace). To facilitate the visualization of
this reachability graph, the chain includes a third
component called GraphLayouts which takes a graph
as input and creates a layout model annotating each
graph node with its position (see Figure 13). A bind-
ing makes the layout component compatible with the
graph produced by the analysis component.

#organicWorkflow

Analysis

FlowDiagram to

PetriNet

PN

FD

PN

Analysis
PN

FD

Analysis Analysis

StateSpace

Graph

Layouts

Graph

Layout

Layout

StateSpace

Fig. 12. A component with a transformation chain.

The resulting component chains one Java and two
transformation components, and can be used to anal-
yse models of different workflow languages, as the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 12

component is still defined over the workflow concept,
which can be bound to a variety of languages.

7.3 Transformation selection

A composite component may need to decide between
several execution paths in a transformation chain, de-
pending on the selected configuration for its exposed
features. For this purpose, the value of these features
can be queried at execution time. We currently sup-
port exclusive choice and an expression language to
define execution variants and check their value.

Figure 13 shows the composite component for
graph layouting. It admits two kinds of layouts, cus-
tomizable through a feature with two possible values:
circle and organic. Inside the component, the value
selected for the feature is used to apply one of the
two transformations for each layout.

GraphLayouts

Graph Layout

layoutKind

circle organic

CircleLayout

OrganicLayout

when #circle

when #organic

Fig. 13. A component with transformation selection.

8 EVALUATION

In this section, we evaluate two aspects of our compo-
nent model. First, we evaluate its reusability potential
by applying a synthetic mapping benchmark [28], and
creating bindings from the Workflow concept to several
meta-models. Second, we discuss on the abstraction
power of concepts to act as the reuse interface of com-
ponents. The section concludes with a discussion of
the obtained results and lessons learnt. Our Bentō tool,
as well as the different experiments of this section, are
available at: http://www.miso.es/tools/bento.html.

8.1 Reusability potential

In order to evaluate the reuse potential of our compo-
nents, we have analysed the flexibility of our binding
DSL to adapt a component to unforeseen contexts (i.e.,
to different meta-models).

First, we used the STBenchmark [28], which iden-
tifies ten frequent scenarios for schema mapping in
database systems. We are able to solve nine of them,
with the exception of the manipulation of primitive
values (e.g., splitting a string address into three strings
for the street, number and postal code) as this is
limited by the capabilities of OCL.

Then, we evaluated the applicability of our ap-
proach in more comprehensive scenarios by binding
our Workflow concept to nine languages with workflow-
like semantics. The criterion to select the languages
was the availability of a meta-model created by a
third-party, which we could import into an Ecore
meta-model. The only exception was Bender, a DSL
that we created in the context of an industrial project
to describe the workflow of telephony services [29].
For all meta-models, we studied the kind of hetero-
geneities solved, as well as the complexity of the bind-
ings in terms of the primitives and OCL expressions
used. Table 4 summarizes the results of this evalu-
ation. The first section (DSL Constructs) counts the
number of constructs of our DSL used in the bindings;
the second section (Heterogeneities) shows the kind of
heterogeneities solved using DSL constructs; the third
section (Automated features) corresponds to inference
of adapters; the last two sections show metrics of the
size and complexity of the bindings.

Our Workflow concept has 10 classes, 6 associations
and 3 attributes. Thus, the simplest binding would
consist in 10 class renamings and 9 feature renamings.
However, all bound meta-models required solving
some heterogeneity beyond renamings. This indicates
that approaches for transformation reuse should pro-
vide means to bridge heterogeneities. For instance,
an important source of variability in our case study
was the way in which meta-models represent the
flow of elements. Figure 14 shows the five different
representations we found in the studied meta-models.

Node

a) b) c)

Edge
*

*

ins

outs Edge Node
1

1
src

tar

Node

*

*

ins

outs

Node Connection
*

conns
1 target

Node Sequence
elems

*
{ordered}

d) e)

Fig. 14. Different ways of modelling a flow of elements.

We were able to successfully reuse the fd2pn com-
ponent with eight out of the nine meta-models con-
sidered. In the successful cases, the bindings that
contain more class/attribute/association renamings
correspond to meta-models that are more similar to
our concept. This is the case for Activity Diagrams
(UML AD in Table 4). Conversely, bindings that bridge
many heterogeneities have few renamings and some-
times complex OCL expressions, like in Intalio, BPMN,
EPC and YAWL. Thus, the complexity of the binding
highly depends on the similarity between the concept
and the bound meta-model. The only meta-model we
were not able to bind to our concept is the BPEL meta-
model, because BPEL represents the flow of elements
as a tree of nested actions (see Figure 14(e)), while our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 13

TABLE 4
Bindings to different workflow languages.

Intalio BPMN OMG BPMN UML AD EPC YAWL Grafcet Apromore Bender
DSL constructs
Class renaming 3 4 8 3 3 6 8 4
Class to classes (cardinality > 1) - 1 1 1 1 2 - 2
Class filtering (when clause) 7 5 - 7 6 - 2 -
Class to none - - 1 - - 1 - 4
Class to virtual class - - - - 1 - - -
Feature renaming 5 6 8 5 4 2 5 6
Feature adapter (OCL bindings) 4 5 5 6 7 17 4 8
Heterogeneities (see definitions in Table 2)
Class split - 1 1 1 1 2 - 2
Class merge - - - 3 - - - 1
Class to association - - - - 1 - - -
Attribute renaming 1 2 2 2 1 - 1 1
Attribute to literala 1 2 4 2 4 2 1 2
Attribute conversion 1 1 1 1 - - 1 1
Association renaming 4 4 6 3 3 - 4 5
Association to class 2 - - - - 1 - 1
Association to navigation expr. 2 2 - 3 3 16 2 5
Flatten hierarchy - - - - - 1 - 1
Subclass to enumerate 7 1 - - 5 - - -
Automated features (see definitions in Table 3)
Automated filtering - 2 - 1 - - - 1
Opposite navigation direction - - - - - - 2 2
Reference split - - - 2 - - - -
Reference merge - - - - - 1 - -
Lines of code
Binding specification 34 28 29 42 37 43 25 35
Original transformationb,c 267 267 246 267 267 257 267 190
Adapted transformationb 353 357 314 679 478 687 313 896
Complexity of OCL expressions (total / average)
Complexity of OCL bindings 14/2.80 16/2.67 13/1.44 39/4.87 26/2.89 66/3.88 16/3.20 29/2.90
Complexity of class filtering (when) 83/11.86 47/9.40 – 48/6.86 34/5.67 – 4/2.00 –
a. Adapters that return a primitive value (e.g., true or ’initial’).
b. The transformations were automatically formatted.
c. For each language, we removed the unused features from the original transformation, for a more realistic comparison.

concept (and most languages in our study) represents
the flow as a graph. Even if we can map basic features
in BPEL such as action sequencing by writing a fairly
complex binding, other features like the notions of
choice and merge are too different.

Regarding the OCL expressions used in the bind-
ings, we have measured their complexity by count-
ing the number of nodes in the abstract syntax
tree of each expression. For example, the expression
self.edges−>isEmpty() counts as two nodes. The last two
rows in Table 4 show the total and average complexity
of the OCL expressions used in feature bindings and
class filters. For instance, the binding for ParallelSplit in
the case of OMG BPMN has the following filter (6
nodes): self.outgoing−>size() = 1 and self.incoming−>size() > 1.
Although filters may become large if many conditions
need to be checked, they do not involve complex
model navigations.

Other source of complexity in our case study is that
our concept does not include constructs to represent
hierarchical organization of flow diagrams. Some-
times, this can be solved by writing adaptation code to
“flatten” the diagram, while in other cases, this may
restrict the applicability of the adapted transforma-
tion. As a rule of thumb, if the component developer
foresees that a construct in the concept may facilitate

future bindings, he should include it as optional.
To compare the effort of defining a binding with

respect to developing the transformation from scratch,
we have counted the number of rules, helpers, LOC
(without blank lines or comments) and OCL expres-
sions in the transformation template, which amount
to 11 rules, 23 helpers, 267 LOC and 488 nodes in OCL
expressions. In contrast, the relatively complex bind-
ing for Intalio BPMN has 10 class bindings, 5 feature
renamings, 5 feature adapters (similar to helpers), 34
LOC and 97 OCL nodes. This shows that bindings
are normally shorter and simpler than full transfor-
mations, as bindings do not deal with the “essential”
complexity of the transformation, but they only bridge
the accidental complexity (from the transformation
perspective) introduced by domain meta-models.

Finally, a further benefit of our approach is that,
to reuse a component, the developer only requires
expertise in his own domain meta-model (e.g., the
specific workflow language), in order to define a
binding to the concept. Hence, he does not require
deep knowledge of the fixed elements (e.g., Petri nets),
and the implementation details of the template remain
as a black-box, as there is no need to tackle, devise or
manipulate the transformation logic. We evaluate the
abstraction power of concepts in the next section.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 14

8.2 Abstraction power of concepts

An ad-hoc approach to transformation reuse, based
on copy-paste from existing transformations, requires
facing the complexity of the transformation logic and
the meta-model over which it is defined, in order to
adapt the former to the new usage context. This may
be difficult, especially for complex transformations or
large meta-models. Instead, we propose concepts as a
succinct interface for reuse.

To assess whether concepts are a better reuse in-
terface than plain meta-models, this section evaluates
the complexity of reusing an existing transformation
defined over a meta-model (ad-hoc approach), com-
pared to reusing a transformation component with
equivalent behaviour but which provides a concept
as reuse interface. For the ad-hoc approach, we have
used the existing transformation UML2Measure3 from
the ATL Zoo, which computes 51 object-oriented met-
rics for UML2 models. Its input meta-model is UML2,
and the output meta-model allows representing mea-
surements. On the other hand, we have developed an
equivalent transformation component over a source
concept, called COO, specifically designed for this
component. Finally, to compare both solutions, we
have built another transformation component out of
the existing UML2Measure transformation. To this end,
we identified the effective meta-model of the trans-
formation, which is the subset of meta-model classes,
associations and attributes used by the transforma-
tion. Then, we defined the transformation component
using the effective meta-model as concept, and the
original transformation as transformation template.
The concept has been called CUML.

Since one of the difficulties when reusing a transfor-
mation is understanding the manipulated data struc-
tures, we have compared the concept COO developed
with reusability in mind, and the concept CUML re-
sulting from the ad-hoc approach. COO (9 classes, 5
attributes, 11 associations and 7 inheritance relations)
is smaller than CUML (17 classes, 1 enumerate type,
3 attributes, 12 associations and 17 inheritance rela-
tions). The size of CUML is large due to the inherent
complexity of the UML2 meta-model, which has many
intermediate abstract classes and deep inheritance
hierarchies. We did not collapse the inheritance chains
in CUML because, without analysing the transforma-
tion, it was uncertain whether this would modify the
transformation behaviour. In contrast, COO is small
because both the transformation component and the
concept were created with reusability in mind.

Table 5 shows a detailed comparison of their com-
plexity, using some object-oriented metrics proposed
in [30] and adapted to meta-models in [31], related to
understandability and functionality quality attributes.
High values of DSC, ANA, DCC and ADI influence

3. http://www.eclipse.org/atl/atlTransformations/
#UML22Measure

negatively the understandability. This makes COO

more suitable as interface for reuse, since it will be
easier to identify correspondences in the specializa-
tion stage. Interestingly, the value of the NOH metric
for UML and CUML is higher than for COO, indicating
that the meta-models provide more functionality than
the concept. This is indeed an important characteristic:
a concept is an interface tailored for the functionality
of a specific transformation.

TABLE 5
Metrics applied to UML 2.4, the UML-based concept

(CUML) and the handcrafted concept (COO).

Metric UML CUML COO

Design Size in Classes (DSC) 247 17 9
Number of Hierarchies (NOH) 246 11 5
Average Number of Ancestors (ANA) 6.91 1.75 0.88
(Average) Direct Class Coupling (DCC) 15.20 1.18 1.44
Average Depth of Inheritance (ADI) 5.60 1.32 0.66

While a tailor-made concept is simpler, the second
question is whether this leads to simpler bindings.
To evaluate this, we have defined bindings from the
CUML and COO concepts to three meta-models: UML,
Ecore and KM3. Table 6 summarizes their complexity.
The bindings from CUML to Ecore and KM3 have
many renamings, which in principle might indicate
that they were simple to identify. However, as CUML

has deep inheritance hierarchies, sometimes it was
difficult to determine which class in the hierarchy
should be bound to a certain meta-model class.

In contrast, concepts usually have shallow hierar-
chies, which facilitates finding the meta-model ele-
ments to be bound and the flattening of hierarchies.
As Table 6 shows, the bindings from COO to Ecore
and KM3 are shorter, being mostly renamings, and
requiring few simple adapters. The complexity of the
binding from COO to UML is similar. Besides, the
transformation for COO is shorter than the original
(485 vs 740 LOC), since it was developed from scratch.
In our experience, using concepts facilitates the imple-
mentation of a transformation, as the developer does
not need to deal with the accidental details of concrete
modelling languages.

In summary, our evaluation shows that the con-
cepts developed with reusability in mind tend to be
simpler, and the meaning of each concept element is
more clearly identifiable. Moreover, a well-designed
concept becomes a good abstraction mechanism for
transformation reuse. The downside is that they have
to be handcrafted to be effective (in particular, cal-
culating the effective meta-model automatically may
not be enough [32]). One of our lines of future work is
developing automatic methods to derive concise con-
cepts from existing meta-models and transformations,
e.g., collapsing hierarchies and compacting classes,
while preserving the transformation behaviour.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 15

TABLE 6
Bindings to CUML and COO concepts.

CUML COO

UML Ecore KM3 UML Ecore KM3
DSL constructs
Class renaming 18 11 12 9 7 7
Class to classes (cardinality > 1) - 2 1 - - -
Class filtering (when clause) - - - - - -
Class to none - 4 4 - 2 2
Class to virtual class - 1 1 - - -
Feature renaming 15 7 8 8 6 6
Feature adapter (OCL bindings) - 6 5 8 8 8
Heterogeneities (see definitions in Table 2)
Class split - 2 1 - - -
Class to association - 1 1 - - -
Attribute renaming 3 1 1 2 2 2
Attribute to literal - 1 1 - 3 3
Attribute conversion - 1 1 3 - -
Association renaming 12 6 7 6 4 4
Association to class - - - 1 - -
Association to navigation expr. - 4 3 5 5 5
Lines of code
Binding specification 37 41 41 29 27 27
Original transformation 740 740 740 485 428 428
Adapted transformation 740 809 794 521 527 521
Complexity of OCL expressions (total / average)
Complexity of OCL bindings - 20/3.33 16/3.2 41/5.16 22/2.75 22/2.75
Complexity of class filtering (when) - - – - - -

8.3 Threats to validity

The component and bindings in the running example
(workflow languages) were defined by us. To mitigate
the risk that the transformation was written to favour
the subsequent bindings, we split the tasks: first,
one author developed the component (concept and
transformation template), and the other two authors
defined the bindings once the component was ready.
No change was made to the component once the
binding stage started.

Even if we could have bound a wider spectrum of
meta-models in our running example, the ones chosen
cover a large range of heterogeneities (cf. Figure 14).
The meta-models were not purposely chosen with
a bias towards easily resolvable heterogeneities, but
we selected meta-models developed by third parties,
focussing on standards like BPMN and UML Activ-
ity Diagrams. Indeed, the only self-developed meta-
model (Bender) was not the simplest in the case study.

The transformation template for the COO concept
was manually implemented based on the original
UML2Measure. However, the concept was defined inde-
pendently of the UML meta-model by analysing the
measurements computed by the original transforma-
tion. This was done to avoid reflecting any design
decision of the UML meta-model into the concept.
Then, the template was written from scratch, trying
to preserve the transformation structure (i.e., similar
rules, helper operations and OCL expressions).

In this case, we experienced more difficulties estab-
lishing bindings for CUML than for COO. Since this
is a subjective observation, we applied metrics that
confirmed that CUML was less comprehensible than

COO. However, other factors such as the size and
structure of the bound meta-models were not taken
into account in the evaluation.

We have used the LOC metric to compare the com-
plexity of transformations and binding specifications.
To prevent a bias related to the code format, we
formatted all texts in the same way using the ATL for-
matter and removing blank lines. Although the results
show reusability gain using our approach (less LOC
of the binding than in the reused transformation), we
would need to confirm these results by measuring
the effort needed to write a binding with respect
to writing an ATL transformation. Nonetheless, we
foresee less effort in the case of bindings because the
primitives provided by our binding DSL are more
limited, but focused on the task, than those provided
by a general-purpose transformation language.

The main threat to the external validity is that
the example is limited to workflow languages. To
minimize the risk that the heterogeneities in these lan-
guages coincide with the ones we can tackle, we car-
ried out the synthetic STBenchmark, which proposes
scenarios for database systems. We have also devel-
oped a component that calculates metrics for object-
oriented modelling languages, and defined bindings
from the COO concept to UML, Ecore and KM3. This
provides further evidence that our binding is able to
adapt to unforeseen contexts and different domains.

A last threat is that our template adaptation pro-
cedure is only available for ATL. The features of
other transformation languages may limit the range
of resolvable heterogeneities. For instance, we foresee
a more rigid adaptation procedure for QVT-Relations,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 16

which would need to respect the bi-directional seman-
tics of the transformation. On the contrary, for QVT-
Operational, which features explicit rule calls and uni-
directional behaviour, similar results to ATL could be
achieved. Confirming this hypothesis is future work.

8.4 Discussion

Transformation reuse. Our specialization mechanism is
key in our component model. It is based on adapt-
ing the transformation template to make it compat-
ible with the bound meta-models. Thus, a relevant
question is whether the supported adaptations cover
practical, real-life scenarios. Our experiments evince
that this is the case, and that the heterogeneities we
are able to solve for ATL are expressive enough.
Nevertheless, we cannot claim that all adaptations are
possible or practical, as some bindings might be too
complex, as in the case of BPEL. Moreover, supporting
other transformation languages different from ATL re-
quires developing an adaptation procedure for them.

An alternative approach, typically used in compiler
construction to reuse analysis and compiler backends,
is to define an intermediate language and transform
from some programming language to the intermediate
language. In MDE, the usual approach to reuse a
transformation defined over a meta-model MM, for
a different meta-model MM’, is to write a second
transformation from MM’ to MM, and then apply the
transformation of interest. This implies writing a full-
fledged transformation from MM to MM’ and executing
two transformations instead of one. If the transfor-
mation needs to be applied frequently, or models are
large, this may incur in sever efficiency penalties.
The traceability between models conformant to MM’
and the target models of the transformation also gets
complex to analyse due to the intermediate model.

Instead of writing a regular transformation, we
propose the use of a DSL which facilitates the spec-
ification of bindings, allows checking the syntactic
correctness of the binding with respect to the concept
and bound languages, and provides facilities such as
binding inference.

Hence, our approach is an alternative to the creation
of intermediate models. Nonetheless, a binding from
a concept C to a meta-model MM could also be used to
produce a transformation from MM to C, by generating
a copy transformation from C to C, and then adapting
it for MM. This option can be used when the transfor-
mation language is complex to adapt, like in the case
of Java components.

Binding development. From our experience defin-
ing bindings, we have learnt that the simpler the
concept, the simpler the binding, but also that the
size and complexity of the bound meta-models have
some influence. Advanced tooling would facilitate
the specification of bindings by providing auto-
completion mechanisms, meta-model flattening facil-

ities and binding suggestions. Providing such tooling
is one of our lines of work to improve Bentō.

We have also found that some heterogeneities are
easier to resolve than others. For instance, resolving
the class-to-association heterogeneity is harder than
association-to-class (see Table 2). Thus, it is recom-
mended to avoid classes acting as associations (e.g.,
Edge) in concepts. However, this choice can make the
transformation template more complex, as was the
case in the Workflow to Petri net component. This trade-
off should be addressed taking into account the most
common constructs of the domain.

Our system is able to check that a binding satisfies
certain syntactic restrictions, normally encoded in the
concept. However, the user is in charge of checking
that the semantics provided by the concept fits the
semantics of the bound meta-model. For example,
the Workflow to Petri net component does not handle
hierarchical tasks, and thus it can only be used to
transform models without such tasks. To help in
the detecting this situation, we provide warnings if
the binding leaves elements unmapped (in the style
of [33]), which may indicate a semantic error. Addi-
tionally, a transformation component can be config-
ured via a feature model with the different semantics
expected in the bound meta-models. If a meta-model
has a semantics not foreseen by the feature model,
then the component cannot be reused.

Component development. Regarding the effort re-
quired to build a component, developing a transfor-
mation template is less costly than writing a regular
transformation with the same capabilities for a con-
crete meta-model (e.g., Intalio BPMN). This is because
the accidental complexity in concrete meta-models is
removed from concepts, which only need to focus on
the essential complexity of the transformation (e.g.,
how to translate workflow constructs to Petri nets
constructs). For instance, the hand-crafted transforma-
tion template for the COO concept is shorter (about
500 LOC) than the transformation developed for UML
(more than 700 LOC), and therefore, it will be likely
less error-prone. However, the additional effort lies
on analysing the domain to extract a concept and
a feature model that gathers the variability in the
domain. This effort is inherent to any approach to
reusability, where cost-effectiveness is achieved when
the component is reused a few times.

Once a component is created, tested and deployed,
its evolution is similar to the case of regular trans-
formations. However, the components with a large
degree of variability may profit from modularization
techniques like the ones proposed in [34] (a related
technique applicable to MDE and ATL is proposed
in [35]), and product lines techniques applied to
model transformations [36], [37]. Additionally, our
components include a version number to allow sev-
eral versions of the same component to coexist.

Altogether, our component model provides a com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 17

prehensive approach to transformation reuse that per-
mits the classical approach but also more advanced
features, like template adaptation, composite com-
ponents and variants. From a practical perspective,
a common model also facilitates reuse because it is
possible to build tools around it, such as repositories,
browsers and development environments.

9 RELATED WORK

As acknowledged in [2], model transformations are
mostly developed from scratch. Some of the reasons
are the dependency on concrete meta-models, the
lack of repositories with selection mechanisms, the
difficulty to specialize transformations to different
contexts, and the insufficient support for integration
in the large. Our component model overcomes these
shortcomings by covering the four dimensions of soft-
ware reuse [13]: abstraction, specialization, selection
and integration.

In the following, we review related approaches
and techniques in the field of generic programming,
components and model transformations reuse.

9.1 Generic programming and concepts
The underlying reuse mechanism of our proposal is
based on generic programming, a paradigm found
in many languages like C++, Haskell or Java [38].
C++ supports generic programming by a template
system. An operation can be made generic by defining
a template function that contains a set of type param-
eters, though the requirements of these parameters
are not explicit. Concepts were proposed to overcome
this limitation [9], but they have not been eventually
included in C++0x, the last revision of C++ [39]. In
Haskell, the requirements of a generic operation (i.e.,
a polymorphic function) are expressed through type
classes [40]. A type can be made an instance of a
given type class to make it compatible with it. Thus,
implementing a type class is the Haskell equivalent
to our bindings. In Scala, requirements on a type
parameter can be expressed with a trait, implemented
in a so-called object, and automatically selected for
instantiation using the implicit mechanism [41].

Demeter interfaces [42] are used in Adaptive Pro-
gramming as a way to decouple visitor-based com-
putations from concrete class graphs. Similar to our
binding, a Demeter interface can be bound to a con-
crete class graph, inducing an adaptation in the visi-
tors’ code. Interfaces can declare traversal strategies
(navigation expressions) and simple constraints on
how they can be bound.

The expressive power of these approaches is
comparable to our basic binding mechanism plus
adapters, although they require mapping every type
parameter exactly once. Moreover, our approach re-
solves many heterogeneities by providing richer bind-
ing mechanisms, like adapter inference.

The Clafer modelling language [43] mixes meta-
modelling, to describe the structural part of a lan-
guage, and feature modelling, to describe variants on
the structure. Instead, we separate structure (the con-
cept) from the variants because only the former needs
to be bound to concrete meta-model elements, while
the variants are selected and usually correspond to
different transformation strategies or execution paths.

9.2 Meta-model evolution
Several works deal with meta-model evolution [44],
[45], [46] and the subsequent co-evolution of associ-
ated artefacts, typically models [46], but some works
also deal with transformations [47]. The differences
between a meta-model and its evolved version can
be represented in different ways, like a difference
model or a sequence of operations. Some approaches,
like [48], are able to reconstruct the later from the
former. There are also catalogues of common meta-
model refactorings [44], enabling model migration.

Our work is related to these approaches, if we con-
sider the binding from a concept to a meta-model as a
meta-model evolution problem. Instead of relying on
difference models or operation sequences, we provide
a dedicated language to express the binding. This is
adequate in our context, because the meta-model has
not evolved from the concept but they have been
created independently. Hence, there is no operator
sequence or meta-model difference model to start
with. Second, most approaches are concerned with
migrating the instances, while we deal with transfor-
mation adaptation. Compared to [47], we provide a
richer set of mechanisms for bridging heterogeneities,
while the authors describe adaptations due to class
renaming and reference split. Interestingly, they ac-
knowledge the need for ways to specifying complex
transformation evolutions, when such evolutions can
be performed in different ways. Our adapters consti-
tute one such mechanism.

9.3 Component models
Several general-purpose component models have
been proposed [49], normally encapsulating compo-
nents as objects or as architectural units (e.g., using
an architecture description language). Our approach
is specific for MDE, and the notions of component
and component model are not embedded into another
abstraction, but are first-class elements described by
a meta-model.

Among the component models related to our ap-
proach, Koala [5] components are built atop Darwin,
where the implementation is in C. Similar to our bind-
ings, it is possible to write glue code binding a required
to a provided interface. This code gets compiled into C.
Koala components require configuration parameters
through diversity interfaces and diversity spreadsheets.
Interfaces and components are stored in repositories,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 18

but there are neither search nor component descrip-
tion facilities.

Parametrized modules for algebraic specifications
were proposed in the eighties [50]. Such ideas have
been used in the context of graph transformation
modules, which expose graph transformation rules as
description of the module interfaces. In [51], the au-
thors review several ways to map the meta-model and
the rules of required and provided interfaces. While
those mappings correspond to type renamings, our
approach offers greater flexibility through adapters.

Specific to MDE, MDA Tool Components [52] are a
packaging mechanism for model-based artefacts. Its
focus is to enable the extension of modelling tools
with pre-built components, which include artefacts
to develop models with some modelling language.
In [53], MDA Components are seen as a chain of PIM-
PSM transformations with fixed source and target
meta-models. In contrast, our transformation com-
ponents can be adapted to different meta-models.
Besides, no implementation of MDA Components has
been released. In [54], an MDA component is made
of a specification, an implementation and a set of
test cases. A method is proposed to build a trustable
component by relating these three elements using
mutation analysis. These techniques, and others for
model transformation testing [19], can be used to test
the transformation templates in our components.

9.4 Transformation reuse and composition
Works on model transformation reuse can be classi-
fied into type-centric or type-independent (i.e., cou-
pled or decoupled from concrete meta-models). The
former include reuse mechanisms for single rules,
like rule inheritance [55], and reuse mechanism for
whole transformations, such as superimposition [56]
and phases [57]. These proposals are restricted to
the original meta-models or to extensions of them.
In [34], an architecture to modularize code generators
based on model transformations is presented. The
generator modules are reusable and extensible, but
limited to the original source language. Similar tech-
niques adapted to out-place transformations, and thus
applicable to ATL, are proposed in [35]. We can use
all these mechanisms to improve the internal quality
of our transformation templates.

Regarding type-independent reuse approaches,
there are some proposals of fine-grained mecha-
nisms based on reusable parameterized rules [58],
[59], [60], and coarse-grained ones aimed at reusing
complete transformations [61], [62], [63]. These ap-
proaches vary on their flexibility to resolve structural
heterogeneities. For instance, only one-to-one map-
pings are allowed in [58], [59], [62], while one-to-
many mappings are allowed in [61], and a wider
range of heterogeneities can be solved by composing
mapping rules in [60]. The expressiveness of the in-
terfaces proposed for reuse also differs, ranging from

unrelated parameterised types [58], [59] to sets of
collaborating roles [61], [62] (similar to our notion
of concept) where it is possible to configure some
binding rules, like forbidding a class to play (i.e. to be
bound to) two given roles in the set [62]. Some of these
works are specific for model refactorings [61], [62],
and most use an interpreted approach for the reuse
of transformations: the mapping is used to resolve the
concrete types at execution-time using a level of indi-
rection. Instead, we use a compiled approach where a
HOT creates a specific transformation for the mapped
types, which results in better runtime performance.
This compilation is also supported by [59] and by the
DUALLY approach to make architectural languages
interoperable [33], but their capabilities to resolve het-
erogeneities are limited. In [63], reuse is achieved by
adapting the target meta-model to make it a subtype
of the expected one. Our approach is as flexible as [60],
but we support the use of regular transformation lan-
guages like ATL to define transformation templates,
and there is no need to adapt the models and meta-
models to be transformed. Another major difference of
our approach is the use of concepts as an abstraction
mechanism to serve as reuse interface.

There are several architectural design languages
supporting the composition and orchestration of
transformations. For instance, Wires [64] is a dedi-
cated language for composing ATL transformations.
It is similar to our language for wiring components,
but we add template instantiation and parameter-
ization mechanisms. UniTI [65] is more platform-
independent. The MCC environment [66] offers a
scripting language with composition operators en-
abling the design of transformation chains. In [67],
the authors propose mechanisms to compose trans-
formation chains by defining correspondence meta-
models. In [68], the authors present a tool integration
framework where MDE processes can be described
and executed. Finally, MTC Flow [69] enables the def-
inition of transformation flows using heterogeneous
languages like ATL, QVT-O, Acceleo and Epsilon.

Table 7 compares the features of the main ap-
proaches to define transformation chains with our
Bentō component model. In particular, Bentō is the only
one enabling the composition of transformations by
their adaptation to different meta-models.

Altogether, the contribution of our work is a flexible
component model for model transformations, present-
ing advantages with respect to existing works: (i)
reusable transformations are defined over concepts
making them simpler to define; (ii) transformations
can be adapted to specific meta-models through bind-
ings, promoting their reutilization in a black-box man-
ner; (iii) bindings induce a transformation adaptation,
which results in an efficient reutilization approach;
(iv) transformations are encapsulated in generic com-
ponents, which promotes composability of transfor-
mations; and (v) components expose features, helping

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 19

TABLE 7
Comparison of transformation chaining languages.

MTC Flow UniTI Wires MCC transML Bentō

Sequential
composition

√ √ √ √ √ √

Parallel
composition

√
-

√ √ √ √

Conditional
composition

√a -
√

- -
√b

Loops - -
√

- - -

HOT/executionc - -
√

-
√

-

Composite
components

- -
√ √ √ √

Transformation
language

many lang.
indep.

ATL Java lang.
indep.

ATL,
Java

Features - - - - -
√

Transformation
adaptation

- - - - -
√

a. on tag values
b. on feature values
c. execution of transformations generated by HOTs

in the definition of transformation variants.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel reutilization
approach for model transformations based on the
definition of generic transformation templates over
concepts, which can be bound to different meta-
models. Transformation templates are encapsulated
into components, which can be configured through
features, and composed to form composite compo-
nents. We have developed a tool that supports our
approach. Moreover, we have evaluated our proposal
with respect to flexibility of reuse and concept abstrac-
tion power using several realistic scenarios.

In the future, we would like to consider new kinds
of components, like components for code generation
or in-place transformation, as well as further transfor-
mation languages in addition to ATL. We also plan to
use PAMOMO specifications as composability criteria
for components (as currently they are only used for
documentation), and explore new types of deploy-
ments for components, like web services. We plan to
automate the process of making an existing transfor-
mation reusable by using advanced meta-model prun-
ing techniques and automated transformation adapta-
tion. We would also like to capitalize on existing meta-
model evolution and differencing techniques, to semi-
automatically derive a first version of the binding. We
believe these techniques would help in transferring
the approach into practice, for which initiatives for
open component repositories (similar to the ATL zoo)
are also necessary. Finally, it would be interesting to
empirically evaluate how well developers are able to
specify concepts and how well the text-based docu-
mentation, contracts, and tagged components allow
other developers to identify reusable transformations.

Acknowledgements. We thank the reviewers for their
comments. This work was supported by the Spanish
Ministry of Economy and Competitivity with project
Go-Lite (TIN2011-24139) and the EU commission with
project MONDO (FP7-ICT-2013-10, #611125).

REFERENCES
[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software

Engineering in Practice, ser. Synthesis Lectures on Software
Engineering. Morgan & Claypool Publishers, 2012.

[2] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel,
W. Retschitzegger, and W. Schwinger, “Reuse in model-
to-model transformation languages: are we there yet?”
Software and System Modeling, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10270-013-0343-7

[3] K.-K. Lau and Z. Wang, “Software component models,” IEEE
Trans. Soft. Eng., vol. 33, no. 10, pp. 709–724, 2007.

[4] K. Saks, “JSR 318: Enterprise java beans, version
3.1,” http://download.oracle.com/otndocs/jcp/ejb-3.
1-mrel-evalu-oth-JSpec/, 2009.

[5] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
“The Koala component model for consumer electronics soft-
ware,” Computer, vol. 33, no. 3, pp. 78–85, 2000.

[6] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “Generic
model transformations: Write once, reuse everywhere,” in
ICMT’11, ser. LNCS, vol. 6707. Springer, 2011, pp. 62–77.

[7] ——, “Flexible model-to-model transformation templates: An
application to ATL,” JOT, vol. 11, no. 2, pp. 4:1–28, 2012.

[8] J. de Lara and E. Guerra, “From types to type requirements:
Genericity for model-driven engineering,” Software and System
Modeling, vol. 12, no. 3, pp. 453–474, 2013.

[9] D. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. D. Reis,
and A. Lumsdaine, “Concepts: linguistic support for generic
programming in C++,” in OOPSLA. ACM, 2006, pp. 291–310.

[10] A. Stepanov and P. McJones, Elements of Programming. Addi-
son Wesley, 2009.

[11] R. Chenouard and F. Jouault, “Automatically discovering
hidden transformation chaining constraints,” in MoDELS, ser.
LNCS, vol. 5795. Springer, 2009, pp. 92–106.

[12] K. Czarnecki and U. W. Eisenecker, “Components and gener-
ative programming,” in ESEC / SIGSOFT FSE, ser. LNCS, vol.
1687. Springer, 1999, pp. 2–19.

[13] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24,
pp. 131–183, 1992.

[14] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Systems Journal, vol. 45,
no. 3, pp. 621–646, 2006.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp.
31–39, 2008, see also http://eclipse.org/atl/.

[16] Object Management Group, “OCL Specification Version 2.0,”
http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.

[17] BPM, http://www.bpmn.org/.
[18] R. David and H. Alla, Petri Nets and Grafcet: Tools for Modelling

Discrete Event Systems. Prentice-Hall, Inc., 1992.
[19] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel,

W. Retschitzegger, J. Schönböck, and W. Schwinger, “Auto-
mated verification of model transformations based on visual
contracts,” Autom. Softw. Eng., vol. 20, pp. 5–46, 2013.

[20] H. Zha, W. M. P. van der Aalst, J. Wang, L. Wen, and
J. Sun, “Verifying workflow processes: a transformation-based
approach,” Software and System Modeling, vol. 10, no. 2, pp.
253–264, 2011.

[21] P. Wegner, “Varieties of reusability,” in Tutorial: Software
Reusability. Washington, D.C.: IEEE CS, 1987, pp. 24–38.

[22] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, 2003, see also http://www.
workflowpatterns.com/.

[23] M. Abadi and L. Cardelli, A theory of objects. Springer, 1996.
[24] M. Wimmer, A. Kusel, W. Retschitzegger, J. Schönböck,

W. Schwinger, J. Sánchez Cuadrado, E. Guerra, and J. de Lara,
“Reusing model transformations across heterogeneous meta-
models,” ECEASST, vol. 50, 2011.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JULY 2013 20

[25] E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige, “A visual
specification language for model-to-model transformations,”
in VL/HCC’10. IEEE CS, 2010, pp. 119–126.

[26] E. Guerra, “Specification-driven test generation for model
transformations,” in ICMT’12, ser. LNCS, vol. 7307. Springer,
2012, pp. 40–55.

[27] P. Bonet, C. Llado, R. Puijaner, and W. Knottenbelt, “PIPE v2.5:
A petri net tool for performance modelling,” in CLEI’07, 2007,
http://pipe2.sourceforge.net/.

[28] B. Alexe, W.-C. Tan, and Y. Velegrakis, “STBenchmark: towards
a benchmark for mapping systems,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 230–244, 2008.

[29] N. Buezas, E. Guerra, J. de Lara, J. Martin, M. Monforte,
F. Mori, E. Ogallar, O. Pérez, and J. Sánchez Cuadrado, “Um-
bra Designer: Graphical modelling for telephony services,” in
ECMFA, ser. LNCS, vol. 7307. Springer, 2013, pp. 179–191.

[30] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Trans. Soft. Eng.,
vol. 28, no. 1, pp. 4–17, 2002.

[31] H. Ma, W. Shao, L. Zhang, Z. Ma, and Y. Jiang, “Applying OO
metrics to assess UML meta-models,” in UML’04, ser. LNCS,
vol. 3273. Springer, 2004, pp. 12–26.

[32] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel, “Meta-model
pruning,” in MoDELS, ser. LNCS, vol. 5795. Springer, 2009,
pp. 32–46.

[33] I. Malavolta, H. Muccini, P. Pelliccione, and D. A. Tamburri,
“Providing architectural languages and tools interoperability
through model transformation technologies,” IEEE Trans. Soft-
ware Eng., vol. 36, no. 1, pp. 119–140, 2010.

[34] Z. Hemel, L. C. Kats, D. M. Groenewegen, and E. Visser, “Code
generation by model transformation: a case study in transfor-
mation modularity,” Software & Systems Modeling, vol. 9, no. 3,
pp. 375–402, 2010.

[35] A. Etien, A. Muller, T. Legrand, and R. F. Paige, “Localized
model transformations for building large-scale transforma-
tions,” Software and System Modeling, vol. in press, 2013.

[36] M. Voelter and I. Groher, “Handling variability in model
transformations and generators,” in 7th OOPSLA Workshop on
Domain-Specific Modeling, 2007.

[37] J. S. Cuadrado and J. G. Molina, “Approaches for model trans-
formation reuse: Factorization and composition,” in Theory and
Practice of Model Transformations. Springer, 2008, pp. 168–182.

[38] R. Garcı́a, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock,
“A comparative study of language support for generic pro-
gramming,” SIGPLAN Not., vol. 38, no. 11, pp. 115–134, 2003.

[39] B. Stroustrup, “The C++0x remove concepts decision,”
Dr.Dobbs, 2009, http://www.ddj.com/cpp/218600111.

[40] S. P. Jones, Ed., Haskell 98 Language and Libraries: The
Revised Report. http://haskell.org/, 2002. [Online]. Available:
http://haskell.org/definition/haskell98-report.pdf

[41] B. C. Oliveira, A. Moors, and M. Odersky, “Type classes as
objects and implicits,” SIGPLAN Not., vol. 45, no. 10, pp. 341–
360, 2010.

[42] T. Skotiniotis, J. Palm, and K. J. Lieberherr, “Demeter inter-
faces: Adaptive programming without surprises,” in ECOOP,
ser. LNCS, vol. 4067. Springer, 2006, pp. 477–500.

[43] K. Bak, K. Czarnecki, and A. Wasowski, “Feature and meta-
models in Clafer: Mixed, specialized, and coupled,” in SLE’10,
ser. LNCS, vol. 6563. Springer, 2010, pp. 102–122.

[44] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” in SLE, ser. LNCS, vol. 6563.
Springer, 2010, pp. 163–182.

[45] D. D. Ruscio, L. Iovino, and A. Pierantonio, “Coupled evo-
lution in model-driven engineering,” IEEE Software, vol. 29,
no. 6, pp. 78–84, 2012.

[46] G. Wachsmuth, “Metamodel adaptation and model co-
adaptation,” in ECOOP, ser. LNCS, vol. 4609. Springer, 2007,
pp. 600–624.

[47] D. D. Ruscio, L. Iovino, and A. Pierantonio, “A methodological
approach for the coupled evolution of metamodels and atl
transformations,” in ICMT, ser. LNCS, vol. 7909. Springer,
2013, pp. 60–75.

[48] S. Vermolen, G. Wachsmuth, and E. Visser, “Reconstructing
complex metamodel evolution,” in SLE, ser. LNCS, vol. 6940.
Springer, 2011, pp. 201–221.

[49] K.-K. Lau and Z. Wang, “Software component models,” IEEE
Trans. Soft. Eng., vol. 33, no. 10, pp. 709–724, 2007.

[50] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 2:
Module Specifications and Constraints. Springer, Monographs
in Theor. Comp. Sci., 1990.

[51] G. Engels, R. Heckel, and A. Cherchago, “Flexible interconnec-
tion of graph transformation modules,” in Formal Methods in
Software and Systems Modeling, ser. LNCS, vol. 3393. Springer,
2005, pp. 38–63.

[52] R. Bendraou, P. Desfray, M.-P. Gervais, and A. Muller, “MDA
tool components: a proposal for packaging know-how in
Model Driven Development,” Software and System Modeling,
vol. 7, no. 3, pp. 329–343, 2008.

[53] L. Favre and L. Martinez, “Formalizing MDA components,”
in Reuse of Off-the-Shelf Components, ser. LNCS, vol. 4039.
Springer, 2006, pp. 326–339.

[54] J.-M. Mottu, B. Baudry, and Y. Traon, “Reusable MDA compo-
nents: A testing-for-trust approach,” in MoDELS’06, ser. LNCS,
vol. 4199. Springer, 2006, pp. 589–603.

[55] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, W. Schwinger, D. Kolovos, R. Paige, M. Lauder,
A. Schürr, and D. Wagelaar, “Surveying rule inheritance in
model-to-model transformation languages,” JOT, vol. 11, no. 2,
pp. 3:1–46, 2012.

[56] D. Wagelaar, R. V. D. Straeten, and D. Deridder, “Mod-
ule superimposition: a composition technique for rule-based
model transformation languages,” Software and System Model-
ing, vol. 9, no. 3, pp. 285–309, 2010.

[57] J. Sánchez Cuadrado and J. G. Molina, “Modularization of
model transformations through a phasing mechanism,” Soft-
ware and System Modeling, vol. 8, no. 3, pp. 325–345, 2009.

[58] E. Kalnina, A. Kalnins, E. Celms, and A. Sostaks, “Graphical
template language for transformation synthesis,” in SLE’09,
ser. LNCS, vol. 5969. Springer, 2010, pp. 244–253.

[59] D. Varró and A. Pataricza, “Generic and meta-transformations
for model transformation engineering,” in UML’04, ser. LNCS,
vol. 3273. Springer, 2004, pp. 290–304.

[60] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoen-
boeck, and W. Schwinger, “Surviving the heterogeneity jungle
with composite mapping operators,” in ICMT’10, ser. LNCS.
Springer, 2010, pp. 260–275.

[61] J. Hannemann, G. C. Murphy, and G. Kiczales, “Role-based
refactoring of crosscutting concerns,” in AOSD’05. ACM,
2005, pp. 135–146.

[62] J. Reimann, M. Seifert, and U. Aßmann, “Role-based generic
model refactoring,” in MoDELS’10, ser. LNCS, vol. 6395.
Springer, 2010, pp. 78–92.

[63] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, and J.-
M. Jézéquel, “Reusable model transformations,” Software and
System Modeling, vol. 11, no. 1, pp. 111–125, 2010.

[64] J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. Bautista,
and A. Vallecillo, “Orchestrating ATL model transformations,”
in MtATL 2009, 2009, pp. 34–46.

[65] B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, and Y. Berbers,
“UniTI: A unified transformation infrastructure,” in MoD-
ELS’07, ser. LNCS, vol. 4735, 2007, pp. 31–45.

[66] A. Kleppe, “MCC: A model transformation environment,” in
ECMDA-FA’06, ser. LNCS, vol. 4066. Springer, 2006, pp. 173–
187.

[67] A. Yie, R. Casallas, D. Deridder, and D. Wagelaar, “Realizing
model transformation chain interoperability,” Software and Sys-
tem Modeling, vol. 11, no. 1, pp. 55–75, 2011.

[68] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Á. Horváth,
I. Majzik, A. Pataricza, B. Polgár, I. Ráth, D. Varró, and
G. Varró, “Workflow-driven tool integration using model
transformations,” in Graph Transformations and Model-Driven
Engineering, ser. LNCS, vol. 5765. Springer, 2010, pp. 224–
248.

[69] C. Alvarez and R. Casallas, “MTC Flow: A tool to design,
develop and deploy model transformation chains,” in ACa-
deMics Tooling with Eclipse Workshop. ACM, 2013, see also
http://www.mtcflow.com/.

