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Static analysis of model transformations
Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Abstract—Model transformations are central to Model-Driven Engineering (MDE), where they are used to transform models
between different languages; to refactor and simulate models; or to generate code from models. Thus, given their prominent role
in MDE, practical methods helping in detecting errors in transformations and automate their verification are needed.
In this paper, we present a method for the static analysis of ATL model transformations. The method aims at discovering typing
and rule errors, like unresolved bindings, uninitialized features or rule conflicts. It relies on static analysis and type inference, and
uses constraint solving to assert whether a source model triggering the execution of a given problematic statement can possibly
exist. Our method is supported by a tool that integrates seamlessly with the ATL development environment.
To evaluate the usefulness of our method, we have used it to analyse a public repository of ATL transformations. The high number
of errors discovered shows that static analysis of ATL transformations is needed in practice. Moreover, we have measured the
precision and recall of the method by considering a synthetic set of transformations obtained by mutation techniques, and
comparing with random testing. The experiment shows good overall results in terms of false positives and negatives.

Index Terms—Model-Driven Engineering, Model Transformation, ATL, Static Analysis, Model Finders, Verification and Testing.
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1 INTRODUCTION

Model transformation is the main enabler of automa-
tion in Model-Driven Engineering (MDE) as it allows
the manipulation of models [1]. The definition of a
transformation is typically used many times, likely
in different projects. Hence, transformations need to
be error-free to guarantee the reliability of MDE
solutions. Higher quality in transformations can be
achieved with thorough testing and powerful static
analysis methods able to detect potential errors early.

The verification of model transformations is an
active area of research [2], and much effort has been
spent in verifying transformations defined with for-
mal languages, like those based on graph transfor-
mation [3]. However, most transformation languages
used in practice lack a fully formal foundation or
a body of theoretical results enabling their formal
verification. One of the reasons is that many of them
rely on unformalised variants of the Object Constraint
Language (OCL) [4], which provides expressiveness at
the cost of making transformations difficult to analyse.
This is the case of the Atlas Transformation Language
(ATL) [5], one of the most widely used model trans-
formation languages in industry and academia.

ATL is dynamically typed. This makes transfor-
mations written in ATL prone to typing errors, like
using a property of a subtype class in an expression
yielding a supertype, or omitting the initialization
of a mandatory feature in new objects. In addition,
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rule dependencies are implicitly resolved by the ATL
engine, which may lead to subtle problems difficult
to identify, like assigning a value obtained from a
rule to an incompatible feature. Such ill-typed trans-
formations are accepted by the ATL compiler, and
therefore, errors can only be discovered by running
the transformation with an input model triggering
the execution of the incorrect statement. This testing
process is manual, which poses several drawbacks:
(i) it delays the detection of errors that could be
statically discovered; (ii) the manual creation of input
test models is tedious, time-consuming, and probably
biased towards “easy” models1; (iii) checking that the
output model of a transformation is well-formed and
conforms to the transformation specification has to
be done manually; and (iv) when a test case catches
an error, it is often difficult to identify the parts of
the transformation causing the error. Even if some
works automate the generation of input test models,
they mainly propose black-box generation criteria like
meta-model [7] or requirements [8] coverage, neglect-
ing the static detection of typing errors.

In this paper, we propose a method directed to
discover errors in ATL transformations by combin-
ing static analysis and constraint solving. First, static
analysis detects statements of the transformation that
contain errors or might be problematic. While some of
these problems will always raise errors when execut-
ing the transformation, others can never occur either
because the transformation is written in such a way

1. By “easy models” we mean models which focus only on testing
a few transformation requirements while neglecting other more
subtle ones, do not consider border cases (e.g., collections without
objects or with duplicated objects, uninitialized features, out-of-
range values, etc.), or disregard types and features not explicitly
mentioned in the transformation [6].
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that it prevents the error, or because the only input
models triggering the error are invalid according to
the integrity constraints of the input meta-model.

Hence, as a complementary technique, we use con-
straint solving to find an input model making the
transformation execute the erroneous statement, thus
confirming the existence of a problem in the trans-
formation, and helping the developer to understand
and reproduce the error. For this purpose, given a
potentially problematic statement, we build an OCL
path condition describing the features needed in an
input model to enforce the execution of the statement.
A constraint solver uses this condition and the meta-
model to generate a candidate input model. If no
model is found, the problem is discarded. We call
the generated model a witness [9], because it signals a
transformation error.

However, even if a witness model confirms an error,
it may happen that this model does not belong to the
transformation domain. This is so as some transfor-
mations are not expected to work with every possible
instance of the input meta-model, but just with a
subset. In such a case, we provide the developer with
a facility to automatically generate an explicit OCL
pre-condition that documents the transformation and
provides a mechanism to discard unsuitable models
before executing the transformation.

Our method is supported by a tool – called ANAT-
LYZER2 – integrated within the ATL development envi-
ronment. The tool implements a type checker for ATL
transformations, extended with synthesis of OCL path
conditions. For witness generation, it relies on the USE
Validator [10], a constraint solver for models. We have
evaluated three aspects of our approach. First, we
have tested its usefulness by analysing a repository
of about 100 ATL transformations developed by third
parties3. ANATLYZER has discovered problems in all of
them, covering a wide range of issues. This demon-
strates the applicability of our proposal, and shows
that static analysis techniques for ATL transforma-
tions are needed in practice. Second, we have studied
the precision (i.e., the fraction of real errors w.r.t. all
signalled problems) and recall (i.e., the fraction of
errors detected w.r.t. all existing errors) of our method.
For this purpose, we generated a set of mutants of
a synthetic error-free transformation, and then com-
pared the errors statically missed/discovered on the
mutants by our tool, and those discovered by random
testing. The tool shows good average results in both
aspects. Finally, we have evaluated the performance
of our tool, which shows good average efficiency.

Altogether, this work makes the following contri-
butions. First, we introduce a novel method to de-
tect errors in ATL transformations and generate pre-
conditions for them. The method relies on: (i) a static

2. http://www.miso.es/tools/anATLyzer.html
3. http://www.eclipse.org/atl/atlTransformations/

analyser to detect potential problems based on the
typing information, (ii) the construction of OCL path
conditions leading to problematic statements, and (iii)
the generation of witness models using the path con-
ditions and constraint solving. While we have devel-
oped the method for ATL, as we discuss in Section 8.6,
it could be adapted for other languages relying on
OCL, such as those of the QVT family [11]. The second
contribution is a working tool supporting these ideas,
and a description of practical issues in its realization,
like the handling of different OCL dialects, the contin-
uous evaluation of problems in the background, and
the management of error dependencies by an efficient
encoding of error paths. The last contribution is a
comprehensive evaluation of our tool over a widely
used repository of publicly available transformations,
and also using transformation mutants and random
testing. This approach could be used to evaluate other
verification techniques.

This paper is an extended version of [12], where
we have broadened the kind of errors we detect,
we provide more details for the most challenging
error types, we derive transformation pre-conditions,
and we analyse rule conflicts. The tool has been
significatively improved by giving support to less
frequent ATL constructs, a finer alignment with the
USE constraint solver, and better user experience that
includes the option of running the solver in the back-
ground [13]. We have also expanded the evaluation
to cover the complete ATL transformation zoo, to
measure the precision and recall of our method, and
to analyse the tool performance.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of our approach, which
is detailed in the following sections: Section 3 in-
troduces a running example, Section 4 explains the
static analysis phase and the problems we are able to
recognize, Section 5 shows how to generate OCL path
conditions, and Section 6 describes the use of model
finding to obtain witness models. Section 7 discusses
design and implementation issues of our tool. Next,
Section 8 evaluates the usefulness, precision, recall
and performance of our technique. We also discuss
strengths, limitations and applicability beyond ATL.
Finally, Section 9 compares with related work, and
Section 10 draws conclusions and future work.

2 OVERVIEW

In MDE, models must conform to a meta-model. This
is itself a model – typically a class diagram – that
declares the admissible object types, relations and fea-
tures. Meta-models can also include additional well-
formedness rules that any valid meta-model instance
should satisfy, frequently expressed using the Object
Constraint Language (OCL) [4]. OCL is a formal lan-
guage that belongs to the UML standard and allows
expressing queries and constraints on models.
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Models are manipulated via model transforma-
tions. The transformations we are interested in are
called model-to-model transformations. These translate
a source model (e.g., a state machine) into a tar-
get model (e.g., a Petri net). The purpose of such
transformations may be to take advantage of the
analysis mechanisms provided by the target language,
to migrate models between language versions, or to
provide tool interoperability, among others.

A model transformation is written against source
and target meta-models that describe the structure of
the models manipulated by the transformation. Trans-
formations can be implemented using dedicated lan-
guages called model transformation languages. The
different styles of these languages have been analysed
in detail by Czarnecki and Helsen [14], but normally,
they provide a rule-based mechanism to specify how
to transform source models into target models. In
this way, a model transformation rule typically has a
source pattern describing the source model elements
to match, and a target pattern specifying the target el-
ements to create and how to initialize their properties.

Regardless the model transformation language
used, writing a transformation is complex due to the
variety of model configurations that transformations
must handle [15]. As an example, let us consider
the conversion of UML class diagrams into KM34,
a domain-specific language dedicated to meta-model
specification [16]. We will focus on the translation
of types and properties, and illustrate an error that
developers may make. Figures 1 and 2 show relevant
excerpts of the UML and KM3 meta-models.

Enumeration

2..*  memberEnd

0..1  association

DataType

Type

name : String

Association

Property
Class

type
0..1

ownedAttribute
0..*

Fig. 1. Excerpt of the UML meta-model (source).

Enumeration

DataType

Classifier

ReferenceAttr ibute

Structural
FeatureClass

type
0..1

structuralFeatures
0..*

Fig. 2. Excerpt of the KM3 meta-model (target).

Figure 3 shows the required transformation rules,
using a language-agnostic representation. Each rule
is depicted as a box with its name in the upper-left

4. This example is taken from a similar transformation in the ATL
Zoo, which tackles the same problem outlined in this section.

corner. Inside each box, the expression map: source ->
target indicates that the rule creates one object of type
target from each object of type source. In some rules
(property2reference and property2attribute) we use an iden-
tifier for the source object. In general, source and target
could be complex patterns instead of single objects.
Rules can also include a guard to specify conditions
that a source object should satisfy to enable the rule
application for the object. In the figure, rule guards
are preceded by the keyword when and expressed in
OCL. Moreover, rules also take care of initializing
the features of the created objects (called bindings in
ATL). This may induce rule dependencies whenever a
rule assigns to a feature an object created by another
rule. For instance, in the figure, rule property2reference
assigns a class to the feature type of the created
reference. Hence, there is a dependency from rule
property2reference to rule class, as the latter is in charge of
creating Class objects in the KM3 model. We represent
rule dependencies as arrows.

rule: property2attribute 

 map:    p: Property  Attribute 
 when: p.association.oclIsUndefined() 

  map: DataType  DataType 

rule: datatype 
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set type 

set type 

 map: Class  Class 

rule: class 

rule: property2reference 

 map:    p: Property  Reference 
 when: p.association.memberEnd->size() = 2 
  

  map: Enumeration Enumeration 

rule: enumeration 

Fig. 3. Rules to map UML types and properties to KM3.

The transformation in Figure 3 contains three rules
to map Classes, DataTypes and Enumerations. Another two
rules deal with the transformation of UML Properties:
The first rule (property2attribute) maps a UML Property
to a KM3 Attribute if the property has no attached
association, while the second one (property2reference)
maps UML Property to KM3 Reference when the prop-
erty belongs to an association with two member ends.
However, the transformation misses a rule to translate
n-ary associations (i.e., having more than 2 member
ends). If the input model contains n-ary associations,
there might be problems ranging from runtime errors
to unexpected results, depending on the particular
transformation language. Moreover, both rules datatype
and enumeration match DataType objects from the source
UML model, as class Enumeration inherits from DataType.
This might be problematic in some transformation
languages, like ATL, which raise a runtime exception
if an object gets matched by two rules.

This work aims at enabling the practical analysis
and early identification of these and other transfor-
mation problems. For this purpose, we use a novel
combination of static program analysis and constraint
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solving. Our goal is to uncover a wide range of prob-
lems, beyond simple typing problems, in a precise
way (i.e., exhibiting a low rate of false positives).

Figure 4 presents the main elements of our tech-
nique, and Figure 5 shows its application to the UML
to KM3 transformation. While this section introduces
the technique in a general setting, the following sec-
tions will present the technical details to specialize it
for the ATL transformation language. We will focus on
ATL since it is a de-facto standard for model trans-
formation. The applicability to other transformation
languages is discussed in Section 8.6.
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Fig. 4. Overview of our static analysis process. Num-
bers refer to the paper section explaining the activity.
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Fig. 5. Static analysis process for rules in Figure 3.

Type checking. The first step in our technique is to
parse the transformation code to obtain its abstract
syntax model, over which we perform the type check-
ing of the transformation. As a result, the abstract

syntax model becomes annotated with typing infor-
mation. For instance, in Figure 5(a), the typing of the
expression p.association creates a link from each sub-
expression to the corresponding meta-model class or
feature. The purpose is to statically guarantee that the
transformation is correctly typed with respect to the
meta-models, and provide valuable information to the
subsequent analysis steps.
Dependence graph creation. Then, we create a trans-
formation dependence graph [17] (TDG) that makes
explicit the control and data flow dependencies be-
tween the transformation elements. For instance, Fig-
ure 5(b) shows the data dependencies between rules
as dashed arrows. The TDG is used to improve the
scope of the typing analysis and uncover more com-
plex problems, in particular rule-related ones.
Problem detection. The type checking and the analy-
sis of the dependence graph generate a set of detected
typing problems. While some of them can be statically
guaranteed to be errors (e.g., the use of an incorrect
meta-model type), others are classified as potential
problems because they require further verification. This
is the case of the missing rule to transform n-ary
associations, since confirming this problem requires
analysing the existing rule guards (see Figure 5(c)).
To enable this fine-grained analysis we rely on model
finding. A model finder is a tool that provides a high-
level notation to describe model features, and uses
constraint solving to find a model exhibiting such
features. Typically, model features are described using
structural data models (e.g., class diagrams with OCL
constraints [10] or relational logic [18]), and rely on
lower-level SAT or SMT solver engines to perform
the search (like KodKod [19] or Z3 [20]). The use of a
model finder permits generating a witness model that
confirms (or falsifies if it does not exist) the potential
problem.
Error path computation. For each potential problem,
the dependence graph is traversed to build the cor-
responding error path. This is a subgraph (a slice of
the transformation) that represents the set of elements
that the execution flow must traverse to trigger the er-
ror. In the example, the error path would include rules
property2reference and property2attribute, but also rule class
as this rule must be executed first to reproduce the
problem at runtime (see Figure 5(d)). The computation
of the error path depends on the particular transfor-
mation language, since each language has different
ways of handling rule dependencies (e.g., explicit calls
in QVTo [11] and implicit rule resolution in ATL [14]).
Path condition computation. From the error path, we
generate a so-called path condition. This accumulates
the constraints that the program input (a source model
in our case) must fulfil for the control flow to reach
the problematic statement. It is built by conjoining the
execution conditions of each node in the error path.
For instance, to confirm the potential problem in the
example, we need to check whether UML classes can
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define properties that are not transformed by any rule.
As Figure 5(e) shows, the path condition conjoins the
condition to execute the class rule, with the condition
that none of the rules for properties are executed.
In general, the construction of the path condition
depends on the detected kind of error, as we will see
in Section 5.2.

Error meta-model computation. From the error path,
we generate the path effective meta-model which in-
cludes just the meta-model elements involved in the
error. The path effective meta-model and the input
meta-model are used to compute the error meta-model,
which extends the path effective meta-model with the
mandatory classes and features needed to obtain a
model conformant to the original meta-model. We
compute this error meta-model to improve the per-
formance of the model search by providing a smaller
search space than the one provided by the complete
meta-model. For instance, the error meta-model in
Figure 5(f) provides an important reduction to the size
of the complete UML meta-model.

Witness model generation. Finally, we feed the error
meta-model and the path condition into a model
finder in order to obtain a witness model that triggers
the error at runtime. If no model is found up to a
given bound, we discard the problem as spurious.
Figure 5(g) shows a witness model for the potential
problem. It contains a ternary association, which is a
case not handled by the transformation. Hence, the
problem is confirmed and reported to the user.

Pre-condition generation. The confirmation of a prob-
lem by a witness model may indicate either that
there is an error in the transformation, or that the
transformation was not designed to accept a given
class of models. In the latter case, it is possible to
generate a transformation pre-condition that rules out
the class of models making the transformation execute
the problematic statement. Similar to the generation of
path conditions, the error path is traversed to generate
a constraint that states the shape of the models that are
properly handled by the transformation. Figure 5(h)
shows the generated pre-condition for the example.

While this section has introduced our approach
independently of the transformation language, the
following sections detail the realisation of each step
for ATL. We will focus on the following aspects:
type checking ATL transformations (Section 4.1), con-
struction of dependence graph (Section 4.2), list of
errors and warnings detected statically (Section 4.3),
construction of error path (Section 5.1), construction
of OCL path condition (Section 5.2), generation of
transformation pre-conditions (Section 5.3), calcula-
tion of error meta-model (Section 6.1) and generation
of witness models by model finding (Section 6.2). To
illustrate these steps, we first introduce a running
example in the next section.

3 RUNNING EXAMPLE

Transformation languages vary between strongly typed
languages such as Kermeta [21], where all types are
resolved at compile time and the abstract syntax
is annotated with type information, and dynamically
typed languages such as ATL, where type checking is
performed at runtime (although the ATL IDE has au-
tocompletion facilities, types are not enforced). In the
rest of the paper, we describe in detail our approach
to analyse transformations focussing on its application
to ATL. It is worth noting that ATL is a challenging
scenario in terms of type analysis, as there already
exist ill-typed transformations on working systems,
at least for the constraints devised (and typically not
documented) by their authors. In addition to type-
correctness relative to the source and target meta-
models, other aspects that can be analysed statically
include the applicability and dependency of transfor-
mation rules, the detection of unused helpers, and
certain performance issues.

As a running example, we use an excerpt of the
transformation from the Web Services Description
Language (WSDL) [22] to the REWERSE Rule Markup
Language (R2ML) [23], available at the ATL Zoo and
described in [24]. This transformation automates the
reverse engineering of WSDL-based web services into
rule-based specifications. Listing 1 contains a slightly
simplified version of the transformation, while Fig-
ures 6 and 7 show relevant excerpts of the source and
target meta-models.

WSDL is a W3C recommendation for describing
web services. Its meta-model comprises the abstract
description of the services and the messages they
exchange. The former includes the service interfaces
and operations (in the meta-model, MEP is an enumer-
ation for known message exchange patterns), while
concrete messages are described using XML Schema.

* service*interface

fault * Fault
0..1

content

0..11..*

particles
1..*

*
input *

output *

elemDcl

XsParticle
Content

name: String

XsModel
Group

XsParticle

XsComplex
TypeContent

XsTerm

Output

InputOperation

name : String
pattern : MEP

Interface

name : String

Service

name : String

XsComplex
TypeDef

XsSimple
TypeDef

XsTypeDef

XsElement
Declaration

XsSchemaElement
Type

Description

elem 1

content
1

term
1

elem 1
elem 1

operations

typeDef
0..1

  *

schematypes

Fig. 6. Excerpt of the WSDL meta-model (source).

R2ML is an XML-based rule neutral format that al-
lows exchanging rules between systems, or their inte-
gration using ontologies. It supports different kinds of
rules. In particular, this transformation considers Reac-
tionRules (a form of Event-Condition-Action rules [25])
to represent how message events are handled. The
information managed by the rules is represented as
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a vocabulary, which allows the definition of entities
with attributes (Class and Attribute).

0..1

range
*

attributes

1..*

entries

Type
Reaction

Rule

EventTypeMessageEvent
Expression

sender : String
receiver : String Message

Type
FaultMessage

Type

Class

PredicateAttribute

Vocabulary
Entry

name : String

Production
RuleSet

Reaction
RuleSet

RuleSet

VocabularyRule
Base

rules
*

triggeringEvent 1

type 1

rules *

vocabularies *

Fig. 7. Excerpt of the R2ML meta-model (target).

We have chosen this transformation because it ex-
hibits a wide range of non-trivial problems that are
useful for illustration. Moreover, the complexity of the
WSDL meta-model reflects the typical scenario faced
by transformation developers, who may tend to make
mistakes when there is no automatic type checking.

1 module WSDL2R2ML;
2 create OUT : R2ML from IN : WSDL;
3

4 rule RuleBase {
5 from i : WSDL!Description
6 to o : R2ML!RuleBase (
7

:::
rules

::
←

:::::::
Sequence

:
{
:
i.
:::::
service,

:
i.
::::::
interface

:
},

8 vocabularies← i.types
9 )

10 }
11

12 rule Vocabulary {
13 from i : WSDL!ElementType
14 to o : R2ML!Vocabulary (
15

::::
entries

::
←

:
i.
:::::
schema

:
.
:::::

elemDcl
16 )
17 }
18

19 rule MessageType {
20 from i : WSDL!XsElementDeclaration (
21 not i.typeDef.oclIsTypeOf(WSDL!XsSimpleTypeDef) and i.isInOut()
22 )
23 to o : R2ML!MessageType ( ... )
24 }
25

26 rule FaultMessageType {
27 from i : WSDL!XsElementDeclaration (
28 not i.typeDef.oclIsTypeOf(WSDL!XsSimpleTypeDef) and i.isFault()
29 )
30 to o : R2ML!FaultMessageType ( ... )
31 }
32

33 rule ClassR {
34 from i : WSDL!XsElementDeclaration (
35 not i.typeDef.oclIsTypeOf(WSDL!XsSimpleTypeDef) and
36 not (i.isInOut() and i.isFault())
37 )
38 to o : R2ML!Class (
39 attributes← if i.typeDef.oclIsTypeOf(WSDL!XsComplexTypeDef) then
40 let elems : OclAny = i

:
.
::::

typeDef
:
.
::::
content

:
.
:::
term.

:::::
particles→

41 select(p | p.content.oclIsKindOf(WSDL!XsElementDeclaration))5

42 in elems→collect(e | thisModule.AttributeR(e))
43 else
44 OclUndefined
45 endif,
46 ...
47 )
48 }
49

5. The filter has been added for illustrative purposes.

50 lazy rule AttributeR {
51 from i : WSDL!XsParticle
52 to o : R2ML!Attribute (
53 range← thisModule.Datatype(i.content.typeDef),
54 name← i.content.name
55 )
56 }
57

58 rule ReactionRuleSet {
59 from i : WSDL!Interface
60 to o : R2ML!ReactionRuleSet (
61 rules← i.operations.asSequence()→
62 collect(e| if thisModule.isInOutPattern(e

:
.
::::
pattern) then

63 Sequence {thisModule.RrRight(e), thisModule.RrWrong(e)}
64 else
65 thisModule.RrRight(e)
66 endif)
67 )
68 }
69

70 lazy rule RrRight {
71 from i : WSDL!Operation (i.oclIsTypeOf(WSDL!Operation))
72 to o : R2ML!ReactionRule (
73 triggeringEvent← i.input
74 )
75 }
76

77 rule TriggeringEvent {
78 from i : WSDL!Input ( i.oclIsTypeOf(WSDL!Input) )
79 to

:
o
:
:
::::
R2ML

:
!
::::::::::::::::

MessageEventExpression (
80 sender← ’to be defined’,
81

:::
type

::
←

:
i.
:::
elem −− Could be resolved by ClassR

82 )
83 }
84

85 helper context WSDL!XsElementDeclaration def: isInOut() : Boolean =
86 WSDL!Operation.allInstances()→exists(o |
87 o.input→exists(e | e.elem = self) or o.output→exists(e | e.elem = self));
88

89 helper context WSDL!XsElementDeclaration def: isFault() : Boolean =
90 WSDL!Operation.allInstances()→exists(o|
91 o.fault→exists(e | e.elem = self));
92

93 helper def: isInOutPattern(value : String) : Boolean6 =
94

:::
value

:
=
:
#
:::
inout;

95

96 ... −− we omit some rules for brevity

Listing 1. Excerpt of ATL transformation for the running
example. Problems are underlined according to its
category:

:::::::::
confirmed

::::::::
problem, discarded problem and

warning

ATL transformations consist of rules and OCL
helpers. A rule defines a source pattern identifying
a configuration of source objects – normally one – for
which it generates one or more target objects. The
most common kinds of ATL rules are matched rules
and lazy rules7. A matched rule is implicitly executed
once for each occurrence of its source pattern. This
execution has as a side effect the creation of a trace
link that relates the matched source objects with the
target objects created by the rule. The ATL engine
keeps this internal execution trace, which is later
used to resolve references in bindings (see below).
In contrast, a lazy rule is only executed when it is
explicitly invoked, and does not record trace links. For
instance, the Vocabulary matched rule (line 12) trans-
forms every ElementType object into an object of type
Vocabulary. In contrast, the AttributeR lazy rule (line 50)
will be executed upon its explicit invocation through

6. The helper has been shortened for illustrative purposes.
7. We omit entrypoint and called rules, handled similarly.
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the statement thisModule.AttributeR(e) (line 42), and hence,
its execution depends on the execution of the caller
rule ClassR. ATL also supports unique lazy rules (not
present in the example). These are explicitly invoked
like lazy rules, but they record trace links so that
they behave as memoized functions (i.e., subsequent
invocations over the same source object do not create
a new target object, but they return the object created
in the first invocation).

Objects in the source patterns of matched rules may
have filters. These are OCL conditions that must be
satisfied for the rule to be applicable. For example,
rule MessageType has a filter for object i in lines 20–22.

The features of the created target objects are initial-
ized using bindings with the syntax feature← OclExpr.
If OclExpr is a primitive value, it is assigned to feature.
If OclExpr is an object or a collection of objects, each
such source object is looked up in the transformation
execution trace to retrieve the target object in which it
was transformed to. This target object is then assigned
to feature. This is called binding resolution. In the ex-
ample, the binding vocabularies ← i.types in line 8 will
be resolved by rule Vocabulary in line 12, because the
type of i.types is ElementType. At runtime, for each object
in i.types, the ATL engine looks up a trace pointing to
the object, and assigns the corresponding target object
(which will have type Vocabulary) to the vocabularies
feature. Here, a common source of errors is to have
no rules able to resolve the binding (i.e., there is no
trace link for a given source object), or a rule creating
objects of incompatible type with feature (i.e., the trace
records a target object that is not compatible with the
feature to which it is assigned).

Finally, helpers can be seen as operations or de-
rived features attached to a given type (called context
helpers). Helpers that are not attached to a type act as
global functions (called module helpers). The listing
contains a module helper in line 93 and two context
helpers in lines 85 and 89.

The ATL compiler processes the transformation in
Listing 1 without reporting any problem. However,
the transformation has several issues that may cause
runtime errors or produce incorrect target models. In
particular, we observe the following problems:

1) Unresolved binding (line 7). There is no rule to
resolve Service objects, needed due to the expres-
sion i.service. While it is common that parts of the
source model are irrelevant for a transformation
(i.e., not handled by any rule), in this case, the
use of the expression i.service suggests that a rule
handling objects of type Service is missing.

2) Feature access over possibly undefined receptor
(lines 15 and 40). The feature schema in Element-
Type is optional, but it is accessed without any
checking in line 15. This will cause a runtime
error if the source model contains ElementType
objects without a schema. Similarly, feature typeDef
is not mandatory in XsElementDeclaration, and fea-

ture content is not compulsory in XsComplexTypeDef.
Therefore, accessing them may cause a runtime
error in line 40.

3) Feature found in subtype (line 40). The expres-
sion i.typeDef.content.term.particles accesses features
defined in subtypes. For example, feature particles
is not defined in XsTerm, but in XsModelGroup. Thus,
a model with a term holding an object of a differ-
ent subtype of XsTerm, like XsElementDeclaration, will
cause a “feature not found” runtime error.

4) Expected access to collection (→) but dot nota-
tion found (line 61). This is a style warning. ATL
does not fail to correctly execute the expression,
but it is not compliant with the OCL standard [4].

5) Wrong argument type (line 62). The helper isInOut-
Pattern declares a String formal argument (line 93),
but the type of the actual argument is WSDL!MEP
(line 62).

6) Lazy rule with filter (line 71). Syntactically, it is
possible to define a filter in a lazy rule, however,
the filter will not be checked at runtime. As this
may confound the developer, it is marked as a
warning.

7) No binding for compulsory target feature
(line 79). Feature receiver is compulsory in type
MessageEventExpression, but no binding initializes
its value. Thus, any generated target model con-
taining an object of this type will be incorrect
since it will not conform to the target meta-model.

8) Binding resolved by rule with invalid target
(line 81). This binding can get resolved by rule
ClassR (line 33). However, this rule creates an
object of type Class, which is not compatible
with the type of the feature type (EventType). Thus,
resolving the binding by this rule will produce
an ill-typed target model. In this case, we need
to check whether this resolution is possible by
generating a witness model that enforces it.

In the following sections, we explain how we detect
these errors by gathering type information and per-
forming static analysis, and how we generate witness
models to confirm or discard the detected errors.

4 STATIC ANALYSIS

The first phase of our approach is a static analysis,
which includes the type checking of the transforma-
tion and the analysis of the TDG.

4.1 Type checking ATL transformations

We first perform a type analysis of the transformation
to determine if it satisfies the syntactic constraints
imposed by the source and target meta-models. This
is a complex task in ATL due to its dynamic nature.
For instance, the variable elems in line 40 of Listing 1
declares the type OclAny, while a more precise type
would be Sequence(XsParticle). The call elems→collect(...)
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in line 42 works at runtime, but a naive type checker
that takes OclAny as the type for elems would signal an
error. The ATL compiler does not report this kind of
error because it does not perform any type checking.
We use type inference to determine the type of OCL
expressions and compare it with the declared type, re-
porting warnings if needed. This allows a correct type
checking of the previous expression. Moreover, the
type checking phase takes into account the peculiari-
ties of ATL. For example, the expression i.typeDef.content
in line 40 is correct because the check in the previous
line ensures that the type of i.typeDef is XsComplexTypeDef,
which defines the feature content. Although ATL does
not provide a downcasting operator (e.g., oclAsType),
implicit castings following this idiom are common,
and hence we provide support for this scenario.

Type checking is performed in two passes. First,
the algorithm annotates the variable declarations, rule
pattern types and helpers with the types they ex-
plicitly declare. Then, a bottom-up traversal of the
Abstract Syntax Tree (AST) is performed, propagating
types, annotating each node in the AST, and reporting
errors and warnings. Currently, we do not support
type inference for recursive helpers, but we simply
use their declared type. Similarly, we do not perform
type inference of formal parameters. For instance, the
expression value = #inout in line 94 is reported as an error
because the declared type of value is String; however, the
only call to this helper, in line 62, will not cause a run-
time error because the problem is in the type declared
by the formal parameter of the helper, which should
be WSDL!MEP. Although we could use techniques like
the Cartesian Product Algorithm (CPA) [26] to pro-
vide a more accurate typing in these cases, we chose
not to due to performance reasons, and because we
believe it is important to report misleading formal
parameters.

Figure 8 shows the types used to annotate the AST
nodes. These include the typical OCL types such as
primitive types and collection types. Metaclass refers
to a class defined in the source or target meta-model.
ThisModule refers to the transformation itself. TypeError
is a marker indicating that a node in the AST is
problematic and cannot be given a type. Reflective
allows queries to an object’s metaclass at runtime via
oclType(). In such a case, the typing of basic attributes
(e.g., name) is precise, but the typing of reflective
operations like newInstance and allInstances may not be
reliably computed. Undefined values (i.e., null) are
represented with Undefined. The type EmptyCollection is
used for expressions like Sequence {}, to indicate that
the type of the collection’s elements is unknown until
analysing any subsequent operation call such as includ-
ing. We also support Map and Tuple types (not shown
in the figure) in a similar way as collections.

We use the type Union to keep track of the multi-
ple types that an expression may potentially yield.
For example, the expression Sequence{i.service, i.interface}

 ...ThisModule

TypeError
err : Error

  ... Reflective

Special

Empty
Collection

SequenceSet

CollectionUnion

Undefined

Metaclass
c : EClass

BooleanString

Primitive
Type

Type 1 nested 
* types

Fig. 8. Types used to annotate the AST.

receives the type Sequence(Union(Service, Interface)). This
allows reasoning about the operations that can be
performed, or the features that can be accessed, on
the result of the expression. In general, no error is
reported if an invoked operation or feature is available
to all types in the union, which is coherent with
the duck typing that ATL implements. Hence, the
expression Sequence{i.service, i.interface}→flatten()→collect(o
| o.name) is deemed valid because both Service and Inter-
face have a feature name. Instead, accessing to feature
operations would be reported as an error because Service
lacks this feature.

Altogether, the type checking phase annotates the
nodes of the transformation AST. This allows the
identification of certain typing errors and warnings.
Table 1 shows a summary of the most important errors
we are able to detect (at this point, the errors in phase
typing). We will further explain this table in Section
4.3, while in Section 5, we will show that some type
errors detected statically still need to be confirmed by
finding a witness model.

4.2 The transformation dependence graph
The type checking phase enriches the abstract syntax
model of the transformation with extra information
such as the type of the nodes and the control and
data flow of the transformation. This model, called
transformation dependence graph (TDG), is analysed in
a second stage to uncover further potential problems.
Implementation-wise, the TDG is an instance of an
extended version of the ATL meta-model, which is
partly shown in Figure 9.

In the meta-model, each OclExpression refers to the
type assigned by the type checker via the inferredType
reference. Additionally, they hold an extra type, noCast-
Type, which is the type of the expression if no implicit
casting is performed. The control and data flow of
OCL expressions are represented in the abstract syn-
tax of ATL following the containment relationships of
expressions. This suffices also for loops, which in OCL
can only be implemented through explicit iterators
and there are no breaking statements (e.g., break, return).
Moreover, since there are no variable reassignments,
any variable usage (represented by VarExp) only needs
to refer to the original variable declaration.

Analysing the dependencies between a call expres-
sion and the helpers that may process the call is more
challenging. We use a similar approach to [27], where
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source 1

resolvedBy *

ResolveTempInfo
out : OutputPattern

OperationCallExp

resolvedBy *
Resolution

Info

0..*    paramDcl

CalledRuleLazyRule

CallableParam
type : Type

Callable

NavOrOperationCallExp
feat[0..1] : EStructuralFeature

1  refVar

Variable
Declaration

VarExp

0..*  stCalledBy   

0..*  dynCalledBy dynCall 0..*  

staticCall 0..1 

ContextHelper

Callable

ModuleCallable

ModuleHelper ContextHelper
context : Type

1   body

Binding
srcType : Type
tgtType : Type

PropertyCallExpr
isModuleCall : Boolean

OclExpression
inferredType : Type
isCasted : Boolean
noCastType : Type

Helper
type : Type
arguments[*] : Type

StaticRule
MatchedRule

isAbstract: Boolean

Rule
name : String
inTypes[*] : Metaclass
outTypes[*] : Metaclass

1..* execs 
1 rule 

formalParams *

filter 0..1

value 1*

Fig. 9. Excerpt of the extended ATL meta-model. Added classes are highlighted in grey. All shown features have
been added to the original meta-model, except Rule.name, Binding.value, VarExp.refVar and MatchedRule.isAbstract.

we attach to each call expression the context helpers
that may resolve it (reference dynCall in Figure 9).
Similarly, we attach to each binding the matched rules
that may resolve it (reference resolvedBy), computing
both the resolving rule (reference rule) and the list of
rules involved in the resolution (reference execs). The
latter list is useful to reason about rule inheritance,
since all inherited rules are executed in order. We also
give support to resolveTemp operations (an explicit form
of rule resolution) via ResolveTempInfo.

Lazy and called rules are statically resolved because
they are invoked explicitly and behave like module
helpers that return a target element (see class Module-
Callable and reference PropertyCallExpr.staticCall).

For feature access, which is represented by class
NavOrOperationCallExp, we keep a reference to the nav-
igated feature. This is required, for example, to com-
pute the meta-model footprint of the transformation.
Example. The TDG excerpt in Figure 10 shows the
binding type ← i.elem (label 1), which can be resolved
by rules ClassR, MessageType and FaultMessageType (labels
2, 4 and 5). This is indicated by the link resolvedBy in the
TDG. On the other hand, the TDG includes a staticCall
link which corresponds to the explicit call to the lazy
rule AttributeR (label 6) from rule ClassR (label 3). The
execution of the lazy rule yields the execution of the
problematic expression i.content.typeDef (line 53).

4.3 Analysis of problems

Table 1 summarizes the problems we detect statically.
The second column shows the phase of the analysis
where the problem is detected, either in the type
checking (Section 4.1) or in the analysis of the TDG
(Section 4.2). The third column states if the problem
needs to be confirmed by generating a witness: never
(i.e., static analysis), sometimes, or always. The last
column indicates the severity of the problem, for
which we distinguish three kinds of errors and three
kinds of warnings. Errors of type error-load occur in

: MatchedRule 

name= “TriggeringEvent” 
outTypes= 
{MessagEventExpression} 

: MatchedRule 

name= “MessageType” 
inTypes=  
 {XsElementDeclaration} 

: MatchedRule 

name= “FaultMsgType” 
inTypes=  
 {XsElementDeclaration} 

staticCall 

rule TriggeringEvent { 
  from i: Input ( … )  
  to o: MessageEventExpression ( 
     type <- i.elem ) } 
 
rule ClassR { 
  from i: XsElementDeclaration (…) 
  to o: Class ( 
   attributes <- if … then   
     … thisModule.AttributeR(e) 
     … else … endif ) } 
 
rule MessageType { 
  from i: XsElementDeclaration (…) 
  to o: MessageType … } 
 
rule FaultMessageType { 
  from i: XsElementDeclaration (…) 
  to o: FaultMessageType … } 
 
lazy rule AttributeR {  
   from i: XsParticle  
   to … i.content.typeDef … } 

: VarExp 

varName= “i” 

source 

: NavOrOperationCallExp 

name= “elem” 
type= XsElementDeclaration 
feat= Input::elem 

: Binding 

srcType= XsElementDeclaration 
tgtType= EventType 

3 

1 

6 

1 

2 

4 

5 

: Binding 

thenExp 

: OperationCallExp 

name=“AttributeR” 

elseExp 
… 

: IfExp 

: MatchedRule 

name= “ClassR” 
inTypes=  
 {XsElementDeclaration} 
outTypes= {Class} 

5 

value 

: LazyRule 

name= “AttributeR” 
inTypes= {XsParticle} 

… 

2 

4 

resolvedBy 

6 3 

Fig. 10. Excerpt of TDG with the elements involved in
errors “Binding resolved by rule with invalid target” (line
81) and “Feature found in subtype” (line 53).

the loading phase of the transformation execution.
Although these errors make the transformation fail
regardless the particular input model, the ATL com-
piler does not detect them statically. Runtime errors
are the most common. These errors occur during the
transformation execution, likely when the transforma-
tion is fed a model with certain features that trigger
the execution of a problematic statement. Errors of
type error-target do not make the transformation crash,
but they yield an incorrect target model. Regarding
warnings, those of type warning-behaviour are smells
indicating that the transformation may not behave as
expected, while types warning-perf and warning-style
signal performance and style issues respectively.

In another dimension, we classify problems in five
categories, corresponding to the five blocks in Table 1.
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TABLE 1
Problems detected statically in ATL transformations.

Description Phase Precision Severity
Typing (with respect to source/target meta-model and helper definitions)
Invalid meta-model name typing static error-load
Invalid meta-class name typing static error-load
Invalid enum literal typing static error-load
Feature not found typing static runtime-error
Feature not found in union type typing static runtime-error
Feature found in subtype typing sometimes-solver runtime-error
Operation not found typing static runtime-error
Operation found in subtype typing sometimes-solver runtime-error
Attribute not found in thisModule typing static runtime-error
Operation not found in thisModule typing static runtime-error
Object without container typing static runtime-error
Incoherent variable declaration typing static warning-style
Incoherent helper return type typing static warning-style
Invalid number of actual parameters typing static runtime-error
Invalid actual parameter type typing static warning-behaviour
Navigation
Collection operation not found typing static runtime-error
Collection operation over no collection (“→” vs. “.”) typing static warning-style
Operation over collection type (“.” vs. “→”) typing static warning-style
Feature access in collection typing static runtime-error
Iterator over empty collection typing static warning-behaviour
Feature access over possibly undefined receptor typing sometimes-solver runtime-error
Feature access over possibly undefined receptor via empty collection typing always-solver runtime-error
Flatten over non-nested collection typing static warning-perf
Foreach statement expected collection typing static runtime-error
Wrong iterator body type typing static runtime-error
Change select-first for any typing static warning-perf
Iterator over no collection type typing static runtime-error
Invalid argument for built-in function typing static runtime-error
Invalid operand typing static runtime-error
Invalid operator typing static runtime-error
Transformation integrity constraints
Invalid rule inheritance typing static runtime-error
Matched rule without output pattern typing static runtime-error
Matched rule with non-boolean filter typing static runtime-error
Abstract class instantiation typing static runtime-error
Read access to target model typing static warning-behaviour
Lazy rule with filter typing static warning-behaviour
Target meta-model conformance
No binding for compulsory target feature analysis static error-target
Binding resolved by rule with invalid target analysis sometimes-solver error-target
Collection assigned to mono-valued binding analysis static error-target
Incompatible primitive value for primitive binding analysis static error-target
Model element assigned to primitive binding analysis static error-target
Primitive value assigned to object binding analysis static error-target
Invalid assignment in imperative binding typing static runtime-error
Transformation rules
No rule to resolve binding analysis static warning-behaviour
Binding possibly unresolved analysis always-solver warning-behaviour
No rule to resolve a resolveTemp operation typing static warning-behaviour
ResolveTemp possibly unresolved analysis always-solver warning-behaviour
Undefined output pattern in resolveTemp operation typing static runtime-error
Rule conflict analysis (separate) sometimes-solver runtime-error

Typing problems refer to disconformities between the
types used in the transformation and those declared in
its source and target meta-models. For instance, using
an invalid type name, or accessing a feature in an
object whose type lacks the feature, raises an error.

OCL navigation expressions, which are pervasive in
ATL transformations, can also contain errors. These
include misuses of built-in OCL operations, such as
invalid collection operations and operators. There can
also be style issues, like mistaking the dot (for ob-
jects) and arrow (for collections) operators, as well
as performance issues, like flattening a non-nested
collection. Here, other ATL/OCL performance issues
could be considered [28].

Some integrity constraints regarding the semantics of

ATL are not enforced by the ATL IDE, and therefore
can be violated by transformation implementations.
Even if these violations will not produce runtime
errors, they may cause unexpected results. For in-
stance, since the target model of an ATL transforma-
tion should be write-only, we report on any reading
operation over the target model. Another example is
the definition of filters in lazy rules, allowed by the
ATL IDE, but ignored by the execution engine.

Another range of problems concerns the conformance
to the target meta-model of the output models produced
by a transformation. These problems pass unnoticed
during the transformation execution, becoming ap-
parent only when the non-conformant output model
is processed by another transformation or modelling
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tool. Ensuring conformance to the target meta-model
statically is challenging, but we detect some problems
of this type. For instance, we report as an error any
binding of feature with incompatible type. A target
compulsory feature (i.e., with positive lower cardinal-
ity and no default value) which is left unbound is
also an error, as this will produce an incorrect target
model. Bindings resolved by rules with an invalid
target type are a potential problem, which may require
confirmation by finding a witness model.

Finally, problems due to dependencies between
transformation rules include missing rules for the types
used in bindings and conflicting rules that define non-
exclusive guards8.

Next, we describe in detail four of the most impor-
tant and challenging types of errors.

4.3.1 Unresolved bindings
ATL enables loose coupling of matched rules by
avoiding explicit rule calls. For this purpose, bindings
are implicitly resolved when their right part contains
source objects matched by other rules. This resolution
returns the target objects in which the source objects
were transformed. In case there is no rule to resolve a
given source object, the ATL engine outputs a message
indicating that the types are not compatible. This
is a performance bottleneck for large models, and
moreover, the message is useless as the line with the
problematic statement is not reported. Although this
kind of problem does not produce a runtime error, it
is a smell of unexpected behaviour, as certain object
configurations are not being handled by any rule.

The running example contains three errors of this
kind. The binding in line 7 is statically guaranteed
to be an error, since no rule has type Service in its
from part (“No rule to resolve binding” in Table 1).
In contrast, the binding in line 15 is more complex
to analyse, as it can be resolved by three different
rules with non-trivial filters (rules MessageType, Fault-
MessageType and ClassR in lines 19, 26 and 33). Hence,
we mark this binding as potentially problematic, and
resort to a model finder to determine if the right
part of the binding can contain objects not covered
by these three rules. In this case, the finder confirms
that the binding will be unresolved for messages
defined by XsSimpleTypeDef objects (“Binding possibly
unresolved”). Finally, the binding in line 73 is also
a potential problem because the resolving rule (Trig-
geringEvent in line 77) has a filter. However, in this case,
the model finder does not find a witness model and
therefore the problem is discarded.

4.3.2 Binding resolved by rule with invalid target
The binding resolution mechanism of ATL does not
take into account the target type of the resolving

8. In ATL, a source object can only be processed by one rule, and
a runtime error occurs if the object is matched by a second rule.

rule. Hence, a binding might be resolved by a rule
whose target type is not compatible with the type
of the feature being assigned to. This will produce a
target model that is not conformant to the target meta-
model (i.e., there will be slots holding objects of wrong
type)9. This is a subtle but important problem that
should be detected statically and as early as possible
to avoid having to inspect the conformance of each
generated target model.

The binding in line 81 of the running example has
a problem of this kind, which is graphically depicted
in Figure 10. In particular, the binding type ← i.elem
(label 1) could be resolved by rule ClassR (label 2);
however, the output type of this rule is Class, which is
not compatible with the type of the feature which is
EventType (label 1). Hence, when the binding is resolved
by rule ClassR, it produces an invalid target model
because some MessageEventExpression objects will have a
Class object in the type slot, which is incorrect according
to the target meta-model.

4.3.3 Feature found in subtype
This is a variant of the feature not found problem. It
is signalled when there is an expression obj.feature, the
inferred type of obj is T, and feature is not declared in
T but in one or more of its subtypes.

Detecting this error accurately depends on a proper
analysis of the oclIsKindOf and oclIsTypeOf operations10,
as ATL does not support explicit downcastings (i.e.,
the oclAsType operation is not supported). For this
reason, we keep track of any usage of oclIsKindOf and
oclIsTypeOf in conditional expressions, rule filters and
select iterators. Moreover, we build a symbol table per
scope that relates expressions to checked types. When
accessing a feature or operation, the receptor expres-
sion is sought in the symbol table, and if it is found,
the type ensured by oclIsKindOf/oclIsTypeOf is used. To
deal with logical operators and the else branch of if
statements, we use the Union type. For instance, the
expression i.typeDef in line 35 is initially given type
XsSimpleTypeDef in the symbol table, but the presence
of the not operator changes this type to the union of
the sibling subtypes, that is, to Union(XsComplexTypeDef)
which is simplified to just XsComplexTypeDef as there is
only one subtype. This mechanism allows discarding
statically some potential problems without recurring
to the model finder.

The running example includes a problem of this
kind in line 40. As discussed previously, the ex-
pression i.typeDef.content.term.particles is invalid because
feature particles is not defined in XsTerm, but in its sub-
type XsModelGroup. On the contrary, the subexpression
i.typeDef is valid due to the enclosing oclIsTypeOf check

9. The behaviour described here has been tested for ATL 3.X;
subsequent versions of ATL may behave differently.

10. obj.oclIsKindOf(C) returns true if the object obj is an instance of
C or any of its subclasses; obj.oclIsTypeOf(C) returns true if the object
obj is an instance of C.
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performed in the previous line. In the same expres-
sion, feature term is not defined by XsComplexTypeContent,
but by its subtype XsParticle; however, this will not
cause a runtime error because the only subtype of
XsComplexTypeContent is XsParticle.

Line 53 shows another example. If the analyser
reports an error in expression i.content.typeDef, it will
be a false positive because the transformation logic
guarantees that the type of i.content is XsElementDec-
laration (check done in line 41). As a heuristic, we
confirm the problem by model finding whenever the
path condition to the problematic statement includes
oclIsKindOf/oclIsTypeOf checks (see Section 5). This may
still yield false positives if the developer uses expres-
sions like p.content.oclType().name = ’XsElementDeclaration’ to
check types. However, this is seldom used in practice.

4.3.4 Rule conflict
If several rules match the same source objects, they
become in conflict and will cause a runtime error.
Hence, if several rules have compatible input types,
they should define exclusive filters to ensure that the
same source object is only matched by one of the rules.
Detecting rule conflicts may be difficult, especially if
rule filters are complex or meta-models have deep
inheritance hierarchies.

Two rules are potentially in conflict if their input
type is the same, one is subtype of the other (in which
case we identify the less general type as problematic),
or they have at least one subtype in common. In such
cases, we use the model finder to generate a witness
model that contains an object of the problematic type
and fulfils the filter of both rules. If such a model
exists, the conflict becomes confirmed, as both rules
would be applicable to the same object.

In the running example, rules MessageType and Fault-
MessageType are in conflict because they have the same
input type and the rule filters are non-exclusive. Thus,
an XsElementDeclaration object that is pointed by both an
Operation input (or output) and an Operation fault will be
matched by both rules, causing a runtime error. The
solution to this problem can be either fixing the rule
filters or adding a transformation pre-condition.

5 BUILDING THE PATH CONDITION

As we have seen, some of the problems detected
during the static analysis phase can be signalled ac-
curately, but others require finding a witness model
proving that the error can occur in practice. Failing
to find a witness model may happen in two cases:
when the meta-model includes constraints preventing
the existence of problematic models, or when the
transformation contains expressions that prevent the
error at runtime.

The third column in Table 1 shows the problems
that require this additional step (cells marked as
sometimes-solver or always solver). To generate a witness

model for a given problem, we calculate all possible
execution paths leading to the problem, and for each
path, we derive an OCL expression that characterizes
the input models causing the execution of the prob-
lematic statement. Then, we use constraint solving to
assert whether there exists a model that satisfies this
OCL expression as well as the meta-model integrity
constraints (i.e., cardinality of associations, composi-
tions and OCL constraints).

The next subsections explain these steps in detail.

5.1 Extracting the error path
To calculate the paths leading to an error, we start
from the node that contains the problematic state-
ment, and traverse the transformation control flow
back until reaching a matched rule. Table 2 shows
the types of nodes that can appear in the error path.
Additionally, there is a problem node for each type of
problem, which gathers specific error conditions (see
Section 5.2).

TABLE 2
Types of nodes in the error path.

Node type Description
Matched rule Execution of a matched rule, which typically

starts the execution flow.
Abstract matched rule Path branching that occurs when the engine se-

lects one of the inheriting subrules according to
the dynamic type of the source object.

Loop Iteration over a collection using an OCL iterator.
If Condition and branch that leads to the error.
Let Variable definition and its scope.
Call Invocation to a helper or lazy rule.
Helper invocation Set of paths starting from a helper.
Static rule invocation Set of paths starting from a lazy or called rule.
Subexpr Valid part of a problematic expression.

Listing 1 outlines the algorithm that computes the
error path to a problem detected statically. Its entry
point is the function computePath, which receives the
problem object created by the static analyser and the
element of the abstract syntax model that exhibits
the problem. It navigates the control flow backwards,
branching the path if several flows are possible. This is
done in the function pathToControlFlow, defined in line 6.
This function traverses the containment tree of the
AST to find a control flow statement, for which it
creates a new node in the error path. For this purpose,
the current path node is passed to the appropriate
pathTo function, which is in charge of creating the new
path node as a child of the current node, and then calls
pathToControlFlow recursively for the created node. For
simplicity, we only show the handling of conditional
statements and helpers.

Function pathToIfExp handles conditional expressions
(line 14). It checks whether the current path comes
from the if or else branches to mark the created path
node accordingly, and call pathToControlFlow recursively
to compute the children of the created node (lines 25–
27). Alternatively, if the path was flowing from the
condition, we skip the conditional expression.
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Input: object identifying the detected problem (problem)
Input: AST element of the faulty statement (elem)
Output: root node of the error path (node)

1 def computePath (problem, elem):
2 node = createProblemSpecificNode(problem, elem)
3 pathToControlFlow(elem, node)
4 return node
5 end

6 def pathToControlFlow (elem, node):
7 parent = getParentControlFlowStmt(elem)
8 switch parent do
9 case IfExp do pathToIfExp(parent, elem, node);

10 case Helper do pathToHelper(parent, node);
11 // ... similarly StaticRule, MatchedRule, LoopExp, Let
12 end
13 end

14 def pathToIfExp (ifExp, child, node):
15 branch = nil
16 if ifExp.thenExpr = child then
17 branch = true
18 else if ifExp.elseExpr = child then
19 branch = false
20 else
21 // the path comes from the condition
22 pathToControlFlow(ifExp, node)
23 return
24 end
25 ifNode = new IfNode(ifExp, branch)
26 node.addChildren(ifNode)
27 pathToControlFlow(ifExp, ifNode)
28 end

29 def pathToHelper (helper, node):
30 hNode = new HelperInvocationNode(helper)
31 node.addChildren(hNode)
32 switch helper do
33 case StaticHelper do
34 foreach pcall in helper.stCalledBy do
35 pathToCall(pcall, hNode)
36 end
37 end
38 case ContextHelper do
39 foreach pcall in helper.dynCalledBy do
40 pathToCall(pcall, hNode)
41 end
42 end
43 end
44 end

45 def pathToCall (pcall, node):
46 cNode = new CallExpNode(pcall)
47 node.addChildren(cNode)
48 pathToControlFlow(pcall, cNode)
49 end

Algorithm 1: Computation of the error path

Function pathToHelper deals with helpers (line 29). In
this case, the path is split by creating a new call node
for each invocation to the helper (pathToCall, line 45). In-
terestingly, the handling of static and context helpers
is different, as static helpers have explicit call sites,
while context helpers require considering all possible
polymorphic calls. This information is provided by
the TDG, via the StaticHelper and ContextHelper classes,
and the stCalledBy and dynCalledBy references. The other
nodes in the graph are handled similarly.
Example. Figure 11 shows the error path for the
problematic expression i.content.typeDef (line 53 in the
running example). We start by creating a problem-
specific node, feature found in subtype in this case (label
1). This kind of error distinguishes the invalid part of
the expression (i.e., the call to typeDef) from the correct
part (i.e., the receptor expression i.content). The correct
part is added to a Subexpr node, to ensure that it
will be considered by the model finder (label 2). To

exercise this expression, its owning lazy rule AttributeR
must be explicitly invoked; therefore, we look in the
TDG for any call expression that invokes the rule. This
information is stored in the TDG’s reference stCalledBy.
Since the rule can be called from several sites, we
create a Lazy rule invocation node that aggregates all
possible rule calls (label 3). In the figure, we only
depict the call thisModule.AttributeR(e) (label 4). This call is
performed within the elems→collect(...) expression, and
hence, we create a Loop node to represent the iterated
collection (label 5). For convenience, we create control
flow nodes for Let assignments (label 6). Next, since
expressions in labels 3–6 are within the true branch of a
conditional expression, we create an If node indicating
the branch from which the path is flowing (label 7).
Finally, the execution starts in the ClassR matched rule
(label 8).

elems->exists(e | <4> ) 

Problem 
feature found in subtype 

i.content.typeDef 

Lazy rule invocation 
AttributeR 

XsElementDeclaration.allInstances()-> 
   select(i | <filter> )-> 

   exists(i | <7> )  

1 

3 

if i2.content.oclIsUndefined() 
then false 
else <1> endif 

( this node aggregates several  paths 
  that may pass through the rule ) 

let i2 = e  
in <3> 

<2> 

not i2.content. 
    oclIsKindOf(XsElementDeclaration) 

Call 
thisModule.AttributeR(e) 

Let 
let elems : OclAny = 

i.typeDef.content.term… 

Matched rule 
ClassR 

Loop 
elems 

(problem-specific) 

Subexpr 
i.content 

4 

5 

6 

8 

. 

. 

. 

If 
i.typeDef.oclIsTypeOf(Xs
ComplexTypeDef) / true 

2 

7 
if i.typeDef.oclIsTypeOf(XsComplexTypeDef)  
then <6>  
else false endif 

let elems : Sequence(XsParticle)  = 
  i.typeDef.oclAsType(XsComplexTypeDef). 
  content.oclAsType(XsParticle). 
  term.oclAsType(XsModelGroup). 
  particles->select(p| ...) in <5> 
 

Fig. 11. Error path and OCL path condition for the
problem in line 53 of the running example.

It is worth noting that our algorithm builds error
paths which are trees with a problem-specific node as
root, and execution nodes as leaves (i.e., typically nodes
corresponding to matched rules). This facilitates the
traversal of the error path, e.g., to generate OCL path
conditions, as we explain in the next subsection.

5.2 Building the OCL path condition

Given the error path, we derive an OCL expression
describing the models that cause the execution of the
problematic statement. The strategy to construct the
OCL path condition is a bottom-up traversal of the
error path starting from the leaf nodes (i.e., nodes
that trigger the execution flow). For each node, an
OCL fragment is generated stating the conditions
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required for the control flow to continue towards the
error. Then, the OCL fragment for the parent node
is generated, which strengthens the path condition,
until the problem node is reached. As noted before,
the error path is a tree where every node has a single
parent. If an error path has several leaf nodes, then,
we take the disjunction of the conditions generated
from each leaf. Another consideration is that there
may be error paths that do not lead to an execution
node, for instance, in the case of dead rules or helpers.
We keep track of these cases and do not generate an
incorrect path condition for them.

Table 3 shows the OCL fragments generated from
each path node type. The place where the code pro-
duced by the parent node is inserted is marked as
depNode.

The OCL fragments generated from each node of
the error path do not depend on the error type, except
for the root node, from which a problem-specific OCL
condition is generated. Table 4 shows the conditions
generated for problems with precision sometimes-solver
and always-solver. We also support the generation of
witness models for the rest of problems, but the extra
condition is simply true as it is enough to reach the
problematic statement. A problem type is considered
always-solver if it always requires being confirmed
using a model finder, whereas it is sometimes-solver
if there are situations where the problem can be con-
firmed or discarded without using the model finder.
For instance, a rule conflict problem is sometimes-solver
because we can statically confirm that two rules with
the same source type are in conflict if the rules have
no guards.
Example. Figure 11 shows the OCL path condition
built starting from the Matched rule node (label 8).
The generated OCL fragment enforces the existence
of objects that can be matched by the rule, that is,
XsElementDeclaration objects that fulfil the rule filter.
The rule filter invokes two helpers (isInOut and isFault)
which we attach to the path condition to enable their
use by the model finder. Next, the condition for the If
node (label 7) is nested within the previous fragment,
and the constraint imposed by the subsequent Let
node (label 6) is inlined in the true branch of the
if. The OCL fragment generated from the Loop node
(label 5) ensures that there is at least one element in
the collection that satisfies the rest of conditions in
the path. To translate the call to the lazy rule (label
4), we bind the formal parameters of the rule to the
actual parameters using nested let expressions that
create new variable scopes (one in this case). The Lazy
rule invocation node (label 3) does not produce any
OCL as it just aggregates the paths passing through
it. Then, the OCL for the Subexpr node (label 2) asserts
that the correct part of the faulty expression is not
undefined, to prevent a trivial answer from the model
finder. Finally, the last step adds a problem-specific
condition to the OCL path condition (label 1). In this

case, it forces the existence of an object that lacks the
feature typeDef, in order to cause a runtime error when
executing the transformation. This will happen for
any object not being an instance of XsElementDeclaration
(i.e., the type for which we have statically checked
that the feature exists).

Listing 2 shows the resulting OCL path condition.
1 XsElementDeclaration.allInstances()→
2 select(i | −− node 8
3 not i.typeDef.oclIsTypeOf(XsSimpleTypeDef) and
4 not ( i.isInOut() and i.isFault() )→
5 exists(i |
6 if i.typeDef.oclIsTypeOf(XsComplexTypeDef) −− node 7
7 then
8 let elems : Sequence(XsParticle) = −− node 6
9 i.typeDef.oclAsType(XsComplexTypeDef).

10 content.oclAsType(XsParticle).
11 term.oclAsType(XsModelGroup).
12 particles→select(p|
13 p.content.oclIsKindOf(XsElementDeclaration) )
14 in elems→exists(e | −− node 5
15 let i2 = e −− node 4
16 in if i2.content.oclIsUndefined() −− nodes 2, 3
17 then false
18 else not i2.content.oclIsKindOf(XsElementDeclaration) −−node1
19 endif )
20 else false endif )

Listing 2. Generated OCL path condition for the
problem in line 53 of the running example.

It is worth noting that, sometimes, our procedure
may yield path conditions which are not OCL compli-
ant. This is the case when the path condition includes
ATL-specific constructs not provided by OCL, like
calls to helpers. In Section 7.2, we identify the situ-
ations where this may happen, and provide rewriting
rules that overcome this problem for some of them. As
an example, lines 9-11 of Listing 2 had to be rewritten
to add explicit castings via oclAsType, in order to obtain
an OCL compliant expression.

5.3 Generating transformation pre-conditions
A transformation may have not been designed to
work with every possible instance of the input meta-
model, but only with a subset of them. The set of
acceptable models may be undocumented, and the
transformation execution may fail for models which
are not in this set. When our static analysis reports an
error, the developer can still discard the error in case
it is a known limitation of the transformation (i.e., the
transformation is not intended to work with the class
of models that produce the error).

For example, line 15 (i.schema.elemDcl) contains an
error feature access over possibly undefined receptor since
the cardinality of schema is 0..1, meaning that there may
be ElementType objects without a schema. However, the
developer probably assumed that, for this transfor-
mation, any well-formed model requires ElementType
objects to have a schema. This assumption can be
documented with the following pre-condition:
1 ElementType.allInstances()→
2 forAll(i | not i.schema.oclIsUndefined())

To facilitate the creation of such pre-conditions,
we propose a method that, given a typing error,
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TABLE 3
Translation of ATL elements into OCL conditions: Control flow directives.

Element ATL OCL condition Description
Matched rule rule r {

from t : T ( filter )
... }

T.allInstances()→
select(t | filter)→
exists(t | depNode )

The model should contain at least one object
t with compatible type (T) satisfying the rule
filter. If the rule has several input elements,
we generate nested allInstances expressions.

Matched rule (abstract) abstract rule r ( filter ) { }
rule r1 extends r { }
rule r2 extends r { }

if filter then
depNode

else
false

endif

The execution of any subrule will lead to
the execution of the abstract rule, provided
its filter is satisfied. Although the filter of
subrules should be more restrictive than the
one of the abstract rule, the filter is checked
by this code just in case programmers missed
this requirement.

If expression if condition then branchToError
else theOtherBranch endif

if condition then depNode
else false endif

The case in which the false branch leads to
error just swaps the then/else parts.

Iterator expression (loop) expr→collect(it | exprWithError)
→followingOperations

expr→exists(it | depNode ) The operator exists ensures that the collec-
tion contains some problematic element. Any
following operation is ignored.

Sub-expression
(mono-valued property)

expr.property.invalidAtt.otherNav if not expr.property.oclIsUndefined()
then depNode else false endif

The condition demands the existence of
property; thus, accessing the invalid attribute
invalidAtt triggers an error (the problem-
specific node is true).

Sub-expression
(multi-valued property)

expr.property→invalidOp() expr.property→exists(p | depNode ) The operator exists ensures that the col-
lection contains some problematic element;
thus, calling the invalid operation invalidOp
triggers an error (the problem-specific node
is true).

Call to helper
with context

helper context T
def : aHelper(p1 : T2) : T3 =

self.exprWithError
...
exprOfTypeT.aHelper(exprParam)

let genSelf = exprOfTypeT
in let p1 = exprParam

in depNode

The body of the helper is inlined, replac-
ing self with a new variable that contains
the receptor object (e.g., genSelf). Parameter
passing is similar.

Call to helper
with context
(polymorphic call)

helper context Tsub
def : aHelper(p1 : T2) : T3 =

self.exprWithError
...
exprOfTypeT.aHelper(exprParam)

if genSelf.oclIsKindOf(Tsub) then
let genSelf rebound = genSelf.

oclAsType(Tsub)
in depNode

else
false

endif

The call is polymorphic if the type of the
receptor (exprOfTypeT) is a supertype of the
context type of the helper in which the er-
ror is located (Tsub). genSelf needs to be
rebound with a proper casting.

Call to helper
without context,
or lazy rule,
or called rule

helper def : aHelper(p : T) : T2 =
exprWithError

...
thisModule.aHelper(exprParam)

let p = exprParam
in depNode

Similar to context helpers, but with un-
bound context. Lazy rules and called rules
are treated as global helpers, in which the
“from” part of lazy rules are parameters.

synthesizes an OCL constraint such that any model
that satisfies the constraint will not exercise the er-
roneous statement. This constraint will be used as a
pre-condition that should be satisfied by any input
model of the transformation. During the analysis,
we attach all existing pre-conditions to the generated
OCL path condition, to enforce that any generated
witness model will fulfil them. A consequence of sup-
porting pre-conditions is that any detected problem
categorized as sometimes-solver may need to be pro-
moted to potential problem if there are pre-conditions
affecting its behaviour. Hence, the previously shown
pre-condition will turn the problem in line 15 into a
potential problem as it cannot be statically ensured
without using the model finder.

Our method to generate pre-conditions is a varia-
tion of the method to generate OCL path conditions.
We perform a bottom-up traversal of the error path,
generating a piece of the pre-condition according to
the type of each node. The generation rules are similar
to the ones in Table 3, but instead of exists iterators,
we generate forAll iterators since the pre-condition
needs to ensure that any element “flowing” through
the path satisfies the problem-specific constraint. The

problem-specific constraints for pre-conditions are just
the negation of those in Table 4.

Listing 3 shows the pre-condition generated for the
problem binding resolved with invalid target in line 81.
The problem happens because some XsElementDeclara-
tion objects are transformed into Class by rule ClassR.
Hence, the pre-condition must ensure that any XsE-
lementDeclaration reached through the path (lines 1–3)
does not fulfil the input pattern of rule ClassR (lines
5–10).

1 Input.allInstances()→
2 select(i | i.oclIsTypeOf(Input))→
3 forAll(i | let e : XsElementDeclaration = i.element in
4 −− negated input pattern of the guilty rule ClassR
5 not if ( e.oclIsKindOf(XsElementDeclaration) ) then
6 not e.typeDef.oclIsTypeOf(XsSimpleTypeDef) and
7 not (e.isInOut() and e.isFault())
8 else
9 false

10 endif)

Listing 3. Generated transformation pre-condition

In practice, our pre-conditions are written in the
transformation header as comments prefixed with
@pre. We internally parse this code and merge it with
the rest of the abstract syntax model, so that it can
be processed by our analyser (e.g., to report syntax or
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TABLE 4
Translation of ATL elements into OCL conditions: Problem-specific conditions.

Problem (see Table 1) ATL OCL condition Description
Operation/feature not
found in T, but declared in
its subclasses S1,...,Sn

<expr : T>.feature not expr.oclIsKindOf(S1) and ...
not expr.oclIsKindOf(Sn)

expr should have a type compatible
with T, different from S1,...,Sn.

Feature access over possibly
undefined receptor

<expr : T>.feature expr.oclIsUndefined() expr must be undefined.

Feature access over possi-
bly undefined receptor via
empty collection

aCollection→first().feature aCollection→isEmpty() Access to a single element of a collection
via operations like first, last or at. aCol-
lection must be empty. We consider col-
lections coming from multivalued fea-
tures and “allInstances()”.

Binding resolved by rule
with invalid target

feature← <expr : T>
...
rule r { from t : T1 ( guard(t) ) ... }
// with T1<:T

// If expr is mono−valued:
guard(expr)
// If expr is multi−valued:
expr→exists(t | guard(t) )

To force that expr contains objects ac-
cepted by rule r, expr must fulfil the rule
guard. If T1 is subtype of T, the extra
check expr.oclIsKindOf(T1) is added.

Binding possibly
unresolved

feature← <expr : T>
...
rule r1 { from t : T1 ( guard1(t) ) ... }
rule rn { from t : Tn ( guardn(t) ) ... }
// with T1<:T, ...,Tn<:T

(not expr.oclIsKindOf(T1) or
not guard1(expr)) and ...

(not expr.oclIsKindOf(Tn) or
not guardn(expr))

expr should be incompatible with the
rules declared for T or its subtypes. The
OCL path condition when expr is multi-
valued is similar.

Rule conflict rule r1 { from t1 : T1( guard1(t1) ) ... }
rule r2 { from t2 : T2( guard2(t2) ) ... }

// T <: T1 , T <: T2
T.allInstances()→exists(t |

guard1(t) and guard2(t) )

We need an object accepted by both
rules. T is the closest descendant of T1
and T2. If T1=T2, we take T=T1.

typing errors within the pre-condition itself).

6 MODEL FINDING

The procedure described in Section 5.2 yields a col-
lection of OCL path conditions for an error (i.e., one
for each path to the error). Next, we show how to
use these conditions to generate a witness model that
exercises the error (Section 6.1), and how to interpret
the result of the search (Section 6.2).

6.1 Generation of witness models
To obtain a witness model for an error, we take the
disjunction of the OCL path conditions to the error,
and declare the resulting expression as an invariant of
an artificial class called ThisModule added to the input
meta-model. This class also contains the translation
of the global variables and helpers defined in the
transformation. This is done because OCL does not
support global constraints, but they must be defined
in the context of a class. Then, we use a model finder
(in particular the USE Validator [10]) to check whether
there is a model that satisfies all invariants, for which
we force one object of type ThisModule, which is later
discarded from the returned model.

Most model finders rely on bounded search, explor-
ing models up to a certain size, typically given as a
range for the number of objects of each class. Hence,
they employ the “small scope hypothesis” [29], [30] and
assume that most constraints are satisfied by models
of limited size. In our case, we perform searches of
increasing scope (i.e., we first look for a model with
at most one object of each class, then with at most
two, and so on) until a model within the given scope
is found, or a predefined upper bound is reached.
This allows obtaining smaller witnesses, where the
problematic model configuration is easier to identify.

Implementation-wise, we set the upper bound to 5,
but this value can be configured easily. This strategy
leads to faster execution times than just setting a fixed
upper bound.

To further reduce the search space, we use a pruned
version of the input meta-model. We consider two
different strategies with increasingly larger pruned
input meta-model: error path and mandatory.
Error path strategy. This strategy considers the path
effective meta-model (MMpath), which is the minimum
meta-model required to trigger the error at runtime.
This meta-model contains the types and features used
in the OCL path condition, which are extracted from
the TDG when the error path is computed. In some
cases, it also needs to be extended with classes that
do not appear in the transformation but are needed
to generate the witness model. There are two such
cases. First, if MMpath contains abstract types without
children, an arbitrary child type among those in the
complete meta-model is added. This is done because,
otherwise, the generated witness would not contain
instances of the abstract type. As an example, this
happens if the error path traverses a rule with an
abstract type in its input pattern, but no subclass is
explicitly used in the rest of the path.

Second, for some problems, we need to consider
types not mentioned in the error path. For example,
the problem in line 81 arises when the expression i.elem
yields an XsElementDeclaration object which satisfies the
filter of rule ClassR (i.e., an XsElementDeclaration object
connected to an XsComplexTypeDef object). However, the
error path does not include XsComplexTypeDef because
it is not explicitly mentioned. In these cases, our
approach is to search for oclIsKindOf(T) occurrences in
the error path and, if possible, add a sibling type of
T that does not belong to the error path yet.

This meta-model pruning strategy reduces the
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search scope for the model finder. As an example,
the error path meta-model for the path condition in
Listing 2 (which corresponds to the problematic state-
ment i.content.typeDef in line 53 of Listing 1) excludes
classes like Description, Interface, Service, ElementType and
XsSchema as they are not used in the path condition.
Similarly, features like Operation.name are excluded as
well. In this case, the model finder does not find
a witness satisfying this path condition because the
check performed in line 41 ensures that the type of
i.content can only be XsElementDeclaration, which defines
the feature typeDef, and thus, no error will arise.

Just for illustration, suppose we comment the check
in line 41. Then, we obtain the witness model shown
in Figure 12. This has an XsParticle object whose content
is of type XsModelGroup, which lacks feature typeDef.
Thus, the transformation will fail for this input model
when executing line 53.

m1 : XsModel
Group

t1 : XsComplex
TypeDef

p1 : XsParticlee1 : XsElement
Declaration

te rm

particles

  content  contenttypeDef

Fig. 12. Witness model for problem in line 53, using
the error path meta-model strategy.

The presented strategy does not guarantee that
the generated witness conforms to the original meta-
model, as the pruned meta-model version used for
finding the witness may lack compulsory features
not required by the error path. Moreover, executing
the transformation with the witness may cause unex-
pected errors because the witness may be incomplete.
Mandatory strategy. This strategy ensures that the
generated witness model conforms to the original
meta-model. For this purpose, it uses a pruned ver-
sion of the input meta-model which contains the
elements of MMpath plus the mandatory types and
features of the complete input meta-model. The gen-
erated meta-model is called the error meta-model.

More in detail, let MMpath be the meta-model con-
taining all types and features used in the OCL path
condition as explained above, and MMinput the com-
plete input meta-model. Then, for each class in MMpath,
we add the opposite of the references it declares, as
well as all mandatory attributes and references that
the same class defines in MMinput. If the added feature
is not owned by the class, but it is an inherited feature,
our algorithm adds to MMpath the necessary ancestors,
and adds the feature in the appropriate ancestor.
Likewise, any added ancestor needs to include its
mandatory features, and so on.

Using this strategy, we obtain the witness model in
Figure 13 for the problem in line 53 (assuming we
have removed the check in line 41). This is a valid
instance of the WSDL meta-model, but its computa-
tion is more demanding for the model finder than the
computation performed by the error path strategy. We

analyse and compare the efficiency of both strategies
in Section 8.3.

rootContainer

m1 : XsModel
Group

name='str ing1'

t1 : XsComplex
TypeDef

p1 : XsParticlee1 : XsElement
Declaration

name='str ing0'

type

resolvedFeature

baseTypeDef
rootType te rm

particles

  content  contenttypeDef

Fig. 13. Witness model for problem in line 53, using
the mandatory meta-model strategy.

6.2 Interpreting the witness generation results

We use a two-phase model finding strategy to dis-
card potential problems as fast as possible using the
smallest search scope. First, we use the error path
strategy. If this strategy does not find a witness model,
then the problem is marked as discarded since the
transformation logic prevents the error at runtime.
Moreover, in this case, the mandatory strategy will
not find a witness either, as this latter strategy adds
more elements and constraints to the search. A caveat
concerning our bounded search is that it may lead to
false negatives, as it discards any problem for which
no witness is found, but this may be due to using
a too small search bound. In case the model finder
yields a timeout, we mark the problem as unconfirmed
(i.e., its state is unknown).

On the contrary, if the error path strategy finds a
witness model, then the problem becomes confirmed
(provided the complete input meta-model is instan-
tiable). In such a case, it may be necessary to use the
mandatory strategy to obtain a valid instance of the
input meta-model satisfying the path condition, since
the first strategy may exclude some mandatory meta-
model features. In practice, we use this second step as
a debugging mechanism to obtain example models.
A possible situation in which only the first strategy,
but not the second, returns a witness is when the
meta-model is erroneous and cannot be instantiated
at all. To discard this possibility, we provide the user
with the option to verify the strong satisfiability of the
transformation meta-models [31], i.e., whether there
is some meta-model instance that contains at least
one instance of every class. As Section 8.3 will show,
we have not found cases where the meta-model is
instantiable and the error path strategy finds a witness
but the mandatory strategy does not, while the former
strategy leads to faster solving times.

7 TECHNICAL ASPECTS OF THE ANALYSER

Our method is supported by an Eclipse plugin called
ANATLYZER, which can also be used as a plain Java API
to implement other kinds of analysis of ATL transfor-
mations. Its source code and its update site are avail-
able at http://www.miso.es/tools/anATLyzer.html.
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Fig. 14. Enhanced ATL editor.

Figure 14 shows a screenshot of ANATLYZER. It is
seamlessly integrated with the ATL editor, so that
whenever the edited transformation is saved, its er-
rors and warnings are reported as editor markers
(upper view of Figure 14) and in the regular Eclipse
problem view. We have extended the original version
of the analyser [12] with features intended to improve
its usability, such as an extensible architecture to add
new kinds of analysis, a view to inspect problems
more easily (lower view of Figure 14), the possibil-
ity to silence the report of uninteresting errors, the
handling of transformation pre-conditions, a better
alignment with the USE Validator, and the option of
running the witness generator in the background. The
remaining of this section describes these features and
other technical aspects on our tool implementation.

7.1 Architecture

Figure 15 shows the main components of ANATLYZER.
The Static Analyser is a standalone API that processes
the AST of an ATL transformation, returning a copy
conformant to the extended ATL meta-model shown
in Figure 9, annotated with type information. Ad-
ditionally, it creates a problem model with details of
all detected errors and warnings. The Path Condition
Generator computes the problem path condition, which
is represented as a set of visitable nodes, following
the Visitor design pattern. The actual generation of
the OCL code to feed the model finder is performed
by a traversal of this path condition. Regarding the
integration with the ATL Editor, our ANATLYZER Eclipse
plug-in extends the original ATL Editor plug-in with

a builder that invokes the analyser upon file saving,
marking the detected errors in the ATL editor and
updating our Analysis View. Finally, the Analysis Index
identifies the already analysed transformations and
notifies changes to interested parties.
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Analysis Index

ATL Editor
(Extended)

problem
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Static
Analyser
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Analysis
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Signature
generator
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additional
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Fig. 15. Architecture of ANATLYZER. The upper diagram
shows its main components, and the lower diagram a
conceptual model of the relations between its parts.
Gray boxes represent models.

The analyser is extensible with new kinds of analy-
sis, which can be configured both in stand-alone mode
or using an Eclipse extension point. An example of
additional analysis is the support for UML profiles,
for which we are able to point out some errors when
dealing with stereotypes. There is also an Eclipse
extension point to configure actions for the Analysis
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View.
This architecture does not only support our Eclipse

plug-in, but it can also be used by third parties as an
analysis library to improve current support of ATL
transformations. Moreover, it is an enabler of empiri-
cal evaluations for ATL transformations, which up to
now have been limited due to the little information
provided by the standard ATL compiler.

7.2 Bridging ATL and USE/OCL

The OCL path condition generated by the procedure
described in Section 5 may include expressions that
are not compliant with standard OCL. For example,
OCL does not support global helpers, and therefore,
an ATL call such as thisModule.isInOutPattern(e) is invalid.
Another source of incompatibilities is the fact that
OCL expressions in ATL are mostly untyped, while
they must be explicitly and correctly typed to allow
their processing by OCL-compliant model finders.
The works that apply straightforward translations of
ATL into OCL for model finding [32], [33], [34], [35]
only work for simple transformations, and do not deal
with real-world scenarios like the complete ATL Zoo.

Next, we present the rewriting rules that we have
implemented to yield correct OCL for the USE Val-
idator model finder [10], though they can be ap-
plied to other model finders with the corresponding
adaptations. Table 5 summarizes the most important
ones, classified in two categories: those due to in-
compatibilities between ATL and standard OCL, and
limitations of USE that require special handling. In
both cases, the rewriting is performed at the abstract
syntax level, using the typing information computed
in the first step of the analysis and propagated to the
path condition.

In particular, the following rewriting rules bridge
incompatibilities between ATL and OCL:
Primitive helper inlining. Unlike OCL, ATL sup-

ports the use of primitive types as context for
helpers, e.g., adding the operation Integer.succ = self
+ 1. The solution to this problem is to inline the
calls to this kind of helpers.

Binding flattening. In ATL, bindings whose right
part is a collection of collections are automatically
flattened. Thus, we add an explicit call to the
flatten operation, to avoid typing errors in the
problem-specific part of the path condition.

Misused call operator. OCL supports two types of
calls: dot-notation for plain objects and arrow-
notation for collections. However, ATL does not
enforce this notation and it is possible to inter-
change them, in which case, the expression needs
to be rewritten to use the proper call.

Invalid variable declaration. ATL does not check if
the type of a variable declaration, or the return
type of a helper, is correct with respect to the
initializing expression. To avoid typing problems,

we replace the declared type with the type in-
ferred by our analyzer.

Implicit casting. Statically typed languages usually
provide an explicit downcasting operation to in-
form the analyser about the expected type when a
feature defined in a subtype must be accessed. In
OCL, this is performed using the oclAsType oper-
ation; however, ATL lacks this operation because
it is a dynamic language.
Thus, we take advantage of the type annotations
in the AST to insert downcasting operations in
those places that would raise a feature found in
subtype error otherwise. That is, we convert the
implicit castings performed via oclIsKindOf checks
(see Section 4.3) to explicit castings with oclAsType.
Figure 11 showed some necessary castings for the
example (marked in grey), which are also shown
in lines 9–11 of Listing 2.

Access to parent of an object. ATL provides the re-
fImmediateComposite built-in operation to access the
container of an object. We emulate this operation
by generating an OCL operation for each meta-
model type, which computes the container of the
type instances.

Non-standard operations. ATL supports some oper-
ations that are not available in OCL. Some can
be removed safely (e.g., debug) or replaced by
equivalent ones. In the rest of cases, we signal
that the path condition cannot be evaluated.

Alignment of two-valued and three-valued logic.
USE/OCL makes use of a three-valued logic,
so that Boolean values may be true, false or
undefined. However, ATL uses EMF [36] as the
underlying modelling framework, which uses
a two-valued logic and therefore a Boolean
attribute cannot be undefined. Similar issues
occur with primitive types like Integer and
Real. In order to solve this mismatch, for each
primitive attribute of these types we generate a
constraint like OwnerClass.allInstances()→forAll(o | not
o.theAttribute.oclIsUndefined()).

The following rules tackle some limitations of USE:
Global helper. ATL supports the definition of static

operations in the context of a transformation
module. However, in USE, operations must be
defined in the context of a class11. To address
this mismatch, each global helper used in the
path condition is defined in the context of a new
auxiliary class called ThisModule. Then, we create a
singleton object representing the transformation
by wrapping the original path condition with
ThisModule.allInstances()→exists(thisModule| <path>). Fi-
nally, we replace every call over the thisModule ATL
global variable with the iterator variable. This
requires adding a new parameter to every context

11. The OCL specification supports this via the static keyword,
but only for Complete OCL.
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TABLE 5
Path condition rewriting rules to bridge ATL and USE/OCL.

Rewriting ATL OCL-compliant expression Description
OCL mismatches
Primitive helper
inlining

helper context Integer
def: succ(): Integer = self + 1;

...
0.succ() ∗ 2

(0 + 1) ∗ 2 The receptor of 0.succ is an Integer.
The helper succ must be inlined,
replacing self and parameters with
the actual values.

Binding
flattening

rule aRule {
from i : T1
to o : T2 (

feature← Sequence {i.mf1, i.mf2}
)}

Sequence {i.mf1, i.mf2}→flatten() If mf1/mf2 are multivalued, the
right part of the binding is a nested
collection. This must be flattened to
allow a correct implementation of
the problem-specific part of binding
problems.

Misused call
operator

anObject→operation()
aCollection.operation()

anObject.operation()
aCollection→operation()

The arrow operator used on objects
is changed by the dot operator. The
dot operator used on collections is
changed by the arrow operator.

Invalid variable
declaration

let var : OclAny = expr−yielding−T let var : T = expr−yielding−T The declared type is replaced by the
inferred type.

Implicit casting −− condition−based casting:
if obj.oclIsKindOf(T) then

obj.propOfT ...
−− select−based casting:
aCol→select(obj | obj.oclIsKindOf(T))
→collect(obj.propOfT)

−− condition−based casting:
if obj.oclIsKindOf(T) then

obj.oclAsType(T).propOfT ...
−− select−based casting:
aCol→select(obj | obj.oclIsKindOf(T))
→collect(obj.oclAsType(T))
→collect(obj.propOfT)

Any access to a feature defined in a
subtype is casted.

Access to parent
of an object

−− anObject is of type T
anObject.refImmediateComposite()

context T def: refImmediateComposite() = ... We define a refImmediateComposite
operation for each meta-model type.

USE mismatches
Global helper helper def: aGlobalHelper() : T = ...

helper context T
def: aCtxHelper() : T =
thisModule.aGlobalHelper;

context ThisModule def: aGlobalHelper() : T = ...
context T def: aCtxHelper(tm : ThisModule) : T =
tm.aGlobalHelper();

ThisModule.allInstances()
→exists(tm |... aCtxHelper(tm))

The new class ThisModule is added
to the meta-model, declaring all
global helpers. A singleton object of
the class is passed as parameter.

Meta-model
flattening

+ RootPkg
ClassA
− SubPkg

ClassB

+ RootPkg
ClassA
SubPkg ClassB

The meta-model is flattened. The re-
named meta-model types are also
renamed in the path condition.

Unsupported se-
quence operation

aSequence→first() aSequence→any(x | true)

helper that invokes thisModule, passing the iterator
variable as an actual parameter in each call.

Meta-model flattening. A limitation of USE is that
it does not support nested packages. However,
large meta-models (like those in our running ex-
ample) are organized in this way. For this reason,
we flatten the meta-models that contain nested
packages before computing the error meta-model.
This is a recursive procedure where each classifier
name is added the name of the container package
as a prefix, moving the classifier to the ancestor
package, until the root package is reached.

Unsupported sequence operation. The USE Valida-
tor cannot handle Sequences, but it automatically
converts them into Sets. Thus, specific operations
of Sequence, like first or iterate, are not supported.
Since the first operation is used frequently, we
emulate it by col→any(x | true).

Name clashes. The set of reserved keywords in ATL
and USE/OCL differ, and it may happen that
the name of a meta-model element or a helper
collides with a reserved keyword in USE. Thus,
we keep a catalogue of such keywords to rename
meta-model elements and helpers accordingly.

Different branch types in conditional expression.

USE requires the type of each branch in a
conditional expression to be compatible. ATL
does not guarantee this, and in general, it is not
possible to rewrite the expression to enforce it.
Hence, we detect this situation, and report that
the path condition cannot be evaluated.

For the remaining cases that we are not able to
handle, our tool does not crash, but it classifies the
problem from which the path condition was built as
unknown (i.e., the problem is neither confirmed nor
discarded).

7.3 Error dependencies

Transformations may contain problems which are not
independent. We say that the resolution of a problem
p1 depends on the resolution of another problem p2,
if p2 occurs within the error path of p1. We com-
pute these dependencies and recommend the user
to correct first the problems that do not depend on
any other. In this way, dependent problems can be
resolved more accurately and robustly once the errors
on their path have been removed, or they may even
become fixed if they are false positives signalled due
to the dependency with another problem.
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To identify the error dependencies in a transfor-
mation, we compute the error path of each error
individually, and construct an error forest that contains
one tree for each error that does not depend on
other errors. Then, the dependent errors are added
as children of the corresponding tree recursively.

Figure 16 shows one of the trees of error dependen-
cies computed for the running example. The upper
node does not depend on any problem. The error in
the second node depends on the previous one as it
occurs in the same navigation expression term.particles,
and the path to particles includes the path to term. The
error in the leaf node occurs in a lazy rule invoked
by rule ClassR, and such an invocation always requires
executing the expressions in the previous errors.

line 53: feature typeDef expected in 
XsParticleContent, but found in 
subtype XsElementDeclaration 

line 40: feature particles 
expected in XsTerm, but found in 

subtype XsModelGroup 

line 40: Feature access (term) 
over possibly undefined  

receptor (i.typeDef.content)  

depends on 

depends on 

rule ClassR { 
  from i: XsElementDeclaration (…) 
  to o: Class ( 
    attributes <- if … then   
        let elems : OclAny =  
          i.typeDef.content.term.particles … 
        in … thisModule.AttributeR(e) … 
      else … endif ) } 
 
lazy rule AttributeR {  
   from i: XsParticle  
   to … i.content.typeDef … } 

 
 
 
 
 
40: 
 
 
 
 
 
53: 

Fig. 16. Excerpt of error dependency forest for the
running example.

7.4 Continuous analysis tool
ANATLYZER is integrated with the ATL IDE. Thus, it
requires good response times to analyse the transfor-
mation as it is being developed and report problems
without interrupting the editing process. However, in
contrast to other analysis tools, ours requires launch-
ing a model finder. This may be time-consuming if
many potential problems need to be confirmed as the
transformation is being edited.

In our first version of ANATLYZER [12], the gener-
ation of witnesses for a given problem had to be
launched manually to avoid delays in the UI thread.
This affected negatively the user experience and was
tedious. Hence, inspired by the notion of continuous
analysis tool [13], we now run the model finder in the
background and report errors of type always/sometimes
solver once they are confirmed (i.e., errors being eval-
uated in the background appear under the “running”
label, see Figure 14). However, this does not solve
the technical issue of how to keep track of already
evaluated errors when the transformation changes, in
order to avoid executing the model finder unnecessar-
ily. We cannot use line numbers as they easily change
when the code is edited, while annotating each faulty
statement pollutes the code if there are many errors.

Our solution to this issue is the generation of a
different signature for each error, which is used to de-
termine if a problem detected in one pass of the anal-
yser is the same as another problem detected in the

following pass. The signature of a problem contains
the elements strictly needed to uniquely identify the
problem, and becomes “invalidated” when some of
these elements change. It is computed by performing
a bottom-up traversal of the error path, starting from
the execution nodes, and adding a piece of signature
in each step. Table 6 shows the signature of each node
kind in the error path. The sig function returns the
signature of an OCL expression by a special string
serialization that minimizes the number of characters.
Optional syntax elements are marked with ?, in which
case, nothing is generated if they are not defined. Note
that the signature of a (non-abstract) matched rule
does not include its name or output pattern, as they
are irrelevant for witness generation.

This strategy permits modifying the code or the
layout, without having to re-confirm all problems
with the model finder. If a piece of code within an
error path changes, the generated signature will differ
and the problem will be re-evaluated.

Listing 4 shows part of the signature for the prob-
lem in line 81 of the running example. Line 1 corre-
sponds to the signature of the TriggeringEvent matched
rule. Lines 2–3, which are derived from the problem-
specific part of the error path, include the signatures
of the guilty matched rules (we only show rule ClassR).
1 MessageEventExpression;i.oclIsTypeOf(WSDL!Input)|
2 InvalidTarget;WSDL!XsElementDeclaration;
3 and[not[i.typeDef.oclIsTypeOf(WSDL!XsSimpleTypeDef)]...]

Listing 4. Excerpt of signature for problem in line 81

Implementation-wise, we maintain an index with
the detected problems and their signature. Problems
that require confirmation using the model finder are
assigned the status witness required. The background
process evaluates each problem with this status, and
updates the status to either confirmed or discarded. The
next time the analyser is run, a new set of problems
is generated. We use the stored signatures to compare
the old problems with the new ones, and when there
is a match, we assign to the new problem the status
of the old one. Last, we discard the old problems and
keep the new ones.

7.5 Analysis configuration
The behaviour of the analyser can be fine-tuned for a
transformation by means of a configuration file with
extension .atlc.

Listing 5 shows an example of configuration file.
Line 1 activates the continuous analysis mode intro-
duced in the previous subsection. We also support
batch mode, typically used for exploring existing
transformations and testing. Line 2 sets a timeout
to abort the model finder execution if it takes too
much time for a problem. The show-marker directive
(lines 4–6) customizes the errors reported by the editor
according to their status. By default, confirmed errors
are always shown, while the typical configuration
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TABLE 6
Computation of problem signatures.

Node Element Signature
Matched rule Matched rule (R) sig(R.inputTypes) + sig(R.filter?) + R.superRule?
Matched rule (abstract) Abstract matched rule (R) R.name + sig(R.inputTypes) + sig(R.filter?)
Call Nav/OperationCallExp (C) sig(C.receptor) + C.name + sig(C.args?)
Helper Helper (H) sig(H.context) + H.name + sig(H.argTypes?)
Imperative rule Lazy/Called Rule (R) R.name + sig(R.inputTypes)
If (true branch) IfExp (I) ’T’ + sig(I.condition)
Loop IterateExp (I) sig(I.receptor) + I.name
Subexpression OclExpression (O) sig(O.correctPart)
Let LetExp (L) L.varName + sig(L.initExpr)
Problem-specific Problem (P) P.typeName + specific signature

hides discarded errors. Developers may also choose
to display errors that have not been evaluated yet
(witness-required) or that the system has failed to eval-
uate (unknown). A finer-grained control is still possible
with the ignore directive (line 8), to indicate that cer-
tain families of errors must not be reported, such as
style warnings or specific types of errors like “feature
found in subtype”.

1 witness−finder continuous
2 timeout 20 secs
3

4 show−marker witness−required
5 show−marker unknown
6 # show−marker discarded
7

8 ignore style, feature−found−in−subtype

Listing 5. Example of configuration file

8 EVALUATION

In this section, we evaluate the following aspects
of our method and tool: accuracy of the reported
problems (Section 8.1), usefulness (Section 8.2) and
performance (Section 8.3). Next, we discuss possible
threats to the validity of our evaluation (Section 8.4)
and draw some conclusions (Section 8.5). Finally, we
analyse the applicability of our technique to other
transformation languages (Section 8.6). The artefacts
to reproduce the experiments and the raw results are
available in http://miso.es/anatlyzer exp tse.html.

8.1 Accuracy of analysis results

To assess the accuracy of our method, we use the
precision and recall metrics originally defined in the
information retrieval community [37]. Precision gives
a measure of correctness or quality, and in our context,
it will be computed as the fraction of real errors
among all problems signalled by ANATLYZER. Recall is
a measure of completeness, and in our context, it will
be computed as the fraction of errors detected by ANAT-
LYZER among all existing errors in a transformation.

Figure 17 outlines the process to compute these
metrics. The idea is performing random testing on a
set of mutants of a transformation, and comparing
the results obtained by random testing with those
reported by our analyser.
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error 
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error 
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Fig. 17. Main steps in the evaluation of precision/recall.

Thus, in order to perform the evaluation, we first
built a synthetic ATL transformation with as much
ATL features as possible (i.e., rules of different kind,
rule inheritance, helpers, navigation expressions, iter-
ators, etc.) and with no errors. Table 7 shows the main
features covered in the transformation, whose size is
133 lines of code (removing blank lines).

TABLE 7
Main features used by the synthetic transformation.

Features # Features
Context helpers 7 If-else X
Module helpers 1 Collection iterators X
Matched rules 6 Bindings X

Abstract rules 1 resolveTemp X
Rule filters 6 allInstances X

Lazy rules 1 refImmediateComposite X
Called rules 3 oclIsKindOf X

From this transformation, we generated a set of
transformation mutants, each one of them obtained
by applying a single mutation operator to the original
transformation. Table 8 lists the considered mutation
operators. Note that each operator may be applied
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on different locations, yielding a different mutant
in each case. Moreover, not all mutants necessarily
contained typing errors (e.g., deleting a binding for
an optional feature may introduce no typing error);
in this way, our test set contained both faulty and
correct transformation mutants.

TABLE 8
Mutation operators for ATL transformations.

Type Targets
Creation binding

source/target pattern element
rule inheritance relation

Deletion rule, helper
binding
source/target pattern element
rule filter
rule inheritance relation
operation context
formal/actual parameter in operation or called rule
argument in operation invocation
parameter in operation or called rule definition
variable definition

Type type of source/target pattern element
modification helper context type, helper return type

type of variable or collection
parameter type of operation or called rule definition
type parameter (e.g., oclIsKindOf(Type))

Feature name navigation expression
modification target of binding
Operation predefined operator (e.g., and) or operation (e.g., size)
modification collection operation (e.g., includes)

iterator (e.g., exists, collect)
operation/attribute helper invocation

Our evaluation uses a synthetic transformation be-
cause we did not find any existing transformation
covering all features of ATL and without errors. More-
over, the fact that each mutant is a small variant of a
correct transformation makes it less possible to have
inter-dependent errors in mutants, which may distort
the evaluation results. The evaluation in the next
section considers real transformations with several
errors in each one of them.

In addition to the transformation mutants, we au-
tomatically generated a set of input test models en-
suring coverage of all classes and relationships in
the input meta-model [6]. These models were used
for testing the mutants. In this way, a transformation
mutant is deemed correct if, for each input model in
the generated test set, its execution does neither raise
a runtime error nor yield an ill-typed target model;
otherwise, the mutant is proved to be erroneous.

As a last step, we compared the result obtained with
testing and with ANATLYZER for each mutant. Figure 17
shows the four possible outcomes of the comparison:
true negative, true positive, false negative (ANATLYZER fails
to report an existing error), and false positive (ANATLYZER

reports an error incorrectly). Based on these results,
we computed the precision, recall, accuracy and f-
measure using formula 1, 2, 3 and 4, respectively.

precision =
#TP

#TP +#FP
(1)

recall =
#TP

#TP +#FN
(2)

accuracy =
#TP +#TN

#TP +#TN +#FP +#FN
(3)

f −measure = 2× precision× recall

precision+ recall
(4)

Table 9 summarizes the obtained results, running
the experiment with 541 transformation mutants,
which were executed against 1089 test models. Col-
umn Original shows the resulting metrics. The pre-
cision of ANATLYZER is relatively high (0.82), and the
recall is very high (0.98), meaning that ANATLYZER

covers very well the ATL language. The low amount
of false negatives is explained by our use of path
conditions and model finding to widen the kind of
problems detected.

TABLE 9
Accuracy of ANATLYZER.

Original Manually processed
Evaluated transformations 541 483
True positives 337 (62.29%) 337 (62.29%)
True negatives 125 (25.88%) 125 (25.88%)
False positives 73 (13.49%) 15 (3.11%)
False negatives 6 (1.11%) 6 (1.24%)
Precision 0.82 0.96
Recall 0.98 0.98
Accuracy 0.85 0.96
F-measure 0.89 0.97

However, some problems detected by our method
(like behaviour and style warnings) do not imply a
runtime error or a target meta-model disconformity,
which are the kind of errors that random testing can
detect. Thus, we filtered out the mutants exhibiting
those errors from the evaluation, obtaining the metrics
shown in the column Manually processed. By excluding
these cases, the precision increases up to 0.96.

Regarding the discrepancies between the errors re-
ported by testing and ANATLYZER, one false negative
is due to infinite recursion in a helper (i.e., a stack
overflow error), which is exposed by testing but it is
beyond the capabilities of ANATLYZER. Another source
of false positives is the presence of problems in dead
code, which are signalled by ANATLYZER but cannot be
exercised at runtime. Other false positives are related
to problems in the rule inheritance hierarchy, which
do not cause a runtime error. In the same line, we
are not currently able to signal all rule hierarchy
problems, which leads to some false negatives.

8.2 Usefulness
To evaluate how useful is our method to uncover
errors in real transformations, in [12], we presented a
preliminary study that analysed 19 existing transfor-
mations coming from the ATL Use Cases repository12.
Though ANATLYZER was able to detect issues in all of
them but one, the number of analysed transformations
was very small. Thus, this section expands the eval-
uation by considering the complete ATL Zoo, which

12. http://www.eclipse.org/atl/usecases/
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contains 101 unique transformations13. These trans-
formations are mostly connected to research projects,
range from very simple to large and complex ones,
and have been contributed by different kinds of de-
velopers including experienced ones (e.g., the creator
of ATL) and beginners (e.g., students). Thus, we use
it as a representative sample of the variety of ATL
constructs and problems that may occur in practice.

Table 10 shows a summary of the errors detected by
ANATLYZER organized by severity and kind, considering
only the errors confirmed either statically or by the
model finder. The table shows the total number of
detected problems (#Occ.), the percentage of each kind
over this total (%), the number of transformations in
which they appear (#Trafos), the maximum number of
errors of each kind found in a single transformation
(Max), and the average number of errors of each kind
per transformation (Avg).

TABLE 10
Summary of errors organised by severity and type.
The last row shows the aggregated values for all

analysed transformations.

Severity #Occ. % #Trafos Max Avg
error-load 21 0.4 9 9 0.2
error-target 2157 44.9 68 454 21.6
runtime-error 1201 25.0 68 349 12.0
warning-behaviour 801 16.7 54 430 8.0
warning-style 342 7.1 66 21 3.4
warning-perf 284 5.9 46 32 2.8

Kind #Occ. % #Trafos Max Avg
navigation 1142 23.8 79 345 11.4
source typing 1125 23.4 65 429 11.3
target mm conformance 2158 44.9 68 454 21.6
transformation integrity 23 0.5 14 6 0.2
transformation rules 358 7.4 50 62 3.6

All 4806 100% 101 808 48.1

In total, ANATLYZER discovered 4806 problems. Re-
garding their severity, around 70% can be considered
very severe since they can cause runtime errors or
generate invalid models (error-load, error-target and
runtime-error), and 16% are smells of wrong transfor-
mation behaviour (warning-behaviour). With respect to
the kind of error, target conformance errors dominate,
in particular errors of type No binding for compul-
sory target feature (see below). Navigation and source
typing problems are also pervasive (e.g., there are
navigation issues in 79 out of 101 transformations),
which is explained by the extensive use of OCL in
ATL transformations and the lack of checks in the
regular ATL IDE.

Table 11 shows the 15 most prevalent problems de-
tected by ANATLYZER, discarding style and performance
issues. We show the total number of occurrences per
problem (#Occ.), the percentage over this total number
(%), the number of transformations that contain some
problem of the given kind (#Trafos), and the maximum

13. We used a snapshot of the ATL Zoo (http://www.eclipse.
org/atl/atlTransformations/) downloaded on April 2015.

number of the given kind of problem found in a single
transformation (Max). Avg is the average of occur-
rences over all transformations in the Zoo, whereas
Avg (if some) is the average over the transformations
with at least one problem of the given kind.

The most recurring problem is No binding for com-
pulsory target feature, which produces output models
that do not conform to their meta-model. This may
break any tool or transformation using the generated
output model. Problems #2, #8 and #11 indicate dis-
crepancies between the declared types and the types
inferred by ANATLYZER, which are important to consider
because incorrect declared types may confound the
developer. There are also many problems related to
feature access (#3, #4, #9, #10, #13, #14), which re-
flects the need for IDE facilities helping in detecting
incorrect feature usages according to the meta-models.
Regarding rule issues, there are 148 rule conflicts (#6)
and 283 binding problems (#5, #7) which affect around
1/4 of the transformations in the Zoo. In general, we
have seen that if a transformation has certain kind of
problem, it will likely contain other problems of the
same kind (column Avg (if some)). This may indicate
that developers were not aware of the particular kind
of problem, or that the involved meta-models tended
to induce them. Thus, ANATLYZER can be useful not only
to spot problems, but also to make developers aware
of the transformation language semantics.

We have also analysed the use of the model finder
within ANATLYZER. For this purpose, we collected all
detected sometimes-solver and always-solver problems,
and evaluated to what extent ANATLYZER provides an
answer for them (i.e., either confirms or discards the
problem). Table 12 summarizes the results. First, we
show how many problems were confirmed statically
(ST) or required the model finder (MF). In total, 8493
problems required model finding, most of them rule
conflicts (7161) and binding related problems (746 +
405 + 70 = 1221). Then, we show how many answers
provided the model finder, either to confirm (Conf.) or
discard (Disc.) a problem. ANATLYZER gave an answer
for 84% of the problems. Most problems were dis-
carded (78%), but the number of confirmed problems
was high (485 problems). The columns under Not
answered contain the number of potential problems
that ANATLYZER did not answer, and therefore, it is
unknown whether they are actual problems or not
(16% of the problems). The reason for this lack of
answer was because either USE does not support
some features appearing in the OCL path condition
(column USE lim., like the sortedBy operation) or due
to internal errors produced by a variety of causes like
incompatibilities between ATL/OCL and USE/OCL
that we cannot solve (column Other, 3% of the cases).
We have observed that, many times, the ultimate
cause of such internal issues is the presence of other
problems within the path condition, and thus, we
were feeding the model finder with incorrect code
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TABLE 11
Detail of the more significant problems in the ATL Zoo.

Problem #Occ. % #Trafos Max Avg Avg (if some)
1 No binding for compulsory target feature 2009 48.80% 61 454 20.09 32.93
2 Invalid actual parameter type 572 11.90% 22 426 5.72 26.00
3 Feature access over possibly undefined receptor 539 11.22% 37 344 5.39 14.56
4 Feature found in subtype 180 3.75% 22 47 1.80 8.18
5 Binding possibly unresolved 178 3.70% 38 26 1.78 4.68
6 Rule conflict 148 3.08% 20 59 1.48 7.40
7 Binding resolved by rule with invalid target 105 2.18% 21 26 1.05 5.00
8 Incoherent helper return type 95 1.98% 38 10 0.95 2.50
9 Operation found in subtype 62 1.29% 8 26 0.62 7.75

10 Feature not found in union type 60 1.24% 11 24 0.60 5.45
11 Incoherent variable declaration 47 0.98% 22 5 0.47 2.14
12 Feature access over possibly undefined receptor via empty collection 46 0.96% 18 8 0.46 2.56
13 Feature not found 44 0.92% 15 12 0.44 2.94
14 Operation not found 43 0.89% 17 16 0.43 2.53
15 No rule to resolve binding 23 0.48% 10 5 0.23 2.30

TABLE 12
Summary of errors which required model finding.

# Problems Model finder answers Not answered
Problem #Occ. #ST #MF Total Conf. Disc. Total USE lim. Other
Rule conflict 7164 3 7161 6415 145 6270 746 676 70
Binding possibly unresolved 746 0 746 402 178 224 344 212 132
Binding resolved by rule with invalid target 405 0 405 210 105 105 195 137 7
ResolveTemp possibly unresolved 70 0 70 36 9 27 34 29 58
Feature access over possibly undefined receptor via empty coll. 89 0 89 58 46 12 31 21 2
Feature found in subtype 192 180 12 0 0 0 12 10 10
Feature access over possibly undefined receptor 547 537 10 2 2 0 8 1 5

Total 9213 720 8493 7123 485 6638 1370 1086 284
Average (over problems requiring the model finder) - - 8481 84% 6% 78% 16% 13% 3%

that could not be evaluated. As a solution, the user
could prioritize the order in which errors are solved,
as explained in Section 7.3.

Altogether, this experiment demonstrates the use-
fulness of our analysis technique and the need for
tools like ANATLYZER. So far, model transformations
have been developed without analysis facilities, re-
sulting in transformations with poor quality. In fact,
no transformation in the ATL Zoo is free of problems,
with an average number of 48 problems per transfor-
mation, and a median of 25 problems. Moreover, the
fact that we have been able to process the complete
Zoo is a milestone for our analyser and provides an
insight about its completeness. Since there is not a
complete ATL specification, some subtle aspects of the
ATL engine semantics were assessed by inspecting
its source code and writing small test cases, which
complicated the implementation task.

8.3 Performance

In this section, we evaluate the performance of our
tool to determine if it is adequate for its integration
in an IDE. The benchmarks were run in a laptop with
chipset Intel i7 and running a JDK 1.8 configured with
options -Xms1024m and -Xmx2048m.

First, we have measured the time employed by
each component of the analyser when evaluating all
transformations in the ATL Zoo. Table 13 shows the

resulting average and median times. Most compo-
nents have a very small performance footprint. In
particular, type analysis is very fast. The generation of
the problem tree can be heavyweight if there are many
dependent problems, hence the relatively large differ-
ence between its average and median. As expected,
the performance of the model finding is the main
factor in the global execution time of the analysis. Still,
times in Table 13 are per transformation, which may
imply many calls to the solver. The low value of the
median indicates good performance in most cases.

TABLE 13
Average recorded times (in seconds) of the different

components of the analyser.

Component Average Median
Parser 0.17 0.03
Type analysis 0.02 0.01
Path generation ∼0.0 ∼0.0
Tree generation 0.15 ∼0.0
Model finding 21.5 0.28
Total time 15.0 0.19

We have conducted another experiment to measure
the ability of our approach to reduce the model find-
ing times by using a pruned version of the input meta-
model. To this end, we analysed the complete ATL
Zoo using three strategies to compute the meta-model
fed to the model finder, recording the model finding
time for each potential problem found. We set a time
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out of 15 seconds per problem to be able to finalize
the experiment. The strategies are the ones explained
in Section 6.1: the error path strategy uses the smallest
possible meta-model and it is the default in ANATLYZER;
the mandatory strategy extends the error path meta-
model with all mandatory features in the complete
meta-model, in order to ensure that any generated
witness conforms to the complete meta-model; and
as a baseline, the full strategy uses the complete meta-
model without pruning to perform the search.

Table 14 shows the average and median of the
solving times per error. As expected, the average
model finding time is shorter in the error path strategy,
obtaining a speedup of 3.5. The median of the finding
times shows that this strategy leads to smaller times
than using the full meta-model. Moreover, note that
the real averages are actually higher, as we set a time
out of 15 seconds. If we look at the number of time
outs, there are only 36 for the error path strategy (5%
of the potential problems will not receive an answer
from the model finder), 83 for the mandatory strategy,
and 289 for the full meta-model. This confirms the
hypothesis that our method enables a practical usage
of the model finder by reducing the meta-model size
used in the search. The last three rows in the table
measure the actual reduction by comparing the num-
ber of meta-model classes and features used by the
benchmarked transformations. The meta-model size
is greatly reduced for the error path and mandatory
strategies, being the main difference the reduction of
mandatory features, which leads to enhanced execu-
tion times for the error path strategy.

TABLE 14
Comparison of model finding times (in seconds) for

different meta-model pruning strategies.

Error path Mandatory Full
Average finding time 2.16 3.16 7.66
Speedup in finding time 3.5x 2.4x -
Median finding time 0.11 0.23 10.20

Time outs (>15 secs) 36 (5%) 83 (11%) 289 (40%)

Deleted classes 70% 66% -
Deleted features 97% 90% -
Deleted mandatory features 97% 76% -

8.4 Threats to validity

An external threat to the validity of the results con-
cerning the accuracy of our method is the fact that we
have evaluated mutants generated from a synthetic
transformation, and not from a set of real transfor-
mations. However, we believe this is reasonable in
this case, because it allowed us to start from a correct
transformation covering most features of ATL. More-
over, the generated mutants were likely to contain
at most one error, hence having very low chances
to contain error dependencies that may distort the
evaluation results. Instead, compiling a large set of

real transformations with either 0 or 1 errors would
have been challenging.

An internal threat to the validity of this evaluation
is that mutations could be biased towards the gen-
eration of errors that we are able to detect. To limit
this issue, the mutation operators were developed
independently from the analyser. Another threat is
that random testing may yield false negatives (the
transformation has errors but the input test set has no
model that allows reproducing the error). To minimise
this problem, we manually checked all cases where
testing discovered no error but the analyser reported
an error, to assess that they were real false negatives.
As regards to the obtained recall, it is a measure of
completeness with respect to transformation problems
that cause runtime errors or non-conformant target
models, but not with respect to semantic errors, which
would require from testing techniques using some
form of oracle.

A more subtle threat in this evaluation is that we
do not perform a fine-grained comparison of the
actual kind of error reported by the analyser and
the one raised by random testing, in order to check
that both errors are actually the same. Thus, ANATLYZER

might report an incorrect type of error, which would
remain unnoticed in the evaluation (e.g., it signals the
error operation not found, when the actual problem is
operation found in subtype). Thus, the evaluation only
considers whether an error is reported or not, but not
its classification. We have checked that, sometimes,
the errors reported by both methods are different, but
the root cause is always the same. Performing such a
fine-grained evaluation cannot be automated.

Concerning the evaluation of the usefulness of our
tool, the main threat to the validity of the results is the
particular selection of analysed transformations, since
most of them are connected to research projects and
may not be fully representative of industrial practice.
Nonetheless, the number of transformations is high,
they have varying levels of complexity, and they
were developed by people with different proficiency
in ATL. On the other hand, even if our evaluation
shows that ANATLYZER is useful to detect errors in
existing transformations, we would need to perform
another experiment to measure to what extent it helps
reducing the number of errors when developing new
transformations.

Finally, there is no formal semantics for ATL, and
most errors we capture are based on the explanations
in the ATL guide and our own experience. In this
sense, there is the risk that we have misinterpreted the
semantics of ATL in some cases. To mitigate this issue,
we have written tests to acknowledge our intuition
about the behaviour of the ATL engine. Our aim
is to extend such tests, so that they can serve as
reference and test bed for ATL tooling developers.
Moreover, the experiment presented in Section 8.1
shows that the problems predicted by the analyser
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are frequently confirmed by brute-force testing, as the
transformations fail at runtime. This is an indicator
that our implementation aligns with the behaviour of
the ATL engine.

8.5 Discussion

Next, we discuss on the outcomes of the conducted
experiments, identifying strengths and limitations.
Generally, the results indicate that our approach is
well suited for the practical discovery of problems of
diverse nature in ATL transformations.

With respect to its adequacy as a complement to
the interactive construction of model transformations,
the execution time of the analyser is low when there
is no model finding, while the model finding time
is still acceptable thanks to our meta-model pruning
strategies. Moreover, we have implemented a novel
mechanism to avoid running the model finder un-
necessarily when the source file changes. Thus, our
method seems to be suitable to be integrated in an
IDE with the aim of facilitating its practical usage.
Nevertheless, an empirical evaluation of the usability
of our tool would be required to fully support this
claim. This is left as future work.

Regarding accuracy, our evaluation shows that our
analyser has high precision and recall. There are
several reasons for this. On the one hand, the use of
a model finder allows being less conservative in the
problem detection phase than regular type checkers.
On the other hand, our analyser makes a closed-world
assumption, that is, it assumes that it is analysing
the complete source code that will be executed. This
means that no runtime extension to the transforma-
tion (like superimposing additional modules [38]) or
to the meta-model are allowed. Finally, ATL is a
domain-specific language with constructs geared to
solve transformation-specific problems, and the more
focused a language is, the more complete its analysis
can be. This claim is acknowledged by DSLtrans [39],
a turing-incomplete transformation language that en-
ables full reasoning about confluence and termination.
In our case, infinite recursion is a source of false
negatives since ATL is turing-complete.

With respect to the ability of ANATLYZER to deal with
real transformations, the ATL Zoo provides a valu-
able testbed, as its transformations range from purely
declarative (i.e., only matched rules) to purely imper-
ative (i.e., only called rules and imperative blocks),
exhibiting many different programming styles. In this
sense, our success rate when using the model finder
is quite high, since we are running the model finder
in an unconstrained scenario.

Some problems detected in the ATL Zoo actually
uncover scenarios that the transformations were not
designed to handle, instead of programmer mistakes.
A typical example is an undocumented limitation of
a transformation revealed by a binding possibly unre-

solved problem, signalling that certain object configu-
ration is not handled by any rule. Another example
is an under-constrained meta-model which allows
building semantically incorrect models. For instance,
some PetriNet meta-models used in the ATL Zoo
permit connecting two places to an arc, which is
semantically incorrect. In these cases, our method to
generate pre-conditions helps in fixing the problem
by documenting the transformation.

Altogether, the analysis of the ATL Zoo shows that
transformations, most of them thought to be stable,
may contain errors of diverse nature. Some may be
due to the dynamic nature of ATL, but others are
inherent to rule-based languages (e.g., non-initialized
features, wrong rule resolution, etc.). Our method has
uncovered a surprisingly high number of problems in
the Zoo, proving that this kind of techniques is needed
to improve the quality of model transformations.

Some of the problems we analyse could be avoided
by construction, modifying ATL’s syntax or semantics.
In particular, the dynamic typing nature of ATL makes
it more flexible, but also more error prone. A statically
typed language would detect common errors like Fea-
ture found in subtype; however, it should also provide
means to detect uninitialized features in target objects,
which is the first cause for errors in ATL (see Ta-
ble 11). The choice of a textual or graphical language
syntax may impact on this kind of error. Graphical
languages (like triple graph grammars, TGGs [40])
equipped with editors which provide object creation
templates for all required fields, may help in pre-
venting errors related to uninitialized target objects
fields. Finally, the choice of implementing an implicit
binding mechanism in ATL provides a natural way to
access created target objects by accessing source ones,
but it is also error prone (see Binding possible unresolved
error in Table 11). Instead, languages with an explicit
management of the traces (like TGGs) tend to be more
verbose, but are safe from binding resolution errors.

Regarding the limitations of our approach, Table 15
summarizes the main ones. First, our technique dis-
covers “syntactic” errors (i.e., rule and typing errors),
but cannot be used to find “semantic” errors (i.e.,
output models that do not fulfil the developer ex-
pectations). Such kind or errors requires a testing
approach using oracles.

TABLE 15
Summary of main issues and limitations.

1 Detection of “syntactic” errors, but not “semantic” errors
2 Limited precision in some scenarios, like usage of dummy

expressions and reflection.
3 Some detected problems do not manifest at runtime (e.g.,

incorrect type declarations, errors in dead code)
4 Limitations for some analyses (e.g., infinite recursion)
5 Limitations of the model finder (e.g., unsupported se-

quence operations)

Second, it is possible to deceive the analyser intro-
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ducing dummy expressions. For example, a binding
like name← Set {} will produce a false positive for the
error Collection assigned to mono-valued binding if name
is mono-valued and optional, and a false negative if
name is multi-valued and compulsory. Another way to
circumvent the checks of the analyser is using reflec-
tion. For instance, if we use the expression refSet(obj,
feature, value) to reflectively set the mandatory feature
feature of obj to value, the analyser will incorrectly report
that feature has not been initialized.

Third, some problems detected by ANATLYZER do
not cause runtime errors. For example, this is the
case when there are discrepancies between the types
declared in a transformation and those inferred by
the analyser. This is indeed the main source of false
positives in our evaluation, as we compare with the
results of random testing. Nevertheless, it is important
to report these problems, which in any case, could be
easily repaired using quick fixes [41], [42].

Fourth, testing can detect some errors which are
beyond the capabilities of ANATLYZER. A prototypical
example is infinite recursion. Thus, testing is a tech-
nique complementary to ours. As part of our future
work, we aim at guiding the generation of test models
using the information gathered statically.

Finally, as we explained in Section 7.2, we generate
OCL code for its processing by the USE Validator.
Whereas we are able to translate most ATL constructs
into USE, this latter has some limitations which we
cannot overcome, such as the lack of support for
recursive functions or sequence operations like iterate
(initial work in this direction is available in [43]).
Path conditions that contain these elements cannot be
processed and no witness can be generated for them.
Another limitation is that our implementation does
not support the translation of maps and tuples.

8.6 Applicability beyond ATL

Next, we discuss the applicability of our techniques
to other mainstream model-to-model transformation
languages.
• ATL-like languages. Similar to ATL, languages

like ETL [44] and RubyTL [45] rely on the notions
of matched rule and binding, and are dynami-
cally typed. Our approach can be easily adapted
to them, upon some minor changes to tackle
slight differences in their semantics. However,
ETL and RubyTL have less constrained imper-
ative constructs than ATL, which may make the
implementation more difficult, especially the syn-
thesis of OCL code compliant with the standard.

• Imperative languages. Kermeta [21] is an imper-
ative language that can be used to implement
model transformations. Its last version, K3, is
built on top of Xtend. It is statically typed, and
inherits from Xtend features like “type guards”
(a limited form of implicit downcasting) and

null-safe feature calls (an operator ?. which re-
turns null if the receptor object is null). Our
approach could be adapted to detect typing er-
rors that do not use these features. However,
such an adaptation would be difficult because
Kermeta lacks transformation-specific constructs;
therefore, many elements of our approach are not
applicable, like the TDG, rule conflict detection
and many typing problems.
QVT-Operational (QVTo) [11] is an imperative
language based on OCL. It is statically typed, and
hence, many typing problems discussed in this
work are natively handled by QVTo. However,
it lacks some of our type checkings, like the
detection of accesses to undefined values, invalid
downcastings, or target-conformance problems.
Although QVTo has an explicit rule call mech-
anism, there are especial kinds of rules (e.g.,
disjunct rules and guarded rules) which could be
analysed statically using our approach based on
model finding. Moreover, QVTo has support for
pre-conditions, but they are not checked.

• Declarative languages. Tefkat [46] is a logic-
based declarative language. It does not rely on
OCL for model navigation, but on a custom lan-
guage to define object patterns. Rules communi-
cate values via intermediate data structures called
tracking classes. Hence, a graph similar to our
TDG could be constructed to express the commu-
nication between rules, detect problems related to
target conformance, and perform model finding
to identify implicit relations between rules.
QVT-Relations (QVTr) [11] is statically typed and
based on OCL. Similar to ATL helpers, it supports
side-effect free query operations called functions.
It provides two kinds of rules: Top-rules, which
are executed for each match of their source pat-
tern, and non-top rules, which are used by other
rules. Rule resolution is explicit by naming the
rule that should be satisfied (in when clauses)
or invoked (in where clauses). Thus, constructing
the TDG would be easy. As QVTr is based on
OCL, type checkings regarding null pointers and
downcastings are implementable as in ANATLYZER.
Rule conflict analysis is less interesting in this
case because it only applies to top rules, and
moreover, no runtime error occurs if the same
objects are matched by two rules.

• Graph-based languages. TGGs are a formal ap-
proach based on declarative, bi-directional, triple
graph rules that model the synchronized evolu-
tion of a source graph, a target graph, and a
correspondence (i.e., traces) graph. From these bi-
directional rules, forward and backward trans-
formation rules can be automatically generated.
TGG rules explicitly manage the trace model, i.e.,
they need to explicitly state the traces to create
and the objects pointed by the trace, and there
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is no implicit rule scheduling mechanism, like
ATL bindings. TGG rules are made of graphs, and
hence, some TGG tools do not support OCL to
express navigations (like eMoflon), while others
(like the TGG interpreter) use it for application
conditions and attribute constraints [47]. Opera-
tions and queries are normally not supported ei-
ther. From our analyses, the most useful for TGGs
is rule conflict detection to ensure that the results
are deterministic, and finding rule dependencies
with the TDG. For OCL-enabled TGG tools, our
navigation analyses are immediately applicable.

In summary, our technique is fully applicable to
transformation languages based on rules and relying
on OCL or a similar navigation language. Having
rules where the source object matching and target
object creation are explicit permits to reliably con-
struct the TDG and path conditions. This is partic-
ularly useful to reason about implicit rule resolution
in ATL, or to analyse explicit rule invocations with
some adaptations. Moreover, the fact that the source
model is read-only in ATL, and that OCL queries and
navigations are side-effect free, facilitates the analysis
and the compilation of path conditions into OCL for
model finding.

ATL-like languages cover all mentioned features,
and thus, similar results can be expected. QVTo and
QVTr do not have implicit rule resolution, but the
TDG and the model finder could be used to analyse
rules. Tefkat is not based on OCL, but still, it can
benefit by our technique since it has implicit rule
resolution. Regarding TGGs, it is possible to incorpo-
rate some basic rule analysis based on model finding,
and if the particular TGG approach supports OCL,
then more of our analyses could be incorporated to
them. The case of imperative languages is the less
favourable for our technique, since there is no notion
of rule on which harness the transformation-specific
analysis.

9 RELATED WORK

Next, we review related approaches for transforma-
tion verification, comparing with our work and stress-
ing on our contributions. We focus on transformation
testing, transformation analysis via constraint solving,
transformation slicing, and static analysis of trans-
formations. Detailed discussions on these topics can
be found in [2], [48]. The section concludes revising
works on static analysis of general-purpose dynamic
programming languages.

9.1 Transformation testing

The main challenges in transformation testing [15],
[49] are the automated generation of input test models
and the availability of a suitable oracle. Most pro-
posals employ black-box approaches, and some rely

on model finders to generate test models [8]. For
example, in [50], partial models are used to reflect
test intentions, and get completed into full-fledged
models using model finders. In [51], Tracts (a kind
of model transformation contract) are used to specify
transformation properties, and the ASSL language
is used to generate input test models. The defined
contracts are then used as oracles for testing. Other
approaches rely on coverage of the meta-model [6]
or the transformation requirements [8] as criteria for
automated model generation.

Few works focus on white-box testing. In [52], the
authors use the effective meta-model of each transfor-
mation rule to derive test cases, taking into account
the meta-model constraints. The white-box testing
approach in [53] generates a set of input models
ensuring certain coverage of an ATL transformation.
To this aim, the authors build a dependency graph by
partitioning the transformation OCL expressions, and
traverse the graph in each possible way to compute
input models using model finders. They do not per-
form type checking or static analysis, but their goal is
maximizing the variety of models. Instead, we drive
the generation of witnesses by the problems found by
the static analysis.

Our work can be classified as white-box, as we
generate input models (witnesses) driven by static
analysis. These models are maximally effective as they
allow reproducing a particular error. However, our
technique should not be thought as a replacement
for the previous testing methods, but complementary,
directed to typing and rule errors. Instead, black box
approaches like [8], [51] are directed to find semantical
errors of the transformation (i.e., disconformities of
the transformation implementation w.r.t. the specifi-
cation), which our technique cannot handle.

9.2 Transformation analysis based on constraint
solving
Many works use transformation models [54] to ex-
press transformations and use model finders for their
analysis. A transformation model is the merge of the
source and target meta-models, possible trace links
between their elements, and OCL invariants express-
ing correctness conditions. Transformation models can
be built manually, or derived from transformations in
languages like ATL or QVT.

In [32], [33], ATL transformations are translated into
transformation models, and model finders are used
to check whether the transformation can produce a
model violating the output meta-model constraints.
In [55], some analysis properties are defined for trans-
formations based on their translation into OCL and
their analysis with model finders. While this branch of
works assumes a correctly typed ATL transformation,
we focus on discovering typing errors.

Thus, our main contribution in this area is a novel
technique based on static analysis that extracts the
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slice of the transformation that corresponds to the
path to a particular error, builds an OCL expression
stating the conditions for a model to reach the error,
and uses model finders to generate one such model.

9.3 Program slicing and path conditions
Program slicing is a technique to determine the parts
of a program that affects a given statement [56],
[57]. Few works have adapted this idea to model
transformations. One exception is [58], which defines
dynamic backward slicing for in-place VIATRA2 trans-
formations. Our approach is similar, but we need to
tackle the peculiarities of ATL, like the different types
of rules and the implicit resolution mechanisms.

Program slices can be used to identify the depen-
dencies of some fault, while path conditions character-
ize the input test data leading to the faulty statement.
In [9], path conditions characterize safety violations,
which a constraint solver can verify by generating a
witness. This is a set of values for the input variables,
needed to reach a certain statement from another one.
To our knowledge, the use of path conditions and
witnesses in model transformation is novel.

Path conditions are used by symbolic executors to
describe each possible execution path of a program.
In the model transformation setting, the DSLtrans
transformation language uses this technique to fully
verify transformation contracts [59]. This is possible
because DSLtrans is turing-incomplete and imple-
ments a layering system to reduce the search space. In
DSLtrans, path conditions are produced in a forward
manner to cover all possible execution paths. Instead,
we generate them backwards from the error location
to the transformation entrypoints, as we are only
interested in one execution path. In [60], a translation
from ATL to DSLtrans enables the full verification of
semantic transformation contracts for ATL. Instead,
we do not focus on semantic issues but on typing and
rule errors.

9.4 Static analysis of model transformations
Even though static analysis has been used in graph
transformation to detect, e.g., rule conflicts and de-
pendencies [3], its use in transformation languages
closer to programming languages, like ATL or QVT,
is still an exception. The literature reports on three
main applications of static analysis: maintainability of
existing transformations [61], [62], generation of test
input models, and static detection of errors. We focus
on the last two applications.

Regarding test generation, in [63], the effective
meta-model of Kermeta transformations is used to
generate input test models ensuring a proper cover-
age of the transformation. While Kermeta is strongly
typed, ATL transformations may be ill-typed; thus,
we focus on identifying typing errors and potential
problems and generate witness models for them.

The use of static analysis to detect errors in trans-
formations is mostly unexplored. In [64], the authors
introduce a Java Façade for ATL that can be used to
build static analyses. We opted for a new API to in-
tegrate explicit rule dependencies and error handling
information. Static type checking of VIATRA2 trans-
formations is presented in [65]. VIATRA2 transforma-
tions are made of declarative patterns with untyped
parameters and the goal is to ensure a correct typing
of the parameters with respect to the meta-models.
This is checked using constraint solving. In our case,
the type-checking is on ATL, which heavily relies on
OCL, and hence type-checking becomes more com-
plex. Moreover, we perform a second analysis step to
find further problems and generate witness models
able to signal such errors. In [66], the authors present
a static fault localization technique to identify the
rules responsible of transformation contracts viola-
tions. Problematic contracts are discovered via testing,
and the guilty rules are identified by comparing the
meta-model footprint of the contracts and the trans-
formation rules. This technique is complementary to
ours, although our implementation could be used to
improve the precision of their footprints.

9.5 Static analysis of dynamic programming lan-
guages
Several techniques have been proposed in the last
years to improve type safety of dynamic languages.
For instance, dRuby [67] is an extension of Ruby in
which type information is written as comments. The
system is able to infer types from expressions, and
checks them against handwritten signatures. Similar
to our work, it supports union and intersection types.
In [68], nested refinements are introduced as a logic
for duck typed languages (e.g., Javascript, Ruby, etc.).
Gradual typing [69] permits a language to be both
statically and dynamically typed. Our approach is
related to these typing techniques as our static anal-
ysis could generate the type information to create a
new, typed version of the code (e.g., using DRuby
annotations).

In [70], theorem proving is used to analyse Ruby on
Rails applications and guarantee that database update
operations do not break any data model invariant.
However, the relevant updating code is extracted dy-
namically via code instrumentation. Some of our tech-
niques could help in this regard, in particular, those
to guarantee that the model generated by a transfor-
mation fulfils the constraints of its meta-model.

10 CONCLUSIONS AND FUTURE WORK

We have presented a novel technique for uncovering
errors in model transformations and its application
to ATL. The technique uses static analysis and type
checking for finding problematic statements, and con-
straint solving to generate witness models confirming



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, MAY 2016 31

and explaining the errors found. We have built a
tool, which in average shows good performance and
accurate results. Moreover, we have evaluated the
tool on 101 public ATL transformations. We found
that all of them have some issue, and uncovered
a surprisingly high number of problems in most of
them. This shows that tools like ours are a necessity
for a proper engineering of model transformations.

Recently, we have extended our work with the pos-
sibility to associate quick fixes for the errors detected
by our analyser [41], [42]. This provides further value
to our techniques. In the future, we plan to classify
the most common errors made by developers. This
classification can be used to suggest features of ATL
that are particularly error prone. We will also study
possible correlations of transformation errors with
meta-model features and metrics, to understand the
meta-model characteristics which are more likely to
yield transformation errors.
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