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Abstract

Model-Driven Engineering (MDE) is a software engineering paradigm that
uses models as main assets in all development phases. While many languages
for model manipulation exist (e.g., for model transformation or code gener-
ation), there is a lack of frameworks to define and apply model mutations.

A model mutant is a variation of an original model, created by the appli-
cation of specific model mutation operations. Model mutation has many ap-
plications, for instance, in the areas of model transformation testing, model-
based testing or education.

In this paper, we present a domain-specific language called Wodel for
the specification and generation of model mutants. Wodel is domain-
independent, as it can be used to generate mutants of models conformant
to arbitrary meta-models. Its development environment is extensible, per-
mitting the incorporation of post-processors for different applications. In
particular, we describe Wodel-Edu, a post-processing extension directed
to the automated generation of exercises for particular domains and their
automated correction. We show the application of Wodel-Edu to the gen-
eration of exercises for deterministic automata, and report on an evaluation
of the quality of the generated exercises, obtaining overall good results.
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1. Introduction

Model-Driven Engineering (MDE) [1, 2] uses models in all phases of the
software development process to specify, simulate, test and generate code
for the final system, among other activities. Such models are usually de-
fined using Domain-Specific Languages (DSLs) specialized for the particular
application domain. Domains where MDE and DSLs have been applied suc-
cessfully include concurrent programming [3], reactive process control pro-
gramming [4], business logic modelling [5], web modelling [6], and smart card
software development [7], just to name a few.

Since models are the primary asset in MDE, model manipulations become
a key activity in this paradigm. For this purpose, DSLs particularly tailored
to the model transformation task are heavily used. For example, many DSLs
exist to specify model simulators, to produce a model from another one, to
migrate models [8], or to synthesize code [9].

A model mutation is a kind of model manipulation that creates a set
of variants (or mutants) of a seed model by the application of one or more
mutation operators. Model mutation has many applications. For example, in
model transformation testing [10], a transformation is represented as a model
that is mutated to evaluate the efficacy of a test set. Such a test set may
have been created by mutation of a set of input seed models. In education,
a model representing a correct solution in a domain (like a class diagram,
an automaton or an electronic circuit) is mutated to produce exercises (e.g.,
consisting in the identification of the errors injected by the mutations) that
can be automatically graded [11].

There are some frameworks for model mutation, but they are specific
for a language (e.g., logic formulae [12]) or domain (e.g., testing [10, 13]);
moreover, mutation operators are normally created using general-purpose
programming languages that are not tailored to the definition and production
of mutants. Hence, there is a lack of proposals facilitating the definition
of mutation operators, applicable to arbitrary languages and applications.
These would facilitate the creation of domain-specific mutation frameworks
like the abovementioned ones by providing: high-level mutation primitives
(e.g., for object creation or reference redirection) together with strategies for
their customization; support for composition of mutation operators; handy
integration with external applications through compilation into a general-
purpose language; and traceability of the applied mutations.

To facilitate the specification and creation of model mutations in a meta-
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model independent way, we propose a DSL called Wodel. The language
provides primitives for model mutation (e.g., creation, deletion, reference re-
versal), item selection strategies (e.g., random, specific, all), and composition
of mutations. We have built a development environment which allows creat-
ing Wodel programs and their compilation into Java, and can be extended
with post-processor steps for particular applications. We illustrate our ap-
proach by the automated generation of finite automata exercises using our
tool Wodel-Edu. The tool has been developed as an Eclipse plugin and
contributed as a post-processor of Wodel. Wodel-Edu is able to generate
three types of exercises, combining several DSLs to describe the exercises,
the visual rendering of the models, and the textual description of the applied
mutations. We have conducted a user evaluation of the perceived quality of
the generated exercises, which shows overall good results.

This is a revised version of our previous paper [14] with the following novel
contributions. We have extended our DSL Wodel with the possibility to
define blocks which use the mutants generated by other blocks as seed mod-
els, and we enable traceability support by maintaining a registry of applied
mutations that can be compacted to eliminate mutations that cancel each
other (e.g., a mutation creates an object, and another deletes the object). To
demonstrate the applicability of Wodel, we use it to mutate programs for
the purpose of mutation-based testing. We also explain in detail our appli-
cation Wodel-Edu for the generation of exercises, showing three new DSLs
that help in fine-tuning the generation of exercises. Wodel-Edu itself has
been extended with a new kind of exercise that benefits from the registry of
applied mutations. Moreover, we present the results of a user study aimed
at evaluating the quality of the automatically generated exercises. Finally,
we have improved the analysis of related works.

The remainder of this paper is organised as follows. First, Section 2 gives
an overview of our approach and introduces a running example. Next, Sec-
tion 3 presents the Wodel language, and Section 4 its tooling. Section 5
applies Wodel to the generation of test exercises by the mutation of models.
The section also includes a user study to evaluate the quality of the exer-
cises so generated. Section 6 discusses related works, and finally, Section 7
concludes the paper and identifies some lines of future work.
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2. Overview and Running Example

In MDE, models must conform to a meta-model which declares the ad-
missible model elements, properties and relations. Thus, our goal is to make
available a DSL to specify mutation operators and their application strategy
for models conformant to arbitrary meta-models, and to facilitate the use of
the generated mutants for different applications.

Figure 1 shows the workflow of our approach. First, the user provides a set
of seed models conformant to a meta-model (label 1). Then, the user defines
the desired mutation operators and their execution details using Wodel,
like how many mutations of each type should be applied in each mutant,
or their execution order (label 2). In addition, each Wodel program needs
to declare the meta-model of the models to mutate, which can be any as
Wodel is meta-model independent. This allows type-checking the program
to ensure it only refers to valid meta-model types and properties, and allows
checking that the result of the mutation is valid.

seed
models

meta-
model

«conforms»

WODEL
program

domain-specific
artefacts/

applications

1

2

WODEL
engine model

mutants
+ registry

post-
processing

4

«conforms»

3

Figure 1: Scheme of our approach

Executing a Wodel program produces mutants of the seed models (la-
bel 3). These are still valid models (i.e., they conform to the seed models’
meta-model) as this is checked upon generating each mutant. Moreover, for
traceability reasons, it is possible to produce a registry of the mutations ap-
plied to each mutant together with information of their application context.
Finally, an optional post-processing step can be used to generate domain-
specific artefacts for particular applications of the mutants (label 4).

2.1. Running example

Along the paper, we use Wodel for the mutation of automata and illus-
trate our proposal with an application of model mutation to education. In
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particular, we will generate three kinds of exercises by using model mutation.
In the first kind, students are presented a correct automaton (according to
a specification) and other incorrect ones obtained by mutating the former,
and students have to identify the correct one. In the second kind, students
are presented an automaton, and they have to decide whether it is correct or
not. The presented automaton is selected randomly among the seed model
and its mutants. The third kind of exercise shows an incorrect automaton
and a list of possible actions over the automaton (e.g., reversing a transition
or make a state final), and students have to select the actions that would fix
the automaton. In this case, the text of the correct actions is synthesized by
reversing the mutations used to generate the incorrect automaton from the
correct one. For this purpose, we make use of our registry of mutations. Our
approach permits generating exercises with different degrees of difficulty and
supports automatic correction.

Figure 2 shows the meta-model for automata used in the running example.
An Automaton is made of States, Transitions, and an alphabet of symbols. A State

has a name and can be initial and/or final. A Transition connects two states
and may have an attached symbol; if it lacks a symbol, it is considered a λ-
transition. The meta-model includes three OCL invariants that any Automaton

must fulfil: the first one demands the existence of exactly one initial state,
the second one demands at least one final state, and the last requires distinct
symbols in the alphabet.

Automaton 

name: String 

State 
Transition 

* 

name: String 
isInitial: boolean 
isFinal: boolean 

src 

tar symbol 0..1 

states * * transitions 

inv1: self.states->one(s | s.isInitial) 
inv2: self.states->exists(s | s.isFinal) 
inv3: self.alphabet->forAll (a1, a2 |  
            a1.symbol = a2.symbol  
              implies a1 = a2) 

alphabet 

Symbol 

symbol: String 

Figure 2: Meta-model for finite automata

3. Wodel: A Domain-Specific Language for Model Mutation

In this section, we first introduce our DSL Wodel and illustrate its usage
showing examples of mutation operators for finite automata conformant to
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the meta-model in Figure 2. Then, in Section 3.2, we explain our mechanism
to provide traceability between the seed model and its mutants via a registry
of applied mutations. In Section 3.3, we present an analytical evaluation of
the expressiveness and succinctness of Wodel. Finally, to show the appli-
cability of Wodel, Section 3.4 presents its application to the mutation of a
simple programming language for the purpose of mutation-based testing.

3.1. The Wodel language

Wodel programs have two parts. The first one declares the number
of mutants to generate, the output folder, the seed models and their meta-
model. The second part defines mutation operators and how many times
they should be applied. Optionally, programs can also include a list of OCL
constraints that all generated mutants should fulfil.

Listing 1 shows a simple Wodel program. Line 1 states that we want
to generate 3 mutants in folder out, from the seed model evenBinary.fa. Line 2
indicates the meta-model of the seed model. Lines 4–9 define three mutation
operators: the first one (lines 5–6) selects randomly a final state, and makes
it non-final; the second one (line 7) creates a new final state; and the last
one (line 8) creates a new transition from the state modified in line 5 to the
one created in line 7.

1 generate 3 mutants in ”out/” from ”evenBinary.fa”
2 metamodel ”http://fa.com”
3

4 with commands {
5 s0 = modify one State where {isFinal = true}
6 with {reverse(isFinal)}
7 s1 = create State with {isFinal = true}
8 t0 = create Transition with {src = s0, tar = s1, symbol = one Symbol}
9 }

Listing 1: A simple Wodel program

Next, we detail the mutation primitives offered by Wodel. These in-
clude atomic operations to create and delete objects and references, modify
attribute values, or redirect the source or target of references. Figure 3 shows
an excerpt of the Wodel meta-model with the definition of some represen-
tative mutation primitives. All mutation kinds inherit from class Mutation,
which holds the minimum and maximum number of times the mutation is to
be applied. If this information is omitted, like in the mutations of Listing 1,
they are executed once. In its turn, a Mutation is an ObjectEmitter which can
receive a name, so that it can be referenced from other mutations. For ex-
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ample, in line 8 of Listing 1, the name s0 is used to refer to the State modified
in line 5. The main supported kinds of Mutation are the following:

Mutation 
min: int=1 
max: int=1 

CreateObject 

ObjectEmitter EClass 
type 

0..1 
name: String[0..1] 

ObjectSelection 
Strategy 

container 0..1 

EReference 
0..1 

refType 

AttributeSet EAttribute 
attributes 

* 

Attribute 
Init 

Attribute 
Swap 

{ordered} 

Attribute 
Copy 

object 0..1 

Modify 
Information 

object 0..1 

attributes * attributes * 

Attribute 
Type 

value 

Composite 
Mutation 

* 

ModifySource 
Reference 

… 

ObjectSelection 
Strategy 

so
u

rc
e 

newSource 

EReference 

refType 0..1 

Figure 3: Some supported mutations

• CreateObject: It creates an object of the class indicated by the type reference.
Optionally, it is possible to select a container object for the created one
using an ObjectSelectionStrategy (explained below). In such a case, refType

indicates the container’s reference where the new object will be placed.
If no container object is given, then Wodel selects a suitable one, and
if several exist, one is chosen at random. In line 7 of Listing 1, it is
not necessary to specify a container for the new State because, assuming
one Automaton per model, the created state can only be placed in collection
states of the automaton. Alternatively, we could make explicit the container
object using create State in one Automaton.states. Similarly, it is possible to
specify a value for the attributes and references of the new object, and
in case no value is given for a mandatory reference or attribute, Wodel
assigns it one object or value of a compatible type. Finally, note that
shaded classes EClass, EReference and EAttribute belong to the meta-modelling
framework used to build the domain meta-model (EMF [15] in our case).
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For instance, in our running example, Automaton is an EClass, states is an
EReference, and name is an EAttribute. This way to refer to the domain meta-
model elements enables type-checking and content assistance when writing
Wodel programs.

• CreateReference: It creates a new reference of the given type between two
objects. The objects may be selected using an ObjectSelectionStrategy. If no
object is selected, then source and target objects of a suitable type are
chosen at random.

• ModifyInformation: It selects an object by means of an ObjectSelectionStrategy,
and provides a set of modifications to be performed on its attributes (class
AttributeSet). The meta-model shows just a few of the possible modifica-
tions, like initializing the value of an attribute, swapping the value of two
attributes or references, and copying the value of one attribute to another
one. Other modifications depend on the attribute type. For example, it
is possible to reverse the value of boolean attributes (as done in line 6
of Listing 1), while strings can be transformed into upper/lower case, be
substituted by a random choice within a set, or some part of the string
can be replaced.

• ModifySourceReference, ModifyTargetReference: They redirect the source or target
of a reference to another object selected by an ObjectSelectionStrategy.

• RemoveObject: It safely removes an object selected by an ObjectSelectionStrat-

egy, ensuring no dangling edge to/from the removed object remains.

• RemoveReference: It removes a reference of the given type. The source and
target objects of the reference can be obtained using ObjectSelectionStrategies.

• CompositeMutation: It allows defining composite mutations made of a se-
quence of atomic or other composite mutations, all of which are executed
in a block.

Additionally, a Select operation permits selecting objects or references
according to some criteria (e.g., the value of some of their features), so that
they can be used in subsequent mutations.

Object and references used in mutations and selectors can be chosen using
the following strategies: select a random element, a specific element (refer-
enced by the name of an emitter), all elements satisfying some condition,
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or a different element to the one selected by the current mutation. The
meta-model in Figure 4 shows three of these strategies. SpecificObjectSelection

selects an object referenced by an emitter. SpecificReferenceSelection selects both
an object and a reference defined by the object’s class. RandomObjectSelection

chooses a random object that is instance of the class specified by reference
type. All strategies can be parameterized with a condition (class Expression) on
the attribute and reference values of the selected element. For example, in
line 5 of Listing 1, the ModifyInformation mutation uses a RandomObjectSelection

strategy (one State) with an attribute condition (where {isFinal = true}).

ObjectSelection 
Strategy 

Random 
Selection 

RandomObject 
Selection 

Specific 
Selection 

SpecificObject 
Selection 

objSel 

SpecificReference 
Selection 

EReference 

refType 

Expression 
condition 

0..1 

… 

… 

… 

EClass 
type 

0..1 
ObjectEmitter 

name: String[0..1] 

Figure 4: Some supported selection strategies

As Listing 1 shows, Wodel has a textual concrete syntax. A graphi-
cal syntax – perhaps similar to graph transformation rules [16] – could have
been chosen instead to express the mutation operators. However, we opted
for a textual one due to its conciseness, the need to include expressions for
attribute mutation, to facilitate referencing mutations from other ones, and
to be able to aggregate them into composite mutations. Exploring visual no-
tations to represent parts of a Wodel program (e.g., the block dependencies
in Listing 4) is left for future work.

Listing 2 shows a brief excerpt of Wodel’s grammar. The first part of
a Wodel program (DEFINITION) declares the meta-model to be used, the
number of mutants to be generated, and where to find the seed models. The
definition is followed by a sequence of mutation commands (MUTATION*),
either executed sequentially or embedded in blocks (BLOCK*).

1 WODELPROGRAM ::= DEFINITION
2 with ( commands { MUTATION∗ } | blocks { BLOCK∗ } )
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3 ( constraints { CONSTRAINT∗ } )?
4

5 DEFINITION ::=
6 generate <num> mutants in <folder> from SEEDS
7 metamodel <meta−model>
8

9 MUTATION ::=
10 ( CREATEOBJECT | MODIFYINFORMATION |
11 MODIFYSOURCEREFERENCE | ... | COMPOSITEMUTATION )
12 ( [ (<min> ..)? <max> ] )?
13

14 CREATEOBJECT ::=
15 ( <name> ’=’ )? create <EClass>
16 ( in OBJECTSELECTIONSTRATEGY ( ’.’ <EReference> )? )?
17 ( with { ATTRIBUTESET ( , ATTRIBUTESET )∗ } )?
18

19 MODIFYINFORMATION ::=
20 ( <name> ’=’ )? modify OBJECTSELECTIONSTRATEGY
21 with { ATTRIBUTESET ( , ATTRIBUTESET )∗ }
22

23 MODIFYSOURCEREFERENCE ::=
24 modify source <EReference>
25 ( from OBJECTSELECTIONSTRATEGY )?
26 ( to OBJECTSELECTIONSTRATEGY )?
27

28 COMPOSITEMUTATION ::= ( <name> ’=’ )? [ MUTATION∗ ]
29 ...

Listing 2: Excerpt of the Wodel grammar

Listing 3 shows another example. It generates 3 mutants from every seed
model in folder models (line 1). Each mutant is obtained by applying the
specified mutations a random number of times according to the mutation
cardinality interval. Lines 5–7 define a composite mutation which removes a
random non-initial State (line 5), as well as all Transition objects pointing to,
or stemming from, the deleted state (lines 6–7). The transitions to delete
are those having an undefined value in references src or tar. The mutation
in lines 8–10 selects an arbitrary Transition, and modifies its reference symbol

to point to a different Symbol. Both mutations declare a cardinality interval
controlling the number of applications in every mutant: the first mutation
will be applied a random number of times with uniform probability between
0 and 2, and the second one between 1 and 3.
1 generate 3 mutants in ”out/” from ”models/”
2 metamodel ”http://fa.com”
3

4 with commands {
5 c0 = [ remove one State where {isInitial = false}
6 remove all Transition where {src = null}
7 remove all Transition where {tar = null} ] [0..2]
8 modify target symbol
9 from one Transition
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10 to other Symbol [1..3]
11 }

Listing 3: Composite mutation and cardinalities

In Listings 1 and 3, all mutations are executed in sequence on the seed
models specified in the program header. In addition, Wodel also permits
organising mutations in named blocks, which take as seed either the mutants
generated by some selected previous blocks, or the seed models given in the
program header if no other block is indicated. Listing 4 shows an example.
It declares two blocks, one called first, which generates 2 mutants from the
default seed model evenBinary.fa (lines 5–7), and another called second, which
generates 3 mutants from each mutant produced by block first (lines 8–10).
The directive repeat=no in the second block ensures that it will generate mu-
tants different from the used seed models (i.e., different from the mutants
produced by block first).

1 generate mutants in ”out/” from ”evenBinary.fa”
2 metamodel ”http://fa.com”
3

4 with blocks {
5 first {
6 remove one Transition
7 } [2]
8 second from first repeat=no {
9 create Transition

10 } [3]
11 }

Listing 4: Mutation blocks

Implementation-wise, our Wodel programs handle each defined muta-
tion as an operation, and therefore, it is not possible to have contradictory
mutations. For example, if a mutation operation deletes an object, then
a subsequent mutation operation cannot select the deleted object, e.g., to
modify its attributes. However, two mutations may cancel each other (e.g.,
one mutation creates an object, and another deletes it).

3.2. Traceability in Wodel

Sometimes, mutation-based applications require having traceability be-
tween the seed models and the generated mutants, or having knowledge of
the operations used to produce the mutants. For instance, in Section 5, we
need to access the list of mutations used to generate an incorrect automaton
in order to be able to synthesize sentences that explain how to correct it.
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Thus, when a Wodel program is executed, it is possible to generate a
registry with the sequence of applied mutations and their application context
for each generated mutant. Every registry is itself a model, which facilitates
being queried or manipulated by any post-processing application making use
of Wodel.

Figure 5 shows an excerpt of the mutations registry meta-model. The
Registry contains an ordered list of AppliedMutation objects, each one of them
storing a reference to the executed Mutation command in the Wodel program
used to generate the mutant. This is possible because Wodel programs are
models as well, conformant to the Wodel meta-model shown in Figures 3
and 4. Depending on the particular command executed, the appropriate
subclass of AppliedMutation is instantiated. For example, for each execution of
a CreateObject command in a program, an ObjectCreated object is added to the
registry model storing a reference to the command and to the created object.
While some of the records in the registry need to refer to elements in the
seed model (e.g., the objects removed from the seed model are not present in
the mutant), others need to refer to the resulting mutant (e.g., the objects
created as a result of a mutation do not belong to the seed model).

Registry def

AppliedMutation

*

Object
Created

Reference
Changed

refs Information
Changed

mutations
*

*

… Attribute
Changed

Composite
Mutation

Source
Reference
Changed

Target
Reference
Changed

Reference
Swap

*

atts

Attribute
Swapobjects

*

Mutation

EObject

object objects

*

{ordered}

Figure 5: Meta-model of the registry of applied mutations (excerpt)

The registry records all applied mutations. This means that even if the
effect of a mutation application is undone by a subsequent mutation (e.g.,
the value of a boolean attribute is reversed twice), both mutations are kept in
the registry. Since some applications may consider irrelevant the mutations
which get finally undone, we have extended Wodel with a post-processor
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step which removes from the registry the mutations that cancel each other,
thus obtaining a more compact description of the differences between the seed
model and the generated mutant. For example, if the registry records the
creation of an object and its subsequent deletion, then both applied muta-
tions are removed from the registry, as well as any intermediate modification
of the object attributes. Compacting the registry in this way is optional.

3.3. Evaluation of the expressiveness and succinctness of Wodel

Next, we discuss the expressivity and conciseness of Wodel. Expres-
sivity is approached by using Wodel to define interesting mutations for
automata, both devised by us and found in the literature [11]. Note that [11]
does not consider final states or mutate transition symbols as we do, but it
applies different number of mutations which we can express with cardinali-
ties.

Table 1 lists the mutations. The first twelve change the language rec-
ognized by an automaton (assuming it is minimal), and the last two make
an automaton non-deterministic. Although Wodel lacks the control struc-
tures of full-fledged programming languages, its expressivity was enough to
express the mutations for our running example. Moreover, loops can be
emulated with composite mutations and cardinalities, and conditionals are
implicit in the conditions of selection strategies for model elements. While
the expressivity of Wodel does not depend on the meta-model for which
the mutations are defined, we acknowledge that its usage in other applica-
tion contexts (e.g., model transformation testing) may require introducing
new Wodel primitives. A more thorough analysis remains as future work.

We analyse conciseness by comparing with the equivalent Java code,
which would be a natural alternative for integrating mutation operations
into applications. Programming the mutation operations in Java would re-
quire from knowledge of the EMF reflective API [15], as one cannot assume
that Java implementation classes exist for the types in the given meta-model.
It also requires taking care of accidental details that Wodel manages for
free, like placement of objects in containers, initialization of mandatory ref-
erences, type-checking of mutations with respect to the meta-model, model
serialization, checking well-formedness of resulting mutants, comparing for
equal resulting mutants, or producing a registry with the applied mutations.

To illustrate the complexity of the equivalent Java code, Listing 5 shows
part of the code implementing mutation Create transition (cf. Table 1). This
excerpt creates a transition (lines 3–4), obtains an automaton object from
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Mutations that change the language
Create transition [11] create Transition with {symbol = one Symbol}
Create final state create State with {isFinal = true}
Create connected state s = create State

with {name = random−string(1,4)}
t = create Transition

with {tar = s, symbol = one Symbol}
Delete transition remove one Transition

Delete state and adjacent transitions remove one State where {isInitial = false}
remove all Transition where {src = null}
remove all Transition where {tar = null}

Change symbol in transition modify target symbol from one Transition to other Symbol

Change final state to non-final modify one State where {isFinal = true}
with {reverse(isFinal)}

Change initial state to a different
one [11]

s0 = modify one State where {isInitial = true}
with {isInitial = false}

s1 = modify one State where {self <> s0}
with {isInitial = true}

Swap direction of transition [11] modify one Transition with {swap(src, tar)}
Swap symbol of two sibling transitions t = select one Transition

modify one Transition
where {self <> t and src = t.src}
with {swap(symbol, t.symbol)}

Redirect transition to a new final state s = create State with {name = ’f’, isFinal = true}
modify target tar from one Transition to s

Combination of adding a new transition
and changing the initial state [11]

s0 = modify one State where {isInitial = true}
with {reverse(isInitial)}

s1 = modify one State where {self <> s0}
with {isInitial = true}

create Transition
with {src = s1, tar = s0, symbol = one Symbol}

Mutations that produce a non-deterministic automaton
Create λ-transition create Transition

Create transition with same symbol
from a state to a different one

t = select one Transition where {symbol <> null}
create Transition

with {src = t.src, symbol = t.symbol,
tar = one State where {self <> t.tar}}

Table 1: Using Wodel to define mutations for automata

the seed model (lines 8–10), adds the transition to the automaton (lines 12–
13), selects a state (lines 15–17), and sets the state as source of the transition
(lines 18–19). The listing omits the code for tasks like model and meta-model
loading or checking the conformance of the result. Altogether, the mutation
amounts to 103 lines of code, empty lines and comments excluded. Instead,
the same functionality is obtained using 1 line in Wodel.

1 ...
2 // create transition

14



3 EClass transitionClass = (EClass)epackage.getEClassifier(”Transition”);
4 EObject transition = EcoreUtil.create(transitionClass);
5

6 // search object automaton in model
7 EObject automaton = null;
8 for (TreeIterator<EObject> it = seed.getAllContents(); it.hasNext(); ) {
9 automaton = it.next();

10 if (automaton.eClass().getName().equals(”Automaton”)) {
11 // add transition to automaton
12 EStructuralFeature feature = automaton.eClass().getEStructuralFeature(”transitions”);
13 ((List<EObject>)automaton.eGet(feature)).add(transition);
14 // set random state as source of the transition
15 feature = automaton.eClass().getEStructuralFeature(”states”);
16 List<EObject> states = (List<EObject>)automaton.eGet(feature);
17 EObject randomState = states.get(rand.nextInt(states.size()));
18 feature = transitionClass.getEStructuralFeature(”src”);
19 transition.eSet(feature, randomState);
20 ...

Listing 5: Java code for mutation Create transition

3.4. Applicability to program mutation

To demonstrate the applicability of Wodel beyond our running exam-
ple, we show how to use it to perform program mutation with the goal of
mutation-based testing [17]. This testing technique permits evaluating the
quality of a set of test cases. For this purpose, the program under test is mu-
tated to inject faults, and the test cases are executed on the created program
mutants. If the set of test cases does not detect the injected faults, then the
set is insufficient and should be extended to catch those errors.

We will illustrate program mutation for an adapted version of Asple [18],
which is a programming language derived from Algol 68. Asple provides the
basic features of general-purpose programming languages: variable declara-
tion, assignments, conditionals, loops, read input/write output data, expres-
sions and literals. Figure 6 shows an excerpt of the meta-model we have built
for this programming language.

The left of Figure 7 shows an Asple program example. The program
declares and initializes two variables (lines 2–4), and executes a loop that
increases the value of variable n until its value reaches 10 (lines 5–7). To
the right, we show part of the abstract syntax of this program, omitting the
variable initializations in lines 3–4 for simplicity.

Table 2 gathers the program mutations that we have implemented for
Asple, and which were proposed in [19, 20]. As Wodel is meta-model in-
dependent, these mutations can be adapted easily to models of other general-
purpose programming languages. The first two mutations replace an existing
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Declaration 
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ref: boolean = false 
mode: Mode = int 

declarations * 
Statement 

«enumerate» 
Mode 
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string 
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statements 
* if * 

else * 

value expression expression 

Primary 

Identifier 

name: string 

Integer 
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Boolean 
value: boolean = false 

... 

var 

1..* 

ids 

BinaryOperator 

operator: Operator 

left 

right 

Literal 

«enumerate» 
Operator 

add 
subtract 
multiply 
divide 
module 
equals 
distinct 
less 
greater 

… 

{ordered} 

Expression 

statements 
{ordered} 

Figure 6: Meta-model of the Asple programming language (excerpt)

inc:Identifiern:Identifier

:Program

:Integer

value=10

:Declaration

ref=false
mode=int

:Loop:BinaryOperator

operator=less

:Assignment

:BinaryOperator

operator=add

ids

declarations

statements
expression

left right

statements

var

value

left

right

name=“n” name=“inc”
1. begin
2.   int n, inc;
3.   n = 0;    // omitted
4.   inc = 1; // omitted
5.   while (n < 10) {
6.      n = n + inc;
7.   }
8. end

ids

Figure 7: A simple Asple program. Textual representation (left) and excerpt
of abstract syntax (right)

arithmetic or relational operator by a different one. Both mutations use the
in operator, which selects a random element in the given set, and when used
within a modify ... with command, ensures that the selected element is different
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from the old attribute value. The third mutation selects an arbitrary Loop

statement and changes its end condition (i.e., expression) to true; the old loop
expression gets automatically deleted. The fourth mutation deletes a random
statement from the program; in case of conditionals and loops, their inner
statements get automatically deleted as well. The fifth mutation modifies
an integer literal with a different, random value. Finally, the last mutation
randomly selects any arithmetic expression and increments its value by 1.

Replace an arithmetic operator by
another one [20]

modify one BinaryOperator
where {operator in [add, subtract, multiply, divide, module]}
with {operator in [add, subtract, multiply, divide, module]}

Replace relational operator by an-
other one [20]

modify one BinaryOperator
where {operator in [less, equals, greater, distinct]}
with {operator in [less, equals, greater, distinct]}

Replace loop end condition by in-
finite loop [20]

loop = select one Loop
create Boolean in loop.expression with {value = true}

Delete statement [20] remove one Statement

Replace scalar variable [20] modify one Integer with {value = random}
Increment an arithmetic expres-
sion by 1 [19]

op = select one BinaryOperator
where {operator in [add,subtract,multiply,divide,module]}

exp= create BinaryOperator in op.right
with {left = op.right, operator = add}

create Integer in exp.right with {value = 1}

Table 2: Using Wodel to define program mutations

As an example, the left of Figure 8 shows the result of applying the last
mutation in Table 2 to the program in Figure 7. The mutation selects the
operation in line 6, and increments its result by 1. To the right, the figure
shows the elements affected by the mutation before and after it takes place,
using an abstract syntax representation.

inc:Identifier n:Identifier 

b:BinaryOperator 

operator=add 

left left 

name=“n” name=“inc” 
1. begin 
2.   int n, inc; 
3.   n = 0;     
4.   inc = 1;  
5.   while (n < 10) { 
6.      n = n + inc + 1; 
7.   } 
8. end 

:BinaryOperator 

operator=add 

right 

:Integer 

value=1 

right 

inc:Identifier n:Identifier 

b:BinaryOperator 

operator=add 

left right 

name=“n” name=“inc” 

Figure 8: Mutant of the Asple program in Figure 7

This example illustrates how Wodel can be applied to different meta-
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models even if the underlying DSL is textual – as in the case of Asple –
and can be used for injecting faults in programs using mutations. A full
development of a mutation-based framework based on Wodel is left for
future work. In this paper, we focus on the application of Wodel to the
educational domain.

4. Tool Support

We have built a development environment for Wodel, available as an
Eclipse plugin [21], to mutate EMF models. The tool is freely available at
http://miso.es/tools/Wodel.html including the source code, installation
instructions, and videos.

Figure 9 shows its architecture. The environment provides an editor for
Wodel, built with Xtext1, which incorporates a validator and code comple-
tion facilities to help users in selecting valid class, reference and attribute
names from the domain meta-model.

seed  
models 

DSL 
meta- 
model 

 
 postProc 

WODEL  
engine 

editor (Xtext) 

code gen (Xtend) 

Java code 
model 

mutants 

code completion, validator 

WODEL  
program 

«conforms» 

check 

generate, compile, execute 

mutation 
registry 

«refers-to» «refers-to» 

Figure 9: Architecture of Wodel’s environment

Correct Wodel programs are automatically compiled into Java code us-

1http://www.eclipse.org/Xtext/
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ing an Xtend2 code generator. The produced Java code, which is in charge
of creating the mutants from the seed models as well as the registry of ap-
plied mutations, can be transparently executed from the Wodel IDE. The
advantage of explicitly generating Java code is that it can be used in stand-
alone applications. Moreover, this code is generic as it manipulates models
reflectively, and hence, it can be reused to mutate any model conformant
to the domain meta-model (see Listing 5 for an example of use of the EMF
reflective API).

In addition, Wodel defines an extension point (postProc in the figure)
which allows users to register domain-specific post-processors to be executed
upon mutant generation. In this paper, we report on two particular instan-
tiations of this extension point, namely, a facility to compact the generated
mutation registry (see Section 3.2), and an application for the automatic
generation of exercises (see Section 5).

Figure 10 shows a screenshot of the IDE illustrating the code completion
facilities. In this case, the IDE suggests the name of valid attributes for class
State, and some applicable modification mutation operators.

Figure 10: Screenshot of the Wodel IDE

5. Wodel-Edu: Model Mutation for the Generation of Exercises

In this section, we present an application of Wodel to the generation of
exercises. In particular, we have built a post-processor called Wodel-Edu
which, starting from a Wodel program that produces incorrect solutions

2http://www.eclipse.org/xtend/
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(i.e., model mutants) from a correct seed model, it generates a web applica-
tion with exercises that can be automatically graded for self-evaluation. We
support the generation of three kinds of exercises of increasing complexity
(see the different generation schemes in Figure 11):

seed
model

WODEL
mutations

model
mutant

model
mutant

WODEL

EDU

model
mutant

seed
model

Is correct? Is correct?

exercise 1 exercise 3

seed
model

WODEL
mutations

model
mutant

model
mutant

WODEL

EDU

model
mutant

seed
model

Which one is correct?

…
model
mutant

seed
model

WODEL
mutations-1

WODEL

EDU

How to correct?

model
mutant-1

model
mutant-1

WODEL
mutations-2

model
mutant-2

mutations-1 (reversed)

mutations-2

(a) Alternative response         (b) Multiple diagram choice (c) Multiple emendation choice

exercise 1 exercise 1

Figure 11: Generation scheme of the three types of exercise

• Alternative response: These exercises show a diagram, and students
must decide whether it is correct or not. This is the simplest kind
of exercise, where the diagram is correct in case it corresponds to the
seed model, or incorrect if it corresponds to one of the mutants (see
Figure 11a).

• Multiple diagram choice: These exercises show several diagrams among
which only one is correct, and students must identify it. Hence, this
kind of exercise just has to present the diagram corresponding to the
seed model without mutations among its mutated versions (see Fig-
ure 11b).

• Multiple emendation choice: This is the most complex kind of exer-
cise. In this case, the exercise shows an incorrect diagram generated
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by applying one or several mutations on a seed model, as well as the
description of several possible emendations over the diagram, and stu-
dents have to choose the subset of emendations that would fix the
diagram. The correct emendations are automatically synthesized by re-
versing the mutations applied to generate the incorrect diagram. The
incorrect emendation options are generated by mutating the already
incorrect diagram in order to obtain modification actions that make
sense for the exercise at hand (see Figure 11c).

As it can be observed, there are different aspects of the exercise generation
that need to be configured. First, the kind of exercises to be generated and
the text description of each exercise. Second, how the models are being
rendered graphically, as the model representation will depend on the exercises
domain (e.g., automata, class diagrams, etc.). Finally, for the exercises of
type multiple emendation choice, the text of the different emendation options
is generated from the applied mutations, and therefore, it may be necessary
to fine-tune this text. Our approach to describe these aspects is via a family
of cooperating DSLs.

In the following subsections, we present the architecture of Wodel-Edu
and how it can be configured for the generation of exercises in different
domains using DSLs (Section 5.1). Then, we exemplify the generation of
the different kinds of exercises in the finite automata domain (Section 5.2).
Finally, we present the results of a user study aimed at measuring some
aspects of the quality of the exercises automatically generated with Wodel-
Edu (Section 5.3).

5.1. A family of DSLs for exercise generation
Figure 12 shows the architecture of our Wodel-Edu post-processor. It

provides four DSLs to configure the text and style of exercises (eduTest),
how model elements should be graphically rendered (modelDraw), how to
represent a model element textually (modelText), and how to represent
an applied mutation textually (mutaText). These DSLs facilitate the cus-
tomisation of the generated exercises for different domains (e.g., automata,
class diagrams, electronic circuits, etc.). While eduTest and modelDraw
must be used always to configure any kind of exercise, modelText and mu-
taText are only used in exercises of type multiple emendation choice when
there is the need to override the text of the emendations that Wodel-Edu
synthesizes by default. In the following, we illustrate the four DSLs for the
generation of finite automata exercises.
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Figure 12: Architecture of the Wodel-Edu plugin

5.1.1. Describing exercises with eduTest

Listing 6 shows a fragment with the description of some exercises using
the eduTest DSL. Line 1 states that the generated exercises can be resolved
in any order, and it is possible to navigate back and forward to new or al-
ready answered exercises. Lines 3–8 define two multiple choice emendation
exercises with the following characteristics: retry is allowed in case of failure
(retry=yes); all exercises have the same weight in the final grade (weighted=no);
there is no penalty in case of failure (penalty=0.0); exercises are shown in de-
scending order of their number of emendation options (order=options-descending,
alternatively, they could be shown in ascending order, in the definition order,
or randomly); all emendations needed to fix a diagram are grouped as a sin-
gle option (mode=radiobutton, alternatively, each necessary emendation could
be shown in a separate checkbox, which may require selecting one or more
of them to solve the exercise correctly). The text of the exercises, as well
as their seed model, are declared in lines 6–7. Below, lines 10–13 define one
exercise of type multiple choice diagram.

1 navigation=free
2

3 MultiChoiceEmendation complex {
4 retry=yes, weighted=no, penalty=0.0,
5 order=options−descending, mode=radiobutton
6 description for ’exercise4.model’ = ’Select the required changes so that the automaton accepts a+b+’
7 description for ’exercise6.model’ = ’Select the required changes so that the automaton accepts a∗b’
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8 }
9

10 MultiChoiceDiagram simple {
11 retry=no
12 description for ’exercise1.model’ = ’Select which of these automata accepts the language a∗bab∗’
13 }

Listing 6: Defining the exercises with eduTest

5.1.2. Describing model visualization with modelDraw

Model rendering is configured using the DSL modelDraw. This is a
simple language similar to the dot notation provided by Graphviz3, which is
the technology used by Wodel-Edu to visualize models. As an example,
Listing 7 shows the use of the DSL to describe the graphical appearance
of finite automata. The first line specifies the domain meta-model, which
enables content assistance and type-checking. Then, for each class in the
meta-model, it is possible to configure whether it will be shown as some
kind of node (circle, double circle, ellipse, rectangle, etc.) or as an edge.
Nodes and edges can display a label with the value of some attribute of the
corresponding class. By convention, if no label is provided, we show the
content of the attribute name (if it exists). Finally, we also support assigning
different visualizations to the same class depending on the value of some
boolean attribute. In our case, the listing declares that initial states will be
shown as ticked nodes (line 4), non-final states as circles (line 5), final states
as double circles (line 6), and transitions as edges labelled with the transition
symbol (line 7).

1 metamodel ”http://fa.com”
2

3 Automaton: diagram {
4 State (isInitial): markednode
5 State (not isFinal): node, shape=circle
6 State (isFinal): node, shape=doublecircle
7 Transition (src, tar): edge, label=symbol
8 }

Listing 7: Defining the graphical rendering of models with modelDraw

5.1.3. Textual description of mutations with modelText and mutaText

By default, when Wodel-Edu has to generate a textual description of
an object, the object gets described by the value of its attribute name if it

3http://www.graphviz.org/
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exists, or by the name of its class otherwise. The DSL modelText permits
overriding this default text for selected meta-model types. In this way, for
each class and relation, we can specify a text template where the expressions
preceded by the symbol % are evaluated on the object and their value is
emitted in the resulting string.

Listing 8 shows the usage of the DSL for the running example. According
to line 3, whenever an object of type State is to be mentioned in some text,
it will be written as “State” followed by the name of the state (e.g., “State
q0” if the state is named “q0”). Similarly, line 4 defines that Transition objects
will be represented by the text “Transition” followed by the symbol attached
to the transition. This symbol is obtained by navigating through the symbol

reference of the Transition object, and then accessing attribute symbol (see the
meta-model for automata in Figure 2). Finally, in lines 5–6, references src and
tar of Transition objects are configured to be written as “source” and “target”.
1 metamodel ”http://fa.com”
2

3 > State: State %name
4 > Transition: Transition %symbol.symbol
5 > Transition.src: source
6 > Transition.tar: target

Listing 8: Defining the textual description of model elements with
modelText

Similarly, the DSL mutaText permits overriding the default text that
Wodel-Edu generates to represent each applied mutation. This text is the
one shown as emendation options in the third kind of exercises.

Listing 9 shows an example of mutaText. It defines the alternative text
for mutations TargetReferenceChanged and AttributeChanged, the latter only appli-
cable in case of mutating the value of an attribute of State. The DSL allows
configuring the specific text to show when the emendation option is correct
(lines 4 and 8) and when it is not (lines 5 and 9). Moreover, it permits the
use of some predefined variables that contain information about the applied
mutation, like %object which identifies the mutated object, or %refName which
contains the name of the reference used in the mutation. These variables
will return the textual representation of the object or reference specified
with modelText, or a default textual representation if none was given. For
instance, the text defined in line 4 of Listing 9, combined with the use of
the modelText definition in Listing 8, will generate emendations like this
one: Change Transition a from State s0 to State s1 with new target State q2. Should
we did not use the modelText definition, we would obtain the following
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emendation instead: Change Transition from s0 to s1 with new tar q2.

1 metamodel ”http://fa.com”
2

3 > TargetReferenceChanged:
4 Change %object from %fromObject to %toObject with new %refName %oldToObject /
5 Change %object from %fromObject to %oldToObject with new %refName %toObject
6

7 > AttributeChanged (State):
8 Change attribute %attName from %object with value %newValue to %oldValue /
9 Change attribute %attName from %object with value %oldValue to %newValue

Listing 9: Defining the textual description of mutations with mutaText

Altogether, starting from the definition of the exercises and the graphical
rendering of models, Wodel-Edu generates a web application with one page
for each defined set of exercises. Optionally, the DSLs modelText and
mutaText allow customising the text of the options shown in the multiple
emendation choice exercises, or otherwise, a sensible text for the options is
generated by default.

5.2. Generation of exercises by model mutation

Next, we illustrate the different kinds of exercises generated by Wodel-
Edu. We start by defining the Wodel program in Listing 10, which creates
a set of mutants from the seed automaton models in folder model. The pro-
gram includes an OCL constraint which demands all states in the generated
mutants to be reachable from the initial state, in order to avoid the gen-
eration of trivially incorrect automata (lines 30–33). From the generated
mutants, Wodel-Edu generates a web application with exercises, which
can be accessed on-line at http://www.wodel.eu/comlan16.

1 generate mutants in ”out/” from ”model/”
2 metamodel ”http://fa.com”
3

4 with blocks {
5 // mutations for exercises of type alternative−response
6 alternative {
7 s0 = select one State where {isInitial = true}
8 s1 = select one State where {isFinal = false}
9 t0 = select one Transition where {src = s0}

10 modify one Transition where {tar = s1} with {swapref(tar, t0.tar)}
11 } [1]
12

13 // mutations for exercises of type multiple−diagram−choice
14 multiple {
15 modify target tar from one Transition to other State
16 } [2]
17

18 // mutations for exercises of type multiple−emendation−choice
19 incorrect automaton {
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20 modify target tar from one Transition to other State
21 modify one State with {reverse(isFinal)}
22 } [3]
23 incorrect emend from incorrect automaton repeat=no {
24 modify target tar from one Transition to other State
25 modify one State with {reverse(isFinal)}
26 } [6]
27 }
28

29 constraints {
30 context State connected:
31 ”Set{self}−>closure(s | Transition.allInstances()
32 −>select(t | t.tar=s)−>collect(src))
33 −>exists(s | s.isInitial)”
34 }

Listing 10: Wodel program used to generate automaton exercises

In Listing 10, the first block (lines 6–11) produces 1 mutant for each seed
model. Wodel-Edu uses these mutants to generate a web page with one
alternative response exercise per seed model. Each exercise shows randomly
either the seed model (in which case is correct) or the mutant (in which
case is incorrect), and students must answer whether the shown automaton
is correct or not. Figure 13 shows a screenshot with one of the generated
exercises of this kind.

The second block in Listing 10 (lines 14–16) generates 2 mutants from
each seed model. Then, Wodel-Edu generates a web page with multiple
diagram choice exercises, where each seed model is shown among its mutants,
and students must identify which is the correct one. As an example, Figure
14 shows one of these exercises.

The third and fourth blocks (lines 19–26) generate the necessary mutants
for exercises of type multiple emendation choice. These exercises show an
incorrect automaton together with a list of emendations, and students are
required to select the subset of emendations that would correct the automa-
ton. The first block (lines 19–22) generates the incorrect automaton, and its
registry of applied mutations is used to automatically generate the correct
emendation options. The other block (lines 23–26) mutates the automata
generated in the first block. However, these new mutants are discarded, and
only the registry of applied mutations is used to generate the incorrect emen-
dation options. In this example, the mutation commands in the two blocks
are the same: they change the target state of a random transition, and then
invert the value of attribute isFinal of a random state. This has the effect
of generating similar correct and incorrect emendations, which increases the
exercise difficulty. Figure 15 shows one of the generated exercises, where the
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Figure 13: Screenshot of alternative response exercise

Figure 14: Screenshot of multiple diagram choice exercise

last two options should be selected to be correctly solved.
More in detail, the previous exercise is generated from the seed automaton

shown in Figure 16a, which accepts the language “ba*”. This automaton gets
mutated as follows: state q2 becomes final, and the transition from q1 to q1
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Figure 15: Screenshot of multiple emendation choice exercise

is changed so that it points to q0. Figure 16b shows the resulting mutant,
which is the one shown in the exercise. Wodel-Edu uses the registry of
applied mutations to generate the text of the correct emendations (the last
two in Figure 15). These emendations, if applied on the mutant, would
recover the original seed model. Then, the mutated automaton is mutated
again, yielding the automaton in Figure 16c, where state q0 has been made
final and the transition b from q2 to q2 now points to q0. These mutations
are used to generate two incorrect emendations in the exercise (the first two
options in the list). Finally, Wodel-Edu presents the set of correct and
incorrect emendations in random order.

Wodel-Edu can be used to create similar exercises for other domains
(e.g., class diagrams) by providing a Wodel program with the mutations of
interest, how model elements are visualized, and a description of the exercises
as explained in Section 5.1.

5.3. Evaluation of the quality of the generated exercises

In this section, we present the results of a preliminary user study whose
aim is measuring the quality of the exercises automatically generated with
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(a) Seed automaton (b) First mutated automaton
used to produce correct emenda-
tions, and shown in the exercise

(c) Second mutated au-
tomaton used to produce
incorrect emendations

Figure 16: Steps to generate the exercise in Figure 15

Wodel-Edu. For this purpose, we have used Wodel-Edu to create a web
application with three pages of exercises on finite automata: the first one
contains exercises with multiple emendation choices, the second one contains
exercises with multiple diagram choices, and the third one includes exer-
cises with alternative response correct/incorrect. The exercises used in the
evaluation are available at http://www.wodel.eu/comlan16.

There were 10 participants in the study, 8 men and 2 women, with age
between 22 and 41 (31 years old in average). Five were computer science
professors at the university, three were PhD students, one was a computer
science student, and the last one worked as a computer science researcher in
industry. Only one of them lacked training in automata theory.

The participants were asked to solve the exercises in the generated appli-
cation with no time restrictions. Then, they were asked to rank each page of
exercises (i.e., each kind of exercises) between 1 (completely disagree) and 5
(completely agree) with regard to the following questions:

• The exercise is easy to understand.

• The exercise has an appropriate level of difficulty.

• The exercise is useful to learn finite automata.
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Optionally, they could also indicate the final grade obtained in each page
of exercises, as well as provide comments and suggestions.

Among the comments, there were several suggestions related to the us-
ability of the application user interface. In particular, several participants
deemed the explanatory text in the exercises difficult to understand, and
proposed using quotation marks around the regular expressions. Another
participant complained that the exercises in the first page did not make clear
that only the emendations making the automaton accept the words in the
indicated language and no other word should be selected. In sight of these
comments, we have modified our code generator to include more precise ex-
planations in the exercises, and put quotation marks around the regular
expressions. Anyhow, none of the received suggestions were related to the
exercises themselves, but on their presentation.

In addition, one participant discovered that the second exercise in the
first page contained an emendation that could not be applied on the shown
diagram. By inspecting the code, we discovered it was a bug in our code
generator. This error, which was difficult to identify because it only occurred
occasionally, has been fixed in the current version of Wodel-Edu.

Figure 17 shows the average of the scores given by the participants to
the three pages of exercises in the three considered dimensions: understand-
ability, difficulty and usefulness to learn automata. In Figure 17a, we can
observe that the understandability of the exercises is not bad, but there is
room for improvement. We have the lowest score (68%) in the first page
which contains exercises with multiple emendation choices. The second and
third pages of exercises have average scores 78% and 76% respectively. Un-
surprisingly, the lowest score (1 out of 5) was given by the participant without
training in automata theory. Regarding the difficulty of the exercises, Figure
17b shows that the first page of exercises is also considered the most difficult,
with an average score of 82%. The other two pages have scores 89% (mul-
tiple diagram choice) and 86% (alternative response). Concerning the last
dimension, Figure 17c shows that the participants considered the exercises
very useful to learn automata, with scores 88% for the page with alternative
response exercises, and 94% for the pages with multiple choices.

Figure 18 shows the average of the final grade obtained by the participants
in the three pages of exercises, though only 60% of the participants provided
their grade in the questionnaires. In average, the obtained final grade is above
60% for the second and third pages, while for the first page, the average
grade is 50%. Two participants obtained the maximum grade in the first
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Figure 17: Average score in the pages of exercises considered in the evaluation
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page, one participant obtained the maximum grade in the second page, and
two obtained the maximum in the third page. No participant obtained the
maximum grade in all three pages considered in the evaluation.
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Figure 18: Average grade of the participants in the pages of exercises

We can extract several interesting conclusions from this evaluation. Ac-
cording to the results, the exercises with multiple emendation choices are
difficult to understand. We believe one of the problems is that it might be
difficult to represent mentally the result of applying several emendations to
an automaton. One solution to this problem could be showing the automaton
that would result after applying the set of selected emendations. Another
option could be making the exercise interactive, allowing users to perform
changes on the displayed automaton to build the correct solution. On the
other hand, the participants considered that the exercises have an adequate
level of difficulty, and they are very useful to learn automata. A last impor-
tant issue is the need to provide a more precise description of the exercises, or
including a tutorial. As proof of this, the participant that lacked training in
automata theory gave the lowest score to the understandability of the three
test exercises. All these ideas are very useful to help improving our tool and
for future evaluations.

We also have to mention several threats to the validity of our evaluation.
First, the order in which the exercises were presented to the participants
may have influenced the perceived difficulty of the exercises. For instance,
the first page of exercises which contained multiple emendation options is
the most difficult, and this may have affected the perceived complexity of
the second page of exercises. Another threat to the external validity is the
fact that all our exercises are on finite automata; hence, the conclusions of
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the present user study may differ in case of considering exercises in other
domains. Additionally, the evaluation only considers exercises automatically
generated. To complement these results, in the future, we may conduct
another user study where participants should solve exercises automatically
generated and others made by hand. In this way, we could compare the
results obtained in both cases, as well as evaluate whether the participants are
able to discern which exercises were generated and which ones were human-
made. Concerning the generality of the results across people, the participants
in this study were not current or recent students of courses on automata
theory, and one of them had not received training on this topic before. Thus,
the results may be different in case the participants were receiving training
on automata. The experiment was performed with only 10 participants, and
so, another experiment with more participants is being planned. Finally,
an evaluation of the tool from the professor perspective who is in charge of
designing the exercises remains as future work.

6. Related Research

In this section, we revise related works on the two main lines of related
research: the application of mutation techniques to different contexts and
domains, and the usage of generative techniques in the educational domain.

6.1. Mutation techniques, languages and applications

Mutation is used in areas like model-based testing [22, 23, 24], model
transformation testing [10], program testing [25, 26, 27, 28], adaptive sys-
tems [13], embedded systems [29], evaluation of clone-detection algorithms [30],
generation of large model sets [31], education [11], or evolutionary algo-
rithms [32, 33]. While most of these systems are built ad-hoc for a specific
domain, Wodel may help in automating their construction. Next, we review
approaches related to Wodel in different domains.

The mutation framework in [10] is specific to model transformation test-
ing. It provides a set of predefined mutation operators which are transformation-
specific and are defined with the Kermeta general-purpose model manage-
ment language4. Instead, Wodel has mutation-specific primitives, and is
not restricted to the mutation testing domain. Also for mutation testing,

4http://www.kermeta.org/documents/
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the language MuDeL [34] allows describing mutation operators for grammar-
based artefacts, typically programs. While MuDeL is based on replacement
patterns, Wodel is based on operations. Moreover, Wodel has further fa-
cilities to combine mutation operators, apply them several times, and discard
malformed or duplicated mutants. In the area of mutation-based testing, the
system Muta-Pro [28] uses techniques to detect equivalent mutants, whereas
we use model comparison. The mutation operators in [25] are specific to
testing Android apps.

Model-based mutation testing has been applied to adaptive systems [13],
model-based delegation security policies [27], logic formula [12] and software
product lines [24]. It has also been used with Simulink models to com-
pare clone-detection algorithms [30]. In these cases, mutation operators were
manually encoded using low-level languages, and the frameworks were built
ad-hoc. Tools like Wodel may help to improve development automation.

The SiDiff framework [31] allows creating large models with some statis-
tical properties. These models can then be used as tests for model manage-
ment tools, e.g., for model transformation and matching. While the authors
only illustrate creation operations, the creation context can be selected via
stochastic properties. Similar to our registry of applied mutations, SiDiff [35]
produces a history of model changes, though of lower-level nature than our
mutation primitives. Other tools to generate sets of large models include the
Ecore Mutator5, which provides a programmatic API to code mutations in
plain Java. Wodel can be used for model generation as well, but it is more
general as it also provides primitives for deletion and modification.

Mutation is also central in evolutionary algorithms, where problems are
solved by generating a set of candidate solutions, which is iteratively im-
proved by applying crossover and mutation operators. Candidate solutions
are usually encoded as bit arrays, though some recent works [33] propose
model-based approaches where the domain is expressed as a meta-model,
the candidate solutions as models, and the mutation operators as model mu-
tators. In particular, in [33], the authors define three mutation operators
(add instance, remove instance and change weight) which are implemented
using a general-purpose programming language. Instead, Wodel could have
been used to create these and other operators.

In summary, our proposed DSL Wodel is novel as current mutation-

5https://code.google.com/a/eclipselabs.org/p/ecore-mutator/
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based systems are commonly built by hand. The few existing languages to
define mutations [10] focus on testing and work over grammars. As many
applications need to specify and produce mutants, an extensible approach
like ours is useful.

6.2. Automatic generation of exercises

Next, we revise works on the automatic generation and assessment of
exercises, being most of them in the programming domain.

Petcha [36] is a tool that provides automatic assistance on teaching pro-
gramming exercises. Its goal is to increase the number of programming ex-
ercises effectively solved by students. The tool can be used by professors to
create exercises, and by students to solve them. Creating an exercise requires
providing several resources such as the exercise description, test cases, cor-
rectors and feedback files. Then, instead of providing its own environment
for solving exercises, Petcha relies on existing IDEs and e-learning systems
to automate the exercise evaluation.

JExercise [37] is an Eclipse plugin to facilitate students testing their exer-
cises. It is based on specifying the expected behaviour of classes and methods,
a set of JUnit tests to verify the code, and a model of the solution.

In [38], the authors present a web-based tool that is able to automati-
cally correct and provide feedback of UML diagram exercises. To define an
exercise, professors must provide a description of the problem to be solved
and the set of its admissible solutions. When a student provides a solution
to the exercise, this gets compared with the set of correct solutions stored in
the exercise definition. If no correct solution coincides with the one of the
student, a feedback module selects the solution which is most similar to the
one proposed by the student, and elaborates an appropriate feedback.

More similar to our application Wodel-Edu, in [11], the authors use
mutation to generate exercises for state machines for a massive open online
course. However, [11] is work in progress and the authors aim at building the
system by hand. This could be done automatically with Wodel. Moreover,
Wodel-Edu can be applied to generating exercises in any domain.

Altogether, the analysed environments for the automatic generation of
exercises are domain-specific (e.g., programming, UML diagrams or state
machines). Hence, a framework like Wodel-Edu which allows the domain-
independent automatic generation of exercises is novel.

35



7. Conclusions and Future Work

This paper has presented Wodel, a DSL to specify domain-specific mu-
tation operators and mutation programs. Wodel is domain-independent as
it can be applied to models of any meta-model, and its development environ-
ment can be extended for different applications. In this work, we showed an
application consisting in a domain-independent framework for the generation
of exercises based on the mutation of a correct solution. Although we have
illustrated the framework by generating exercises on finite automata, it can
also be used to generate exercises in other domains (e.g., UML class diagram
or electronic circuits).

In our preliminary user study of Wodel-Edu, the participants consid-
ered that the generated exercises are useful in automata training. However,
some aspects related to the usability of the web application user interface
and the understandability of the exercises should be improved, in particular
for the exercises with multiple emendation options. The evaluation has also
been useful to identify some issues that should be taken into account in future
evaluations or in real uses of the generated exercises, namely: the exercises
should be listed in increasing order of complexity (first the easiest ones);
in exercises with multiple emendation options, it is easier for students if all
correct emendation options are grouped in a single checkbox; and exercises
should include a clear description of what is required from the student.

We are currently working in enriching the languages of the Wodel-Edu
plugin to support more complex learning environments (e.g., including gam-
ification), exercises (e.g., interactive exercises where students have to correct
an incorrect solution), and platforms (e.g., by enabling the resolution of ex-
ercises from mobiles devices and tablets [39], or for their integration with
learning environments like Moodle6). Currently, modelDraw only permits
the representation of graph-like visual languages, but in the future, we may
extend it for other kinds of visual languages like Nassi-Shneiderman dia-
grams. We are also extending Wodel with support for mutation libraries,
and the option to generate mutants which do not conform to the seed meta-
model (e.g., negating the meta-model OCL invariants or violating reference
cardinalities). We would also like to explore graphical ways to specify or
represent parts of Wodel programs, like mutation block dependencies.

In the long term, we plan to develop Wodel post-processors for other

6https://moodle.org/
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areas like model-based testing and evolutionary computation, which might
trigger improvements in Wodel itself. We also plan to perform new user
studies with more participants, where we will compare the results obtained
in exercises generated with Wodel-Edu and exercises made by hand.
Acknowledgements. Work supported by the Spanish Ministry of Economy
and Competitivity (TIN2014-52129-R) and the Madrid Region (S2013/ICE-
3006).
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- A domain-specific language solution for reactive process control pro-
gramming with hierarchical components, Computer Languages, Systems
& Structures 39 (3) (2013) 67–94. doi:10.1016/j.cl.2013.02.001.

[5] A. Popovic, I. Lukovic, V. Dimitrieski, V. Djukic, A DSL for modeling
application-specific functionalities of business applications, Computer
Languages, Systems & Structures 43 (2015) 69–95. doi:10.1016/j.

cl.2015.03.003.

[6] D. M. Groenewegen, E. Visser, Integration of data validation and user
interface concerns in a DSL for web applications, Software and System
Modeling 12 (1) (2013) 35–52. doi:10.1007/s10270-010-0173-9.

[7] H. B. Saritas, G. Kardas, A model driven architecture for the develop-
ment of smart card software, Computer Languages, Systems & Struc-
tures 40 (2) (2014) 53–72. doi:10.1016/j.cl.2014.02.001.

37

http://dx.doi.org/10.1016/j.cl.2015.09.002
http://dx.doi.org/10.1016/j.cl.2015.09.002
http://dx.doi.org/10.1016/j.cl.2013.02.001
http://dx.doi.org/10.1016/j.cl.2015.03.003
http://dx.doi.org/10.1016/j.cl.2015.03.003
http://dx.doi.org/10.1007/s10270-010-0173-9
http://dx.doi.org/10.1016/j.cl.2014.02.001


[8] L. M. Rose, M. Herrmannsdoerfer, S. Mazanek, P. V. Gorp, S. Buchwald,
T. Horn, E. Kalnina, A. Koch, K. Lano, B. Schätz, M. Wimmer, Graph
and model transformation tools for model migration - empirical results
from the transformation tool contest, Software and System Modeling
13 (1) (2014) 323–359. doi:10.1007/s10270-012-0245-0.

[9] T. Mens, P. V. Gorp, A taxonomy of model transformation, Electr.
Notes Theor. Comput. Sci. 152 (2006) 125–142.

[10] V. Aranega, J. Mottu, A. Etien, T. Degueule, B. Baudry, J. Dekeyser,
Towards an automation of the mutation analysis dedicated to model
transformation, Software Testing, Verification & Reliability 25 (5-7)
(2015) 653–683. doi:10.1002/stvr.1532.

[11] D. Sadigh, S. A. Seshia, M. Gupta, Automating exercise generation:
A step towards meeting the MOOC challenge for embedded systems,
in: Proc. Workshop on Embedded Systems Education (WESE), ACM,
2013, pp. 2:1–2:8.

[12] C. Henard, M. Papadakis, Y. L. Traon, Mutalog: A tool for mutating
logic formulas, in: Proc. International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), IEEE CS, 2014, pp.
399–404.

[13] A. Bartel, B. Baudry, F. Munoz, J. Klein, T. Mouelhi, Y. L. Traon,
Model driven mutation applied to adaptative systems testing, in: Proc.
Mutation Analysis Workshop, 2011, pp. 408–413.
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