
Mutation Testing for DSLs (Tool Demo)
Pablo Gómez-Abajo
pablo.gomeza@uam.es

Universidad Autónoma de Madrid
Spain

Esther Guerra
esther.guerra@uam.es

Universidad Autónoma de Madrid
Spain

Juan de Lara
juan.delara@uam.es

Universidad Autónoma de Madrid
Spain

Mercedes G. Merayo
mgmerayo@fdi.ucm.es

Universidad Complutense de Madrid
Spain

Abstract
Mutation testing (MT) is a well-known technique to evaluate
and improve the quality of a given test-suite. While sev-
eral MT tools exist for traditional programming languages,
there is no systematic method to create MT tools for domain-
specific languages (DSLs). To improve this situation, we
present Wodel-Test, a domain-independent tool to synthesize
MT tools for arbitrary DSLs.

CCSConcepts • Software and its engineering→Model-
driven software engineering;Domain specific languages.

Keywords Domain-specific languages, mutation testing

ACM Reference Format:
Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G.
Merayo. 2019. Mutation Testing for DSLs (Tool Demo). In Proceed-
ings of the 17th ACM SIGPLAN International Workshop on Domain-
Specific Modeling (DSM ’19), October 20, 2019, Athens, Greece. ACM,
NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3358501.3361234

1 Introduction
Mutation testing (MT) is used to evaluate and improve the
quality of a test-suite for a given program. It involves in-
jecting artificial faults on the program to create mutants,
which are executed against the test-suite. When the fault is
detected, the mutant is killed, otherwise, it is alive. Equiva-
lent mutants are live mutants that cannot be distinguished
from the original program, so no test case can kill them. The
ratio of artificial faults detected by the test-suite over the
total number of non-equivalent mutants gives the mutation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DSM ’19, October 20, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6984-8/19/10. . . $15.00
https://doi.org/10.1145/3358501.3361234

score [7, 12]. The lower the mutation score, the worse the
quality of the test suite, and more test cases should be added.
Domain-specific languages (DSLs) are increasingly used,

e.g., in process modelling [2], web applications [5], or dis-
tributed reactive systems [13]. While MT is commonly used
for traditional programming languages like Java [4, 17, 19],
C [1, 16], or C++ [6, 18], creating a MT tool is costly and
error-prone, mainly due to the need to parse and modify
the programs of the target language, and to define the mu-
tation operators. As MT tools are normally programmed by
hand, their creation is not “cost-effective” for their usage
over DSLs, usually with a smaller base of users and fewer
developers (e.g., see the MT tools for logic formulae [14] or
adaptive systems [3]). Due to the high variety of DSLs, we
propose Wodel-Test [11], a domain-independent framework
to generate MT tools which can help to solve these problems.

2 Defining MT Tools with Wodel-Test
Wodel-Test relies on the DSL Wodel to define model muta-
tions for the domain meta-model [9]. Wodel has mutation
primitives to create, clone, select, modify, retype and delete
model elements. Listing 1 shows a mutation operator im-
plemented in Wodel for the Finite Automata (FA) domain.
Line 2 states the domain meta-model "http://fa.com", externally
defined with Ecore [21]. The rts mutation operator creates
a final State named f in line 5, and modifies the target of a
random Transition in line 6 to point to the State created in line 5.
The exhaustive mode indicated in line 1 generates all possi-
ble mutants for the given mutation operators. Alternatively,
the user can set the number of mutants to generate and the
process is stochastic. The Wodel program is applied over a
set of seed models conformant to the given meta-model.

1 generate exhaustive mutants in "out/" from "models/"
2 metamodel "http://fa.com"
3 with blocks {
4 rts {
5 s = create State with {name = 'f', isFinal = true}
6 modify target tar from one Transition to s } }

Listing 1. A Wodel mutation operator for FA.

Wodel defines an extension point for specific post-processing
applications [10]. We have used this extension point to im-
plement a domain-independent application called Wodel-Test

https://doi.org/10.1145/3358501.3361234
https://doi.org/10.1145/3358501.3361234

DSM ’19, October 20, 2019, Athens, Greece Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G. Merayo

1

2 3 4

5

6

Figure 1.MT tool for Finite Automata generated with Wodel-Test.

that generates MT tools for arbitrary DSLs. The process in-
volves two user roles: the MT tool creator and the tester. The
former provides the MT tool specification, from which a MT
tool is generated. The latter uses the generated MT tool to
perform the MT process on test-suites of DSL programs.
The first step is the MT tool creation. For this purpose,

Wodel-Test provides an extension point where the MT tool
creator has to include the following three specifications:
• language support: This includes the DSL meta-model, a
transformation to parse the textual representation of pro-
grams into models, and a transformation to serialize the
models into text. For our running example, these transfor-
mations are not needed, as we directly work with models.

• mutation support: This consists of the definition of muta-
tion operators for the DSL in Wodel. For our example, we
have included the 15 mutation operators devised in [8, 20].
The Wodel tool computes metrics for mutation footprints
which show the coverage of the DSL meta-model [10],
hence helping to identify omissions and lack of coverage.
In addition, Wodel-Test provides an extension point to cus-
tomize synctactic and semantic equivalence criteria for
the specific DSL. The synctactic equivalence criteria detect
if the extracted model-based representation of two pro-
grams have the same objects and relations. The semantic
equivalence criteria detect whether two artifacts behave in
the same way, e.g., two automata that accept the same lan-
guage are semantically equivalent. Our example includes
the FA equivalence detection algorithm [15].

• execution support: This is the code needed to compile the
programs of the DSL and run the test suite.
Wodel-Test takes this specification as input and automati-

cally synthesizes a MT tool for the DSL. The tester can use
the generated MT tool providing the program under test and
a set of test cases. Once executed the MT process, the MT
tool yields some reports which include the mutation score.

3 Generated MT Tool
Fig. 1 shows the MT tool generated for FA. First, the tester se-
lects the FAmodels under test (label 1). Next, he/she provides
a test-suite for them, which consists of a set of plain text
files with pair values: an input string and a flag indicating
whether the FA accepts the string (label 2). Label 3 shows one
test case for the FA named dfa0, and label 4 shows one seed
FA model. Then, the tester can select the mutation operators
to apply, among the ones specified by the MT tool creator. As
a result of the MT process, the tool shows the global results
(e.g., a mutation score of 35.25%) in label 5. The view with
label 6 summarizes the mutants detected by each test case,
i.e., if the result of processing the test input string by the
mutant FA is different to the original result, then the mutant
is killed, otherwise the mutant is alive. The view uses the
colors red/green to indicate whether a test passed or failed,
and enables their filtering. Another view not shown in Fig. 1
lists the generated mutants by each mutation operator.
We have used Wodel-Test to build MT tools for Java and

ATL [11]. Videos illustrating their use are available at https:
//youtu.be/jbLxW2AOY3A. The specification of the MT tool
for FA has 144 LOC (305 LOC for Java, 327 LOC for ATL),
from which we obtained fully-functional MT tools.

4 Conclusions and Future Work
This paper presented Wodel-Test, a tool to build MT tools for
arbitrary DSLs. We reckon our tool can ease the creation of
MT tools for the MDE community. In the future, we plan to
create MT tools for other DSLs.

Acknowledgments
Work funded by the Spanish Ministry of Science (RTI2018-
095255-B-I00) and the Madrid Region (S2018/TCS-4314).

https://youtu.be/jbLxW2AOY3A
https://youtu.be/jbLxW2AOY3A

Mutation Testing for DSLs (Tool Demo) DSM ’19, October 20, 2019, Athens, Greece

References
[1] Hiralal Agrawal, Richard A. DeMillo, Bob Hathaway, William Hsu,

Wynne Hsu, E.W. Krauser, R.J. Martin, Aditya P. Mathur, and Eugene
Spafford. 1989. Design of Mutant Operators for the C Programming
Language. Technical Report. Purdue University.

[2] Thomas Allweyer. 2010. BPMN 2.0. BoD.
[3] Alexandre Bartel, Benoit Baudry, Freddy Munoz, Jacques Klein, Tejed-

dine Mouelhi, and Yves Le Traon. 2011. Model Driven Mutation
Applied to Adaptative Systems Testing. In Proc. Mutation Analysis
Workshop. 408–413.

[4] Jeremy S. Bradbury, James R. Cordy, and Juergen Dingel. 2006. Mu-
tation Operators for Concurrent Java (J2SE 5.0). In 2nd Workshop
on Mutation Analysis (Mutation 2006 - ISSRE Workshops 2006). 83–92.
https://doi.org/10.1109/MUTATION.2006.10

[5] Stefano Ceri, Piero Fraternali, and Aldo Bongio. 2000. Web Modeling
Language (WebML): a modeling language for designing Web sites.
Computer Networks 33, 1 (2000), 137 – 157. https://doi.org/10.1016/
S1389-1286(00)00040-2

[6] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-
Lozano, Antonio García-Domínguez, and Juan José Domínguez-
Jiménez. 2017. Assessment of class mutation operators for C++ with
the MuCPP mutation system. Information & Software Technology 81
(2017), 169–184. https://doi.org/10.1016/j.infsof.2016.07.002

[7] Alex Denisov and Stanislav Pankevich. 2018. Mull It Over: Mutation
Testing Based on LLVM. In IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). 25–31.

[8] Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara. 2016. Wodel:
a domain-specific language for model mutation. In Proceedings of the
31st ACM/SIGAPP Symposium on Applied Computing, SAC. ACM, 1968–
1973. https://doi.org/10.1145/2851613.2851751

[9] Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara. 2017. A domain-
specific language for model mutation and its application to the au-
tomated generation of exercises. Computer Languages, Systems &
Structures 49 (2017), 152 – 173.

[10] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G.
Merayo. 2018. A tool for domain-independent model mutation. Science
of Computer Programming 163 (2018), 85–92.

[11] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G.
Merayo. 2018. Towards a model-driven engineering solution for lan-
guage independent mutation testing. In Jornadas de Ingeniería del

Software y Bases de Datos (JISBD). Biblioteca digital SISTEDES, 4pps.
[12] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming

Zhang. 2018. An Extensible, Regular-expression-based Tool for Multi-
language Mutant Generation. In International Conference on Software
Engineering (ICSE). ACM, New York, NY, USA, 25–28.

[13] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
2016. ThingML: a language and code generation framework for het-
erogeneous targets. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, Saint-
Malo, France, October 2-7, 2016. 125–135. http://dl.acm.org/citation.
cfm?id=2976812

[14] Christopher Henard, Mike Papadakis, and Yves Le Traon. 2014. Mu-
taLog: A Tool for Mutating Logic Formulas. In Proc. International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE CS, 399–404.

[15] John E. Hopcroft and Richard M. Karp. 1971. A Linear Algorithm for
Testing Equivalence of Finite Automata. Technical Report 0. Dept. of
Computer Science, Cornell U.

[16] Yue Jia and Mark Harman. 2008. MILU: A Customizable, Runtime-
Optimized Higher Order Mutation Testing Tool for the Full C Lan-
guage. In Testing: Academic Industrial Conference - Practice and Re-
search Techniques (taic part 2008). 94–98. https://doi.org/10.1109/TAIC-
PART.2008.18

[17] Sun-Woo Kim, John A. Clark, and John A. McDermid. 2001. Inves-
tigating the effectiveness of object-oriented testing strategies using
the mutation method. Softw. Test., Verif. Reliab. 11, 3 (2001), 207–225.
https://doi.org/10.1002/stvr.238

[18] Markus Kusano and Chao Wang. 2013. CCmutator: A Mutation Gener-
ator for Concurrency Constructs in Multithreaded C/C++ Applications.
In IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE Press, 722–725. https://doi.org/10.1109/ASE.2013.
6693142

[19] Yu-Seung Ma, Yong Rae Kwon, and Jeff Offutt. 2002. Inter-Class Muta-
tion Operators for Java. In 13th International Symposium on Software
Reliability Engineering (ISSRE). 352–366. https://doi.org/10.1109/ISSRE.
2002.1173287

[20] Dorsa Sadigh, Sanjit A. Seshia, and Mona Gupta. 2013. Automating
Exercise Generation: A Step Towards Meeting the MOOC Challenge
for Embedded Systems. In WESE. ACM, Article 2, 8 pages.

[21] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008. EMF: eclipse modeling framework. Pearson Education.

https://doi.org/10.1109/MUTATION.2006.10
https://doi.org/10.1016/S1389-1286(00)00040-2
https://doi.org/10.1016/S1389-1286(00)00040-2
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1145/2851613.2851751
http://dl.acm.org/citation.cfm?id=2976812
http://dl.acm.org/citation.cfm?id=2976812
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1002/stvr.238
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/ISSRE.2002.1173287
https://doi.org/10.1109/ISSRE.2002.1173287

	Abstract
	1 Introduction
	2 Defining MT Tools with Wodel-Test
	3 Generated MT Tool
	4 Conclusions and Future Work
	Acknowledgments
	References

