
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Model-Driven Engineering with Domain-Specific Meta-Modelling
Languages

Juan de Lara⋆, Esther Guerra, Jesús Sánchez Cuadrado

Universidad Autónoma de Madrid (Spain),
e-mail: {Juan.deLara, Esther.Guerra, Jesus.Sanchez.Cuadrado}@uam.es

Received: date / Revised version: date

Abstract Domain-specific modelling languages are
normally defined through general-purpose meta-
modelling languages like the MOF. While this is satis-
factory for many Model-Driven Engineering projects,
several researchers have identified the need for domain-
specific meta-modelling (DSMM) languages. These pro-
vide customised domain-specific meta-modelling primi-
tives aimed at the definition of modelling languages for
a specific domain, as well as the construction of meta-
model families. Unfortunately, current approaches to
DSMM rely on ad-hoc methods which add unnecessary
complexity to the realization of DSMM in practice.

Hence, the goal of this paper is to simplify the defini-
tion and usage of DSMM languages. For this purpose, we
apply multi-level meta-modelling for the systematic engi-
neering of DSMM architectures. Our method integrates
techniques to control the meta-modelling primitives of-
fered to the users of the DSMM languages, provides a
flexible approach to define textual concrete syntaxes for
DSMM languages, and extends existing model manage-
ment languages (for model-to-model transformation, in-
place transformation and code generation) to work in
a multi-level setting, thus enabling the practical use of
DSMM in Model-Driven Engineering.

As a proof of concept, we report on a working imple-
mentation of these ideas in the MetaDepth tool.

Key words Model-Driven Engineering – Multi-Level
Meta-Modelling – Domain-Specific Meta-Modelling –
Textual Concrete Syntax – MetaDepth

1 Introduction

Model-Driven Engineering (MDE) promotes an active
use of models throughout the software development pro-
cess, leading to an automated generation of the final

⋆ Present address: Computer Science Department, Univer-
sidad Autónoma de Madrid, 28049 Madrid (Spain)

application. These models are sometimes defined using
general-purpose modelling languages like the UML, but
for restricted, well-known domains, it is also frequent the
use of Domain-Specific Modelling Languages (DSMLs)
tailored to the application domain and objectives of the
project [28].

In current MDE practice, DSMLs are built by the
language designer using a meta-model expressed with
a general-purpose meta-modelling language, like the
MOF [37]. This meta-model describes the instances that
the users of the language can build at the immediate
meta-level below. Thus, DSMLs usually comprise two
meta-levels: the definition of the DSML and its usage.

More recently, several researchers [25,50] have
pointed out the utility of using Domain-Specific Meta-
Modelling (DSMM) languages as a means to provide
domain-specific meta-modelling primitives to customize
families of similar DSMLs. For example, DSMM lan-
guages have been designed for expressing traceabil-
ity [17], variability [50], to define and instantiate feature
models [16], to define domain-specific process modelling
notations [25] and DSML profiles [32].

A DSMM language spans three meta-levels: (1) the
definition of the DSMM language for a specific domain,
(2) the definition of the DSML by using the domain-
specific constructs provided by the DSMM language, and
(3) the usage of the DSML. However, existing approaches
to DSMM are generally based on a two meta-level set-
ting and different workarounds, like the definition of ad-
hoc “promotion” transformations between models and
meta-models [46], or the merging of models at two adja-
cent meta-levels into a single one (see Figure 1). These
workarounds make the adoption of DSMM cumbersome
in practice, adding unnecessary complexity to the result-
ing models [11] or to the supporting architecture. More-
over, currently, there is no general DSMM framework
with integrated support for model management opera-
tions across the different meta-levels, e.g., to manipulate
models in-place, to define model-to-model transforma-
tions or to generate code.

DSMM

defi

DSML

defi

Model

(a) (b) (c)

DSMM

defi

DSML defi

(as model) Model

DSML

defi

(as meta-

model)

pr
om

ot
io

n DSMM

defi

DSML

defi
Model

«inst.

of»

Fig. 1 Some alternatives to define DSMM architectures. (a)
Promotion transformations. (b) Merging the DSML meta-
model and its instances in a single meta-level, to emulate the
“instance of” relation. (c) Use of multi-level meta-modelling.

In this paper we propose multi-level meta-modelling
as the underlying concept behind DSMM, and discuss
mechanisms to facilitate the construction of DSMM lan-
guages. Multi-level meta-modelling was originally pro-
posed in the seminal work of Atkinson and Kühne [4,8,
11]. It allows the definition of deep languages [4] that can
be instantiated in more than one meta-level. In this way,
at each meta-level, the constructed models are instances
of the upper meta-level but also meta-models with re-
spect to the meta-level below. In our context, this means
that a DSML is naturally defined as an instance of a
DSMM language and, at the same time, it acts as a meta-
model for lower meta-levels (i.e., it defines a language),
as shown in Figure 1(c). Moreover, our framework pro-
vides: (i) means to customize the meta-modelling fea-
tures that will be offered to the users of the DSMM lan-
guages, (ii) a flexible way to define textual concrete syn-
taxes at every meta-level, and (iii) model management
languages (for code generation, in-place and model-to-
model transformations) able to work in a multi-level set-
ting, thus enabling the use of DSMM in MDE projects.
The framework is supported by our multi-level meta-
modelling tool MetaDepth [12], and is integrated with
the Epsilon languages for model manipulation [18], mod-
ified to work in a multi-level setting.

This paper is an extended version of [14], where we
have included more detailed discussions, a more realis-
tic and challenging running example, a formalization of
the main multi-level meta-modelling concepts, an im-
proved language to define the concrete syntax, exten-
sions to consider multi-level target domains in model-
to-model transformations, as well as multi-level support
for new model management languages besides model-
to-model transformation (which was presented in [14]):
for model manipulation with the Epsilon Object Lan-
guage (EOL) [29] and for code generation with the Ep-
silon Generation Language (EGL) [40].

The rest of this paper is organized as follows. Sec-
tion 2 overviews multi-level meta-modelling and its ap-
plication to DSMM, identifying some challenges. Sec-
tion 3 presents the MetaDepth tool, which will be
used to illustrate the concepts introduced in this work.
Then, the identified challenges are addressed in the next

sections: Section 4 explains how to customise the meta-
modelling facilities offered by the DSMM languages, Sec-
tion 5 discusses how to define a concrete syntax for the
DSMLs, and Section 6 shows how to manipulate mod-
els in a multi-level setting. Finally, Section 7 discusses
related research and Section 8 concludes the paper. An
appendix presents a formalization of the main concepts
in multi-level meta-modelling and shows the complete
listings of Section 5.

2 Deep Meta-Modelling for Domain-Specific
Meta-Modelling

In DSMM, users are not given the full power of a general-
purpose meta-modelling language, but a more suitable
meta-modelling language that contains primitives of the
domain and is restricted for a particular meta-modelling
task or application. This section provides a motivat-
ing example for DSMM languages (subsection 2.1), pro-
poses a solution based on deep meta-modelling (subsec-
tion 2.2), and compares this solution with the existing
alternative approaches summarized in Figure 1 (subsec-
tion 2.3). The section concludes by identifying the chal-
lenges that need to be addressed to realize our solution.

2.1 Domain-specific process modelling

Assume we need to build process models for particu-
lar domains [24,25]. Our aim is therefore to define a
meta-modelling language facilitating the construction
of process modelling languages for specialized applica-
tion areas, like software engineering, logistics or educa-
tion. A simplified definition of such a meta-modelling
language is model (a) in Figure 2. This DSMM lan-
guage defines a class Task, which can be carried out
by actors (class Performer) and can produce and con-
sume Artefacts. Tasks can be connected through dif-
ferent kinds of Gateways, to account for different rela-
tion semantics: sequential (Seq) and parallel (Fork and
Join).

We can use this language to define a DSML for
educational processes, which will be used by educa-
tors to plan learning paths for different courses. A
general-purpose process modelling language would have
a too broad scope for this endeavour, whereas a spe-
cialized modelling language can provide educators with
concepts close to educational processes, like Lesson,
Project, Evaluation, Self-Study, Tutorial
class, Laboratory class, and so on. Model (b)
in Figure 2 shows the definition of a simplified version
of such a DSML. The process model defines the set of
possible educational tasks (lessons, projects and evalua-
tion) and the allowed plannings (lessons can be given in
sequence using NextClass, or in parallel with projects
and evaluations using Split and then Sync to synchro-
nize). Moreover, in every educational process, the final

2

Task

Resource

Performer

Artefact

Gateway

Seq Join Fork

ins

outs

*

src

tar

perfBy

*

*

*

Lesson:Task

name=“lesson”

Project:Task

name=“lab project”

Evaluation:Task

name=“evaluation”

final = true

s:src

t:tar

Split:

Fork

NextClass

:Seq

*

s:src t:tar
t:tar

s:src

t:tar

s:src

(b)

(a)

(c)

DSMM

language

definition

DSMM

language

usage

=

DSML

definition

DSML

usage

name@1: String

initial:boolean=false

final:boolean=false

start: Date

duration: double

ProcessModel@2

Analyst:

Performer

Designer:

Performer

Programmer:

Performer

fa1: Analysis fd1: Design fd2: Design cd1: Coding

John: Analyst Ann: Designer Peter: Programmer

SETask: Task Inner:Seq
SoftwareEngineer

: Performer
*
actor: perfBy

Analysis: Task

name=“analysis”

notes: String

Design: Task

name=“design”

Coding: Task

name=“coding”

A2D:Seq D2C:Seq

:src :tar :tar :src

:src

:tar

ProgLanguage

name: String

version: String

expertise

* *

uses

name=”John”

notes=“joined in 96”

name=“Ann”

notes=“C/S design experience”
name=“Peter”

notes=“still CS student”

Java: ProgLanguage

name= “Java”

version=“1.6”

initial=true

start=“1/07/2012”

duration=10

:A2D :Inner

start=“11/07/2012”

duration=5
start=“17/07/2012”

duration=10

start=“28/07/12”

duration=10

:D2C

(e)

(d)

:Split

:Sync

intro: Lesson

initial=true

start=“1/10/12”

duration=3

l1 : Lesson

start=“08/10/12”

duration=6

exam: Evaluation

start=“22/10/12”

duration=3

pr1 : Project

start=“08/10/12”

duration=6

name: String

@1 @1

@0 @0

Level 2

Level 1

Level 0

t:tar

s:src

Sync:

Join

s:src

t:tar

s:src

t:tar

:s

:t

:t

:s

:s

:t

Fig. 2 Definition of a DSMM language for domain-specific process modelling (a). Definition of an educational process mod-
elling language (b). A software engineering process modelling language (d). Model instances (c) and (e).

task is always some kind of evaluation. For simplicity,
the model does not include performers (students, pro-
fessors) or artefacts (course material, grades). To build
this DSML, we have only used primitives of the domain
(i.e., we have created instances of classes defined in the
meta-level above, like Task and Seq). These domain-
specific primitives make process modelling more natural
than using a general-purpose meta-modelling language
like the MOF [20,25]. The model in Figure 2 (b) actually
defines a DSML for the educational domain, therefore
we can use it to plan the activities in a course (model
in Figure 2 (c)).

The defined DSMM language can be used to build
DSMLs for other domains, like software process mod-
elling, as shown in model (d) in Figure 2. This DSML
includes a vocabulary for the different tasks relevant
for software engineering, the different performer roles,
and the resulting products (the latter have been omit-
ted for space constraints). In this case, the definition of
the DSML uses more advanced meta-modelling primi-
tives, like inheritance and the definition of abstract en-
tities (e.g., SoftwareEngineer). Moreover, it defines
new attribute types (e.g., notes) and concepts (e.g.,

ProgLanguage) that are not available in the definition
of the DSMM language because they are specific to this
particular application (i.e., software engineering) within
the process modelling domain. This customized DSML
can then be used to build project development plans like
the one in the model of Figure 2 (e).

DSMM languages are expected to be defined by
model engineers with knowledge of the domain, who
know the fundamental features needed by different ap-
plications within the domain (e.g., “task” and “gateway”
are basic concepts in most kinds of process models). In
this process, he may need to analyse existing DSMLs to
identify commonalities, which would be added to the
DSMM language. Then, DSML designers use DSMM
languages to build DSMLs in the particular areas they
are experts in (e.g., software process models). The same
person can play both roles of DSMM language designer
and DSML designer. Finally, the users of the DSMLs are
the end users in the specific application domain (e.g.,
project managers or educators).

3

2.2 Multi-level modelling

The previous example shows that the definition of a
DSML spans three meta-levels: the model in Figure 2
(b) is an instance of the model in Figure 2 (a), and
the model in Figure 2 (c) is an instance of the one in
Figure 2 (b). The model in Figure 2 (b) defines the
types of tasks to be used in educational applications
(Lesson, Project, Evaluation), which are them-
selves instances of meta-class Task defined in the model
of Figure 2 (a). Therefore, it is natural to use a multi-
level approach to support the definition and usage of
our DSMM language, as this approach natively supports
instantiation across several meta-levels without recur-
ring to artificial workarounds, like ad-hoc transforma-
tions or manual encodings of several meta-levels into a
single one, as shown in Figures 1(a) and (b). In a multi-
level framework, elements retain both a type facet that
allows their instantiation in the next meta-level, and an
instance facet as they are instances of an element at the
meta-level above. Thus, model elements become clab-
jects (from the union of the terms “class” and “object”)
enabling a more uniform way of modelling [8].

DSMM languages normally comprise three meta-
levels. To enforce this architecture in a multi-level frame-
work, we can use deep characterization through the con-
cept of potency [8,9]. The potency is a natural number
(including zero) that can be attached to models1, clab-
jects, fields2 and associations. If an element is not explic-
itly given a potency, it receives the one of its immediate
container. The potency of the instances of an element is
equal to the potency of the element minus one. Finally,
when the potency of an element reaches zero, it cannot
be instantiated in lower meta-levels, becoming a pure
instance. Thus, the definition of our DSMM language
has potency 2, it gets instantiated into models with po-
tency 1 (middle models), and the instances of these have
potency 0 and therefore cannot be instantiated in sub-
sequent meta-levels. We use the notation ’@X’ to mean
“potency X”, and it can be attached to models, clab-
jects, associations and fields. In this way, the DSMM
language user is effectively performing domain-specific
meta-modelling because he builds models with potency
1 (the DSML), which are instantiated as models of po-
tency 0.

In two-level meta-modelling frameworks, a class can
only define the properties of its immediate instances,
one meta-level below. On the other hand, in multi-level
frameworks, the potency can be used to define the prop-
erties of (indirect) clabject instances, several meta-levels
below. In this way, potency for fields works in a similar
way as for clabjects. For example, in our DSMM lan-
guage, all task instances at meta-level 1 have a name.

1 Potency for models is termed “level” in [8].
2 In a multi-level setting, we use the term “field” instead

of “attribute” or “slot” as fields have both a type and an
instance facet.

Hence, Task declares a field name with potency 1 (in-
dicated by ’@1’) so that it will receive a value one meta-
level below. On the other hand, all indirect instances of
Task two meta-levels below (i.e., the instances of in-
stances of Task) have a start date, a duration, and
can be declared to be initial and final. Thus, these
fields are declared in the model of Figure 2 (a) with po-
tency 2, received from the enclosing model (and there-
fore omitted in the figure). Similar to clabjects, fields
with potency 2 are automatically instantiated at potency
1 when the owner clabject is instantiated (e.g., final
gets instantiated in clabject Evaluation in the model
of Figure 2 (b)); then, the field is instantiated once more
at potency 0 (e.g., in clabject exam). Fields with potency
equal to zero are pure instances and must be assigned
a value, like field start in all clabjects of model (c) in
Figure 2. If no value is assigned to a field with potency
zero, then a default value declared in the upper meta-
levels is sought, like in the case of field final in the
clabjects of model (c). Fields with potency bigger than
zero may receive a value or not. In the latter case, the
field is not shown in the model. In the first case, the
value is the default for its instances. This means that,
in the example, all instances of Evaluation are final
unless they explicitly override the default true value.

In addition, it may be necessary to extend the meta-
modelling primitives initially offered by the DSMM lan-
guage with new properties and concepts specific to the
particular application within the domain (e.g., specific
primitives to software processes in the process modelling
domain). Moreover, it is sometimes desirable to offer
users more sophisticated meta-modelling facilities to ob-
tain simpler models. For example, model (d) in Figure 2
makes use of inheritance to define common properties for
software engineers (in clabject SoftwareEngineer)
and software engineering tasks (in clabject SETask).
Both clabjects are declared abstract, hence they can-
not be instantiated. Software engineers are enriched
with an additional field notes, and a new concept
ProgLanguage to represent programming languages
has been included. These new fields and concepts could
not be foreseen by the DSMM language designer, as the
DSMM language is meant to be applicable to related
but nonetheless different applications within the domain.
However, these extensions are only possible if the DSMM
language provides facilities to define new clabjects, as-
sociations and multiplicities.

Multi-level frameworks can naturally support these
extensions by using a dual ontological/linguistic typ-
ing for the model elements. This Orthogonal Classifica-
tion Architecture (OCA) was originally proposed in [10].
The ontological typing is a relation within the domain,
and refers to the type of which an element is instance.
For example, the ontological type of Analysis is Task
(see model (d) in Figure 2), and the ontological type of
John is Analyst (see model (e) in Figure 2). Thus,
ontological meta-modelling is concerned with describ-

4

ing the concepts in a certain domain and their proper-
ties [10]. In its turn, the linguistic type of an element
refers to the meta-modelling primitive used to create
the element. For example, the linguistic type of Task,
Analysis and Analyst is Clabject, while the linguis-
tic type of version is Field. All elements in the top-
most model (model (a) in Figure 2) and some elements in
the domain-specific meta-models (e.g., ProgLanguage)
may not have ontological type. In contrast, all elements
have a linguistic type.

One can interpret the union of the three models in
each column of Figure 2 as being conformant to a lin-
guistic meta-model, as Figure 3 shows3. In our approach,
a linguistic extension, or simply an extension4 is an ele-
ment with a linguistic type but without any ontological
type, like clabject ProgLanguage in model (d) of Fig-
ure 2, or the subject field in clabject Evaluation in
Figure 3. Ontological instance models of a model M are
allowed to have linguistic extensions (i.e., elements with
no ontological typing), and are still considered valid in-
stances of M . This is the case of the model with potency
1 in Figure 3, which is an ontological instance of the one
with potency 2. A formal definition of these concepts is
presented in Appendix A.

Clabject
* supers

Instance Type

potency: int

name@1: String

start: Date

Task

name=“evaluation”

subject: String

Evaluation: Task

@1

subject=“Maths”

start=“22/10/12”

exam: Evaluation

@0

o
n
to

lo
g

ic
a
l

in
s
ta

n
c
e
O

f

*

*

@2

ontological

instanceOf

Linguistic meta-model

*

Field

«
lin

g
u
is

ti
c

in

s
ta

n
c
e

O
f»

ontological

instanceOf

Fig. 3 DSMM language definition and usage using 3 levels
and dual typing.

The dual ontological/linguistic typing is very conve-
nient for DSMM as it makes available standard meta-
modelling facilities at each meta-level. Otherwise, these
facilities would need to be replicated at every meta-level
bigger than zero.

3 The linguistic meta-model shown in Figure 3 is a simpli-
fication of a prototypical one. We will provide more details
for the linguistic meta-model of our MetaDepth tool in Sec-
tion 4. The models in this figure are also simplified/adapted
with respect to Figure 2.

4 Linguistic extension comes from the fact that we use the
linguistic meta-model to create an element, which therefore
has only linguistic type, but no ontological type.

2.3 Comparison with other approaches and challenges

As illustrated in Figures 1(a) and 1(b), so far there have
been two main alternative proposals for implementing
DSMM, both relying in just two meta-levels: (i) emulat-
ing the instance-of relation using a regular association,
and (ii) promotion transformations. Next, we introduce
these approaches and highlight the differences with our
proposal.

2.3.1 Emulation of the instance-of relation. Figure 4
shows how to define part of our example DSMM lan-
guage using two meta-levels and encoding the instance-
of relation as a regular association.

name: String

TaskType

ClassType

Feature

*

* supers
*

Type facet

Explicit modelling of meta-modelling facilities

name= “evaluation”

Evaluation: Task

subject: Feature

«instance of»

Instance
type *

start: Date

TaskInstance
ttype *

Instance facet

Slot
ftype *

*

start= “22/10/12”

exam: TaskInstance

maths: Slot

«instance of»

Fig. 4 Defining a DSMM language using 2 levels.

This solution requires each class in the language
meta-model to be split into two: one for the type
facet (e.g., TaskType) and one for the instance facet
(e.g., TaskInstance), related through a regular as-
sociation representing the instance-of relation (e.g.,
ttype). The type and instance facets of classes need
to be made explicit through additional classes in the
meta-model (ClassType and Instance). More im-
portantly, this solution requires to explicitly model the
desired meta-modelling facilities within the language
meta-model (e.g., classes Feature and Slot), and
manually encoding the machinery to emulate built-
in support for instantiation (i.e., type conformance,
data types and suitable data values, inheritance and
its semantics, etc.) and for constraint checking within
model-based tools. This is challenging as regular model-
based tools (e.g., model transformation languages) are
not prepared to interpret this instantiation relation
built ad-hoc within the same meta-level. As a sim-
ple example, to obtain all instances of Evaluation
in Figure 4, we need to write the OCL expres-
sion TaskInstance.allInstances->select(i|
i.ttype.name = ’evaluation’). Thus, we are
indeed loosely type-checking that a Task is actually
an Evaluation. In the presence of advanced features,

5

such as inheritance, these expressions become more
complex. Using our solution based on multi-level meta-
modelling shown in Figure 3, we just need to write
Evaluation.allInstances. Finally, the creation
of objects with instance facet, like TaskInstance,
require explicitly creating Slots to assign a value to
the features defined by the task type, probably using
an imperative language, and subsequently checking that
slots contain correct values according to the feature’s
data type. In our approach, these facilities are automat-
ically provided by the multi-level framework, they do
not have to be built ad-hoc.

2.3.2 Promotion transformations. Figure 5 shows the
encoding of part of our DSMM language for educational
process modelling using two levels and promotion trans-
formations.

name: String

ClassType

Feature

*

* supers

*

Type facet

Explicit modelling of
meta-modelling facilities

name= “evaluation”

Evaluation: Task

start= “22/10/12”

subject= “Maths”

exam:Evaluation

subject: StringFeature

Evaluation

start: Date

subject: String

«instance of»

String

Feature

«instance of»

(a)

(b)

(c)

(d)

Task

Fig. 5 Defining a DSMM language using 2 levels and a pro-
motion transformation.

In this case, the language meta-model (tagged
(a)) has to include classes to simulate the definition
of elements with type facet at the next meta-level
(model tagged (b)). That is, the meta-model has to
include classes to model types (ClassType), features
of different kinds (e.g., StringFeature), inheritance
(supers), constraints, multiplicities and so on. Then,
a DSML is defined as an instance of this meta-model
(model tagged (b)). From this definition, we need to de-
rive a meta-model (tagged (c)) that can be instantiated
to create models, instances of the DSML. We call this
process promotion transformation. In our example, it
involves creating a meta-class for each Task instance
and an attribute for each Feature instance. In general,
it involves the transformation of the constraints, mul-
tiplicities and inheritance relationships included in the
DSML definition model as well. Moreover, sometimes,
the promotion transformation also needs to encode do-
main information; for instance, the fact that any kind
of task should have a start date is encoded by the
promotion transformation, which adds this attribute to

Evaluation. This means that we may need to build
different promotion transformations depending on the
particular DSMM language. This is so as, while fields
with potency 1 (like name) are explicitly present in the
meta-model (a), the fields with potency 2 are not. Hence,
the transformation needs to explicitly create fields with
potency 2 (like start) in the corresponding elements in
model (c), and this depends on the particular domain
that model (a) is representing. Alternatively, one could
use some mechanism, like annotations or aspects, to
inject simple domain information in the transformation.

A promotion-based approach does not need to make
explicit in meta-model (a) the instance facet of elements
(as in Figure 4). However, there is a disconnection be-
tween models (b) and (c), as the type-facet information
is missing in (b), while the instance-facet information
is missing in (c). This may lead to consistency prob-
lems. For example, model (b) has only instance facet,
and therefore it does not support linguistic extensions
(like the definition of new meta-classes). Any linguistic
extension should be made directly on meta-model (c).
This could be a problem if model (b) is modified and
therefore meta-model (c) needs to be regenerated, as the
manual modifications made to (c) could be overwritten.
On the other hand, meta-model (c) only has type facet,
and hence cannot access to class attributes like name
in model (b). Our proposal based on multi-level meta-
modelling does not have these problems, as any model
can be seen as an instance of the meta-level above, but
can also be instantiated.

Moreover, the price to pay in a promotion-based
approach is the need to create an ad-hoc promotion
transformation for each DSML. Intuitively, a promo-
tion transformation adds a type facet to the elements
in model (b). This is automatic in multi-level meta-
modelling frameworks, where there is no need to promote
models into meta-models.

2.3.3 Multi-level meta-modelling: challenges. Alto-
gether, an architecture supporting deep meta-modelling
facilitates the construction of DSMM languages: the
meta-model with potency 2 in Figure 3 is simpler than
those in Figures 4 and 5. Moreover, the solutions based
on two levels become increasingly involved in scenarios
using more than three meta-levels. On the contrary,
multi-level frameworks offer a generic solution which is
independent of the number of meta-levels.

However, domain-specific meta-modelling using a
multi-level approach also adds some challenges, like:

– Mechanisms are needed to control the linguistic ex-
tensions offered by the DSMM languages, as not any
extension may be appropriate for every domain, or
we may wish to restrict the extension capabilities of-
fered to the users.

– To be usable in practice, a suitable concrete syntax
for the DSMM languages (which will be used at meta-
level 1) and for the DSMLs defined with them (which

6

will be used at meta-level 0) is needed. Ideally, both
syntaxes should be specified once together with the
DSMM language definition, and it should be possible
to refine or extend them to take into account the par-
ticularities of specific applications within domains.

– To enable the integration of DSMM in MDE projects,
appropriate model management languages able to
work in this multi-level setting are needed, no-
tably for code generation, in-place or model-to-model
transformations.

We will tackle these three challenges in Sections 4, 5
and 6. Before, we introduce our MetaDepth tool in the
next section, as we will use it to illustrate our solutions.

3 Domain-Specific Meta-Modelling with
MetaDepth

MetaDepth [12,14,15] is a multi-level meta-modelling
tool that supports textual modelling and implements
deep characterization through potency. Listing 1 shows
the definition of our DSMM language for domain-
specific process models in MetaDepth. The top-model
ProcessModel lacks ontological type and hence is de-
clared using the keyword Model (line 1). This model de-
fines clabjects like Task, Resource or Performer us-
ing the keyword Node. Potencies are specified using the
“@” symbol. If an element does not specify a potency, it
takes the one from its enclosing container. There is no re-
striction on the number of meta-levels thatMetaDepth
can handle, even though in this paper we restrict to 3, as
this is the most common scenario for DSMM languages.

Constraints can be defined using Java or the Epsilon
Object Language (EOL), a variant of OCL that permits
encoding side effects [29]. For example, the constraint
minDuration in line 13 demands a positive duration
for the tasks. It receives potency 2 from the model, there-
fore it will be evaluated two meta-levels below.

1 Model ProcessModel@2 {
2 Node Task {
3 name@1 : String[0..1];
4 initial : boolean = false;
5 final : boolean = false;
6 start : Date;
7 duration : double;
8

9 perfBy : Performer[∗];
10 ins : Artefact[∗];
11 outs : Artefact[∗];
12

13 minDuration: $ self.duration>0 $
14 }
15

16 abstract Node Resource {}
17 Node Performer : Resource {
18 name : String;
19 }
20 Node Artefact : Resource {}
21

22 abstract Node Gateway {
23 src : Task[∗];
24 tar : Task[∗];
25 }
26 Node Seq : Gateway {}
27 Node Join : Gateway {}

28 Node Fork : Gateway {}
29 }

Listing 1 Defining the DSMM language for domain-specific
process modelling in MetaDepth (model (a) in Figure 2).

Listing 2 shows the usage of the previous DSMM lan-
guage to define the software process model shown in Fig-
ure 2 (model (d)), enriched with some constraints that
will be evaluated at level 0. The instantiated model has
ProcessModel as ontological type, which is used in-
stead of the keyword Model in line 1. Line 2 declares an
instance of Task named SETask, which is used as the
base clabject from which all types of software engineer-
ing tasks inherit (Analysis, Design and Coding).
Clabject SETask is declared abstract, therefore it can-
not be instantiated at the next meta-level.

1 ProcessModel SoftwareProcess {
2 abstract Task SETask {
3 actor : SoftwareEngineer[∗] {perfBy};
4 }
5

6 Task Analysis : SETask {
7 name = ”requirements, analysis”;
8 analyst : $ self.actor.forAll(a | a.isKindOf(Analyst)) $
9 }

10

11 Task Design : SETask {
12 name = ”high−level design, low−level design”;
13 designer : $ self.actor.forAll(a | a.isKindOf(Designer)) $
14 }
15

16 Task Coding : SETask {
17 name = ”coding, unit testing”;
18 uses : ProgLanguage[∗];
19 programmer : $ self.actor.forAll(a | a.isKindOf(Programmer)) $
20 }
21

22 Node ProgLanguage {
23 name : String;
24 version : String;
25 }
26

27 abstract Performer SoftwareEngineer {
28 notes : String;
29 expertise : ProgLanguage[∗];
30 }
31 Performer Analyst : SoftwareEngineer {}
32 Performer Designer : SoftwareEngineer {}
33 Performer Programmer : SoftwareEngineer {}
34

35 Seq A2D {
36 from: Analysis{src};
37 to : Design{tar};
38 }
39 Seq D2C {
40 from : Design{src};
41 to : Coding{tar};
42 }
43 Seq Inner {
44 from : SETask{src};
45 to : SETask{tar};
46 equal : $ self.from.type=self.to.type $
47 }
48

49 instOnce : $ Analysis.allInstances().size()>0
50 and Design.allInstances().size()>0
51 and Coding.allInstances().size()>0 $
52 }

Listing 2 Using the DSMM language defined in Listing 1
(model (d) in Figure 2, extended with some constraints).

By default, the meta-models built with a DSMM lan-
guage can be extended with new primitives (i.e., new
clabjects), and any element in the meta-models can

7

be extended with new features. For instance, clabject
ProgLanguage in line 22 has no ontological type, clab-
jects Coding and SoftwareEngineer declare collec-
tions of ProgLanguage in lines 18 and 29, and clab-
ject SoftwareEngineer in line 27 is an abstract in-
stance of Performer which declares a new field notes
in line 28. In addition, three Seq instances are created:
A2D to move from an Analysis task into a Design
task (line 35), D2C to move from a Design task into
a Coding task (line 39), and Inner to move between
tasks of the same type (line 43). This latter constraint,
modelled in line 46, makes use of the field type from the
MetaDepth API, which will be explained in the next
section.

MetaDepth allows the definition of constraints lo-
cal to clabjects or at the model level. For example, each
Task instance defines a constraint regarding the role of
the involved actors, so that Analysis tasks can only
be performed by Analysts (line 8), Design tasks can
only be performed by Designers (line 13), and so on.
Constraint instOnce in lines 49–51 has a global con-
text, and demands at least one instance of Analysis,
Design and Coding in the instance models at the next
meta-level. All these constraints have potency 1. For con-
straints, the potency indicates the number of meta-levels
below at which a constraint will be evaluated. Hence con-
straints with potency 1 are evaluated at the next meta-
level, while constraints with potency 2 are evaluated 2
meta-levels below.

References are instantiated similar to clabjects, as
illustrated in Figure 6. The top meta-level, with po-
tency 2, shows the definition of a reference src allow-
ing the connection of Seq instances to zero or more
Task instances. The next meta-level shows an instance
of the reference src, named from, connecting A2D and
Analysis. The from reference has potency 1, and
hence has a type facet. This means that it can be added
a multiplicity (1..1 in this case) and be instantiated in
the next meta-level. The figure shows to the right the
concrete syntax for this definition, where from is de-
clared as a reference type (from: Analysis). In this
example, we can omit the multiplicity definition [1..1]
(as we have done in Listing 2, line 36) because it is the
default in MetaDepth. Finally, the fact that from is
an instance of src is indicated between curly braces.

Seq Task *

A2D: Seq Analysis: Task

src

from: src

1..1

next: A2D a1 :Analysis
:from

Model ProcessModel@2 {

 Node Task { … }

 Node Seq { src: Task[*]; … }

… }

…

 Task Analysis : SETask { … }

 Seq A2D{ from: Analysis[1..1]{src}; … }

…

…

 Analysis a1{ … }

 A2D next { from= a1; … }

…

ProcessModel@2

Fig. 6 Instantiation of references.

4 Customising the Meta-Modelling Facilities

Designers need to control the way in which the designed
DSMM languages will be used and extended, as not any
extension may be appropriate for a certain language. For
this purpose, we propose two control mechanisms: the
use of modifiers to identify the non-extendable language
elements, and the use of constraints to ensure a certain
extensibility degree.

More in detail, our first proposal to fine tune the ex-
tensibility of a DSMM language is the use of the strict
modifier to tag non-extensible elements. In this way, if
the model with the DSMM language definition is tagged
as strict, it will not be possible to add clabjects with-
out an ontological typing in the next meta-level. If a
clabject is tagged strict, its instances are forbidden
to define new fields, references or constraints. For exam-
ple, if we tag the Performer node strict in Listing 1,
we cannot define the new field notes in line 28 of List-
ing 2. Similarly, if we mark the ProcessModel model
strict in Listing 1, we cannot define the new clabject
ProgLanguage in Listing 2, because it has no ontolog-
ical typing.

If an element is not tagged strict, then we may
need to control its allowed linguistic extensions. For
example, we may ask each Resource instance at po-
tency 1 to declare some field acting as identifier (in
MetaDepth this is indicated with the {id} modifier),
which will receive a value at potency 0. Even though we
could declare a field in Resource at meta-level 2 with
potency 2, here we wish to let the decision of the field
name and type (e.g., String or int) to the DSML
designer at meta-level 1. This is useful, as this iden-
tifier could be defined to be the social security num-
ber for Performer instances, and an internal code for
Artefact instances. For this purpose, we propose defin-
ing constraints that can make use of facilities of the lin-
guistic meta-model, like seamless navigation to upper
meta-levels and access to linguistic extensions of model
elements.

Figure 7 shows a simplified version of MetaDepth’s
linguistic meta-model. It contains the main fields and
methods that can be accessed uniformly from within con-
straints and model management operations. The meta-
model only shows the elements used in this paper, fur-
ther classes and methods have been omitted.

The base class in the hierarchy is Element, from
which any element that may have both type and in-
stance facets inherits. It has name, potency, cardinality
and strictness. The name property acts as unique
identifier within its container, and if no value is ex-
plicitly given, then it is automatically generated. The
QualifiedElement class contains fields and declares
the derived properties references, which holds the
fields with non-primitive type, and newFields, to
hold the linguistic extensions (i.e., fields without on-
tological type). Its method references returns all

8

Node

Field

Model Edge

QualifiedElement

Element

0..1 type

potency: int

maximum: int

minimum: int

strict: boolean

name: String

*

fields

Classifier

general

specific

*

*

c
o

n
ta

in
e
r

extended: Model[*]

imported: Model[*]

references(s: String): Field[*]

value(f: Field): Object

setValue(f: Field, v: Object)

getValue(): Object

isID(): boolean

*

/allAncestors
*

/allFields *

/references

*

/newFields
*

createInstance(t: String) : Object

refineType(indirect: String,

 direct: String): boolean abstract: boolean

<<from dataTypes>>

FieldValue

fieldValue

core

Fig. 7 MetaDepth’s linguistic meta-model (simplified
core package).

instances of the given reference type, while value
returns the value of a given field. A Classifier
can participate in inheritance relations as defined by
the general/specific reference. The leaf mod-
elling elements are Models, Nodes, Edges (similar to
bidirectional associative classes) and Fields. Method
createInstance in class Model is used to instantiate
a given type, while refineType checks if a given type
is (direct or indirect) instance of another one, and is
useful in reflective operations for the creation of indirect
instances (more details will be given in Section 6.1).
The concept of “clabject”, in the sense of Atkinson and
Kühne [8], corresponds to class Node in this linguistic
meta-model. Nodes can be abstract. All subclasses of
Element inherit a cardinality (attributes maximum
and minimum) to restrict the minimum and maximum
number of instances within an enclosing container. For
multi-valued fields, it restricts the multiplicity of their
values; for nodes, it restricts the number of instances in
a model; and for models, the number of instance models
within the system.

Method getValue in class Field returns the field
value and isID checks if the field is an identifier. Field
values are stored in subclasses of FieldValue, as shown
in Figure 8. Values can be atomic or collections, and
we distinguish primitive data types, enumeration types
(not shown) and linguistic types. Object references are
kept by class ObjectValue, which owns a reference to
a QualifiedElement. The latter are also considered
types by their conformance to the Type interface.

When invoking an operation over a clabject within
Epsilon, the engine first checks if it is a built-in OCL
operation, like allInstances. Otherwise, we use a trans-
parent reflection mechanism to access the method in
the underlying MetaDepth framework. For usability
reasons, a method without parameters can be invoked
similar to accessing a field; this is how we have im-
plemented all derived fields in the meta-model of Fig-
ure 7. If the name of a field in the model collides with

FieldValue

isReadOnly: boolean
isSet: boolean

DataType

<<interface>>
Type

<<interface>>
Instance

Primitive
DataType

LingType

getType(): Type
getValue(): Object

Node
LingType

Edge
LingType

<<from core>>
Element

…

dataTypes

AtomicValue Collection
Value

DateType DoubleType…

DateValue DoubleValue
Object
Value…

<<from core>>
QualifiedElement

valuevalue:doublevalue:Calendar

…

Fig. 8 MetaDepth’s data types (excerpt of dataTypes
package).

a name in the linguistic meta-model, we can prefix this
name by “ˆ” to refer to the linguistic one. For instance,
if we have the declaration Task Analysis { name
= ‘‘requirements and analysis’’; }, writing
Analysis.name returns “requirements and analysis”,
while Analysis.ˆname returns the object identifier
“Analysis”.

As an example of accessing the linguistic meta-model
API within a constraint, the next snippet shows a con-
straint existsId which demands all Resource in-
stances to be extended with some field tagged as iden-
tifier, so that its value is unique at the next meta-level.
The constraint has potency 1 and hence it will be evalu-
ated in direct instances of Resource. In this way, when
evaluated in a specific instance, the method newFields
will obtain a collection with the new fields declared in
the instance, and the method isID will check if the field
is an identifier.

1 abstract Node Resource {
2 ...
3 existsId@1: $ self.newFields().exists(f | f.isID()) $
4 }

To satisfy this constraint, Listing 2 needs to be mod-
ified by adding an identifier field to all instances of
Resource as follows:

1 abstract Performer SoftwareEngineer {
2 sSN : String{id};
3 ...
4 }

This kind of constraints is also very useful to con-
trol the instantiation of references. For example, in the
process model DSMM language, instances of Seq should
contain exactly one instance of src and one instance of
tar, both with a maximum cardinality of one, like in
A2D, D2C and Inner in Listing 2. In their turn, Fork
instances should have at most one instance of src with
a maximum cardinality of one, while in Join instances
the same restriction applies to the tar instances.

The next snippet shows how to declare these con-
straints. In MetaDepth, constraints can be declared
in the scope of models and then be assigned to sev-
eral elements, promoting reuse of the constraint code.

9

Thus, we declare two constraints singleSource and
singleTarget with potency 1, which we assign to
Seq and Fork on the one hand, and to Seq and Join
on the other. The method references belongs to the
linguistic meta-model and returns the collection of in-
stances of the given reference defined by a clabject, while
getMaximum returns the maximum cardinality declared
by a field.

1 Model ProcessModel@2{
2 ...
3 singleSource@1(Seq, Fork): $ self.references(”src”).size()=1 and
4 self.references(”src”).forAll(r | r.getMaximum() = 1) $
5 singleTarget@1(Seq, Join): $ self.references(”tar”).size()=1 and
6 self.references(”tar”).forAll(r | r.getMaximum() = 1) $
7 }

As a main difference with standard OCL constraints
on a two meta-level setting [38], our constraints can be
assigned a potency bigger than one, and hence be evalu-
ated several meta-levels below. This is possible by using
what we call indirect types. For example, the direct type
of fa1 in model (e) in Figure 2 is Analysis, whereas
its indirect type at the top meta-level is Task. If we
write a constraint at meta-level 2 including the expres-
sion Task.allInstances(), evaluating the expres-
sion at meta-level 1 yields the direct instances of Task,
whereas its evaluation at meta-level 0 returns the in-
stances of every direct instance of Task (which we call
indirect instances).

Another difference of our constraints with respect to
those of standard OCL is that we can use constraints to
assess a certain structure in the type facet of clabjects.
Thus, our constraints can use methods and attributes of
the linguistic meta-model, like type. In contrast, stan-
dard OCL constrains normally work with the instance
facet of elements only.

As the next section will show, we can also control
the allowed linguistic extensions syntactically through
the design of an appropriate concrete syntax, resulting
in a more fine-grained control.

5 Designing the Concrete Textual Syntax

Even though deep meta-modelling enables DSMM, our
goal is building DSMM languages, and therefore we need
to design a concrete syntax for them (in addition to
their abstract syntax). In the previous section, we used
the default textual concrete syntax that MetaDepth
makes available to model uniformly at every meta-
level. However, this syntax may lead to verbose model
specifications, while we may prefer a more compact,
domain-specific representation. For example, instead of
the heavy instantiation syntax of Seq clabjects, where
the from and to references have to be instantiated as
well (see lines 35–47 of Listing 2), we may offer a lighter
syntax like: seq a2d: Analysis -> Design.

If the designer only had to define the concrete syn-
tax of the DSMM language and use it at the immediate
meta-level below, he might use existing standard tools

for describing textual syntaxes like Xtext5, TCS [27] or
ANTLR6. However, as Figure 9 illustrates, a multi-level
architecture poses some challenges that these tools are
not able to deal with, since there is the need to define
a syntax for the DSMM language as well as for the lan-
guages built with it. In this way, when defining a DSMM
language, the designer has to provide both the syntax of
the models at meta-level 1 (i.e., of the domain-specific
meta-models) and the syntax of the models at level 0
(i.e., their instances). Moreover, it should be possible
to refine the syntax initially defined for the models at
meta-level 0, to describe the syntax of any defined lin-
guistic extension. This can be necessary when new con-
structs for a specific application area are introduced, like
ProgLanguage in software process modelling.

DSMM model @2

DSML model @1

Model @0

Syntax

Templates @1

Syntax

Templates @2

Refining

Templates @1

defined on defines syntax for

Fig. 9 Defining the concrete syntax in a multi-level setting.

Following this idea, in MetaDepth we have cre-
ated a template-based language to define textual con-
crete syntaxes for multiple meta-levels. Using this lan-
guage, the syntax of each clabject is defined through a
template which has a potency controlling the meta-level
at which the template will be applied. Thus, the syn-
tax template with potency 1 will be used in the next
meta-level, and the one with potency 2 will be used two
meta-levels below.

Figure 10 shows an excerpt of the meta-model that
describes the abstract syntax of our template lan-
guage. A syntax definition is composed of templates
(TemplateRule) that refer to a model or a clabject
(ModelTemplate and NodeTemplate respectively,
which have a reference to a Model or a Node, omit-
ted in the figure for simplicity). There must be a tem-
plate associated to the model, which acts as entry point
of the syntactic definition. A template consists of one
or more sequences of template elements. If there are
multiple sequences, they are considered alternatives. A
TemplateElement specifies how to parse and serialize
a model element. There are five types. A Group aggre-
gates a sequence of elements that are repeated one or

5 http://www.eclipse.org/Xtext/
6 http://www.antlr.org/

10

more times, zero or more times, or that are optional (this
is controlled by the kind attribute). A Token specifies a
keyword or a symbol. A TemplateRef is a “call” to an-
other template, and the result can be assigned to a field
of the clabject associated to the template. A FieldRef
references a field, and a recognizer is generated accord-
ing to its type. For instance, for primitive fields, if the
field type is integer, only values satisfying the [0-9]+
regular expression will be valid. In the case of references
(i.e., non-primitive fields), an identifier is expected and
an element of a compatible type is looked up in the name
space (i.e., the current model plus all the imported mod-
els).

TemplateElement

TemplateRef

Group

TemplateRule

Token

value: String

Linguistic kind: GKind

1

potency: int

name: String

Sequence
1..*

Id Imports Supers Extends

1..*

Semantic

Action
*

1

… ModelTemplate NodeTemplate

…

RedefinedField

newName : String

SetAttribute

attrName : String

value: String

FieldRef

name: String

Fig. 10 Meta-model of the abstract syntax of the template
language.

We have also defined several linguistic constructs to
interact with the linguistic layer of models (see Figure 7)
and control the possible linguistic extensions. These con-
structs are summarized in Table 1, and they will be ex-
plained in detail in Section 5.3.

Keywords for models:
Extends Allows extending a model
Imports Allows importing a model
LingElements Allows defining clabjects without ontological type

(linguistic extensions)
Constraints Allows defining new constraints (linguistic ex.)
Keywords for clabjects:
Extends Allows extending a clabject
Id Assigns the identifier of a new clabject
Type Allows using the direct type of the template (per-

mits reuse across the inheritance hierarchy)
Typename Allows using an indirect type of the template
Fields Allows defining new fields (linguistic ex.)
Constraints Allows defining new constraints (linguistic ex.)
Supers Allows defining inheritance relations (linguistic ex.)
FieldValues Allows assigning values to new fields (see Fields)
Instances Allows instantiation of new clabjects (see LingEle-

ments)

Table 1 Keywords to access MetaDepth’s linguistic layer.

Finally, templates may have semantic actions and
syntactic predicates associated to the template elements.
An action is triggered when some element of the tem-
plate is recognized. For instance, one of such actions
triggers the assignment of a literal value to a property

when a given token is recognized (SetAttribute in
the meta-model). The property can belong to a model
or to the linguistic meta-model (see Figure 7). In the lat-
ter case, its name should be prefixed by “ˆ”. A syntactic
predicate specifies how elements should be parsed or seri-
alised. For instance, the stdInt predicate indicates that
the parsed value of a given field should have an integer
format, even if the property type is, e.g., string. Auto-
matic conversions are performed when needed. Table 2
gathers the semantic actions and predicates currently
supported.

5.1 Defining a concrete syntax to specify meta-models

Our template language allows the creation of a tex-
tual concrete syntax specifically designed to build meta-
models for some domain. As an example, Listing 3 shows
an excerpt of the definition of the concrete syntax for our
example DSMM language, that is, a specialized syntax
to describe process models at level 1.

1 Syntax DSPM MM for ProcessModel [”.pm mm”] {
2 model template Process Syntax@1 for ProcessModel
3 ”process” ˆId ”{”
4 (:TaskTemplate | :PerformerTemplate | :SeqTemplate)∗
5 ”}”;
6

7 node template TaskTemplate@1 for Task
8 (”final”)? ”task” ˆId #name
9 with ”final” set final = true ;

10

11 node template PerformerTemplate@1 for Performer
12 ”performer” #name
13 with name is id ;
14

15 node template SeqTemplate@1 for Seq
16 ”seq” ˆId ”:” #src ”−>” #tar
17 with src redefinedBy from
18 tar redefinedBy to;
19 }

Listing 3 Defining the concrete syntax for meta-level 1.

First of all, in line 1, the DSMMmeta-model to which
the syntax applies (the ProcessModel model) is de-
clared, as well as the file extension for this language
(pm mm). All templates have potency 1, therefore they
correspond to the syntax of the DSMM language (i.e.,
the templates will be used in the next meta-level). In par-
ticular, lines 2–5 define the syntax of the instances of the
ProcessModel model. A syntax definition must have
a model template acting as entry syntax rule to ensure
that a model is created. Afterwards, lines 7–9 define the
syntax of the clabject Task. The keyword ˆId stands
for the identifier of an element (see line 8), whereas the
fields of a clabject can be referenced by using the prefix
“#” (like name in line 8). Templates can refer to other
templates, as in line 4, where it is indicated that the
instances of ProcessModel can contain zero or more
Task, Performer or Seq instances (we omit the tem-
plates for Fork and Join for brevity). The underscore
in “ :TaskTemplate” means that the element created by
the referred template does not need to be assigned to
any property, which is typically the case for templates

11

Name Type Syntax Meaning
set Action "token" set property = value A property is set to a value when a token is recognized

redefinedBy Action x redefinedBy y A reference type x is instantiated by reference y, which has also type facet
stdIdentifier Pred. property is stdIdentifier A string property is recognized as an identifier (i.e., without quotes)

stdInt Pred. property is stdInt A property is parsed as an integer and converted to the property type (e.g.,
Integer to Float conversion)

stdDecimal Pred. property is stdDecimal A property is parsed as a decimal and converted to the property type (e.g.,
Decimal to String conversion)

fieldIsId Pred. x is id A field is the key of the clabject: the linguistic Id is automatically set
openBlock Pred. "begin" openBlock Establishes that a token opens a block for layout purposes
closeBlock Pred. "end" closeBlock Establishes that a token closes a block

Table 2 Semantic actions and syntactic predicates supported in MetaDepth.

called from the root model template. The with key-
word (lines 9, 13 and 17) introduces semantic actions
and predicates. In the first case (line 9), the semantic
action sets the final property to true when the “final”
token is recognized7. In the second case (line 13), the
predicate establishes that the value given to the name
field will be used as the identifier (at the linguistic level)
for the created clabject. In the third case (line 17), there
are two semantic actions triggered when the identifier
of a clabject assignable to src and tar is read. In this
case, both references are instantiated creating the from
and to references, as explained in Section 3.

Using this syntactic template, we can specify the
meta-model for the DSML to describe software engineer-
ing processes as shown in Listing 4. This is a concrete
syntax specifically designed to build DSMLs for process
modelling. In this simplified example, we have defined
three types of Tasks: Analysis, Design, and Coding
(lines 2–4), which are put in sequence by two Seq clab-
jects: a2d and d2c (lines 10–11). Additionally, three in-
stances of Performer are declared in lines 6–8.

1 process SoftwareProcess {
2 task Analysis ”requirements and analysis”
3 task Design ”high and low level design”
4 task Coding ”coding and unit testing”
5

6 performer Analyst
7 performer Designer
8 performer Programmer
9

10 seq a2d: Analysis −> Design
11 seq d2c: Design −> Coding
12 }

Listing 4 Using the concrete syntax defined in Listing 3.

5.2 Defining a default concrete syntax for models

The user of the DSML also needs to be provided with
a concrete syntax to describe the models at level 0. Ini-
tially, we define this concrete syntax at meta-level 2,
when the DSMM is defined, and reuse it for all DSMLs
in the domain.

Listing 5 declares such a syntax for our example. In
this case, models will be stored in a separate file with
extension pm, and all templates have potency 2. At this

7 Although final has potency 2, it can be assigned a value
at level 1, acting as default value for all instances at level 0.

point, however, we do not know the model type for which
the syntax is defined, but we only know that it will be
an indirect instance of ProcessModel (line 2). To ac-
cess the name of the concrete type we use the keyword
ˆTypename, which is interpreted by the parser to check
that the recognized identifier refers to a type that is an
instance of ProcessModel (line 3). The same applies
to the definition of templates for clabjects (lines 8, 12
and 15). This definition provides a generic syntax for
models at level 0, but specifically adapted for process
models. As we will show later, it is possible to further
specialize it for specific kinds of process models (e.g., in
the software process or educational domains).

1 Syntax DeepDSPM for ProcessModel [”.pm”] {
2 model template DeepProcess@2 for ”ProcessModel”
3 ˆTypename ˆId ”{”
4 (:DeepTask | :DeepPerformer | :DeepSeq)∗
5 ”}” ;
6

7 node template DeepTask@2 for Task
8 ”∗” ˆTypename (”!”)? ˆId (”by” #perfBy)?
9 with ”!” set initial = true ;

10

11 node template DeepPerformer@2 for Performer
12 ”−” ˆTypename ˆId ;
13

14 node template DeepSeq@2 for Seq
15 ˆTypename ”:” #src ”−>” #tar;
16 }

Listing 5 Defining the concrete syntax for meta-level 0.

Listing 6 shows the definition of a SoftwareProcess
model using this syntax. By default, the syntax supports
Java-like comments (lines 2, 6 and 10), but the style
and symbols for delimiting comments can be configured.
For instance, for one-line OCL-like comments and no
multi-line comments, we add the following definition to
line 1 in Listing 5: “... [“.pm”], comments[one-line=“- -”,

multi-line=off] {”.
1 SoftwareProcess MyProcess {
2 // People involved
3 − Programmer Richard
4 − Designer Steve
5 − Analyst Bill
6 // Tasks
7 ∗ Analysis doAnalysis by Bill
8 ∗ Design designProduct by Steve
9 ∗ Coding codeEverything by Richard

10 // Sequence of steps
11 a2d: doAnalysis −> designProduct
12 d2c: designProduct −> codeEverything
13 }

Listing 6 Using the concrete syntax defined in Listing 6.

12

Finally, similar to [19], we can use a single template
to define the syntax of several clabjects in the same in-
heritance hierarchy. Thus, if a clabject does not have an
associated template, we use the template of its closest
ancestor in the inheritance hierarchy. A useful keyword
in this case is Type, which gets substituted by the name
of the clabject. For example, given a clabject “B” inher-
iting from “A”, and a template attached to “A” with
body “ˆType ˆId”, then writing “A a” creates an A
instance, while writing “B b” creates a B instance. As a
difference with ˆTypename, ˆType is used for direct
types (i.e., at adjacent meta-levels) expecting exactly
A or B. Its usefulness is a more compact description
of the textual concrete syntax by taking advantage of
the inheritance relation, so that e.g. we could define a
unique template for all Gateway subtypes. In contrast,
ˆTypename is used for indirect types (i.e., at non adja-
cent meta-levels) and induces a checking that the name
typed in place of ˆTypename is an indirect instance of
the clabject the template is attached to. Therefore, it
makes use of the instantiation relation.

5.3 Customising the meta-modelling facilities at the
syntax level

In Section 4, we showed how to customise the extensi-
bility of a DSMM language at the abstract syntax level
by identifying strict (i.e., non-extensible) elements and
constraining the kind of allowed extensions. These de-
sign decisions should be reflected in the concrete syntax
of the DSMM language as well, to discard forbidden ex-
tensions at the concrete syntax level, before than at the
abstract syntax level.

Our template language provides access to the linguis-
tic layer of MetaDepth through the keywords sum-
marized in Table 1. Some of these keywords allow se-
lecting and including linguistic elements at the con-
crete syntax level of the DSMM language. These ex-
tensions can be accessed using the following keywords:
ˆFields to allow declaring new fields with no onto-
logical type, ˆLingElements to allow new clabjects
with no ontological type, ˆConstraints for declar-
ing constraints (using EOL as constraint language), and
ˆSupers to permit defining new inheritance relations
for clabjects. Moreover, two additional keywords al-
low defining how these extensions should be instanti-
ated at level 0: ˆFieldValues for field instances and
ˆInstances for clabject instances. Finally, with the
“set” semantic action, it is possible to set properties ac-
cessing the API of the linguistic meta-model in Figure 7.

For example, the concrete syntax definition of List-
ing 3 can be extended to allow defining new linguistic
types like ProgLanguage, inheritance relationships be-
tween Task types, and new fields and constraints for
tasks. Listing 7 shows the syntactic template that allows
these linguistic extensions when creating DSMLs for pro-

cess modelling, and Listing 8 shows its use. Line 5 in List-
ing 7 uses ˆLingElements to allow defining new clab-
jects as part of a process model, so that we can define the
clabject ProgLanguage in Listing 8 (lines 19–22). Line
9 in Listing 7 uses ˆSupers to automatically include the
syntax (and associated semantics) to inherit from other
tasks. This allows Analysis, Design and Coding to
inherit from SETask in Listing 8 (lines 6, 10, 14). In
lines 10–11 and 17–18 of Listing 7, we use ˆFields and
ˆConstraints to permit adding new fields and con-
straints to tasks and performers. For instance, in List-
ing 8, new fields are added to the SoftwareEngineer
performer in lines 25–26, while constraints are added to
every task to check that a proper performer is assigned.
The semantic actions in lines 13 and 20 of Listing 7 set
the clabject as abstract (by accessing the linguistic layer)
when the token “abstract” is read.

1 Syntax DSPM MM for ProcessModel [”.pm mm”] {
2 model template DSPM MM Syntax@1 for ”ProcessModel”
3 ”process” ˆId ”{”
4 (:TaskTemplate | :PerformerTemplate | :SeqTemplate |
5 ˆLingElements)+
6 ”}” ;
7

8 node template TaskTemplate@1 for Task
9 (”abstract”)? ”task” ˆId #name ˆSupers ”{”

10 ˆFields
11 ˆConstraints
12 ”}”
13 with ”abstract” set ˆabstract = true ;
14

15 node template PerformerTemplate@1 for Performer
16 (”abstract”)? ”performer” ˆId #name ˆSupers ”{”
17 ˆFields
18 ˆConstraints
19 ”}” ;
20 with ”abstract” set ˆabstract = true ;
21

22 node template SeqTemplate@1 for Seq
23 ”seq” ˆId ”:” #src ”−>” #tar
24 with src redefinedBy from
25 tar redefinedBy to ;
26 }

Listing 7 Defining a concrete syntax for meta-level 1 which
allows linguistic extensions.

1 process SoftwareProcess {
2 abstract task SETask ”preparation” {
3 actor : SoftwareEngineer[∗] { perfBy };
4 }
5

6 task Analysis ”requirements and analysis” : SETask {
7 analyst : $ self.actor.forAll(a | a.isKindOf(Analyst)) $;
8 }
9

10 task Design ”high and low level design” : SETask {
11 designer : $ self.actor.forAll(a | a.isKindOf(Designer)) $;
12 }
13

14 task Coding ”coding and unit testing” : SETask {
15 uses : ProgLanguage[∗];
16 programmer : $ self.actor.forAll(a | a.isKindOf(Programmer)) $;
17 }
18

19 Node ProgLanguage {
20 name : String;
21 version : String;
22 }
23

24 abstract performer SoftwareEngineer ”se” {
25 notes : String;
26 expertise : ProgLanguage[∗];
27 }
28

13

29 performer Analyst ”analyst” : SoftwareEngineer {}
30 performer Designer ”designer” : SoftwareEngineer {}
31 performer Programmer ”programmer” : SoftwareEngineer {}
32

33 seq a2d: Analysis −> Design
34 seq d2c: Design −> Coding
35 seq inner: SETask −> SETask
36 }

Listing 8 Using the concrete syntax defined in Listing 7.

5.4 Refining the syntax of domain-specific modelling
languages

Even if the DSMM language defines a concrete syntax
for the instances of the created domain-specific meta-
models, the builder of a particular domain-specific meta-
model may wish to design a special syntax for some of
the clabjects or for the linguistic extensions. For exam-
ple, he may want to design a template especially for
SoftwareEngineer so that the languages the engineer
is expert in can be specified. For this purpose, either a
new syntax is defined from scratch, or the default syn-
tax is refined. Listing 9 shows the latter option applied
to the running example.

1 Syntax SE for SoftwareEngineering imports DeepDSPM [”.se”] {
2

3 override node template DeepPerformer@2 for Performer
4 :AnalystTemplate | :DesignerTemplate | :ProgrammerTemplate ;
5

6 node template AnalystTemplate@1 for Analyst
7 ”−” ˆId ”the” ”analyst” ”knows” #expertise (”,” #expertise)∗
8

9 node template DesignerTemplate@1 for Designer
10 ”−” ˆId ”the” ”designer” ”likes” #expertise (”,” #expertise)∗
11

12 node template ProgrammerTemplate@1 for Programmer
13 ”−” ˆId ”the” ”programmer” ”masters” #expertise (”,” #expertise)∗
14 }

Listing 9 Refining the syntax for software engineering
processes at level 1.

This syntax definition overrides the default template
for Performers (line 3), calling to specific templates for
Analyst, Designer and Programmer. This permits a
reference to the expertise field defined at level 1, also
using a different syntax in each case. Listing 10 shows
the use of the refined part of the syntax.

1 SoftwareProcess MyProcess {
2 // People involved
3 − Richard the programmer masters Lisp, C
4 − Steve the designer likes Objective−C
5 − Bill the analyst knows Basic
6

7 ...
8 }

Listing 10 Using the refined concrete syntax in Listing 9.

5.5 Implementation remarks

As an implementation note, the presented template lan-
guage for specifying concrete syntaxes has been imple-
mented in MetaDepth using the meta-model shown in

Figure 9, whereas its concrete syntax has been specified
with itself, achieving bootstrapping. The parser genera-
tion relies on ANTLR. Any error concerning the result-
ing grammar (e.g., due to left-recursion) is appropriately
caught and reported to the user, but currently we do not
support tracing back errors from the generated parser to
the template definition. Finally, MetaDepth has been
enhanced with a registry of parsers, so that the parser
to be used is selected by the file extension of the model
to be loaded.

For the interested reader, all the complete listings of
the running example are available in the Appendix B.

6 Model Management for DSMM Languages

In order to integrate the use of DSMM languages in
MDE, we need to provide suitable model management
languages able to deal with multiple meta-levels and the
dual ontological/linguistic typing. In MetaDepth, we
have adapted the Epsilon family of languages [18] to ac-
cess transparently the linguistic API (as explained in
Section 4), and to work in a multi-level setting. Hence,
we can define model manipulation operations and con-
straints for DSMM languages using the Epsilon Object
Language (EOL) [29], code generators working at sev-
eral meta-levels using the Epsilon Generation Language
(EGL) [40], and model-to-model transformations span-
ning several meta-levels using the Epsilon Transforma-
tion Language (ETL) [30].

Figure 11 depicts the different scenarios encountered
for model management operations in a multi-level set-
ting. In the scenario (a), a model management opera-
tion is defined using the types of the DSMM language
meta-model, and should be applicable to models with
potency 0, two meta-levels below. The challenge here is
being able to access indirect instances (with potency 0)
of a given clabject with potency 2. The scenario (b) is a
generalization of the previous one, where the operation
in addition needs to access elements of potency 1. In
this case, the challenge is to provide seamless navigation
means from elements of potency 0 to their clabject types
at the meta-level above. In the scenario (c), an operation
defined using types with potency 2 and applicable at po-
tency 0 is (totally or partially) redefined at meta-level 1.
For this purpose, the languages should provide adequate
overriding mechanisms, which typically are extensions of
those used in combination with inheritance hierarchies.
In scenario (d), the operation is defined using linguistic
types, and hence it becomes applicable to clabjects of ar-
bitrary ontological type and meta-level. In this case, the
challenge is being able to mix ontological and linguistic
typings in the model management languages. Finally, in
all cases, operations may need to use reflection to con-
sider the possible linguistic extensions at meta-level 1
and access the linguistic meta-model seamlessly.

Interestingly, the construction of textual syntaxes for
DSMM languages also involved similar scenarios: the

14

DSMM

model

DSML

model

Model

operation
DSMM

model

DSML

model

Model

operation
DSMM

model

DSML

model

Model

operation

DSMM

model

DSML

model

Model

operation

operation’

N
o
d
e

C

la
b
je

c
t

(a) (b) (c) (d)

defined on applicable to redefines

Fig. 11 Scenarios for model management operations in a multi-level setting. (a) Deep operation, applied two levels below.
(b) Operation accessing multiple meta-levels. (c) Operation redefinition. (d) Operation defined over linguistic types.

definition of the syntax for meta-levels 0 and 1 (scenarios
(a) and (b)), refining templates (scenario (c)), and the
use of keywords like LingElements and Instances
to account for linguistic extensions. The definition of
generic concrete textual syntaxes using linguistic types
is also possible, but experimenting with this feature is
left for future work.

In the next subsections we concretize such scenarios
for the different Epsilon model management languages,
explaining how the different challenges posed by the
multi-level setting have been solved.

6.1 Multi-level model-to-model transformation

Assume we want to transform process models into mod-
els of a given project management system (PMS), like
Redmine8. The meta-model for such a PMS is shown in
Figure 12 and in Listing 11 in MetaDepth’s syntax. A
PMS contains Tickets organized in Categories and
assigned to Users. All these elements can be annotated
by using Tags, which are pairs (key, value).

Ticket

Tag

User

TaggedElement

key: String

value: String

notes : String[*]
description: String

priority: int

appliesTo

*
name: String

Category

assignedTo *
categories *

Fig. 12 Meta-model of a project management system.

1 Model PMS@1 {
2 abstract Node TaggedElement {
3 name : String;
4 }
5

6 Node User : TaggedElement {
7 notes : String[∗];

8 http://www.redmine.org/

8 }
9

10 Node Ticket : TaggedElement {
11 description : String;
12 priority : int;
13 assignedTo : User[∗];
14 categories : Category[∗];
15 }
16

17 Node Category : TaggedElement {}
18

19 Node Tag {
20 key : String;
21 value : String;
22 appliesTo : TaggedElement[∗];
23 }
24 }

Listing 11 Meta-model of a project management system.

We would like to transform indirect Task instances
at meta-level 0 into Tickets, which have as category
the type of the task, and are assigned to the users who
are performers of the task. Based on this example, in the
following we illustrate the four typical transformation
scenarios in a multi-level setting: deep transformations,
co-transformations, refining transformations and reflec-
tive and linguistic transformations. Moreover, we also
report on additional challenges found when the target
domain of a transformation is multi-level.

Deep transformations. Oftentimes, a transformation
needs to be defined using the meta-model of the
DSMM language, and applied to the instances of the
DSMLs built with it (i.e., at the bottom level). This
scenario is depicted in Figure 13. In this case, the
transformation is applied on indirect types but the
direct types at level 1 are unknown. For example,
we would like to define a transformation from pro-
cess models to PMS models once at meta-level 2,
together with the definition of the DSMM language
definition, and let the transformation be applicable
to any process model at level 0.
Listing 12 shows the ETL deep transformation to
achieve this objective, which will be executed on in-
direct instances of the ProcessModel model. The
transformation has annotations indicating the source
and target meta-models as well as the source potency

15

Performer

Software

Engineer

Mary

@2

@1

@0

User

@1

coding1

John

Coding

Task
perfBy

actor

revisor

*

*

*

actor

revisor

Perf2User@2

Task2

Ticket@2

Ticket
assTo

Mary
@0

coding1

John

assTo

assTo execution

Fig. 13 Deep transformation scheme.

where the transformation is to be executed (lines 1–
3).

1 @metamodel(name=ProcessModel,domain=source)
2 @metamodel(name=PMS,domain=target)
3 @model(potency=0)
4 rule Task2Ticket
5 transform task : Source!Task
6 to ticket : Target!Ticket
7 {
8 ticket.name := task.ˆname;
9 ticket.description := task.name;

10 ticket.priority := task.duration−1;
11 for (ref in task.references(”perfBy”))
12 ticket.assignedTo ::= task.value(ref);
13 }
14

15 @lazy
16 rule Performer2User
17 transform per : Source!Performer
18 to usr : Target!User
19 {
20 usr.name := per.name;
21 }

Listing 12 Deep transformation example.

Rule Task2Ticket creates a Ticket for each indi-
rect instance of Task (lines 4–13). The name of the
created ticket is the object identifier of the task (line
8), its description is the name of the task (line 9),
and its priority is equals to the duration of the task
minus one (line 10). Recall that, while task.ˆname
accesses the attribute name in the linguistic meta-
model, task.name accesses the field name defined
in upper ontological meta-levels.
Then, we need to transform performers into users
and assign them tickets. At meta-level 2, Tasks and
Performers are related through reference perfBy.
However, this reference can be instantiated an arbi-
trary number of times at meta-level 1, and we do not
know the names of such level 1 reference types be-
forehand. In the case of Figure 13, perfBy is instan-
tiated twice, by actor and revisor, which them-
selves can be instantiated at level 0. For this purpose,
the method references is used to return all in-
stances of reference perfBy at level 1 (line 11). Lines
11–12 iterate over all such reference types, obtaining
their value. The standard ‘::=’ ETL operator assigns
to the field assignedTo the result of transforming
the content of the reference. If more than one in-
stance of perfBy exists, their content is transformed
and then added to the assignedTo collection. In

particular, the instances of perfBy contain indirect
instances of Performer, and therefore ETL invokes
the lazy rule Performer2User to obtain the equiv-
alent target objects of the source ones. This rule sim-
ply transforms indirect instances of Performer into
Users (lines 15–21).
Please note that, for this deep transformation sce-
nario, we had to modify ETL’s rule matching se-
mantics to consider indirect types in a transparent
way. For example, the pattern Source!Performer,
when applied to a model with potency 0, returns the
accessible indirect instances of Performer.

Co-transformations. In this kind of transformations,
one needs to transform a model and its meta-model
at the same time, as Figure 14 illustrates. Here, the
same transformation has to deal with direct and in-
direct instances of the clabjects in the meta-model
of the DSMM language, and therefore a mechanism
is needed to select the level at which the rules and
queries will be applied, and to navigate up in the on-
tological hierarchy (i.e., from clabjects in meta-level
0 to clabjects in meta-level 1).

Category

@1

coding1

Coding

Task TType2Cat@1

Task2

Ticket@2

Ticket
cats

coding1:

Ticket

Coding:

Category

@0

@2

@0

@1

execution

Fig. 14 Co-transformation scheme.

As an example, we want to assign each ticket a cat-
egory, which is taken from the task types at po-
tency 1. Listing 13 shows a modification of rule
Task2Ticket and a new rule that implement this
behaviour. Thus, we assign to categories the re-
sult of transforming the ontological type of the task
(line 10). The level at which we seek the clabjects
is specified by the model alias, before the ‘!’ symbol
(see lines 2, 3, 15 and 16). Hence, we use SLevel0
for a model with potency 0 in the source domain and
SLevel1 for a model with potency 1 in the source
domain. We can also use the alias Source to refer
to the source model regardless its potency. Indeed,
this is the alias used in Listing 12, where the annota-
tion in line 3 forces the execution of the transforma-
tion on models with potency 0. Hence, our framework
implicitly makes available all (meta-)∗-models of the
context model for the transformation. A similar con-
vention applies to the models in the target domain
(i.e., TLevel0, TLevel1 and so on). Additionally,
using the linguistic API, it is possible to access the

16

type clabject of another one using ˆtype, as shown
in line 10.

1 rule Task2Ticket
2 transform task : SLevel0!Task
3 to ticket : Target!Ticket
4 {
5 ticket.name := task.ˆname;
6 ticket.description := task.name;
7 ticket.priority := task.duration−1;
8 for (ref in task.references(”perfBy”))
9 ticket.assignedTo ::= task.value(ref);

10 ticket.categories ::= task.ˆtype;
11 }
12

13 @lazy
14 rule TaskType2Category
15 transform task : SLevel1!Task
16 to category : Target!Category
17 {
18 category.name := task.name;
19 }

Listing 13 Co-transformation example.

Deep transformations and co-transformations are a
form of generic, reusable transformations [43], as
they are defined once and can be applied to a family
of DSMLs: those that are conformant to the DSMM
language meta-model at level 2. Co-transformations
are generic, as they do not make assumptions on
specific types to be defined at meta-level 1. Instead,
these are accessed either from clabjects at meta-level
0 (via the linguistic attribute type as in line 10 of
Listing 13), or by iterating over the types at meta-
level 1 by using the SLevel1 alias and the types
defined at the top-most meta-level (like in line 15 of
Listing 13).

Refining transformations. For DSMLs in some ap-
plication domains, a deep transformation may not
be reused “as is”, but may need to be refined for
particular clabjects defined at level 1. This situation
is depicted in Figure 15.

User
@1

Perf2User
@2

SE2User
@1

Performer

SoftwareEngineer

@2

@1

sSN: String{id}
notes: String

Luis: User
@0

@0
Luis: Analyst

Analyst

sSN=“12345”
notes=“…”

execution
notes= [“SSN; 12345”,
“description: …”,
“Analyst”]

Fig. 15 Refining transformation scheme.

For example, if in the software engineering ap-
plication domain, we decide to transform the in-
stances of SoftwareEngineer in a different
way to consider the specific fields that we added
to it (i.e., sSN and notes), we need to refine
the transformation rule defined for Performers
in Listing 12. The refined rule is shown in List-

ing 14. The rule extends Performer2User, but
it is refined for type SoftwareEngineer and
will be executed at meta-level 0 (as indicated by
SLevel0!SoftwareEngineer in line 3).

1 @greedy
2 rule SoftwareEngineer2User
3 transform se : SLevel0!SoftwareEngineer
4 to usr : Target!User
5 extends Performer2User
6 {
7 // The := operator applied to collections concatenates
8 usr.notes := ”SSN ”+se.sSN;
9 usr.notes := ”description: ”+se.notes;

10 usr.notes := se.type.toString();
11 }

Listing 14 Refining transformation example.

In this case, we needed to adapt the ETL rule ex-
tensibility mechanism [49]. In particular, we allow
extending a rule if the child rule transforms a di-
rect or indirect instance (and not just a subclass)
of the clabject type transformed by the parent rule.
The child rule will be applied whenever is possi-
ble, resulting in the execution of the body of the
rules of both parent and child. In our example, rule
SoftwareEngineer2User will be executed for in-
stances of SoftwareEngineer, and by the overrid-
ing mechanism, the body of Performer2User will
be executed as well. Rule Performer2User will be
executed for indirect instances of Performer that
are not instances of SoftwareEngineer. Finally,
note that by default ETL rules match source ele-
ments of exactly the type given in the from part.
By using the @greedy annotation we indicate that
elements of the same type or a subtype should also
be matched.

Reflective and linguistic transformations. When
defining a deep transformation, we may want to
account for the linguistic extensions performed at
level 1. For this purpose, the transformation lan-
guage needs reflective capabilities to access any new
declared field, and it has to be possible to perform
queries using linguistic types (i.e., Node, Edge and
Model). The combination of these two capabilities
enables the construction of another form of generic
transformations, applicable at any meta-level and
to elements of any ontological type. A particular
scenario of this kind of transformations is shown in
Figure 16.
Listing 15 shows a transformation with one reflective
rule and another rule defined on a linguistic type.
Rule Performer2User has been modified with re-
flection to store in the notes collection all lin-
guistic extensions defined in Performer instances
(lines 7–8). Hence, the rule takes into account that
Performer instances at level 1 may have been ex-
tended with new fields. The rule iterates on the new
fields returned by newFields (line 7), adding a
string representation of each field value to the notes
collection. As previously stated, this reflection is pos-

17

Performer

SoftwareEngineer

c:

Contract

@2

@1

@0

Tagged

Element

@1

:Tag

@0

execution

Perf2User

@2

Contract

Luis:

Analyst

N
o
d
e

C
la

b
je

c
t

Other2Tag

@2

Tag

Luis:

User

salary: double

Analyst

salary=1500

User

key=“Contract”

value=“salary :

1500”

Fig. 16 Linguistic transformation scheme.

sible because EOL (and hence ETL) implements
a transparent reflection mechanism, which we have
modified to be able to call transparently methods
of the MetaDepth API. Using this reflective rule
makes the refined rule SoftwareEngineer2User
of Listing 14 unnecessary. Nonetheless, in general,
refining rules are still useful to implement domain-
specific semantics that cannot be foreseen at the top-
most meta-level.

1 @lazy
2 rule Performer2User
3 transform per : SLevel0!Performer
4 to usr : Target!User
5 {
6 usr.name := per.name;
7 for (f in per.newFields())
8 usr.notes := per.value(f).toString();
9 }

10

11 @greedy
12 rule Other2Tag
13 transform obj : SLevel0!Node
14 to tag : Target!Tag
15 {
16 guard: not obj.isKindOf(SLevel0!Task) and
17 not obj.isKindOf(SLevel0!Resource) and
18 not obj.isKindOf(SLevel0!Gateway)
19

20 tag.key := obj.ˆtype.ˆname;
21 for (f in obj.fields())
22 tag.value:=tag.value+’ ’+f.name()+’: ’+f.getValue();
23 tag.appliesTo ::= obj.getConnectedClabjects();
24 }
25

26 operation Any getConnectedClabjects() : Sequence {
27 var allConn : Sequence;
28 for (f in self.references())
29 allConn.add(f.getValue());
30 return allConn;
31 }

Listing 15 Linguistic transformation example.

In its turn, rule Other2Tag (lines 11–24) uses lin-
guistic typing. The rule creates a Tag from all Node
instances (i.e., from all elements) which are not in-
direct instances of Task, Resource and Gateway
(forbidden by the guard in lines 16–18). If we apply
this rule to the model excerpt shown in Figure 16,
where a new clabject Contract has been defined
at level 1, we obtain a Tag object from this clab-
ject. The key of the tag is the identifier of the object
ontological type (line 20), while its value is the con-
catenation of each field name and value (lines 21–22).

The method fields used in line 21 returns all fields
owned by the given clabject. The created Tag is at-
tached to the objects resulting from the translation
of the clabjects connected to the transformed node
(line 23). The connected clabjects are obtained re-
flectively by the helper method in lines 26–31.
While in deep and co-transformations the genericity
comes from defining the transformations over types
defined at meta-level 2, so that the transformations
become applicable to a family of DSMLs, in linguistic
transformations the genericity is obtained by using
linguistic types, so that the transformations become
applicable to arbitrary models. As we have seen, it is
possible to mix both types of genericity in the same
transformation definition.

Multi-level target. In our running example, the tar-
get language has two meta-levels, but one can find
scenarios in which the target language is multi-level
as well. For example, assume we want to transform
from PMS models to process models, as shown in
Figure 17. Thus, we want to create a task type at
meta-level 1 for each category, and an instance of the
created task type for each ticket in that category.

Category
@1

Coding

Task
Ticket2Task

Category2
TaskTypeTicket

cats

@0

@2

@1

coding1

coding1:
Ticket

Coding:
Category @0

execution

Fig. 17 Scheme of transformation with multi-level target.

This scenario poses an additional challenge: the
transformation needs to produce models at two dif-
ferent meta-levels (1 and 0), co-creating types and
their instances, but the type of the instances is un-
known at design time, and will only be known at run
time. Although the linguistic layer of MetaDepth
offers methods to create instances of a given type,
the challenge is to design rules whose target type is
unknown beforehand. An example of how we tackle
this issue is shown in Listing 16.

1 @metamodel(name=PMS,domain=source)
2 @metamodel(name=ProcessModel,domain=target)
3 rule Category2TaskType
4 transform category : Source!Category
5 to task : TLevel1!Task
6 {
7 task.ˆname := category.ˆname;
8 task.name := category.name;
9 }

10

11 rule Ticket2Task
12 transform ticket : Source!Ticket
13 to task : TLevel0!Task
14 {
15 guard: TLevel0!Model.refineType(’Task’,
16 ticket.categories.first().ˆname)

18

17

18 task.duration := ticket.priority+1;
19 }

Listing 16 Transformation with multi-level target example.

Rule Category2TaskType transforms each cate-
gory into a Task instance at meta-level 1, as in-
dicated by the TLevel1 alias. The created task
has as name identifier (linguistic field) the identifier
of the category (line 7), and as name (ontological
field) the name of the category (line 8). Then, rule
Ticket2Task transforms each ticket into a Task
indirect instance at meta-level 0, as indicated by the
TLevel0 alias. As the direct type of this instance is
unknown beforehand, the only type information we
can provide in the rule signature is TLevel0!Task.
The rule guard ensures that the rule is executed only
if there is an appropriate direct type, in which case
the rule assigns this type to the created task in-
stance. This is done by method refineType from
MetaDepth’s API, which receives the indirect and
direct type names as parameters. In our case, the di-
rect type is the identifier ˆname of the first category
assigned to the ticket. For clarity, we have used the
standard syntax of ETL to invoke refineType in
the guard, although we could design a special syntax
to express these refinements.

6.1.1 Comparison with standard two-level approaches.
Once we have reviewed the possible multi-level scenarios,
it is interesting to reflect on how they could be solved
in the workarounds shown in Figure 1 using standard
two-level model transformation languages (workaround
1: model/meta-model at the same level; workaround 2:
promotion transformation).

A general drawback of workaround 1, which applies
to every scenario, is that the instantiation of clabjects
with linguistic extensions cannot be done directly, but
needs from a special instantiation mechanism. Such a
mechanism needs to traverse all fields with type facet
of the clabject type (the linguistic extensions), creating
slots with appropriate data type in the instance.

Deep transformations can be easily implemented in
workaround 1, as the meta-model explicitly defines ele-
ments with instance facet, and a transformation can be
defined over those elements. However, this scenario is
more challenging in workaround 2, as a transformation
should be defined over the initial meta-model (model (a)
in Figure 5), but the promotion generates a new meta-
model (model (c) in Figure 5), and the transformation
would not be applicable on its instances.

Co-transformations access multiple meta-levels. This
is possible in workaround 1, as “instance of” relations
are plain links at the model level, and can be traversed
by a transformation by writing ad-hoc navigation expres-
sions. Implementing co-transformations in workaround 2
becomes more complex, as one needs to navigate between
two disconnected models at the instance level (model (d)

and (b) in Figure 5). A transformation should have both
models as input, and we would need to write navigation
expressions relating them as part of the transformation
logic.

Refining transformations are challenging in both
workarounds. Workaround 1 requires a mechanism to re-
fine a rule defined over an element with type facet, for
elements with instance facet. However, refinement mech-
anisms in standard transformation languages are only
available if the elements are in a subtype relation, which
is not the case. The same challenge arises in workaround
2.

Reflective and linguistic transformations are possible
in both workarounds whenever the transformation lan-
guage provides reflective and generic support. Finally,
the multi-level target scenario could be implemented in
both workarounds, but the implementation should face
similar challenges to the ones presented here for the dy-
namic creation of types and their instances.

Altogether, from the model management perspec-
tive, workarounds 1 and 2 have some drawbacks com-
pared to a multi-level approach. These could be over-
come by heavy modifications of existing transformation
languages, or by creating a domain-specific transforma-
tion language for the given workaround.

6.2 Multi-level in-place model transformations

In this subsection, we illustrate multi-level in-place
transformation by defining a simulator for process mod-
els. The simulator uses the types defined at meta-level
2, and is applicable to model instances at potency 0.
The implemented semantics is similar to that of Petri
nets [34]. First, initial task instances are located, which
constitute the set of enabled tasks. Then, the following
simulation loop starts. One enabled task is selected at
random, and if it is initial, it is initialized. The initializa-
tion consists in the creation of the task input artefacts.
By default, we create an arbitrary number of artefact
instances between the minimum and the maximum al-
lowed. This initialized task becomes part of the set of
active tasks. An active task can be completed, and then
its output artefacts are created similarly to the creation
of input artefacts. The output artefacts become input
artefacts of any consecutive task, and any task that has
all needed input artefacts becomes enabled. The simula-
tion proceeds by iterating in this loop and finishes when
there is no enabled task that can become active, and
there is no active task than can be completed.

We use EOL to define in-place transformations. In
this language, it is possible to define operations on a
global scope and to attach operations to meta-classes.
We have adapted EOL to work in a multi-level setting
by assigning potencies to operations, and implementing a
method overriding mechanism across meta-levels. Hence,
when a method is invoked on a particular clabject, its

19

type at the immediate meta-level above is sought. At
this meta-level, method lookup works as in standard
object oriented programming languages, using dynamic
dispatch [1] (i.e., by an upwards traversal of the inheri-
tance hierarchy). If the method is not overridden at this
meta-level, then it is sought in the next upper meta-level
following the same procedure, and so on.

Figure 18 shows an example of this mechanism.
To build our simulator, we have defined operations
createInps() and createOutps() in clabject
Task at meta-level 2. They are used to create the
input and output artefacts of a task, and contain a
default implementation via reflection. These methods
can be overridden at the next meta-level. For exam-
ple, the figure shows the overriding of some of them in
Analysis, Design and Coding, to create the appro-
priate artefacts for these kinds of task. An invocation
to createInps on an instance of Analysis results in
the execution of the method overridden in Analysis,
whereas an invocation on an instance of Coding results
in the execution of the method defined in Task.

Task
@2

+ createInps()

+ createOutps()

SETask: Task

+ createInps()

+ createOutps()

Analysis: Task

+ createOutps()

Design: Task

+ createOutps()

Coding: Task

Implemented via reflection

Potency 2.

@1

Override operations

in Task@2

a: Analysis c: Coding @0

c.createInps()

1

2

3

a.createInps()

1

Fig. 18 Method overriding in a multi-level environment.

Interestingly, this mechanism permits a natural gen-
eralization to enable the overriding of methods at po-
tency 0, defined for specific clabjects with no type facet.
However, we leave this extension for future work.

We have also modified EOL to permit the declaration
of abstract operations. An abstract operation with
potency 1 has the same semantics as in standard object
oriented programming languages: every concrete clab-
ject, or some ancestor in the inheritance hierarchy, needs
to override it. However, an abstract operation with po-
tency 2 can also be overridden at the lower meta-level.
As usual, each instance of the clabject needs to have
access to an implementation of the abstract method,
which is sought using the lookup mechanism described
before. Currently, this is not checked statically at mod-
elling time, but errors are reported at run-time using
appropriate exceptions.

Listing 17 shows a small excerpt of the simulator.
The operation main contains the main simulation logic,

and is annotated with the needed meta-model (line 1)
and its potency (line 2). Lines 4–8 iterate on all indirect
task instances at level 0, creating three boolean aux-
iliary fields to store their state: active, completed
and enabled. Prefixing attributes by ∼ is the standard
way in EOL to create auxiliary fields. Then, lines 10 and
11 create the set of enabled and active tasks, and lines
12–18 initialize the set of enabled tasks with all initial
ones. One of such initial tasks is selected (line 20) and
then initialized (line 24). Then, the main simulation loop
in lines 25–29 is run while some enabled or active task
remains.

1 @metamodel(name=ProcessModel,file=DSPM.mdepth)
2 @potency(value=2)
3 operation main() {
4 for (t in Task.all()) { // create auxiliary fields to record task state
5 t.˜active := false;
6 t.˜completed := false;
7 t.˜enabled := false;
8 }
9

10 var enabledTasks : Set(Task);
11 var activeTasks : Set(Task);
12 var initTasks := Task.all().select(t | t.initial);
13

14 //...
15 for (t in initTasks) {
16 t.˜enabled := true;
17 enabledTasks.add(t);
18 }
19

20 var tinit := initTasks.random();
21 activeTasks.add(tinit);
22

23 var step := 0;
24 tinit.initializeTask();
25 while (enabledTasks.size()>0 or activeTasks.size()>0) {
26 completeTask(tinit);
27 step := step+1;
28 //...
29 }
30 ’Simulation finished!’.println();
31 }
32

33 @potency(value=2)
34 operation Task createInps() {
35 for (ref in self.references(”ins”)) {
36 var ttype := self.type.value(ref);
37

38 var max : Integer;
39 if (ref.getMaximum()=−1) max := 10;
40 else max := ref.getMaximum();
41

42 var num := Sequence{1..max}.random();
43

44 for (i in Sequence{1..num}) {
45 var ainst := self.container.createInstance(ttype.toString());
46 self.setValue(ref, ainst);
47 }
48 }
49 }
50 ...

Listing 17 Excerpt of a simulator for process models.

Lines 33–49 show the operation createInps de-
fined for clabject Task with potency 2. The operation
reflectively iterates on all instances of reference ins (line
35), accesses the type of the reference end (line 36), in-
stantiates the type a random number of times up to the
maximum cardinality (the maximum is 10 if the cardi-
nality is unbounded), and assigns the created instances
to the reference (line 46).

20

While the previous listing uses a default, reflec-
tive implementation for createInps, Listing 18
shows the redefinition of method createOutps for
clabjects Analysis and Design. In the listing,
RequirementsDoc and DesignDoc are both in-
stances of Artefact. This mechanism enables the
implementation of application-specific code, overriding
the simulator defaults.

1 operation Analysis createOutps() {
2 var req := new RequirementsDoc();
3 self.output := req;
4 }
5

6 operation Design createOutps() {
7 var dd := new DesignDoc();
8 self.output := dd;
9 }

Listing 18 Overriding some operations for software process
models.

6.3 Multi-level code generation

In this subsection, we illustrate code generation in a
multi-level setting by showing a code generator from
process models into XML logs in the eXtensible Event
Stream (XES) format [22]. This is the log format
adopted by the IEEE task force on process mining, and
was designed with extensibility in mind. In this way, it
is possible to extend the standard for special require-
ments, like specific application domains or specific tool
implementations.

In XES, event logs are made of an arbitrary num-
ber of traces. Each trace describes the execution of one
specific instance, or case, of the logged process, and is
made of a number of events. Logs, traces and events can
be described by means of attributes. It is also possible
to define classifiers, which contain attribute types, and
are used to describe events. Hence, XES logs serialize
information found at meta-levels 0 and 1.

Listing 19 shows an excerpt of the XES code gen-
erator that has been implemented using the EGL lan-
guage. EGL is a template-oriented language, similar to
Java Server Pages (JSP), in which the text to be emitted
is written in a template. The language allows inserting
EOL code enclosed between “[%” and “%]”, and the re-
sult of an EOL expression exp resulting in a string can
be emitted by using the syntax “[%=exp%]”.

Lines 1–6 in Listing 19 write a preamble, while lines
7–10 define the attributes for the trace. In this case,
there is only one attribute that will contain the name
of the model. The attributes for event types are defined
in lines 11-23, first the common attributes to all tasks
(lines 12–13) and then the extensions declared at level 1
(lines 15–22). In particular, line 16 iterates on all non-
abstract tasks at level 1 using SLevel1! as prefix, and
line 17 loops on every new field (i.e., linguistic extension)
with a basic data type. To avoid name collisions, the
name of the field to be serialized is the concatenation of

the names of the task and the field. Next, lines 24–28
declare the classifiers by selecting all non-abstract tasks
at level 1. The attributes belonging to each classifier are
calculated by function getAllFields defined on Task
(lines 46–51).

1 <?xml version=”1.0” encoding=”UTF−8” ?>
2 <log xes.version=”1.0” xes.features=””
3 xmlns=”http://code.deckfour.org/xes”>
4 <extension name=”Time” prefix=”time”
5 uri=”http://code.deckfour.org/xes/time.xesext”/>
6 <!−− ...>
7 <global scope=”trace”>
8 <!−− traces have a name (the name of the model) −−>
9 <string key=”concept:name” value=”name”/>

10 </global>
11 <global scope=”event”>
12 <string key=”concept:name” value=”name”/>
13 <boolean key=”initial” value=”false”/>
14 // ...
15 [% // iterate on linguistic extensions of each direct instance of Task...
16 for (t in SLevel1!Task.all().select(t | not t.abstract)) {
17 for (f in t.newFields().select(f | f.isDataType())) { %]
18 <[%=f.fieldType.toString().toXESType()%]
19 key=”[%=t.toString()+’ ’+f.name()%]”
20 value=”[%=f.fieldType.toString().toXESType()%]”/>
21 [% }
22 }%]
23 </global>
24 [% // Now define the classifiers... These are the Tasks at level 1...
25 for (t in SLevel1!Task.all().select(t | not t.abstract)) {%]
26 <classifier name=”[%=t.name()%]”
27 keys=”[%=t.getAllFields()%]”/>
28 [% }%]
29 <trace>
30 <string key=”concept:name” value=”[%=context.name()%]”/>
31 [% for (t in SLevel0!Task.all()){%]
32 <event>
33 <string key=”concept:name” value=”[%=t.name%]”/>
34 //...
35 [% for (f in t.type.newFields().select(f | f.isDataType())) { %]
36 <[%=f.fieldType.toString().toXESType()%]
37 key=”[%=t.type.toString()+’ ’+f.name()%]”
38 value=”[%=t.value(f.name())%]”/>
39 [% }%]
40 </event>
41 [%}%]
42 </trace>
43 </log>
44

45 [%
46 operation Task getAllFields() : String {
47 var fields : String := ”concept:name initial final start duration”;
48 for (f in self.newFields())
49 fields := fields+’ ’+self.toString()+’ ’+f.name();
50 return fields;
51 }
52

53 operation String toXESType() : String {
54 if (self.toString()==”String”) return ”string”;
55 //...
56 }
57 %]

Listing 19 A multi-level code generator for XES.

What we have explained up to now is the serialization
of the information from level 1. The model at level 0 is
serialized in lines 29–43: line 30 stores the name of the
model, and line 31 iterates on all tasks at level 0 and
serializes the value for each field.

Altogether, this example shows that the scenarios
found for other model management operations also ap-
ply here. We needed to access the models at meta-levels
1 and 0, to navigate from elements in meta-level 0 to
meta-level 1, and to query reflectively the linguistic ex-
tensions. These mechanisms are basically the same as

21

in EOL. Code generators could also make use of re-
finement operations that override EOL operations (e.g.,
getAllFields) for certain types at level 1, although
it was not needed for this particular example.

7 Related Work

In this section, we review related research. We start
by reviewing the uses, applications and approaches to
DSMM. Then, we follow with a discussion of multi-
level modelling environments, with special attention to
their integration with model management languages. As
a model operation defined over a DSMM language can
be reused by the DSMLs built with it, we continue by
revising reutilization approaches for model management
operations. Finally, we finish with an overview of rel-
evant approaches to the definition of textual concrete
syntaxes and a summary of our contributions.

7.1 Approaches to domain-specific meta-modelling

Several researchers have pointed out the benefits of using
DSMM languages. For example, the traceability mod-
elling language [17] (TML) is a DSMM language used
to express the allowed traces and constraints between
several meta-models. Its rationale is that TML users do
not need the full power of EMF or MOF to construct
trace meta-models, but they benefit from specific meta-
modelling primitives like Trace and TraceLink. Other
DSMM languages are described in [50] to express vari-
ability over DSMLs, and to extend DSMLs with inter-
faces for model reuse. However, no general framework for
defining DSMM languages is proposed. Instead, they use
two meta-levels and define ad-hoc “promotion” transfor-
mations between models (e.g., a TML model) and meta-
models (the resulting trace meta-model). These transfor-
mations are a way to emulate three meta-levels within
two, hindering the construction of DSMM languages.

In [23], the authors present a language to declare
component types with ports, which can be instantiated
choosing a number of port instances. The language is
extended with generic library mechanisms for the pur-
pose of defining libraries of reusable components. Such li-
braries emulate to some extent the existence of two meta-
levels within one. While the authors neatly show how to
build this support in a generic and minimally invasive
way for its integration with existing meta-models, the
proposed prototype-cloning mechanism does not emu-
late fundamental aspects of instantiation, like being able
to define attributes in meta-models and providing values
for them in models, or being able to define integrity con-
straints in meta-models which are evaluated in models.
Including such aspects in a cloning mechanism would
lead to the construction of a type system emulating two
meta-levels in one, which is the strategy followed in [5]
to implement a multi-level system in EMF.

In [32], the UML profiling mechanism is adapted for
EMF-based DSMLs. This is an example of DSMM as
users need a language to define profiles and apply them
at the meta-level below. Again, a two meta-level setting
forces the use of workarounds. In this case, they emulate
the existence of attribute instances at the lowest meta-
level by the run-time adaptation of the meta-model, in-
jecting new attribute types and classes. Such a complex
mechanism is unnecessary in multi-level frameworks sup-
porting deep characterization, as we have seen.

Instead of emulating several meta-levels within
two [23] or using artificial workarounds [32,50], we claim
that a more natural way to define DSMM languages is
the native use of multi-level meta-modelling. Following
this philosophy, in [25], multiple levels are used to define
domain-specific process modelling notations. However,
the approach is restricted to meta-modelling only, and
does not consider the language concrete syntax or its
manipulation through model management languages,
making its use difficult in MDE.

7.2 Approaches to multi-level meta-modelling

In this work, we have proposed using multi-level
meta-modelling to handle the current limitations in
DSMM frameworks. Multi-level meta-modelling was
initially proposed by Atkinson and Kühne [4,9]. Apart
from MetaDepth, there are other multi-level meta-
modelling frameworks, which we review next.

MelAniE [5–7] is a graphical multi-level modelling
tool based on EMF and GMF. Regarding modelling fea-
tures, MelAniE provides fields with so-called traits, like
value mutability, which defines over how many levels the
value may be changed from the default. Modelling ele-
ments must define a level, which in our case we indicate
through the potency of the model. While this avoids a
manual definition of the level for every element, all el-
ements in the same model are restricted to have the
same level. The authors do not mention support for con-
straints, as we have in MetaDepth. Regarding model
management, in [6], the authors present the first steps
towards extending the transformation language ATL to
work in a multi-level setting. They discuss challenges of
the two-level to multi-level and multi-level to two-level
transformation scenarios; however, the paper handles
only the multi-level to two-levels, deep transformation
scenario, that is, the transformation is always executed
on the bottom-most model of the source domain. This
limitation makes unnecessary the use of potencies for
rules. MelAnIE provides more intrusive mechanisms to
access ontological fields (using “. o .” as a prefix to every
field) and the linguistic layer (using “. l .” as a prefix),
than those we have presented here. Currently, MelAniE
does not integrate other model management languages
(e.g., for code generation or in-place transformation) as
MetaDepth does, although the authors plan to do so.

22

Being graphical, MelAniE [5] supports the possibility to
mix a default graphical concrete syntax similar to object
diagrams with a domain-specific one. This approach is
similar to our refining templates for textual syntax.

DeepJava [31] extends Java with the ability to per-
form multiple instantiations, and allows potency on Java
classes, attributes and methods. This approach is com-
parable to our adaptation of EOL to work in a multi-
level setting. There are a few differences, though. While
in DeepJava one can use a field type to access the clab-
ject ontological type, there seems to be no further sup-
port for accessing a linguistic layer reflectively (e.g., one
cannot check which are the new linguistic extensions
of a clabject). The reason is that DeepJava programs
are pre-processed and compiled into plain Java, while
MetaDepth offers run-time support. Both tools allow
overriding methods defined at higher meta-levels, but we
could not find the details on the working scheme of dy-
namic dispatch across meta-levels in DeepJava. Another
difference is that we avoid instantiation of clabjects by
declaring them abstract, while in DeepJava one should
assign potency 0 to those clabjects. However, clabjects
with potency 0 cannot be an instance of another clab-
ject (i.e., they should be linguistic extensions), as their
potency cannot be defined arbitrarily, but need to be
one less than the potency of their type clabject. Finally,
other differences (e.g., lack of control of linguistic ex-
tensions and lack of dedicated model management lan-
guages) are due to the fact that DeepJava is a program-
ming language whereas MetaDepth is a modelling lan-
guage.

The cross-layer modeller (XLM) [16] supports an ar-
bitrary number of modelling layers by using an embed-
ding in UML and giving semantics to instantiation as
OCL constraints. In particular, the designer needs to
specify templatized OCL constraints to control the in-
stantiation of associations. XLM does not provide ad-
vanced instantiation mechanisms, like deep instantia-
tion, or meta-modelling features like attributes/links, or
inheritance.

In other multi-level frameworks, like [2], the main
concern is the efficient navigation between meta-levels,
but they do not consider the concrete syntax of model
management languages. Nivel [3] is a multi-level meta-
modelling framework based on the weighted constraint
rule language (WCRL). OMME [48] is a prototype that
implements advanced modelling constructs like a dual
ontological/linguistic typing, deep characterization and
powertypes. However, none of these frameworks are con-
nected to model management languages.

Powertypes are another means of multi-level meta-
modelling [36]. The powertype pattern consists in a pair
of classes in which one is a powertype of the other.
Roughly, while one class describes the type facet of the
instances, the other one describes their instance facet.
Instantiating a powertype means subtyping from the
class containing the type facet and instantiating from

the class containing the instance facet. Hence, both re-
lations “instance-of” and “subtype” are allowed to cross
meta-levels [20]. While powertypes can assign both slots
and attribute types to entities in the meta-level immedi-
ately below, the potency allows assigning attribute types
to elements at arbitrary meta-levels below.

Powertypes are used in [20] to define meta-models for
software methodologies. This proposal models both the
process and product aspects of methodologies, while pro-
posals like SPEM only consider the process aspect [21].
In our example, the product aspect can also be modelled
by instantiating Artefact and in combination with
linguistic extensions. Since the approach in [21] does
not consider an orthogonal linguistic typing, it needs to
explicitly include the primitives for product modelling
(e.g., Model, ModelUnit) in the top-level meta-model.

Approaches to multi-level meta-modelling can be
traced back to the eighties in knowledge-based systems
like Telos [35] and deductive object base managers like
ConceptBase [26]. ConceptBase implements the object
model of a Datalog-based variant of Telos. It supports
instantiation chains of arbitrary length and definition of
Event-Condition-Action (ECA) rules and integrity con-
straints, but not deep characterisation (i.e., the abil-
ity to influence meta-levels below the immediate one).
Coming from the database tradition, it is not integrated
with model management languages. However, some ex-
periments for the use of ECA rules for model-to-model
transformations have been recently proposed [33], but
not considering the multi-level setting.

7.3 Reuse of model management operations

A DSMM language capitalizes on the knowledge in a cer-
tain domain (e.g., process modelling), and permits defin-
ing DSMLs for different application areas (e.g., educa-
tional modelling, software process modelling). A model
management operation defined over the DSMM language
becomes reusable for the DSMLs. Next, we briefly re-
view other reutilization approaches for model manage-
ment operations.

In our own previous work on generic model manage-
ment [13,44], we can define reusable model operations
over so-called concepts. Concepts are similar to meta-
models, but their elements (classes, fields, references)
are variables that need to be bound to the elements
of a meta-model. Hence, an element in the meta-model
can be related to at most one element in the concept.
This binding induces a re-typing of the model operation,
which becomes applicable to the bound meta-model. In
this approach, meta-models can exist even before defin-
ing the concept, and reuse is achieved by binding the
concept to the meta-model. In the multi-level approach
presented in this paper, the meta-model of the DSMM
language plays the role of ”concept”, the DSMLs can
only exist after creating the DSMM language (as they

23

are instances of it), and reuse is achieved directly without
the need of an explicit binding. In contrast to a binding,
the type relation enables many-to-one relations from the
DSML to the DSMM language.

In other approaches like [45], reuse is obtained by
adapting the meta-models to which an existing trans-
formation is to be applied. The aim of adapting the
meta-model is to make it a subtype of the expected in-
put meta-model of the transformation [47], so that the
transformation can be applied without changes.

7.4 Approaches to the definition of concrete syntaxes

Although there are many approaches to define textual
concrete syntaxes for DSMLs [19,27], their definition for
DSMM languages poses new challenges. For instance,
there is the need to define the concrete syntax for models
several meta-levels below, for which the concrete types
that will be available in the models are unknown in ad-
vance. Sometimes, it is also necessary to extend the pre-
defined concrete syntax for a particular DSML built us-
ing a DSMM language. This enables a progressive refine-
ment of concrete syntaxes at different meta-levels.

7.5 Summary

Altogether, our contribution is a comprehensive frame-
work to define DSMM language environments based on
multi-level meta-modelling. Our approach covers the def-
inition of textual concrete syntaxes, a fine grained cus-
tomization of the meta-modelling facilities offered to
the DSMM language users, and model management lan-
guages tailored to a multi-level setting. Finally, while
this paper is focused on DSMM with three meta-levels,
MetaDepth is not restricted to work with three levels,
but it supports an arbitrary number of levels.

8 Discussion and Future Work

In this paper, we have presented our approach to de-
fine DSMM languages supporting the flexible definition
of a textual concrete syntax, a fine control of the ex-
posed meta-modelling facilities, and integration in MDE
projects by making available multi-level model manage-
ment languages.

We also discussed the typical transformation scenar-
ios in a multi-level setting (deep transformations, co-
transformations, refining transformations, linguistic/re-
flective transformations and single-level to multi-level)
and illustrated their support using the Epsilon model
management languages. The same scenarios apply to the
definition of textual syntaxes as well: at the top-level, we
can define syntactic templates for level 0 models (similar
to deep transformations), or for both level 0 and level 1

models (similar to co-transformations); we can add refin-
ing templates at level 1 (like in refining transformations);
and we can define templates dealing with linguistic ex-
tensions (as in linguistic transformations). Each model
management language needs to provide appropriate con-
structs to deal with each scenario, which in our experi-
ence are: the ability to select the meta-level at which a
certain operation is to be applied (e.g., potencies for op-
erations and templates), the ability to select clabjects of
specific meta-levels (e.g., alias SLevel0 and SLevel1
in rules), the possibility to obtain indirect instances of
clabjects (transparently in our case), to execute a certain
operation/rule/constraint several meta-levels below (by
attaching a potency), to access clabjects by their linguis-
tic type (e.g., Node) and to reflectively access linguistic
extensions (e.g., through the newFields() method).
Table 3 summarizes the different techniques we have im-
plemented, indicating their usefulness for each scenario.

Model management operations defined over the
DSMM language meta-model become generic, reusable
in a domain, and applicable to the instances of the
family of DSMLs defined by DSMM language. Further
support for genericity in this sense can be obtained by
the use of linguistic types and access to the linguistic
layer.

We are currently using MetaDepth to define
DSMM languages in different domains: component-
based systems, web engineering and mobile devices.
We also aim at studying processes and methodologies
for defining DSMM languages, including their concrete
syntax. We foresee combining a top-down approach (con-
sider the top-most meta-model first) with a bottom-up
approach (draft examples at the bottom-level, and then
generalizing) [42]. We are exploring the definition of
visual syntaxes for DSMM languages, as well as improv-
ing the DSMM support by enabling the definition of
operations on pure clabject instances, controlling the
extensibility of Epsilon rules and operations, improving
our templates for textual syntax (e.g., enabling a more
detailed customization of the syntax for linguistic exten-
sions) and performing additional static checks to catch
more errors at design time. As we showed in Section 6.1,
the definition of a special syntax for multi-level model-
to-model transformations is also desirable. We plan to
tackle this issue using the Eclectic framework [41]. Fi-
nally, we are currently planning a detailed comparison
of the multi-level approach and possible workarounds,
from the modelling and model management perspective,
using a real-life case study and an empirical evaluation.
Acknowledgements. We thank the referees for their
detailed and useful comments. This work has been
funded by the Spanish Ministry of Economy and Com-
petitivity with project “Go Lite” (TIN2011-24139), and
the R&D programme of Madrid Region with project
“eMadrid” (S2009/TIC-1650).

24

Scenario Purpose Technique
(a) Access to instances of indirect types Transparent modification of semantics of standard operators like

X.allInstances().
(a) Define constraints/operations/rules/syntactic templates

applicable to indirect instances of a given clabject
Add potency to constraints/operations/rules/syntactic templates.

(b) Navigate to clabject type Transparent access to linguistic layer using X.type.
(b) Iterate over clabject instances at a particular meta-level Special semantics for model aliases (SLevel0, TLevel0, SLevel1...)
(c) Operation/rule/syntactic template refinement at lower

meta-levels
Operation overriding across meta-levels (EOL and EGL), rule in-
heritance (ETL), template overriding.

(d) Control of linguistic extensions Use of tag strict and access to linguistic layer from constraints.
(d) Reflective access to linguistic extensions Transparent access to API of linguistic layer.
(d) Use of linguistic types Special semantics for linguistic types, in combination with query

operations like allInstances(). Transparent access to API of lin-
guistic layer.

(e) A rule needs to create a clabject with a type unknown at
model transformation design time

Reflective mechanism for type refinement (refineType).

Table 3 Summary of techniques to enable DSMM using multi-level meta-modelling. Scenario (a) refers to deep operations,
(b) to operations requiring access to multiple meta-levels, (c) to refining operations at lower meta-levels, (d) to access to
linguistic extensions reflectively and the use of linguistic types, and (e) to model transformations with multi-level target.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer
Monographs on Computer Science, 1996.

2. T. Aschauer, G. Dauenhauer, and W. Pree. Represen-
tation and traversal of large clabject models. In MoD-
ELS’09, volume 5795 of LNCS, pages 17–31. Springer,
2009.

3. T. Asikainen and T. Männistö. Nivel: a metamodelling
language with a formal semantics. Software and System
Modeling, 8(4):521–549, 2009.

4. C. Atkinson. Meta-modeling for distributed object en-
vironments. In EDOC, pages 90–101. IEEE Computer
Society, 1997.

5. C. Atkinson, R. Gerbig, and B. Kennel. Symbi-
otic general-purpose and domain-specific languages. In
ICSE’12 (New Ideas and Emerging Results track), pages
1269–1272, 2012.

6. C. Atkinson, R. Gerbig, and C. Tunjic. Towards multi-
level aware model transformations. In ICMT’12, volume
7307 of LNCS, pages 208–223. Springer, 2012.

7. C. Atkinson, M. Gutheil, and B. Kennel. A flexible in-
frastructure for multilevel language engineering. IEEE
Trans. Soft. Eng., 35(6):742–755, 2009.

8. C. Atkinson and T. Kühne. The essence of multilevel
metamodeling. In UML, volume 2185 of LNCS, pages
19–33. Springer, 2001.

9. C. Atkinson and T. Kühne. Rearchitecting the UML
infrastructure. ACM Trans. Model. Comput. Simul.,
12(4):290–321, 2002.

10. C. Atkinson and T. Kühne. Model-driven development:
A metamodeling foundation. IEEE Software, 20(5):36–
41, 2003.

11. C. Atkinson and T. Kühne. Reducing accidental com-
plexity in domain models. Software and System Model-
ing, 7(3):345–359, 2008.

12. J. de Lara and E. Guerra. Deep meta-modelling
with MetaDepth. In TOOLS’10, volume 6141
of LNCS, pages 1–20. Springer, 2010. See also
http://astreo.ii.uam.es/∼jlara/metaDepth.

13. J. de Lara and E. Guerra. From types to type require-
ments: Genericity for model-driven engineering. Software
and System Modeling, page in press, 2011.

14. J. de Lara and E. Guerra. Domain-specific textual meta-
modelling languages for model driven engineering. In
ECMDA-FA’12, volume 7349 of LNCS, pages 259–274.
Springer, 2012.

15. J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena.
Extending deep meta-modelling for practical model-
driven engineering. The Computer Journal, In press,
2012.

16. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed. Cross-
layer modeler: a tool for flexible multilevel modeling with
consistency checking. In SIGSOFT FSE, pages 452–455.
ACM, 2011.

17. N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fer-
nandes. Engineering a DSL for software traceability. In
SLE’08, volume 5452 of LNCS, pages 151–167. Springer,
2008.

18. Epsilon. http://www.eclipse.org/epsilon/,
2012.

19. J. Espinazo-Pagán, M. M. Tortosa, and J. G. Molina.
Metamodel syntactic sheets: An approach for defining
textual concrete syntaxes. In ECMDA-FA’08, volume
5095 of LNCS, pages 185–199. Springer, 2008.

20. C. Gonzalez-Perez and B. Henderson-Sellers. A
powertype-based metamodelling framework. Software
and System Modeling, 5(1):72–90, 2006.

21. C. Gonzalez-Perez and B. Henderson-Sellers. Modelling
software development methodologies: A conceptual foun-
dation. Journal of Systems and Software, 80(11):1778–
1796, 2007.

22. C. W. Günther. Xes 1.0 extensible event sys-
tem standard definition. Technical report, See also
http://www.xes-standard.org/, 2009.

23. M. Herrmannsdörfer and B. Hummel. Library concepts
for model reuse. Electron. Notes Theor. Comput. Sci.,
253:121–134, September 2010.

24. J. Holt. A Pragmatic Guide to Business Process Mod-
elling (2nd Ed). British Informatics Society Ltd, 2009.

25. S. Jablonski, B. Volz, and S. Dornstauder. A meta model-
ing framework for domain specific process management.
In COMPSAC’08, pages 1011 –1016. IEEE Computer
Society, 2008.

26. M. Jarke, R. Gallersdörfer, M. A. Jeusfeld, and
M. Staudt. ConceptBase - a deductive object base for
meta data management. J. Intell. Inf. Syst., 4(2):167–
192, 1995.

25

27. F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for
the specification of textual concrete syntaxes in model
engineering. In GPCE’06, pages 249–254. ACM, 2006.

28. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley-IEEE CS, 2008.

29. D. S. Kolovos, R. F. Paige, and F. Polack. The Ep-
silon Object Language (EOL). In ECMDA-FA’06, vol-
ume 4066 of LNCS, pages 128–142. Springer, 2006.

30. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon
Transformation Language. In ICMT’08, volume 5063 of
LNCS, pages 46–60. Springer, 2008.

31. T. Kühne and D. Schreiber. Can programming be liber-
ated from the two-level style? – Multi-level programming
with DeepJava. In OOPSLA’07, pages 229–244. ACM,
2007.

32. P. Langer, K. Wieland, M. Wimmer, and J. Cabot. From
UML profiles to EMF profiles and beyond. In TOOLS’11,
volume 6705 of LNCS, pages 52–67. Springer, 2011.

33. L. Liu and M. A. Jeusfeld. Suitability of active rules for
model transformation. In CAiSE Forum, volume 855 of
CEUR Workshop Proceedings, pages 131–138, 2012.

34. T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541–580, 1989.

35. J. Mylopoulos, A. Borgida, M. Jarke, and
M. Koubarakis. Telos: Representing knowledge
about information systems. ACM Trans. Inf. Syst.,
8(4):325–362, 1990.

36. J. Odell. Power types. JOOP, 7(2):8–12, 1994.
37. OMG. MOF 2.4.1. http://www.omg.org/spec/MOF/,

2011.
38. OMG. OCL 2.3.1. http://www.omg.org/spec/OCL/,

2012.
39. OMG. MDA home page. http://www.omg.org/mda/,

2013.
40. L. M. Rose, R. F. Paige, D. S. Kolovos, and F. Polack.

The Epsilon Generation Language. In ECMDA-FA’08,
volume 5095 of LNCS, pages 1–16. Springer, 2008.

41. J. Sánchez Cuadrado. Towards a family of model
transformation languages. In ICMT’12, volume
7307 of LNCS, pages 176–191. Springer, 2012. See also
http://sanchezcuadrado.es/projects/eclectic/.

42. J. Sánchez Cuadrado, J. de Lara, and E. Guerra.
Bottom-up meta-modelling: An interactive approach. In
MoDELS, volume 7590 of LNCS, pages 3–19. Springer,
2012.

43. J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Generic
model transformations: write once, reuse everywhere. In
ICMT, volume 6707 of LNCS, pages 62–77. Springer,
2011.

44. J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Flexi-
ble model-to-model transformation templates: An appli-
cation to ATL. Journal of Object Technology, 11(2):4:
1–28, 2012.

45. S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, and J.-
M. Jézéquel. Reusable model transformations. Software
and System Modeling, 11(1):111–125, 2012.

46. J. Steel, K. Duddy, and R. Drogemuller. A transfor-
mation workbench for building information models. In
ICMT, volume 6707 of LNCS, pages 93–107. Springer,
2011.

47. J. Steel and J.-M. Jézéquel. On model typing. Software
and System Modeling, 6(4):401–413, 2007.

48. B. Volz and S. Jablonski. Towards an open meta model-
ing environment. In 10th Workshop on Domain-Specific
Modeling, 2010.

49. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzeg-
ger, J. Schönböck, W. Schwinger, D. Kolovos, R. Paige,
M. Lauder, A. Schürr, and D. Wagelaar. Surveying rule
inheritance in model-to-model transformation languages.
The Journal of Object Technology, 11, 2012.

50. S. Zschaler, D. S. Kolovos, N. Drivalos, R. F. Paige, and
A. Rashid. Domain-specific metamodelling languages for
software language engineering. In SLE’09, volume 5969
of LNCS, pages 334–353. Springer, 2009.

Appendix A

This appendix provides a formal definition of potency,
linguistic typing and ontological typing. For simplicity,
we just consider clabjects and fields, which suffices to
illustrate the main concepts of our framework.

Definition 1 (Model) A model M = ⟨CL, fields, FI⟩
is made of:

– a set CL of clabjects,
– a set FI of fields,
– a total function fields : CL → 2FI assigning to each

clabject c a (perhaps empty) set fields(c) of its owned
fields, s.t. ∀f ∈ FI ∃1c ∈ CL with f ∈ fields(c)
(every field belongs to exactly one clabject).

Remark. We use 2FI to denote the set of all subsets of
FI (its powerset). We sometimes use cl(M) to denote
CL, the set of clabjects of M , and fi(M) to denote FI,
the set of fields included in clabjects of M .

We write U = {Mi = ⟨CLi, fieldsi, F Ii⟩}i∈I for the
set of all possible models, which we sometimes call the
universal set of models.

Next, we define the potency for models, clabjects and
fields as a family of functions to the natural numbers,
including zero. The potency of clabjects should not be
bigger than the potency of their enclosing model, and
the potency of fields should not be bigger than the po-
tency of their owner clabject. Having fields with potency
bigger than their owning clabject may be useful in mod-
els with inheritance [15], but we omit inheritance in this
formalization for simplicity.

Definition 2 (Potency) Given the universal set U ,
the potency potU = ⟨pot, {poti}i∈I⟩ is defined as:

– a total function pot : U → N0 assigning each model
Mi a positive number, or zero;

– a family of total functions {poti : CLi∪FIi → N0}i∈I

for each model Mi ∈ U , assigning each clabject
and field a positive number or zero, s.t. ∀c ∈ CLi,
poti(c) ≤ pot(Mi), and ∀f ∈ fieldsi(c), poti(f) ≤
poti(c).

26

Remark. Potency for models is named level in [8].
In order to define the linguistic typing, we as-

sume a very simple linguistic meta-model LMM =
{MODEL,CLABJECT, FIELD}. Then, the linguis-
tic type is a family of total functions with co-domain
LMM , as shown in the next definition.

Definition 3 (Linguistic typing) Given the uni-
versal set U , the linguistic typing ltypeU =
⟨ltype, {ltypei}i∈I⟩ is defined as:

– a total function ltype : U → LMM , s.t. ∀Mi ∈
U, ltype(Mi) = MODEL;

– a family of total functions {ltypei : CLi ∪ FIi →
LMM}i∈I for each model Mi ∈ U , s.t. ∀c ∈
CLi ltypei(c) = CLABJECT , and ∀f ∈
FIi ltype

i(f) = FIELD.

Remark. For the potency and the linguistic typing, we
sometimes use pot and ltype (without the superindex)
for clabjects and fields when no confusion arises.

Next, we define the ontological typing as a family of
partial functions.

Definition 4 (Ontological typing) Given the uni-
versal set U = {Mi = ⟨CLi, fieldsi, F Ii⟩}i∈I , with
CL = ⊎i∈ICLi, FI = ⊎i∈IFIi, the ontological typing
otypeU = ⟨otype, {otypei}i∈I⟩ is made of:

– a partial function otype : U → U assigning each
model Mi its ontological model type otype(Mi);

– a family of partial functions {otypei : CL ∪ FI →
CL ∪ FI}i∈I ,

s.t. otypeU fulfills the following well-formedness
rules, ∀Mi ∈ U :

1. otype(Mi) = M ′ ⇒ pot(Mi) + 1 = pot(M ′),

2. ∀c ∈ CLi, otype
i(c) = c′ ⇒

c′ ∈ CL (clabjects are typed by clabjects),

3. ∀f ∈ FIi, otype
i(f) = f ′ ⇒

f ′ ∈ FI (fields are typed by fields),

4. ∀c ∈ CLi, otype
i(c) = c′ ⇒

[c′ ∈ cl(otype(Mi)) ∧ pot(c) + 1 = pot(c′) ∧
∀f ′ ∈ fields(c′) s.t. pot(f ′) > 0
∃1f ∈ fields(c) s.t.
[otypei(f) = f ′ ∧ pot(f) + 1 = pot(f ′)]]

5. ∀f ∈ FIi, otype
i(f) = f ′ ⇒

[∃c, c′ s.t. otype(c) = c′ ∧
f ∈ fields(c) ∧ f ′ ∈ fields(c′)
∧ pot(f) + 1 = pot(f ′)]

6. pot(Mi) = 0 ⇒ ∃M ′ ∈ U s.t. otype(Mi) = M ′

7. ∀c ∈ CLi [pot
i(c) = 0 ⇒

∃c′ ∈ cl(otype(Mi)) s.t. otype(c) = c′]

8. ∀f ∈ FIi [pot
i(f) = 0 ⇒

∃f ′ ∈ fi(otype(Mi)) s.t. otype(f) = f ′]

Remark. We use ⊎ for disjoint union.
Remark. The first condition states that the potency of
Mi is one less than the potency of its ontological model
type M ′. The second and third conditions state that
clabjects and fields should be typed by clabjects and
fields, respectively. The second condition is subsumed
by the fourth, but we explicitly state it for clarity. The
fourth condition states that if a clabject c has c′ as onto-
logical type, then its potency is one less. As the codomain
of the potency is N0, we have that elements with potency
zero cannot be instantiated. The fourth condition also
requires every field of c′ with potency bigger than zero
to be instantiated in c. The fifth condition is a compati-
bility condition specifying that if the ontological type of
a field f is f ′, then the ontological type of the owner of
f is the owner of f ′. The last three conditions state that
elements with potency zero should have an ontological
type.

The previous definition of ontological typing reduces
to the standard conformance relation in a two meta-
levels setting, if we restrict the potency function to the
set {0, 1} ⊂ N0, where models with potency 1 are the
meta-models and those with potency 0 the models. How-
ever, model self-typing (i.e., a model whose ontological
type is itself, as suggested in the OMG’s MDA [39]) is not
allowed in this formalization due to the requirement of
the potency decrease in the model instances. Instead, we
require top-level models to lack an ontological type and
have a linguistic type only. Hence, the linguistic meta-
model plays the role of the MOF in this architecture.

Next, we use the previous definitions to character-
ize linguistic extensions as elements with no ontological
type.

Definition 5 (Linguistic extension) Given the uni-
versal set U = {Mi = ⟨CLi, fieldsi, F Ii⟩}i∈I , and an
ontological typing otypeU = ⟨otype, {otypei}i∈I⟩, the lin-
guistic extensions LEj of Mj ∈ U are defined as the tuple
LEj = ⟨CL′

j ⊆ CLj , fieldsj |CL′
j
, F I ′j ⊆ FIj⟩ s.t.:

– ∀c′ ∈ CL′
j otype(c′) is undefined,

– ∀c ∈ CLj \ CL′
j otype(c) is defined,

– ∀f ′ ∈ FI ′j otype(f ′) is undefined,
– ∀f ∈ FIj \ FI ′j otype(f) is defined.

Remark. Function otypei partitions CLi and FIi into
the set of ontologically typed clabjects and fields (CLi \
CL′

i and FIi \ FI ′i) and the linguistic extensions (CL′
i

and FI ′i). Note that LEj may fail to be a model, accord-
ing to Definition 1, because some field without ontologi-
cal type (belonging to FI ′j) may be owned by a clabject
with ontological typing (not belonging to CL′

j). In any
case, every element Mi ∈ U is a correct model according
to our framework.

Due to the fifth condition in Definition 4, we have
that if a clabject has no ontological type, then no owned

27

field can have an ontological type. Conversely, it is al-
lowed to have fields with no ontological type, owned by
clabjects with ontological type.

Appendix B

This appendix provides complete listings for the running
example presented in Section 5.

1 // Loads the meta−model
2 load ”DSPM”
3

4 Syntax DSPM MM for ProcessModel [”.pm mm”] {
5 permitsLoad = true;
6 backtracking = true;
7

8 model template DSPM MM Syntax@1 for ”ProcessModel”
9 ”process” ˆId ”{”

10 (:TaskTemplate | :PerformerTemplate | :ArtefactTemplate |
11 :SeqTemplate | :JoinTemplate | :ForkTemplate | ˆLingElements)+
12 ”}” ;
13

14 node template TaskTemplate@1 for Task
15 ”task” ˆId #name ˆSupers
16 (”inputs” (#ins)+)?
17 (”outputs” (#outs)+)?
18 ”{”
19 ˆFields
20 ˆConstraints
21 ”}”
22 with ins redefinedBy inputArtefacts
23 outs redefinedBy outputArtefacts ;
24

25 node template PerformerTemplate@1 for Performer
26 ”performer” ˆId #name ˆSupers
27 ”{”
28 ˆFields
29 ˆConstraints
30 ”}” ;
31

32 node template ArtefactTemplate@1 for Artefact
33 ”artefact” ˆId
34 ;
35

36 node template SeqTemplate@1 for Seq
37 ”seq” ˆId ”:” #src ”−>” #tar
38 with src redefinedBy from
39 tar redefinedBy to
40 ;
41

42 node template JoinTemplate@1 for Join
43 ”join” ˆId ”:” ”(” #src (”,” #src)+ ”)” ”−>” #tar
44 with src redefinedBy from
45 tar redefinedBy to
46 ;
47

48 node template ForkTemplate@1 for Fork
49 ”fork” ˆId ”:” #src ”−>” ”(” #tar (”,” #tar)+ ”)”
50 with src redefinedBy from
51 tar redefinedBy to
52 ;
53 }
54

55 Syntax DSPM Model Syntax for ProcessModel [”.pm”] {
56 permitsLoad = true;
57 backtracking = true;
58

59 model template DeepProcess@2 for ”ProcessModel”
60 ˆTypename ˆId ”{”
61 (:DeepPerformer | :DeepTask | :DeepArtefact |
62 :DeepSeq | :DeepJoin | :DeepFork | ˆLingInsts)∗
63 ”}” ;
64

65 node template DeepPerformer@2 for Performer
66 ”−” ˆTypename ˆId
67 ;
68

69 node template DeepArtefact@2 for Artefact
70 ”o” ˆTypename ˆId #description
71 ;
72

73 node template DeepTask@2 for Task
74 ”∗” ˆTypename (”!”)? ˆId (”by” #perfBy)?
75 (”requiring” #ins)∗
76 (”delivering” #outs)∗
77 with ”!” set initial = true
78 ;
79

80 node template DeepSeq@2 for Seq
81 ˆTypename ”:” #src ”−>” #tar;
82

83 node template DeepJoin@2 for Join
84 ˆTypename ”:” ”(” #src (”,” #src)+ ”)” ”−>” #tar;
85

86 node template DeepFork@2 for Fork
87 ˆTypename ”:” #src ”−>” ”(” #tar (”,” #tar)+ ”)”;
88 }

Listing 20 Defining the concrete syntax for meta-level 1.

1 process Waterfall {
2

3 task SETask ”preparation” {
4 actor : SoftwareEngineer[∗] { perfBy };
5 }
6

7 task Analysis ”requirements and analysis” : SETask {
8 analyst : $self.actor.forAll(a | a.isKindOf(Analyst))$;
9 outreqs : $self.output.forAll(a | a.isKindOf(RequirementsDoc))$;

10 }
11

12 task Design ”high and low level design” : SETask {
13 designer : $self.actor.forAll(a | a.isKindOf(Designer))$;
14 }
15

16 artefact Script
17 artefact Documentation
18 artefact SourceCode
19

20 task Coding ”coding and unit testing” : SETask
21 inputs Documentation
22 outputs SourceCode {
23 uses : ProgLanguage[∗];
24 programmer : $self.actor.forAll(a | a.isKindOf(Programmer))$;
25 }
26

27 task Testing ”test” {
28 tester : $self.actor.forAll(a | a.isKindOf(Tester))$;
29 }
30

31 task UnitTesting ”unit” : SETask, Testing { }
32 task AcceptanceTesting ”accept” : Testing {
33 actor : User[∗] { perfBy };
34 }
35

36 performer SoftwareEngineer ”se” {
37 SSN : String{id};
38 notes : String;
39 expertise : ProgLanguage[∗];
40 }
41

42 performer Analyst ”analyst” : SoftwareEngineer {}
43 performer Designer ”designer” : SoftwareEngineer {}
44 performer Programmer ”programmer” : SoftwareEngineer {}
45 performer User ”user” { }
46

47 seq a2d: Analysis −> Design
48 seq d2c: Design −> Coding
49 seq inner: SETask −> SETask
50

51 fork c2t: Coding −> (UnitTesting, AcceptanceTesting)
52

53 Node ProgLanguage {
54 name : String;
55 version : String;
56 }
57

58 Node Contract {
59 startDate : String;
60 salary : double;
61 iRPF : double;
62 employee : SoftwareEngineer;
63 }
64 }

28

Listing 21 Using the concrete syntax to define the meta-
model for the DSML.

1 Syntax SE for SoftwareEngineering imports DeepDSPM [”.se”] {
2

3 override node template DeepPerformer@2 for Performer
4 :AnalystTemplate | :DesignerTemplate |
5 :ProgrammerTemplate | :UserTemplate;
6

7 node template AnalystTemplate@1 for Analyst
8 ”−” ˆId ”the” ”analyst” ”knows” #expertise (”,” #expertise)∗
9

10 node template DesignerTemplate@1 for Designer
11 ”−” ˆId ”the” ”designer” ”likes” #expertise (”,” #expertise)∗
12

13 node template ProgrammerTemplate@1 for Programmer
14 ”−” ˆId ”the” ”programmer” ”masters” #expertise (”,” #expertise)∗
15

16 node template UserTemplate@1 for User
17 ”−” ”A” ”user” ˆId
18 }

Listing 22 Extending the concrete syntax.

1 Waterfall Project1 DefaultSyntax {
2

3 // Staff
4 − Richard the programmer masters Lisp, C
5 − Steve the designer likes ObjectiveC
6 − Bill the analyst knows Basic
7 − A user Me
8

9 // Artefacts
10 o Documentation aDocument ”of a really bad window system”
11 o SourceCode aProgram ”written in Lisp”
12

13 // Tasks
14 ∗ Analysis doAnalysis by Bill
15 ∗ Design designProduct by Steve
16 ∗ Coding codeEverything by Richard
17 requiring aDocument
18 delivering aProgram
19 ∗ UnitTesting unit by Richard
20 ∗ AcceptanceTesting accept by Me
21

22 // Flow
23 a2d: doAnalysis −> designProduct
24 d2c: designProduct −> codeEverything
25 c2t: codeEverything −> (accept, unit)
26 inner: unit −> unit
27

28 // Programming languages
29 ProgLanguage Lisp {
30 name = ”Common Lisp”;
31 }
32

33 ProgLanguage C {
34 name = ”Ansi C”;
35 }
36

37 ProgLanguage ObjectiveC {
38 name = ”Objective−C”;
39 }
40

41 ProgLanguage Basic {
42 name = ”Basic”;
43 }
44 }

Listing 23 Using the concrete syntax to create models.

29

