
Towards the Systematic Construction of
Domain-Specific Transformation Languages

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Universidad Autónoma de Madrid (Spain)

Abstract. General-purpose transformation languages, like ATL or QVT,
are the basis for model manipulation in Model-Driven Engineering (MDE).
However, as MDE moves to more complex scenarios, there is the need
for specialized transformation languages for activities like model merg-
ing, migration or aspect weaving, or for specific domains of wide use like
UML. Such domain-specific transformation languages (DSTLs) encapsu-
late transformation knowledge within a language, enabling the reuse of
recurrent solutions to transformation problems.
Nowadays, many DSTLs are built in an ad-hoc manner, which requires a
high development cost to achieve a full-featured implementation. Alter-
natively, they are realised by an embedding into general-purpose trans-
formation or programming languages like ATL or Java.
In this paper, we propose a framework for the systematic creation of
DSTLs. First, we look into the characteristics of domain-specific trans-
formation tools, deriving a categorization which is the basis of our frame-
work. Then, we propose a domain-specific language to describe DSTLs,
from which we derive a ready-to-run workbench which includes the ab-
stract syntax, concrete syntax and translational semantics of the DSTL.

1 Introduction

Model transformations are central to MDE. Many transformation languages have
been proposed and are widely used nowadays, e.g. ATL or QVT. We term these
languages General-Purpose Transformation Languages (GPTLs), because their
scope considers transformation of models, but they are not specific for particular
tasks (like migration or refactoring) or domains (like UML or Petri nets).

We can use GPTLs to tackle a wide variety of scenarios, but in our experience,
some transformation tasks become more natural and easier by using specialized
transformation languages offering primitives tailored to the task to be solved.
Examples of these tasks include model migration, promotion of models into
meta-models, and aspect weavers for domain-specific languages. Similar to the
benefits of using domain-specific languages over general-purpose ones in well-
known domains, we claim that these transformation scenarios would benefit from
Domain-Specific Transformation Languages (DSTLs). This is so as DSTLs make
explicit domain knowledge that otherwise needs to be repeatedly embedded in
transformations built with GPTLs or programming languages like Java.

Some works in the literature recognise the need for DSTLs [16, 25, 30]. How-
ever, there is a lack of methods and tools for their systematic engineering, in-
cluding the definition of their abstract syntax, concrete syntax and semantics.

2

While the design of domain-specific modelling languages is well understood and
there is a plethora of workbenches to speed up their construction, this support
is lacking for DSTLs. By offering such support, many transformation tasks can
be recasted as DSTLs instead of relying on ad-hoc solutions.

In this paper, we propose a design process and tool support for the system-
atic construction of DSTLs. First, we provide a suitable language to describe
the DSTL abstract syntax. This language includes transformation-specific con-
structs like Mapping, ImperativeRule and Guard. From the description of the DSTL
abstract syntax, we generate a MOF-based meta-model which is instantiated to
describe concrete transformations, and an initial concrete syntax for the DSTL,
tailored to the selected transformation constructs. Depending on the style of the
DSTL (e.g. mapping-based or imperative), we also generate a scaffolding of the
compilation into the Eclectic transformation virtual machine [7]. Eclectic is a
family of transformation languages with different styles (e.g. target-oriented or
mapping), and the languages to compile to are selected based on the primitives
used in the DSTL description. Instead of relying on code generation to produce
Eclectic code, we use model transformations, using a novel template-based tech-
nique. We illustrate our proposal with a DSTL for promotion transformations,
showing the benefits w.r.t. a hand-made implementation of the DSTL.

Altogether, the contributions of the paper are: (i) the identification of do-
mains and tasks where DSTLs make sense, based on a review of the literature,
and (ii) a systematic process for the integral definition of DSTLs.

The paper is organized as follows. Sec. 2 presents an overview of different
transformation tasks that would benefit from DSTLs, exposing useful features
in each scenario. Sec. 3 introduces our approach and a running example. Sec. 4
presents our way to define the abstract and concrete syntax of DSTLs, while
Sec. 5 explains how we specify their semantics. Sec. 6 shows tool support. Sec. 7
reviews related works and, finally, Sec. 8 concludes.

2 Domain specific transformation languages

Fig. 1. DSTLs features.

A DSTL is a transformation language de-
signed for a specific transformation task (e.g.
model merging), or restricted to work on spe-
cial kinds of models (e.g., UML models). Its
aim is not to be “universal”, applicable to any
transformation task, as languages like ATL or
QVT are. On the contrary, DSTLs contain
domain-specific primitives enabling a more
succinct and intensional expression of the task
to be performed, which frequently leads to
simpler transformation models. Fig. 1 shows
a scheme with the main features we require
for DSTLs: restricted application context (fixed source or target) or expressivity
(e.g. model migration), and syntax tailored to the specific task.

3

From the literature, we have identified two scenarios for DSTLs: a) transfor-
mation tools identified as DSTLs by their creators, built ad-hoc; and b) families
of transformation tasks developed using GPTLs, which can be seen as an appli-
cation area for creating a DSTL. In the first scenario, DSTLs are given semantics
by building an interpreter, or by compiling into a general-purpose programming
language (GPL), a GPTL or a virtual machine. Moreover, in either scenario, the
source or target meta-model of the DSTL may be fixed. For instance, many ap-
plications have the recurrent need to transform from a variety of languages into
a fixed one, like PROMELA or Petri nets [36] for verification purposes. The sec-
ond scenario typically arises due to the recurrent need to transform from widely
used languages, like UML or XML. These transformations are generally written
from scratch using GPTLs or GPLs; however, developers would benefit from
explicit linguistic support for the features and structure of the fixed language,
which could be provided by DSTLs, leading to simpler transformations.

Next, based on a review of the literature (22 articles), we identify some
specific transformation tasks where the availability of DSTLs and systematic
means for their construction would be beneficial, pointing out the main features
expected from such DSTLs. Table 1 shows a summary, gathering the two typical
scenarios for DSTLs (DSTLs built in an ad-hoc way, and families of similar
transformation tasks), whether the source or target meta-models of the DSTL
should be fixed, if the DSTL is in-place, the main DSTL primitives, the kind of
concrete syntax, and the language semantics given by the authors (i.e. the DSTL
or tool has a compiler or interpreter, or a GPTL or GPL is used for execution).

1. Promotion. This kind of transformations transforms a model into a meta-
model. When considering a particular meta-modelling technology, the target
meta-model is fixed (e.g. Ecore). Most works in the literature [4, 12, 31] en-
code these transformations using textual GPTLs – like ATL or Tefkat [19] –
or directly in Java. Based on these works, useful primitives in these DSTLs
would be mappings, bindings and guards.

2. Migration. These transformations deal with the update of artefacts upon
meta-model changes [6, 15, 26, 34]. The source and target meta-models, which
correspond to the original and evolved meta-models, are not fixed a pri-
ori. The community has identified the particularities and needs for this
scenario, proposing different textual DSTLs for migration. For instance,
EMFMigrate [34] is compiled into a transformation virtual machine, Epsilon
Flock [26] extends the EOL imperative language to add migration-specific
behaviour, and COPE [15] defines primitives for meta-model changes. Most
of these languages adopt a mapping-based style for migration rules.

3. Aspects. Several languages have been proposed to define aspects for a variety
of modelling languages, ranging from general-purpose like UML [17, 35], to
domain-specific ones like Petri nets [22, 37] and Building Information Models
(BIM) [18]. In most cases, aspects are defined using graphical patterns, thus
pointcuts require pattern matching while advices and introductions imply
pattern creation. In these works, the support for the application of aspects
to models is ad-hoc or by compilation to graph transformation systems.

4

Table 1. Summary of features for DSTLs in different domains.

fixed fixed in- main concrete
src tar place primitives syntax semantics

scenario a: domain specific transformation languages, built ad-hoc
Aspects

√ √ √
pointcut (match) graphical patterns interpreter

[17, 18, 22, 37] advice (creation)
introduction (creation)

Bridges
√ √

mapping textual rules interpreter
[5, 9] queries, expressions
BIM [30]

√ √
aggregation tabular interpreter

Merging compare graphical mappings / interpreter
[2, 11] merge, compose textual rules
Migration migrate textual mappings interpreter /
[6, 15, 26, 34] ∼a differencing with OCL expressions compilation

(default) copy to VM
guard

Model inst. CRUD on refs. tree-based editor compilation
[1] to VM
scenario b: families of recurring transformation tasks

Abstraction
√ √

∼b pattern-search textual patterns / GPTL /
[28, 29] merge, split graphical patterns / GPL

filter imperative language
HOT[33]

√ √
∼ queries, creation textual rules GPTL

Promotion
√

mapping textual mappings GPTL /
[4, 12, 31] binding with OCL expressions GPL

guard
Refactoring

√ √ √
pattern-search graphical patterns / GPTL /

[20, 21] merge, split imperative language GPL
pull, push

a
EMFMigrate uses a fixed source

b
Some are in-place, some are out-place

4. Abstractions and refactorings. Abstractions are model operations that pro-
duce simpler, higher-level views of a model. For example, [29] presents a
catalogue of abstractions for workflow languages, and [28] for modelling lan-
guages. Abstractions need to identify relevant patterns (like sequences of
nodes or connected components), and then filter, aggregate or merge those
patterns. Similar needs are found in approaches for model refactoring [21]
and model slicing [3]. While a few works use DSTLs [3], most approaches
use GPTLs, like graph transformation [20].

5. Model merging and composition. These transformations merge two models
through their common elements. There are specific DSTLs targeting this
scenario [2, 11], with primitives such as compare, merge or compose.

6. Higher-order transformations (HOTs). These are transformations of trans-
formations, and they are developed using textual GPTLs or GPLs. HOT
development would benefit from a DSTL specialized for a fixed input/out-
put language (the meta-model of the transformation language, like ATL or
QVT), and with higher-order primitives for the manipulation of the specific
language (recurrent queries, concise creation of complex patterns, etc.). The
proposal in [33], which adds a template language and a library of HOT-
specific helpers to ATL, could be reified as a DSTL.

7. Bridging technical spaces. These works bridge a technical space, like gram-
marware [5] or databases [9], with the modelling space. Some authors use
DSTLs [5, 9] with specialised query languages for this purpose, but they are

5

built in an ad-hoc manner. Other approaches use injectors and GPTLs (as
in many examples of the ATL Transformation Zoo1).

8. Others. There are works describing DSTLs for other domains, like [30], which
proposes a DSTL to calculate the budget for constructing a building from
its model and its components’ price. Another example is [1], which describes
a DSTL for instantiating model templates using feature models. This DSTL
permits specifying instantiation rules, like selecting or deleting references,
and its semantics is given by a compilation into the ATC virtual machine.

In conclusion, many domain-specific transformations tasks are currently de-
veloped using GPTLs or programming languages, but may benefit from having
a more specialized transformation language at hand. In fact, as discussed above,
for some domains several DSTLs have already been built to facilitate devel-
oping such transformation tasks. This indicates a trend, which can be clearly
witnessed in the domain-specific aspect languages area for which there is even
an established dedicated workshop [10]. These DSTL approaches typically rely
on subsets of the features of a GPTL (e.g. mappings, bindings), equipped with
domain-specific constructs (e.g. support for special queries or expressions). The
implementations range from totally ad-hoc approaches developed from scratch [5,
9] to more systematic ones, e.g., based on compilation to a VM [34]. Most of the
approaches try to reuse well-known syntaxes, such as OCL for queries or graph
patterns for rewritings, but such syntaxes are normally encoded from scratch
(notable exceptions are [26, 34]). Likewise, the tool support quality varies (not
shown in the table), but advanced features such as semantic autocompletion for
textual editors and debugging support are missing since their implementation
cost is high. Hence, we propose an approach to DSTL development in which the
DSTL designer can mix and match features found in GPTLs, as well as adding
special features of the domain. Then, our approach speeds up the development
of the DSTL tooling using a model-driven approach.

3 Overview and running example

Building a DSTL involves the definition of its abstract syntax, concrete syntax
(textual, graphical, tabular, or a mix of them), and execution semantics (typi-
cally, developing an interpreter or compiler). Additional elements may be needed,
such as a scoping mechanism for variables and a type checker to ensure that the
types used in a transformation belong to the meta-models being transformed.

These tasks are normally accomplished using an ad-hoc process without spe-
cialized tool support [16], which poses several inefficiencies. First, the abstract
syntax has to be devised in terms of MOF constructs instead of using native
concepts of the transformation domain, like rule or mapping. Using these primi-
tives facilitates defining the semantics of the DSTL. Secondly, reusing of typical
transformation features, like the use of OCL to define navigation expressions
or the integration of a type checker for meta-models has to be done manually.

1 http://www.eclipse.org/atl/atlTransformations/

6

Fig. 2. Our proposal for the construction of domain-specific transformation languages.

Finally, creating an efficient and stable execution infrastructure from scratch is
a time consuming and error prone task.

Our solution to these problems is a framework for the development of DSTLs
which provides automation for the generation of their abstract syntax, concrete
syntax and execution semantics, specialised for the peculiarities of the DSTL.
Fig. 2 shows the working scheme of our process. It illustrates the different steps in
the construction of a DSTL for promotion transformations in order to facilitate
the definition of this kind of transformations [4, 12, 31].

As a first step (label 1), the DSTL designer defines the primitives to be
included in the DSTL. For this purpose, we make available a domain-specific
language (DSL) which includes constructs close to the transformation domain.
For instance, in the figure, the DSTL specification includes the definition of
a mapping type that will be used to identify which source elements will be
promoted into packages, and thus, the source of the mapping can be any element
but the target is fixed (EPackage). The complete DSTL specification includes
additional mapping types for the promotion of the other modelling elements.

Our DSL uses primitives of the transformation domain, facilitating the gener-
ation of several artefacts. In particular, from the DSTL specification, we generate
an Ecore meta-model for the abstract syntax of the DSTL, a default implemen-
tation of its concrete syntax (including a scope resolutor and a type checker for
the input/output meta-models), and an initial scaffolding of the compiler (label
2). The generated concrete syntax is tailored to the transformation primitives
selected in the DSTL. The compiler synthesizes Eclectic code from the DSTL
model, and this code is compiled into the Java Virtual Machine.

The designer can customize the default abstract syntax, concrete syntax and
compiler (label 3), e.g., to add domain-specific functionality. Then, an environ-
ment for the language (label 4) is automatically created. The figure shows a DSTL
user building a promotion transformation using the generated DSTL (label 5).

In the following two sections we detail the different steps in our framework.

7

RuleType

Application

Condition
Creation

Declarative Imperative Pattern

One

Element
Pattern

One

Element

fixed

Guard

fixed fixed

fixed fixed

Bindings

Simple OCL

fixed fixed

mapping 1 element 1 element

target-oriented 1 element pattern

pattern-based pattern pattern

imperative any imperative

[0,*]

[0,*]

[0,*]

[0,*]

 application
 rule style condition creation

optional

mandatory

alternative

Legend:

DSTL

name: String

inPlace: boolean

description: String

MetaModel

name: String

FixedMetaModel

uri: String

src

tar

InstantiableElement

name: String{id}

min: int

max: int

RuleType

primitives *

isAbstract: boolean

Mapping Imperative Pattern

Based

Target

Oriented

Application

Condition
GuardType

guardType

*

FixedSimple

ElementCondition
name: String

element: String

Simple

ElementCondition

name: String
…

CreationType

domainName: String

condition

creates

ImperativeAction …

Declarative

Creation
BindingType

*

…

…

GenericBinding

FixedBinding

featureLeft: String

…
attribute

Computations

*

ancestors
*

Fig. 3. Rule types (left). Meta-model for specifying DSTLs (excerpt) (right).

4 Designing the syntax

This section presents our DSL to define DSTLs (sec. 4.1), and the subsequent
generation of the abstract and concrete syntax (secs. 4.2 and 4.3).

4.1 Describing the DSTL

As we have seen, DSTLs profit from native concepts of the transformation do-
main, and may combine features and operations found in GPTLs with domain-
specific ones. Thus, the first step is choosing the required constructs for the
language. For space reasons, in this paper, we focus on the selection and cus-
tomization of suitable rule types, since it is normally the main construct of a
DSTL, although in practice we have considered other aspects such as scheduling
and tracing.

The left of Fig. 3 shows a feature diagram describing the kind of rules that
could be constructed with our approach. All rule types have an application
condition and creation directives. Application conditions identify the elements
matched by the rule, which can be either a single element or a pattern, and
can include guards. If the DSTL has a fixed source or target meta-model (as
is the case in our running example for promotion transformations), then it is
possible to use concrete types of the fixed meta-model in the DSTL definition;
otherwise, the types are not fixed and should be specified in the transformation.
Rule types also need to define the style of the creation directives, which can be
either declarative or imperative. In the former case, the creation can be of a
single element or of a graph pattern, and it is possible to define bindings for the
attributes. For the elements marked with cardinality [0, *] in the feature diagram,
the designer can fine-tune the number of times they can be instantiated (any
number by default). The most common rule styles result from the combination of
the features in this diagram (see the table at the bottom of the figure): mappings
(rules that create one target element from one source element), target-oriented
rules (creation of a target graph pattern from a source element), pattern-based
rules (patterns in the rule source and target), and imperative rules.

8

We have realized these design choices in the meta-model shown to the right
of Fig. 3. Its root class is DSTL, which defines if the transformation is in-place
and the source and target meta-models. To indicate that a meta-model is fixed
in the DSTL, we use the metaclass FixedMetaModel. A DSTL contains transforma-
tion primitives, which are instances of RuleType or its subclasses. A RuleType has
an application condition (subclasses of ApplicationCondition) and creates elements
(subclasses of CreationType). The application condition describes the conditions
needed to apply the rule. For instance, FixedSimpleElementCondition is used for rule
types having a single source element with a type from the fixed source meta-
model. In this case, the rule will be applied to each element of type element.
Conditions can also be of type SimpleElementCondition, and in this case, the rule
will be applied to each element of the type specified in the specific transforma-
tion. Application conditions can have in addition a number of GuardTypes.

The elements a RuleType creates are configured through subclasses of Cre-

ationType, like ImperativeAction and DeclarativeCreation. The latter has subclasses
for the creation of one or several elements of a fixed or variable type, and can be
assigned BindingTypes for attribute computation. Two supported binding types
are GenericBinding, where the target feature is specified in the particular trans-
formation, and FixedBinding, which forces the binding of a particular feature of
the created element.

The subtypes of RuleType force the use of specific combinations of application
conditions, guards, creations and bindings, as shown in the feature diagram. For
example, a Mapping has a FixedSimpleElementCondition or SimpleElementCondition,
simple declarative creation, and any number of guards and bindings. It is possible
to instantiate RuleType if no more specific rule type suits the needs of the DSTL.

Fig. 4 shows part of the definition of the promotion DSTL example, using
a concrete syntax we have devised for the previous meta-model. Lines 1–3 de-
clare the DSTL with a fixed target meta-model (ecore). Lines 5–7 declare an
abstract mapping with a simple application condition (an element “src” of any
available type from the input meta-model). Then, two concrete mapping types
are declared that inherit from Common, and hence receive the same condition
type. The PackageMapping mapping creates and element with fixed type EPackage

from ecore, and has a fixed binding for the feature name and any number of
arbitrary OCL bindings. Thus, a transformation using the DSTL will require
providing the source type that will be transformed into an EPackage, a literal or
an expression for the fixed binding, and any number of additional bindings.

4.2 Generating the abstract syntax

From the description of the desired primitives of the DSTL, we automatically
generate a meta-model. As an example, Fig. 5 shows an excerpt of the gener-
ated meta-model for our promotion DSTL (package promotion). Each metaclass
in this meta-model inherits from some base class in package dstlInst. This pack-
age contains infrastructure classes, like Mapping or Binding. For example, a root
metaclass Promotion is added to the DSTL meta-model, which inherits from the
infrastructure class Transformation. As the source meta-model is not fixed, the

9

1 DSTL promotion
2 src: variable[name: ”src”]
3 tar: fixed[name: ”ecore”, uri: ”http://www.ecl...”]
4

5 abstract mapping Common {
6 conditions { ”src”: any }
7 }
8 mapping PackageMapping[1] extends Common {
9 creates:

10 fixed−element EPackage[1] {
11 fixed−binding for ”name”

12 generic−OCL−binding[∗]
13 }
14 }
15 mapping ClassMapping[1..∗] extends Common {
16 creates:
17 fixed−element EClass[1] {
18 fixed−binding for ”name”
19 generic−OCL−binding[∗]
20 }
21 }
22 ...

Fig. 4. Describing the promotion DSTL (excerpt).

Promotion

Transformation

name: String

MetaModel

name: String

uri: String

srcMeta

Common

Mapping

name: String

Rule

FixedTarget

Mapping

PackageMapping

1

dstlInst

Condition

SimpleElementConditionSrc

1 src

elementType: String

name: String=“src” {readonly}

FixedSimple

ElementCreation

Declarative

Creation

Creation

name: String=“tar”

elementToCreate:

String=“EPackage”

{readonly}

{readonly}

1

promotion

expressions

FixedBinding

Binding

FixedBinding

PackageName

featureLeft:

 String=“name”

{readonly}

Expression

Variable

Reference

right

Expression

Closure

Declaration
…

1

P
re

d
e

fi
n

e
d

in

fr
a

s
t
r
u

c
t
u

re

G
e

n
e

ra
te

d

SimpleElementCondition

FixedSimpleElement

CreationPackage

Fig. 5. Generated abstract syntax meta-model (excerpt).

root metaclass includes a reference to MetaModel, to allow the specification of a
source meta-model in the specific transformation. From the mapping PackageMap-

ping in the DSTL definition, a metaclass with the same name is added to the
meta-model. This metaclass inherits from FixedTargetMapping, which reflects the
fact that it is a mapping and its target is fixed. The metaclass also inherits from
Common in the same package, which defines the source application conditions for
the mapping. Please note that our generator is able to select the base classes to
inherit from based on the chosen primitives (e.g. Mapping in Fig. 3), but also on
the selected rule features if the more general RuleType metaclass is used instead.
For instance, a RuleType with one-element condition and one-element creation is
automatically classified as a Mapping. Finally, we have a dedicated infrastructure
package for OCL-like expressions. This is used in our running example, since the
description of the promotion DSTL includes OCL-like bindings.

The rationale of this approach is that the simple description in Fig. 4 carries
semantic information (e.g., on desired rule types), which can be automatically
carried to a meta-model (see Fig. 5), and that is used to generate a default
textual syntax (see Section 4.3), and a compiler for the DSTL (see Section 5).

4.3 Generating the concrete syntax

From the DSTL description, we also generate a concrete syntax. We support
two styles: textual, and tabular for the case of DSTLs consisting of mappings

10

only. The concrete syntax is based on Xtext, and is customized according to the
transformation primitives used (mapping, pattern-based, imperative, etc.). For
pattern-based rules, we generate a syntax for patterns similar to that of QVT-
Relations. For mappings, we support two styles: one with simple rules (like the
syntax of ATL) and another one with nested rules, available if the target meta-
model is fixed. Nested rules follow the structure of composite associations of
the target meta-model. Finally, if the DSTL uses an expression language (as in
Fig. 5), the syntax of the expression language is integrated in the DSTL syntax.

Listing 1 shows an excerpt of a promotion transformation in concrete syntax,
using the simple rules style generated by default. This syntax is more concise
than e.g., ATL, as we have a fixed target language. Lines 4 and 9 instantiate the
package and class mappings, where only the source of the mappings needs to be
given. Lines 6 and 11 correspond to the mandatory name bindings.

1 promotion MM2Ecore
2 src: MetaModel(”MetaModel”)
3

4 PackageMapping
5 from src: MetaModel {
6 name <− packName
7 }
8

9 ClassMapping
10 from src: MetaClass {
11 name <− className
12 }
13 ...

Listing 1. Excerpt of promotion
transformation in DSTL syntax.

1 eclectic promotion2ecore (src) −> (ecore)
2 navigation promotion navigation (src)
3 def src!MetaModel.reachClasses
4 src!MetaClass.all instances
5 end
6 end
7

8 mappings promotion (src) −> (ecore)
9 from src : src!MetaModel to tgt : ecore!EPackage

10 tgt.eClassifiers <− src.reachClasses
11 tgt.name = src.packName
12 end
13

14 from src : src!MetaClass to tgt : ecore!EClass
15 tgt.name = src.className
16 end
17 end

Listing 2. Equivalent Eclectic transformation.

5 Designing the semantics

To define the executable semantics of the DSTL, we establish a mapping to one
or more languages of the Eclectic model transformation family [7]. In Eclectic,
each language addresses a specific transformation concern, and can be combined
with the other languages through composition mechanisms. Eclectic currently
provides the following languages: i) a mapping language to define one-to-one and
one-to-many correspondences, ii) a target-oriented language with object nota-
tion and explicit rule calls, iii) an attribution language to compute inherited and
synthesized attributes, iv) a pattern matching language with object-notation,
and v) a lower-level imperative language, which also plays the role of schedul-
ing language and supports in-place transformation. Languages i-iv do not allow
complex expressions, but these need to be encoded in navigation libraries. The
combination of these languages covers many of the scenarios studied in Section 2.

Listing 2 shows the Eclectic transformation with equivalent semantics to the
promotion transformation in Listing 1. The mappings language is naturally used
to establish the correspondences declared in the promotion, where the target
type is implicitly given by the rule type. Thus, the Eclectic mapping in lines

11

9–12 corresponds to the PackageMapping rule, while the mapping in lines 14–16
corresponds to the ClassMapping rule. Bindings for the name property have a direct
correspondence in Eclectic. However, the promotion in Listing 1 does not specify
how to relate classes to packages, that is, a binding to fill the reference eClassifiers

in EPackage is missing. This is “domain knowledge” which gets inferred if no such
binding is given. In this case, the default behaviour is generating the binding in
line 10 (tgt.eClassifiers ← src.reachClasses), as well as the helper reachClasses within
a navigation module which extends the source meta-model (lines 2–6).

To automate the generation of Eclectic code, we need a compiler from the
abstract syntax of the promotion DSTL to Eclectic. The next subsection presents
a novel facility to support the development of such compilers.

5.1 Code generation by template-based transformations

In the simplest case, a DSTL has a direct mapping to a language in Eclectic. A
compiler would be conceptually straightforward to implement, but in practice, it
is complex because it requires knowledge of the abstract syntax of Eclectic. An
alternative is to generate plain-text (as in [16]), but this neither guarantees the
syntactic correctness of the language, leading to a brittle solution, with cumber-
some develop-generate-compile-test cycles, nor allows traceability between the
DSTL and Eclectic (which is needed for a debugger).

To address this issue, we propose a template language targeting Eclectic. This
is a model transformation language embedded into the Eclectic syntax, which
facilitates specifying model-to-model transformations into Eclectic. In this way,
transformation constructs are embedded in Eclectic syntax, like flow control
constructs (iteration and condition) and placeholders, in the style of the Model-
to-Text standard [23]. Most importantly, it is a safe template system, as the
generated Eclectic programs are guaranteed to be syntactically correct. Hence,
we obtain the benefits of model-to-text transformations (we use the concrete
syntax of the target), and those of model-to-model transformations (we generate
syntactically correct models).

Fig. 6 shows an excerpt of the compiler specification for the running example.
Lines 2-3 declare the input and output meta-models that the generated trans-
formation will use. The source meta-model in line 2 is obtained from the DSTL
model using the expression between “[” and “/]”. Line 5 defines a template to
map each PromotionProgram to one or more Eclectic modules, so that we can use
Eclectic syntax within the template to define a mappings transformation and
a navigation module. The compiler specification does not process a promotion
program, but it specifies the rules that the generated compiler will follow.

To create rules for packages, the specification iterates over the refPackageMap-

ping reference to obtain all instances of PackageMapping (line 8). The target type
EPackage is fixed (line 10), while the source type is given in the particular pro-
motion transformation, and hence an expression is used (line 9). Lines 11–12
navigate the binding for name and generate the corresponding Eclectic binding.
Lines 15-20 check whether a binding for reference eClassifiers has been provided
(as it is optional), and if not, they generate a default behaviour to add classes

12

1 compiler spec promotion2ecore
2 input src : [t.srcMeta.uri /]
3 output ecore : ’http://www.eclipse.org/emf/...’
4

5 [template createTransformation
6 (t : PromotionProgram) : EclecticModule]
7 mappings promotion(src) −> (ecore)
8 [for m : t.refPackageMapping]
9 from src : src![m.src.elementType /]

10 to tgt : ecore!EPackage
11 [b : m.CreatePackage.nameBinding /] −>
12 tgt.name = src.[b.rightFeature /]
13

14 // Optional class binding
15 [if b : m.CreatePackage.classBinding]
16 tgt.eClassifiers = src.[b.rightFeature /]
17 [else]
18 // Fixed behaviour to resolve classes

19 tgt.eClassifiers <− src.reachClasses
20 [/if]
21 // Generate OCL bindings...
22 [/for]
23 // Similar rules for classes, attributes, etc...
24 end
25

26 navigation promotion navigation(src)
27 [for m : t.refPackageMapping]
28 def src![m.src.elementType /].reachClasses
29 src![t.refClassMapping.src.elementType /].
30 all instances
31 end
32 // Helpers for expressions, OCL bindings...
33 [/for]
34 end
35 [/template]

Fig. 6. Excerpt of the compiler specification for the promotion DSTL.

(transformed by ClassMapping rules of the DSTL) to the package. This requires
generating a helper method, shown in lines 28-31, because Eclectic only allows
complex expressions in navigation modules. This shows that the DSTL designer
can provide sensitive defaults to simplify the common cases.

In our proposal, it is important to select the best suited Eclectic languages
for the concerns of the DSTL, as a wise choice will facilitate the compiler speci-
fication, like in the example of Fig. 6. To help in this process, we have analysed
how to map different DSTL features to Eclectic languages. Thus, given a DSTL
specification, we generate a scaffolding of the compiler with a selection of lan-
guages. For instance, we generate most of the code in Fig. 6, except lines 19 and
28–31, which depend on design decisions of the DSTL designer. Even though we
could generate the complete specification, we believe that the power of a DSTL
comes from providing domain-specific constructs and sensible default behaviour.
Such degree of generation coverage is possible because our DSL to specify DSTLs
provides richer semantic information than a plain MOF meta-model.

6 Tool support

We have developed a prototype tool demonstrating our approach. The left of
Fig. 7 shows our workbench to build DSTLs, being used to define a more com-
plete version of the promotion DSTL which includes application conditions with
arbitrary patterns and guards. From this description, the workbench generates
a configuration model (with similar purpose as the genModel in EMF) to fine-
tune the generation process, e.g., giving names for packages, file extensions, and
the type of concrete syntax. Currently, we support three styles for the concrete
syntax: textual simple rules (like in ATL), textual nested rules, and tabular for
mapping-based DSTLs. The configuration model contains sensible defaults, so
that oftentimes there is no need for any adjustment.

Starting from the DSTL definition, an environment for it is generated using
the configuration model. Fig. 7 shows the generated artefacts: an ecore meta-
model, a compiler specification, and a fully functional Xtext project. The upper

13

Fig. 7. DSTL workbench and generated environments.

1 mappings promotion (src) −> (ecore)
2 uses promotion pm
3

4 from src : promotion pm!classMappingPM
5 to tgt : ecore!EClass
6 tgt.name = src.nameExpressionDelegate
7 end
8 ...
9 end

10 patterns promotion pm(src)
11 def classMappingPM() −> (c)
12 c : in!JavaClass {
13 annotations = a : Annotation {
14 tag = ”javax.persistence.Entity”
15 }
16 }
17 end
18 end

Fig. 8. Excerpt of the Eclectic transformation for the example in Fig. 7

right of the figure shows the DSTL environment in action. It offers a customized
editor for promotion models, together with a compiler to synthesize Eclectic
transformations from DSTL models.

In this example, the chosen rule types have patterns, guards and create
fixed target elements. For this reason, we compile into the pattern-matching
and mapping languages of Eclectic, which implies creating two transformation
modules. To give an intuition of the composition style of Eclectic (detailed in [7]),
Fig. 8 shows how the mapping transformation is seamlessly enriched with pat-
tern matching. Line 2 imports the pattern matching module promotion pm, used
as a regular model where patterns are interpreted as types. In this way, the from

part of the rule matches the pattern called classMappingPM (line 4), defined in
the promotion pm module (lines 10–18). Patterns use object-diagram syntax.

The tabular syntax shown in the bottom right of Fig. 7 permits configuring
mappings by dragging types from the meta-model to the right to the appropriate
mapping, and filling the required bindings.

While we are still working on a comprehensive evaluation of our approach,
the preliminary results indicate that it can be used effectively to construct DSTL
workbenches. As an estimation, from the specification for the running example,
declaring 5 types of rules in 43 LOCs (without blank lines), we generate: a meta-
model (15 classes and 31 features), a customized Xtext grammar (166 LOCS, 29

14

rules, and including an expression language), and a compiler specification (49
LOCS), which in turn becomes a compiler (250 LOCs). Thus, the advantage is
that from a single compact specification, many heterogeneous complex artefacts
are generated and integrated into a ready-to-run customized environment for the
DSTL. Moreover, the generated compiler is guaranteed to generate syntactically
correct transformations, as it is specified with a safe template system.

7 Related work

Next, we review works targeting the construction of DSTLs. [16] proposes build-
ing a meta-model for the DSTL and its compilation into a GPTL (the Epsilon
languages) using a model-to-text transformation. However, this work does not
provide a systematic approach, or supports defining the abstract and concrete
syntax of the DSTL, and there is no traceability between the DSTL models and
the generated code. In [25], the authors propose a framework to generate Java-
based execution engines for DSTLs, starting from en EBNF grammar. However,
there is no description on how this can be achieved in practice.

The Epsilon languages can be seen as a set of DSTLs built atop the Epsilon
Object Language [24]. While they leverage from EOL’s concrete syntax and
semantics, defining a new language needs from a manual extension of the ANTLR
grammar and a manual Java encoding of the semantics. Instead, we provide
model-driven support for the definition of the abstract syntax, concrete syntax
and semantics, which does not restrict the DSTL to any specific concrete syntax,
and specialised semantics can be given via compilation.

T-Core [32] is a set of scheduling primitives for model transformation, based
on pattern-matching and rewriting. While T-Core’s goal is to define flexible rule
control languages, our approach describes DSTLs in an integral way. Nonethe-
less, T-Core’s primitives could complement the ones in Eclectic. [27] proposes
building DSTLs by mixing the concrete syntax of the involved DSLs (for the rule
patterns), together with a transformation language. While that proposal leaves
its realization to future work, it could be complemented with our approach,
which focusses more on designing the transformation language itself.

Regarding the generation of transformation code, the ACG language is de-
signed to generate bytecode for the ATL VM from a model. However, it is too
low-level to use it for implementing DSTLs. Thus, in [33], a template language
for ATL is proposed, with no implementation available. Even though still a pro-
totype, our template language for Eclectic is, to our knowledge, the first safe
template language to generate transformations (inspired by [13, 14]).

Finally, [8] provided a feature-based survey of different transformation styles.
Our work is based on a subset of common features found in GPTLs, focusing
on those that are needed to implement DSTLs. Besides, we allow features to be
chosen and combined into a DSTL.

15

8 Conclusions and future work

In this paper, we have proposed a systematic process and support for the creation
of DSTLs. From a DSL-based description of the DSTL, several artefacts are
generated: an abstract syntax, a (Xtext-based or tabular) concrete syntax and
a compiler specification for an Eclectic language, or a combination of them. The
proposal is supported by a prototype implementation.

This work opens a wide line of research, similar to the one initiated years
ago by works dealing with the automated creation of environments for domain-
specific modelling languages. In this respect, we plan to continue improving our
prototype, and explicitly consider important aspects of transformations like bidi-
rectionality or scheduling. We will also support other types of concrete syntax,
including graphical ones, and plan to extend our template approach.
Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. O. Avila-Garćıa, A. Estévez, and E. Rebull. Using software product lines to manage
model families in model-driven engineering. In SAC, pages 1006–1011. ACM, 2007.

2. J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P. Gervais, F. Jouault, D. S. Kolovos,
I. Kurtev, and R. F. Paige. A canonical scheme for model composition. In ECMDA-
FA, volume 4066 of LNCS, pages 346–360. Springer, 2006.

3. A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Modeling model slicers.
In MoDELS, volume 6981 of LNCS, pages 62–76. Springer, 2011.

4. M. Brambilla, P. Fraternali, and M. Tisi. A metamodel transformation framework
for the migration of WebML models to MDA. In MDWE’08, pages 91–105, 2008.

5. J. L. Cánovas Izquierdo and J. Garćıa Molina. Extracting models from source code
in software modernization. SoSyM, pages 1–22, 2012.

6. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing dependent changes in
coupled evolution. In ICMT, volume 5563 of LNCS, pages 35–51. Springer, 2009.

7. J. S. Cuadrado. Towards a family of model transformation languages. In ICMT’12,
volume 7307 of LNCS, pages 176–191. Springer, 2012.

8. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621–646, 2006.

9. O. Dı́az, G. Puente, J. L. C. Izquierdo, and J. G. Molina. Harvesting models from
web 2.0 databases. SoSyM, 12(1):15–34, 2013.

10. Domain-specific aspect languages workshop. http://www.dsal.cl/.
11. K. Engel, R. Paige, and D. Kolovos. Using a model merging language for reconciling

model versions. In ECMFA, volume 4066 of LNCS, pages 143–157. Springer, 2006.
12. J. Gallardo, C. Bravo, and M. A. Redondo. A model-driven development method

for collaborative modeling tools. J. Net. Comp. App., 35(3):1086–1105, 2012.
13. F. Heidenreich, J. Johannes, M. Seifert, C. Wende, and M. Böhme. Generating

safe template languages. In SIGPLAN Not., volume 45, pages 99–108. ACM, 2009.
14. Z. Hemel and E. Visser. PIL: A platform independent language for retargetable

DSLs. In SLE’09, volume 5969 of LNCS. Springer, 2009.
15. M. Herrmannsdoerfer. COPE - a workbench for the coupled evolution of meta-

models and models. In SLE, volume 6563 of LNCS, pages 286–295. Springer, 2010.

16

16. J. Irazábal, G. Pérez, C. Pons, and R. S. Giandini. An implementation approach
to achieve metamodel independence in domain specific model manipulation lan-
guages. In ICSOFT, pages 62–69. SciTePress, 2012.

17. J. Kienzle, W. A. Abed, F. Fleurey, J.-M. Jézéquel, and J. Klein. Aspect-oriented
design with reusable aspect models. Trans. on AOSD VII, pages 272–320, 2010.

18. M. Kramer, J. Klein, and J. Steel. Building specifications as a domain-specific
aspect language. In DSAL. ACM, 2012.

19. M. Lawley and J. Steel. Practical declarative model transformation with tefkat. In
MoDELS Satellite Events, volume 3844 of LNCS, pages 139–150. Springer, 2005.

20. T. Mens. On the use of graph transformations for model refactoring. In GTTSE,
volume 4143 of LNCS, pages 219–257. Springer, 2005.

21. T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans. Software
Eng., 30(2):126–139, 2004.

22. T. Molderez, B. Meyers, D. Janssens, and H. Vangheluwe. Towards an aspect-
oriented language module: Aspects for Petri nets. In DSAL. ACM, 2012.

23. OMG. MOFM2T 1.0. http://www.omg.org/spec/MOFM2T/1.0/.
24. R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack. The design

of a conceptual framework and technical infrastructure for model management
language engineering. In ICECCS, pages 162–171, 2009.

25. T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger, and M. Stumptner.
A generator framework for domain-specific model transformation languages. In
ICEIS, pages 27–35, 2006.

26. L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model migration with
Epsilon Flock. In ICMT, volume 6142 of LNCS, pages 184–198. Springer, 2010.

27. B. Rumpe and I. Weisemöller. A domain specific transformation language. In
Models and Evolution, 2011.

28. B. Selic. A short catalogue of abstraction patterns for model-based software engi-
neering. Int. J. Software and Informatics, 5(1-2):313–334, 2011.

29. S. Smirnov, H. A. Reijers, M. Weske, and T. Nugteren. Business process model
abstraction: a definition, catalog, and survey. Dist. Par. Datab., 30(1):63–99, 2012.

30. J. Steel and R. Drogemuller. Domain-specific model transformation in building
quantity take-off. In MoDELS, volume 6981 of LNCS, pages 198–212, 2011.

31. J. Steel, K. Duddy, and R. Drogemuller. A transformation workbench for building
information models. In ICMT, volume 6707 of LNCS, pages 93–107, 2011.

32. E. Syriani and H. Vangheluwe. De-/re-constructing model transformation lan-
guages. ECEASST, 29, 2010.

33. M. Tisi, J. Cabot, and F. Jouault. Improving higher-order transformations support
in ATL. In ICMT’10, volume 6142 of LNCS, pages 215–229. Springer, 2010.

34. D. Wagelaar, L. Iovino, D. D. Ruscio, and A. Pierantonio. Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.
In ICMT, volume 7307 of LNCS, pages 192–207. Springer, 2012.

35. M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger, W. Schwinger, and
E. Kapsammer. A survey on UML-based aspect-oriented design modeling. ACM
Comput. Surv., 43(4):28, 2011.

36. U. Winkler, M. Fritzsche, W. Gilani, and A. Marshall. Bob the builder: A fast and
friendly model-to-petrinet transformer. In ECMFA, volume 7349 of LNCS, pages
416–427. Springer, 2012.

37. D. Xu and K. E. Nygard. Threat-driven modeling and verification of secure soft-
ware using aspect-oriented petri nets. IEEE TSE, 32(4):265–278, 2006.

