
Modelling Production System Families with
AutomationML

Antonio Garmendia, Manuel Wimmer
CDL-MINT, Johannes Kepler University

Linz, Austria
firstname.lastname@jku.at

Alexandra Mazak-Huemer
Montanuniversität Leoben

Leoben, Austria
alexandra.mazak-huemer@unileoben.ac.at

Esther Guerra, Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
firstname.lastname@uam.es

Abstract—The description of families of production systems
usually relies on the use of variability modelling. This aspect
of modelling is gaining increasing interest with the emergence
of Industry 4.0 to facilitate the product development as new
requirements appear. As a consequence, there are several emerg-
ing modelling techniques able to apply variability in different
domains. In this paper, we introduce an approach to establish
product system families in AutomationML. Our approach is
based on the definition of feature models describing the vari-
ability space, and on the assignment of presence conditions to
AutomationML model elements. These conditions (de-)select the
model elements depending on the chosen configuration. This
way, it is possible to model a large set of model variants in a
compact way using one single model. To realize our approach, we
started from an existing EMF-based AutomationML workbench
providing graphical modelling support. From these artifacts,
we synthesized an extended graphical modelling editor with
variability support, integrated with FeatureIDE. Furthermore, we
validated our approach by creating and managing a production
system family encompassing six scenarios of the Pick and Place
Unit Industry 4.0 demonstrator.

Index Terms—Model-Driven Engineering, AutomationML,
Product Lines, Feature Modelling, Variability

I. INTRODUCTION

Modelling flexible production systems is challenging, but at
the same time, it is a must with the emergence of the Industry
4.0 [1]. This breed of systems often require capabilities for
expressing variability concerns. In such a context, the notion of
product lines to describe and manage families of systems have
been explored in different engineering disciplines in general
and in software engineering in particular [2].

For instance, the Model-Driven Engineering (MDE)
paradigm has been applied in combination with Software Prod-
uct Lines (SPLs). This combination has proven effective and
efficient in several domains [1], [3] and contributed to different
techniques that can be applied to provide variability [4]. How-
ever, regarding current Industry 4.0 standards in the production
systems engineering domain, they often lack explicit support
for variability. For instance, in the AutomationML standard [5]
there is only limited support to express explicitly different
variants of a system. As a consequence, engineers frequently
duplicate models as a workaround to represent each variant
of a system which is often referred to as clone-and-own
approaches. However, this alternative solution has potential
unwanted side-effects such as duplication of data to mention

the most crucial one. Due to this data duplication, the propa-
gation of changes is a very tedious and repetitive task which
may easily lead to outdated model variants. Furthermore, the
management of a family of production systems and its explicit
variation points is missing in such settings.

To tackle this shortcoming, we present a compact way to
define families of production systems within AutomationML.
Our approach is based on the definition of the variability space
as a feature model. Then, we define a so-called production
system family model, which is a superposition of all model
variants within a single model. The elements of this model are
tagged with Presence Conditions (PCs) [6], which express the
constraints for a particular element to be present in a certain
model variant. When the engineer selects a configuration of
the feature model, a concrete production system model is
produced from the family model by keeping the elements
whose PC evaluates to true, and deleting the elements whose
PC evaluates to false. This approach allows for a systematic
definition of production system families without having to
duplicate a single model element, and permits an automatic
and controlled generation of production system variants.

For demonstrating the feasibility, we provide a prototypical
implementation of our approach on the existing EMF-based
AutomationML workbench integrated with FeatureIDE. We
added the variability modelling concept within the current
modelling editor, using the Eclipse plug-in VERSO. Hence,
the generated AutomationML models are compatible and may
be exchanged with any tool that supports this standard.
Paper organization. In Section II, we discuss some back-
ground on AutomationML and variability modelling in the
production system domain. In Section III, we introduce our
variability modelling approach and its integration within the
AutomationML environment. Section IV shows the applica-
bility of our approach using the Pick and Place Unit (PPU)
demonstrator from TU Munich [7] as a proof of concept.
Finally, Section V concludes with an outlook on future work.

II. BACKGROUND

This section introduces the foundations of this work, i.e.,
AutomationML, as our base modelling language. Then, we
discuss approaches for variability modelling–especially for
production systems–and argue why a novel approach for vari-
ability would be beneficial in the context of AutomationML.



A. AutomationML

AutomationML [5] is a neutral XML-based data format for
representing engineering knowledge in the area of process
automation and control. It is widely accepted in the area of
Industry 4.0 by its development within an academic and indus-
trial consortium. For more information on the standardization
efforts and current developments, we refer the interested reader
to the AutomationML website1.

AutomationML is an integration format for the follow-
ing standards: CAEX for system topology, COLLADA for
geometry and kinematic, and PLCopen XML for logic. By
using CAEX, the entire system model is represented as an
instance hierarchy in AutomationML. Devices of the system
are represented as instances, which are called internal elements
of the aforementioned instance hierarchy. The devices’ types
are represented as system unit class. Interconnections between
interfaces of devices are represented as internal links. For
expressing the meaning of captured information, role class
libraries are used, which should be shared among various
projects, and thus, are subject to many standardization efforts
in AutomationML. The PLCopen and COLLADA parts of
AutomationML are not further used in this paper, thus, we
do not detail these parts.

In previous work, we developed dedicated tooling for Au-
tomationML [8] which is also the basis for this work. In
particular, we created a full Eclipse Modelling Framework
(EMF) based implementation of AutomationML to allow the
application of model-driven engineering concepts, techniques,
and technologies for AutomationML out of the box. For
instance, this allowed us to generate modelling editors, APIs,
and validation support for AutomationML. In this paper, we
show how AutomationML can be extended with modelling
support in order to produce family of systems.

B. Variability Modelling

Some researchers have proposed the use of variability mod-
elling to capture the commonalities and differences of auto-
mated production systems [1], [9]. The work presented in [10],
[11] is motivated with the PPU case, but proposing different
solutions for variability. The former proposes the Model-
Driven Evolution Management Framework for Automation
Systems (MoDEMAS), which is based on interface behaviour
modelling of design artefacts, supporting model evolution and
the verification of its correctness. The latter [11] proposes a
combination of a set of diagrams from the Unified Modelling
Language (UML). Specifically, the activity, component and
state charts diagrams are used to capture the variability and
evolution of manufacturing systems.

Another approach to represent a family of models is the
use of feature models. For instance, Papakonstantinou et
al. [12] describe an approach for product configuration and
code generation with the use of feature modelling. That paper
describes how to validate a configuration to prevent invalid
selections of concrete features. To do this, the authors define a

1https://www.automationml.org

mapping between feature models and the UML class diagram,
but it requires manual adjustments and no dedicated language
for variability is proposed.

Variability modelling can be managed by cardinality tech-
niques [4]. Approaches for modelling cardinalities have been
proposed for AutomationML [13]–[15]. The integration of
eCl@ss and AutomationML [13] supports cardinalities for
blocks, which contain sub-elements. The cardinalities can be
defined in any block allowing the dynamic multiplication
of its sub-elements within a scope. Another approach can
be found by using the new features of CAEX 3.0 attribute
type library [14]. Based on this concept, AutomationML now
provides a compound attribute type for cardinalities consisting
of two nested attributes: the minimum and the maximum
occurrence. Before CAEX 3.0, Wimmer et al. [15] introduced
a role class library to explicitly represent variability for Au-
tomationML, in particular, for AutomationML System Unit
Class (SUC) libraries. While this helps to more systematically
apply library elements for a particular model, managing a
family of models is not possible with cardinality-based an-
notations on SUCs as we will discuss later on in this paper.
Therefore, dedicated language support is further needed to
manage families of models.

Overall, the aforementioned work provides variability for
the production system domain from different perspectives.
However, to the best of our knowledge, the use of PCs to
describe model families for AutomationML in combination
with feature models, as we propose in this paper, is a novel
contribution that has not been explored before.

III. PRESENCE CONDITIONS IN AUTOMATIONML MODELS

We now explain how to apply PCs to AutomationML mod-
els. First, we explain the concepts of feature modelling and PC
in general (Sec. III-A), second, the customization of variation
points for AutomationML (Sec. III-B), and finally, variability
modeling support in the graphical editor (Sec. III-C).

A. Feature Modelling and Presence Conditions

The approach of this paper is based on the use of feature
diagrams [16]. An example is shown in Fig. 1 (a), where a
feature diagram is designed for washing machine controllers
inspired in this paper [17]. Each node of this tree structure is
a feature and the family of models would be created depending
on how the features are combined. From the feature model
we can generate a feature configuration. For instance, a valid
configuration must always have the feature Equipped selected
and at most the feature Heat or Delay as well.

Following the annotative approach to define a model fam-
ily [6], we shown an example in Fig. 1 (b). All the model
elements that may appear in models of the family, should
have a representation in this model. In addition, these model
elements may have attached PCs, which are logic formulae
over the features defined in the feature diagram. These PCs
are depicted in this figure using dashed red arrows. Fig. 1
(c) shows a valid language based on a valid configuration
given the model family. In this configuration, the features Dry

https://www.automationml.org


Fig. 1. (a) Feature model with variability for a washing machine controller.
(b) Definition of variability annotations for the washing machine controller.
(c) Generated derived model from a configuration.

Fig. 2. Specifying the variability for CAEX.

and Delay are not selected, and this is why the target elements
they were targeting have been removed.

B. Inserting Variation Points at the Language Level

Fig. 2 shows an excerpt of the CAEX meta-model with the
definition of its variability. To specify the variability for the
CAEX language, we essentially consider two requirements in
order to obtain valid instance models. The first aspect to take
into account is which elements may be subject to variability.
In this case, we allowed that six classes were PC-enabled.

The other aspect we take into consideration is the well-
formedness rules among the PCs. For instance, the PCs of
the referenced objects by the partnerSideA reference, should
be stronger than the InternalLink PCs. By ensuring this, any
generated instance models will not contain InternalLinks objects
with partnerSideA references which point to missing Exter-
nalInterface objects. In order to specify this rule, we use
the predicate stronger-than. Consequently, we define also this
predicate in the partnerSideB reference, as we can see in Fig. 2.

Fig. 3. (a) AutomationML editor enabled for defining presence conditions.
(b) Diagram with PC to generate the six scenarios of PPU.

C. Injecting Variability in the Graphical Editor

We now explain how to enable the inclusion of PCs attached
to AutomationML models. Our approach is based on annotat-
ing the classes in the meta-model that can support variability,
and on specifying constraints among the PCs that the elements
of a model family may have.

Technically, our proposal relies on the AutomationML
EMF-based workbench and its graphical Sirius-based editor
shared on Github2. To allow defining PCs in AutomationML
models, we have extended the graphical editor by using the
Eclipse plug-in VERSO3. This plug-in automatically adapts
existing Sirius graphical editors to enable the attachment of
PCs to the desired model elements. In addition, VERSO is
integrated with FeatureIDE [18], which is a tool that covers
the entire product-line development process. In particular, it
supports the creation of feature models and the generation of
its corresponding configurations.

Fig. 3 (a) shows the customization to inject the variability
in the AutomationML graphical editor using VERSO. This
plug-in took as an input the initial Sirius model defined for
CAEX (label 1) and then, using the VERSO editor, con-
figure which elements can be attached with PCs and also
the definition of stronger-than predicates (label 2). From this
customization, VERSO is able to extend the existing CAEX
graphical editor with variability functionalities.

In our case, the obtained extended editor allows defining
AutomationML model families which unify several variants in
a single specification. This way, we can define feature models
declaring the variability points of a model family, and by
selecting a subset of the features in the feature model, we
obtain a particular model variant automatically.

IV. THE PPU DEMONSTRATION CASE

This section demonstrates how to apply our approach to a
concrete case. Vogel-Heuser et al. [7] present 15 scenarios of
a lab demonstrator system, namely the Pick and Place Unit
(PPU). These scenarios are different variants of the same core
system. Thus, we can move from one to another with a set of
changes. To demonstrate our approach, we took the first six

2https://github.com/amlModeling/caex-workbench
3https://github.com/antoniogarmendia/ecore-product-line

https://github.com/amlModeling/caex-workbench
https://github.com/antoniogarmendia/ecore-product-line


Fig. 4. Feature model for six scenarios of PPU

documented scenarios (Sc0, Sc1, Sc2, Sc3, Sc4a and Sc4b) of
the PPU and remodelled them with our approach as one single
model representing the whole family of variants. We share our
implementation in this Github repo 4.

Fig. 4 shows the feature model to represent and generate the
six configurations. If no features are selected, the configuration
represents the Scenario 0 (Sc0). The root feature PPU has a set
of alternative features, and so exactly one subfeature must be
selected. To convert Sc0 into Sc1, the feature YShapedRamp
must be selected. The generation of the Sc2 is with the
selection of the Stack feature, which leads to the selection of
the mandatory feature InductiveSensor. The Scenario 3 (Sc3)
is generated when the StampBlock is selected, which therefore
select the feature Stamp. The Sc4a is generated when selecting
CraneInductiveSensor, and the last scenario (Sc4b) depends on
the selection of the feature CraneMicroSwitches.

After the creation of the feature model described above, we
design the AutomationML model for the family of systems
with the attached PCs. Fig. 3 (b) shows the family which
includes the 6 aforementioned configurations of the PPU
case study. If all the values of the feature model are false,
then all the model elements that have attached a PC will
be removed except the MicroSwitches (label 3). These three
microswitches are presented in all scenarios, except when the
feature CraneInductiveSensor or feature CraneMicroSwitches are
set to true. However, MicroSwitcheStamp (label 4) also depends
on if the Stamp (label 4) feature flip to true. The model
element YShapedRamp will be available only in Sc1 (label 5).
The InductiveSensor (label 6) will be presented in the Sc2, Sc3,
Sc4a and Sc4b. Lastly, the CraneInductiveSensors (label 7) will
be available in the scenarios 4a and 4b.

By using the feature model, we are able to generate all six
variants as expected but not a single variant going beyond
the presented ones. This allows a controlled management
of the variability which would not be possible with before
presented variability mechanisms for AutomationML based on
cardinalities. For instance, if the feature CraneInductiveSensor is

4https://github.com/amlModeling/caex-workbench/tree/variability

not mandatory, then it is generated an invalid scenario with
no CraneInductiveSensor and no CraneMicroSwitches.

V. CONCLUSION

We have presented a proposal for creating families of
AutomationML models in a concise way by using PCs. A
specific model variant can be extracted by selecting a valid
configuration of the feature model and evaluating the PCs in
the model family.

In the future we plan to further explore the usage of the PCs
for a set of models coming from different engineering domains
such as mechanical, electrical, and software engineering. We
also plan to devise methods to automatically create a model
families out of an existing set of models.

REFERENCES

[1] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[2] S. Trujillo, D. S. Batory, and O. Dı́az, “Feature oriented model driven
development: A case study for portlets,” in ICSE. IEEE, 2007.

[3] S. Trujillo, J. M. Garate, R. E. Lopez-Herrejon, X. Mendialdua,
A. Rosado, A. Egyed, C. W. Krueger, and J. D. Sosa, “Coping with
variability in model-based systems engineering: An experience in green
energy,” in ECMFA. Springer, 2010.

[4] M. Sinnema and S. Deelstra, “Classifying variability modeling tech-
niques,” Inf. Softw. Technol., vol. 49, no. 7, pp. 717–739, 2007.

[5] R. Drath, A. Lüder, J. Peschke, and L. Hundt, “AutomationML - The
glue for seamless automation engineering,” in ETFA. IEEE, 2008.

[6] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in ICSE. ACM, 2008.

[7] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching
evolution in industrial plant automation: Scenarios and documentation
of the pick and place unit,” Institute of Automation and Information
Systems, Technische Universität München, Tech. Rep., 2014.

[8] T. Mayerhofer, M. Wimmer, L. Berardinelli, and R. Drath, “A model-
driven engineering workbench for CAEX supporting language cus-
tomization and evolution,” IEEE Trans. Ind. Informatics, vol. 14, no. 6,
pp. 2770–2779, 2018.

[9] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability in
software engineering,” IEEE software, vol. 15, no. 6, pp. 37–45, 1998.

[10] C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schütz,
M. Broy, and B. Vogel-Heuser, “Interface behavior modeling for auto-
matic verification of industrial automation systems’ functional confor-
mance,” Automatisierungstechnik, vol. 62, no. 11, pp. 815–825, 2014.

[11] M. Kowal, C. Legat, D. Lorefice, C. Prehofer, I. Schaefer, and B. Vogel-
Heuser, “Delta modeling for variant-rich and evolving manufacturing
systems,” in MoSEMInA. ACM, 2014.

[12] N. Papakonstantinou, S. Sierla, and K. Koskinen, “Generating and
validating product instances in iec 61131–3 from feature models,” in
ETFA, 2011.

[13] “AutomationML and eCl@ss Integration,” 2015. [Online].
Available: https://www.automationml.org/o.red/uploads/dateien/
1448438009-20151030 WP AutomationML and eClass integration
v1.0 neu.pdf

[14] “AutomationML,” 2018. [Online]. Available: https://www.automationml.
org/o.red/uploads/dateien/1544706233-automationml.pdf

[15] M. Wimmer, P. Novák, R. Sindelár, L. Berardinelli, T. Mayerhofer, and
A. Mazak, “Cardinality-based variability modeling with automationml,”
in ETFA. IEEE, 2017.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie Mellon University, Tech. Rep., 1990.

[17] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and M. Chechik, “Lifting
model transformations to product lines,” in ICSE. ACM, 2014.

[18] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and G. Saake,
Mastering software variability with FeatureIDE. Springer, 2017.

https://github.com/amlModeling/caex-workbench/tree/variability
https://www.automationml.org/o.red/uploads/dateien/1448438009-20151030_WP_AutomationML_and_eClass_integration_v1.0_neu.pdf
https://www.automationml.org/o.red/uploads/dateien/1448438009-20151030_WP_AutomationML_and_eClass_integration_v1.0_neu.pdf
https://www.automationml.org/o.red/uploads/dateien/1448438009-20151030_WP_AutomationML_and_eClass_integration_v1.0_neu.pdf
https://www.automationml.org/o.red/uploads/dateien/1544706233-automationml.pdf
https://www.automationml.org/o.red/uploads/dateien/1544706233-automationml.pdf

	Introduction
	Background
	AutomationML
	Variability Modelling

	Presence Conditions in AutomationML Models
	Feature Modelling and Presence Conditions
	Inserting Variation Points at the Language Level
	Injecting Variability in the Graphical Editor

	The PPU Demonstration Case
	Conclusion
	References

