
Automated Migration of EuGENia Graphical Editors to the Web
Fatima Rani

UGROUND GLOBAL, S.L
Madrid, Spain

frani@uground.com

Pablo Diez
UGROUND GLOBAL, S.L

Madrid, Spain
pdiez@uground.com

Enrique Chavarriaga
UGROUND GLOBAL, S.L

Madrid, Spain
echavarriaga@uground.com

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
Juan.deLara@uam.es

ABSTRACT
Domain-specific languages (DSLs) are languages tailored for partic-
ular domains. Many frameworks and tools have been proposed to
develop editors for DSLs, especially for desktop IDEs, like Eclipse.

We are witnessing the advent of low-code development plat-
forms, which are cloud-based environments supporting rapid appli-
cation development by using graphical languages and forms. While
this approach is very promising, the creation of new low-code plat-
forms may require the migration of existing desktop-based editors
to the web. However, this is a technically challenging task.

To fill this gap, we present ROCCO, a tool that migrates Eclipse-
based graphical modelling editors to the web, to facilitate their
integration with low-code platforms. The tool reads a meta-model
annotated with EuGENia annotations, and generates a web editor
using the DPG web framework used by the UGROUND company. In
this paper, we present the approach, including tool support and an
evaluation based on migrating nine editors created by third parties,
which shows the usefulness of the tool.

CCS CONCEPTS
• Software and its engineering→Domain specific languages.

KEYWORDS
Model-Driven Engineering, Graphical DSLs, Low-code platforms

ACM Reference Format:
Fatima Rani, Pablo Diez, Enrique Chavarriaga, Esther Guerra, and Juan
de Lara. 2020. Automated Migration of EuGENia Graphical Editors to the
Web. In ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’20 Companion), October 18–23,
2020, Virtual Event, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3417990.3420205

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3420205

1 INTRODUCTION
Model-Driven Engineering (MDE) [29] is a software paradigm that
prescribes an active use of models during the construction process.
Thus, models are used to describe, validate, simulate, generate code
and maintain the software, among many other activities. These
models can be built using general-purpose modelling languages,
such as the Unified Modelling Language (UML), but the use of
Domain-Specific Languages (DSLs) is also common [16].

DSLs are languages tailored to a specific problem, containing
customized concepts representing the abstractions within the do-
main [10, 21, 22]. This way, the definition of (graphical) DSLs, and
their modelling environments is recurrent when building MDE
solutions [15]. The benefit of using a DSL is that it can lead to more
effective solutions within a domain, while allowing end-users with
little technical background to perform programming tasks [17]. In
the last years, many tools have been developed to automate the
construction of DSL editors [5, 8, 11–14, 19, 25, 30, 34], especially
since the popularization of extensible IDEs like Eclipse. Still, the
development of DSL editors, in particular for graphical DSLs is a
challenging task.

We have recently witnessed the advent of low-code development
platforms, which are cloud-based environments supporting the
rapid development of applications by using graphical languages
and forms. While this approach is very promising, the creation
of new low-code platforms may profit from the reuse of existing
MDE solutions in a cloud environment. This implies the migration
of existing desktop-based editors to the web. However, without
automation, this is a technically challenging task.

In order to fill this gap, we propose a tool to automate the migra-
tion of Eclipse-based graphical DSL editors to the web. In particular,
the tool supports editors built using EuGENia [8] and creates an
editor for DPG-PsiEngine [2, 3]. This is a web-based framework
used within UGROUND as a basis for its ROSE low-code develop-
ment platform [7]. This way, our solution enables the automated
reuse of DSL editors within low-code environments, eliminating
the need for re-developing such editors. We have evaluated our
tool by migrating nine editors built by third parties, obtaining good
results, and demonstrating the applicability of this tool in practice.

The rest of this paper is organized as follows. Section 2 provides
background on technologies used in our work, and introduces a run-
ning example. Section 3 describes our approach to migration, and
Section 4 tool support. Section 5 presents an evaluation. Section 6

https://doi.org/10.1145/3417990.3420205
https://doi.org/10.1145/3417990.3420205
https://doi.org/10.1145/3417990.3420205

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Fatima Rani et al.

compares with related work and Section 7 presents conclusions
and future work.

2 BACKGROUND AND MOTIVATION
In this section we introduce the different technologies involved in
our approach, on the basis of a running example.

2.1 Eclipse Modeling Framework and EuGENia
The Eclipse Modeling Framework (EMF) [9, 31] is a widely used
(partial) implementation of the meta-object facility (MOF) standard
of the OMG [23]. EMF is a meta-modelling framework integrated
within Eclipse. It supports a notation (Ecore) for creating meta-
models, and a code generation facility that produces Java code
(enabling the construction of models and model transformations
programmatically) and tree editors to create models interactively.
EMF supports model serialization using the XML Metadata Inter-
change (XMI), an OMG standard for meta-data exchange [35].

PetriNet

@gmf.diagram

Token
+	name	:	EString
+	idToken	:	EIntegerObjec

@gmf.node

ArcT2P
+	name	:	EString
+	tokenNo	:	EIntegerObject

@gmf.link

arcst2n

places

tokens

transitions

arcsn2t

hasTokens

target

source

source
target
1...1

1...1

1...11...1

0...*

0...*

0...*

0...*

0...*

0...*

Place
+	name	:	EString
+	idNode	:	EIntegerObject
+	startFlag	:	EBooleanObject
+	tokenNo	:	EIntegerObject

@gmf.node

ArcP2T
+	name	:	EString
+	tokenNo	:	EIntegerObject

@gmf.link

Transition
+	name	:	EString
+	idTransition	:	EIntegerObject
+	evaluatorTrue	:	EBooleanObject
+	min_time	:	EIntegerObject
+	max_time	:	EIntegerObject

@gmf.node

Figure 1: Ecore meta-model for Petri nets with EuGENia an-
notations

As a running example, assume we would like to create a mod-
elling editor for Petri nets [24] using EMF. Petri nets are a popular
formalism to model concurrent system, made of places, which may
hold zero or more tokens, and that can be connected to transitions
via input and output arcs. Figure 1 shows the ecore meta-model
of Petri nets with EuGENia annotations. The meta-model supports
Petri nets with weighted arcs (attribute tokenNo inArcPT andArcTP)
and time in transitions to model delays. By convention, most Ecore
meta-models have a root class, which contains directly or indirectly
all other classes via composition relations. This way, each class –
except the root class – is contained into another one. This is espe-
cially useful to edit models using the generated tree editors, since
the instances of the contained classes appear as children of the
container ones.

While EMF generates a tree editor by default, more user-friendly
editors are typically required. They are normally either textual or
graphical. In this paper we focus on graphical DSLs. There are
several technologies to help in the construction of graphical editors
within Eclipse, like Graphiti [12], Sirius [30], GMF [11] or EuGENia

Figure 2: EuGENia graphical editor for Petri nets

[8] (which we analyse in Section 6). We decided to support the
latter technology due to its popularity, since it is extensively used
by both researchers and practitioners.

EuGENia [18] simplifies the development of GMF-based graphical
model editors by automatically generating the required models
needed by the GMF editor construction framework from a single
annotated Ecore meta-model.

As an example, Figure 2 shows some annotations indicating that
Places, Transitions and Tokens are to be displayed as nodes (annota-
tion gmf.node), while arcs are to be represented as links (annotation
gmf.link), and all elements are to be placed in the diagram repre-
sented by the PetriNet (annotation gmf.diagram). Figure 5 shows the
resulting editor. It contains a canvas to graphically edit the model,
and a palette to create the objects. The object attributes can be
changed from an Eclipse properties view (not shown in the Figure).

2.2 DPG (Diagram Programming Generator)
The web technology that we target in this work is based on the
Programmable Solutions Interpreter Engine, (PsiEngine) [2, 3].
PsiEngine implements, evaluates, interprets and executes DSLs
described in XML within the web client. It uses HTML5, CSS3,
JavaScript and DOM together with technologies, services and tools
from Web 2.0 and the specification of XML-DSL grammars in order
to build web components, widgets, and dynamic web sites to give
the solution to specific web application problems or parts of them.

PsiEngine is a generic lightweight JavaScript framework (it a
cross browser platform) that processes and evaluates programs
written in Psi Language [2]. On top of PsiEngine, a set of Psi
languages (Graph Library Psi GLPsi, Diagram Psi DPsi, Visual Tool
Psi TPsi and Data Form Psi DFPsi) were created to develop the
functionality of a programmable diagram.

Formally, a programmable diagram is a set of graphical elements
that define an SVG-based diagram, and each graphical element can
have associated visual tools (like dialogue boxes, toolbars, pop-ups,
floating menus, menus, and drag and drop), programming utilities
(classes, scripts, functions, and variables) and heterogeneous infor-
mation data sources (XML/JSON) that determine their appearance
and content.

The Diagram Programming Generator (DPG) is a layer on top of
the PsiEngine that encodes DSLs as a JSON-based grammar, which
specifies the elements necessary to create a programmable diagram

Automated Migration of EuGENia Graphical Editors to the Web MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Table 1: Mappings between EuGENia and DPG for figures and decorations

figure source/target.decoration border.styles
EuGENia DPG-PsiEngine EuGENia DPG-PsiEngine EuGENia DPG-PsiEngine

rectangle -> Box arrow -> rightarrow solid -> ".line-CT-CT ",
ellipse -> Ball closedarrow -> rightarrow dash -> ".line-CT-CT
rounded(default) -> Box filledclosedarrow -> rightarrow {stroke-dasharray:5,5;}",
polygon -> Rhombus rhomb -> circlecross dot -> ".line-CT-A
svg (svg.uri)-> "Url":"..." , "Doc": "..." filledrhomb -> circlecross {stroke-dasharray:2,2;}",
java class name -> "Shape":"Image" square -> circle

"Field":"IMG_URL" filledsquare -> circle
"Symbol":"name_symbol" java class -> java class

in PsiEngine. The execution engine that interprets a DPG speci-
fication, is called DPG-PsiEngine. Its objective is to generate the
code in the different Psi languages and to start the programmable
diagram. Additionally, in DPG-PsiEngine a template engine was
incorporated for the administration and generation of graphical
elements and forms. It also includes components for connection
via REST API, to obtain JSON information. These frameworks are
used within UGROUND as a basis for the low-code solutions, and
some examples are available at http://devrho.com/.

3 AUTOMATING EDITOR MIGRATION
This section presents our migration approach, we first describe how
the abstract syntax is migrated (Section 3.1), and then the graphical
concrete syntax (Section 3.2).

3.1 Migrating the abstract syntax
Our approach starts reading the domain meta-model and trans-
forming the classes into the DSL-JSON format of DPG. All the
(non-abstract) classes in the EMF meta-model are placed inside a
DPG table called "Elements": {...}. Then, inside such table, they are
placed into a key "Type": {...}. Later, classes need to be classified
as nodes or connectors, as we will explain in next section. All the
attributes and references of the classes are stored into a key "Fields":
{...}, and then attributes are associated with different types of DPG
controls depending on their eType, as shown in Table 2. The source
and target of references are specified using the JSON key "Start":
and "End":.

Table 2: Mapping EMF types to DPG Controls

EMF DPG-PsiEngine
boolean checkbox(disabled=0)
int, long, short, double, float number
char text(disabled=no)
String textarea(disabled=no)
Date date (configDate=

’format=dd/mm/yyyy’;
configTime=’autoclose=true’)

In EMF meta-models, we may have abstract classes, and inheri-
tance hierarchies. However, neither abstract classes or inheritance
are supported by DPG. To overcome this limitation, our mapping
flattens the inheritance hierarchy, collecting the attributes and ref-
erences of upper classes in the hierarchy, and replicating them in
lower classes where they are required.

3.2 Migrating the concrete syntax
Our approach also translates EuGENia annotations to the DPG for-
mat, which distinguishes nodes and connectors. Hence, we have to
decide on the basis of EuGENia annotations which classes or refer-
ences of EMF meta-model are going to become nodes, and which
ones connectors. In addition, we need to consider the different
graphical styles configured in these annotations.

Listing 1: Node and Link annotations in EuGENia
1 @gmf.node(

2 label="name",figure="ellipse",border.styles="dash",

color ="0,153,76",label.color = "0,0,0",border.color

="0,0,0",border.width="3"

3)

4 @gmf.link(

5 label="name",source="source",target="target",style="

dash",width="2",color="102,51,0",source.decoration="

none",target.decoration="filledrhomb"

6)

An example of EuGENia annotations is shown in Listing 1. For
the case of nodes, using key-value pairs, the DSL designer can
specify the attribute to be shown as label of the node (key label),
the figure representing the node (ellipse), the style of the figure
border (border.styles), the colours of the figure background, label
and border (color, label.color, border.color) and the border width
(border.width).

Listing 2: DPG Code for nodes and connectors
1 Elements Classes
2 GraphLibraryNODE:
3 {
4 "GraphLibrary":
5 {
6 "Config": {
7 "Shape": "Ball",
8 "Styles":
9 "boxFill=rgb(0,153,76);
10 nameColorFont=rgb(0,0,0);
11 boxStroke=rgb(0,0,0);
12 boxStrokeWidth=3px"
13 }
14 }
15 GraphLibraryCONNECTOR:
16 {
17 "EndMarker": "rightarrow",
18 "GraphLibrary":
19 "class=line -CT-CT;
20 stroke -width=2;
21 stroke=rgb(102,51,0);
22 minimum=none"
23 }

http://devrho.com/

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Fatima Rani et al.

For links attached to nodes, we need to define their source and
target references as (keys source and target), and we can also specify
a label for the link (label) and graphical styles including colour,
width, line style, and decorations for the source and targets of the
link. Details on additional EuGENia styles can be found at [8].

In DPG the graphical information is stored in JSON, where we
need to define libraries of nodes and connectors, as Listing 2 shows.
Please note that DPG uses CSS styles, e.g., for colour values.

Table 3: Mapping EuGENia and DPG styles for nodes/links

EuGENia DPG-PsiEngine
@gmf.node NODE

border.color boxStroke or stroke
border.styles as in Table 1
border.width boxStrokeWidth or strokeWidth

color boxFill or fill
figure as in Table 1
label name

label.color nameColorFont or colorFont
tool...(fields) icon (symbol & color)
@gmf.link CONNECTOR

color fill or stroke
incoming "Starts":
label name
source "Starts":

source.decoration as in Table 1
style as in Table 1
target "Ends":

target.decoration as in Table 1
width strokeWidth

tool...(fields) icon (symbol & color)

The details of the mapping of different styles of nodes and links
between EuGENia and DPG are described in Tables 1 and 3. The
former table details the mappings between figures and decorations
for links, and the latter describes the mapping between the other
annotation options.

In DPG,when attributes of nodes or links are to be edited, a dialog
box is presented. As explained in the previous section (cf., Table 2),
each attribute can be associated with a different control, depending
on its eType, to properly edit its value. Finally, the information
about the palette, and the corresponding icons are also translated.

Regarding limitations of our translation, we do not currently sup-
port the EuGENia annotation @gmf.affixed to attach nodes to the
border of another one. In addition, the @gmf.compartment annota-
tion, which allows node nesting, is not natively supported either.
However, we provide a workaround that allows inserting elements
in the container objects (we will see an example in Section 5).

4 TOOL SUPPORT
We have created a tool called ROCCO (MigRatiOn towards Cloud-
based GraphiCal EditOr) that implements the previous mapping.
ROCCO is an Eclipse plugin that reads Ecore meta-models with
EuGENia annotations and synthesises the necessary DPG files. For
this purpose, it uses the Acceleo code generation language. The
architecture of the tool is shown in Figure 3, which also shows the
generation process.

A screenshot of the ROCCO IDE is shown in Figure 4 in which
labels (1,3) indicate the main generic templates and the different
modules and files templates. Label 2 shows the meta-model of

Generic	Template	
ECORE	

EMF

EuGENia
Annotations

Meta-model

Code	Generation

Deploys	on
	Server

Eclipse Modelling
Environment

Developer

Online	User

U
s
e
	
b
y

Custom
Code

DPG-
PsiEngine
Files

XML,JSON/
Node.js

Files	Generation

Development

I
n
p
u
t

InputWorks	on

Migrated	
DSL	Editor

Low-code	
Environment

Figure 3: Code Generation Template Schema

the running example with EuGENia annotations. It is shown using
the emfatic editor for Ecore models. Label 4 are the files required
to support the graphical editor of the DPG-PsiEngine Platform.
Label 5 signals the specification file generated for DPG-PsiEngine.
Label 6 is the generated Acceleo project. Finally Label 7 contains
the meta-models with EuGENia annotations to be migrated.

Figure 5 shows the resulting DPG editor for the running example.
It can be seen how the synthesized editor mimics well the original
one defined with EuGENia (cf. Figure 2).

5 EVALUATION
In this section, our goal is to answer the following research ques-
tion: Can ROCCO migrate Eclipse-based graphical modelling editors
(EuGENia) to the web, to facilitate their integration with low-code
platforms?

For this purpose, we have evaluated our tool by migrating ex-
isting EuGENia editors into DPG-PsiEngine. We have taken nine
EuGENia editors from the Epsilon online repository 1 (taking all
meta-models with EuGENia annotations), and checked whether a
complete DPG editor is obtained, required manual changes or had
lacking functionality.

The evaluation results are shown in Table 4. The table shows the
meta-model size in classes, and the lines of code of the generated
DPG specifications. Then it shows the number of node, link (applied
to nodes and references), compartment and affixed annotations. We

1https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/examples/

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/examples/

Automated Migration of EuGENia Graphical Editors to the Web MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

2

1

3

4

5

6

7

Figure 4: The ROCCO tool in action

Figure 5: DPG-PsiEngine graphical editor for Petri nets

marked with Yes/No whether the different annotations were cor-
rectly translated between these two platforms. For containment, we
used Yes*, since we emulate compartments as graphical areas with
less functionalities than in EuGENia. Overall, we could fully migrate
eight out of the nine editors. For the other one (components), we
obtained a working editor, but with lacking functionality regard-
ing affixed features. In the EuGENia editor ports can be affixed to
components, to appear in their borders. Instead they are connected
via links in DPG editor.

As an example, Figure 6 shows the BPMN editor in EuGENia and
the resulting one in DPG. We could emulate lanes (containment
compartments in EuGENia) as rectangles. However, these have less

functionality than the ones in EuGENia for handling the children
elements.

Overall, we can answer our research question in a positive way,
since in all cases we obtained a working editor, albeit with lacking
functionality for affixed, and less sophistication for compartments.
These limitations will be addressed in future work.

6 RELATEDWORK
Next, we review some of the main frameworks to define graphical
DSLs both for desktop environments (especially Eclipse) and on
the web.

Themost widely usedMDE environment nowadays is the Eclipse
Modelling Project of the Eclipse Modeling Framework [9], which
can integrate with different tools for specifying DSLs. First, we
review some tools in the Eclipse ecosystem, whether they are desk-
top applications or cloud-based IDE/tool, then we talk about some
other tools outside the Eclipse ecosystem in the same manner.

Graphiti [12] is a framework that allows building graphical edi-
tors programmatically in Java. The Graphical Modeling Framework
(GMF) [11] is a model-based solution for developing graphical edi-
tors, which requires specifying three types of models: GMF-map
(describing the structure), GMF-graph (describing the apperance)
and GMF-tool (with the editor behaviour). GMF and Graphiti are
large and powerful frameworks, and consequently their use requires
considerable technical expertise.

EuGENia [8] seeks to reduce the amount of technical experi-
ence required to specify a DSL with GMF, by providing higher
level annotations that are mapped into a subset of the underlying
framework.

Sirius [30], is a more recent framework for building graphical
editors within Eclipse. It is also model-based, but it is interpreted,

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Fatima Rani et al.

Table 4: Results of the evaluation.

EClass EClass EReference EReference EReference
@gmf.node @gmf.link (non-containment) (containment) (containment)

@gmf.link @gmf.compartment @gmf.affixed
Meta-Models MM Size DPG LOCs EuGENia DPG EuGENia DPG EuGENia DPG EuGENia DPG EuGENia DPG
scl 3 100 2 Yes 1 Yes 1 Yes 1 Yes* 0 0
petrinetdsl 6 149 3 Yes 2 Yes 0 0 0 0 0 0
components 5 86 2 Yes 1 Yes 0 0 0 0 1 No
bpmn 21 352 10 Yes 4 Yes 0 0 2 Yes* 0 0
fed 4 134 1 Yes 0 0 2 Yes 1 Yes* 0 0
filesystem 6 161 3 Yes 1 Yes 0 0 0 0 0 0
friends 2 62 1 Yes 0 0 2 Yes 0 0 0 0
rcpapp 2 65 1 Yes 0 0 0 0 0 0 0 0
widgets 2 65 1 Yes 0 0 0 0 0 0 0 0

Figure 6: Business Process Graphical Editor: A) in DPG-PsiEngine B) in EuGENia

instead of compiled (like GMF). While there are plans to enable the
deployment of Sirius editors on the web, this is still not supported.

Obeo Designer [6] is a commercial framework which allows
user to create own graphical workbenches for specific domains like
software applications, industrial systems and organization of major
companies. It also integrates with Sirius and other MDE tools. It
facilitates the collaborative work, allows user to store models and
representations (diagrams, tables, matrices, trees) in a shared repos-
itory. Multiple users can work on the same data simultaneously
without any conflict and technical skills. Users can also import/ex-
port the project from the standard data access point i.e CDO, the
Eclipse open-source solution to store EMF models into a database.

Outside the Eclipse ecosystem, MetaEdit+ [1] is a graphical lan-
guage workbench, which allows specifying domain-specific mod-
elling languages by defining their abstract syntax, concrete visual
syntax and semantics (via code generators). It supports graphical no-
tations as well as textual, symbolic or tabular notations. MetaEdit+
uses a proprietary persistence format, therefore models and lan-
guages created with MetaEdit+ cannot be directly used with other
modelling tools or language workbenches.

The previous tools do not provide a framework which can run
on cloud for their integration with low-code development platform.
However, some solutions exist to build web-based editors for graph-
ical DSLs. For example, WebGME [20] is a tool to create graphical
DSLs directly in the browser2. It uses a UML class diagram-based
meta-model to specify the modelling concepts, relationships and
attributes. It also supports model versioning and collaboration on
the cloud.

AToMPM [32] is a web version of AToM3 [5]. It allows defining
graphical DSL editors that run on the web3, and to specify DSL
semantics using graph transformations. It supports two types of
collaboration mechanisms distributed in real time. Screenshare al-
lows two or more clients to share exactly the same drawing area:
any modification made to a model (abstract or concrete syntax)
is replicated on all observing clients. Modelshare only shares the
abstract syntax of a model between clients.

EMF.cloud4 is a project – still under development – aiming at
making EMF-based technologies accessible via the cloud, including

2https://www.webgme.org/
3https://atompm.github.io/
4https://www.eclipse.org/emfcloud/

https://www.webgme.org/
https://atompm.github.io/
https://www.eclipse.org/emfcloud/

Automated Migration of EuGENia Graphical Editors to the Web MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

graphical editors. These are based on the Graphical Language Server
Platform (GLSP) [26, 27]5. GLSP transfers the advantages of the
language server protocol (LSP) to graphical modelling languages.
These editors, then can be deployed on web-based IDE such as
Eclipse Theia.

Finally, EuGENia Live [28] is a web-based tool for designing
graphical DSLs. It encourages the construction and collaboration of
models and meta-models in iterative and incremental development.

Altogether, we have analysed several tools to create graphical
editors either for desktop applications or for the web. However, we
are not aware of solutions supporting editor migration to the web,
to enable their integration with low-code development platforms.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented an approach for the automated
migration of EuGENia editors to the web. The target framework is
DPG, a web framework developed and used in the UGROUND com-
pany as a basis for its ROSE low-code platform. We have evaluated
the approach on editors created by third parties, showing whether
a complete DPG editor is obtained, required manual changes or had
lacking functionality.

In the future, we plan to improve the mapping with support
for affixed nodes, and better support for compartments. We are
working on creating a default web editor for meta-models with no
EuGENia annotations. Moreover, we would like to profit from other
Psi languages to map editing actions, like refactorings or model
abstraction operations [4] to enable more scalable modelling and
connect models of heterogeneous languages.

We would also like to improve our migration to consider not only
editors, but also existing instance models. Technically, we would
like to improve the tool to automate deployment, and to offer a
better GUI. We also plan to support the migration of editors built
with other frameworks, like Sirius.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement n° 813884, Lowcomote [33].
The work has also been supported by the Spanish Ministry of
Science (project MASSIVE, RTI2018-095255-B-I00) and the R&D
programme of Madrid (project FORTE, P2018/TCS-4314).

REFERENCES
[1] Meta Case. 1991. MetaEdit+ Workbench. Retrieved May 11 - June 26, 2020 from

https://www.metacase.com/mwb/
[2] Enrique Chavarriaga, Francisco Jurado, and Fernando Díez. 2017. An approach

to build XML-based domain specific languages solutions for client-side web
applications. Computer Languages, Systems & Structures 49 (2017), 133–151.

[3] Enrique Chavarriaga, Francisco Jurado, and Fernando Díez. 2017. PsiLight: a
Lightweight Programming Language to Explore Multiple Program Execution
and Data-binding in a Web-Client DSL Evaluation Engine. J. UCS 23, 10 (2017),
953–968.

[4] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2013. Reusable ab-
stractions for modeling languages. Inf. Syst. 38, 8 (2013), 1128–1149.

[5] Juan De Lara and Hans Vangheluwe. 2002. AToM 3: A Tool for Multi-formalism
and Meta-modelling. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 174–188.

[6] Obeo Designer. 2008. Obeo Designer Workbench. Retrieved May 11 - June 26,
2020 from https://www.obeodesigner.com/

5https://www.eclipse.org/glsp/

[7] Alfonso Diez, Nga Nguyen, Fernando Díez, and Enrique Chavarriaga. 2013. MDE
for Enterprise Application Systems. In MODELSWARD. SciTePress, 253–256.

[8] Eclipse EuGENia. 2004. Graphical Model Editor development with EuGENia/GMF.
Retrieved May 11 - June 26, 2020 from https://www.eclipse.org/epsilon/doc/
eugenia/

[9] Eclipse Foundation. 2004. Eclipse Modeling Framework. Retrieved May 11 - June
26, 2020 from https://www.eclipse.org/modeling/emf/

[10] M Fowler. 2010. Domain specific languages. Addison-Wesley Professional. Boston,
MA, USA (2010).

[11] Eclipse GMF. 2004. GMF Tooling. Retrieved May 11 - June 26, 2020 from
https://www.eclipse.org/gmf-tooling/

[12] Eclipse Graphiti. 2004. Graphiti. Retrieved May 11 - June 26, 2020 from https:
//eclipse.org/graphiti/

[13] Richard C Gronback. 2009. Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education.

[14] John C Grundy, John Hosking, Karen Na Li, Norhayati Mohd Ali, Jun Huh, and
Richard Lei Li. 2012. Generating domain-specific visual language tools from
abstract visual specifications. IEEE Transactions on Software Engineering 39, 4
(2012), 487–515.

[15] John Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-driven engi-
neering practices in industry: Social, organizational and managerial factors that
lead to success or failure. Science of Computer Programming 89 (2014), 144–161.

[16] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-specific modeling: enabling
full code generation. John Wiley & Sons.

[17] Andrew J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. 2011. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 1–44.

[18] Dimitrios S Kolovos, Antonio García-Domínguez, Louis M Rose, and Richard F
Paige. 2017. Eugenia: towards disciplined and automated development of GMF-
based graphical model editors. Software & Systems Modeling 16, 1 (2017), 229–255.

[19] Dimitrios S Kolovos, Louis M Rose, Saad Bin Abid, Richard F Paige, Fiona AC
Polack, and Goetz Botterweck. 2010. Taming EMF and GMF using model trans-
formation. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 211–225.

[20] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi,
László Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. 2014. Next generation
(meta) modeling: web-and cloud-based collaborative tool infrastructure. MPM@
MoDELS 1237 (2014), 41–60.

[21] Marjan Mernik. 2012. Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments: Recent Developments. IGI Global.

[22] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),
316–344.

[23] MOF. 2016. http://www.omg.org/spec/MOF.
[24] T. Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4

(1989), 541–580.
[25] Eclipse Picto. 2004. Visualising Models with Picto. Retrieved May 11 - June 26,

2020 from https://www.eclipse.org/epsilon/doc/picto/
[26] Roberto Rodríguez-Echeverría, Javier Luis Cánovas Izquierdo, Manuel Wimmer,

and Jordi Cabot. 2018. An LSP infrastructure to build EMF language servers for
web-deployable model editors. In Proceedings of MODELS 2018 Workshops (CEUR
Workshop Proceedings, Vol. 2245). CEUR-WS.org, 326–335.

[27] Roberto Rodríguez-Echeverría, Javier Luis Cánovas Izquierdo, Manuel Wimmer,
and Jordi Cabot. 2018. Towards a Language Server Protocol Infrastructure for
Graphical Modeling. In Proceedings of the 21th ACM/IEEE MODELS. ACM, 370–
380.

[28] Louis M Rose, Dimitrios S Kolovos, and Richard F Paige. 2012. Eugenia live: a
flexible graphical modelling tool. In Proceedings of the 2012 Extreme Modeling
Workshop. 15–20.

[29] Douglas C Schmidt. 2006. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY- 39, 2 (2006), 25.

[30] Eclipse Sirius. 2004. Sirius. Retrieved May 11 - June 26, 2020 from https://eclipse.
org/sirius/

[31] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[32] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hüseyin Ergin. 2013. AToMPM: A Web-based Modeling Envi-
ronment. Demos/Posters/StudentResearch@ MoDELS 2013 (2013), 21–25.

[33] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, and Juan De Lara. 2019.
Lowcomote: Training the Next Generation of Experts in Scalable Low-Code En-
gineering Platforms. In 2nd International Workshop on Model-Driven Engineering
for Design-Runtime Interaction in Complex Systems (CEUR Workshop Proceedings
(CEUR-WS.org)). https://doi.org/10.5220/0006555700710082

[34] Juha-Pekka Tolvanen and Steven Kelly. 2008. Domain-specificmodeling: Enabling
full code generation. Wiley-IEEE Computer Society 444 (2008), 231.

[35] XMI. 2015. https://www.omg.org/spec/XMI/.

https://www.metacase.com/mwb/
https://www.obeodesigner.com/
https://www.eclipse.org/glsp/
https://www.eclipse.org/epsilon/doc/eugenia/
https://www.eclipse.org/epsilon/doc/eugenia/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/gmf-tooling/
https://eclipse.org/graphiti/
https://eclipse.org/graphiti/
http://www.omg.org/spec/MOF
https://www.eclipse.org/epsilon/doc/picto/
https://eclipse.org/sirius/
https://eclipse.org/sirius/
https://doi.org/10.5220/0006555700710082
https://www.omg.org/spec/XMI/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Eclipse Modeling Framework and EuGENia
	2.2 DPG (Diagram Programming Generator)

	3 Automating editor migration
	3.1 Migrating the abstract syntax
	3.2 Migrating the concrete syntax

	4 Tool support
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

