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Abstract. QVT is the standard for model transformation defined by the OMG in the context of the
Model-Driven Architecture. It is made of several transformation languages. Among them, QVT-
Relations is the one with the highest level of abstraction, as it permits developing bidirectional trans-
formations in a declarative, relational style. Unfortunately, the standard only provides a semiformal
description of its semantics, which hinders analysis and has given rise to ambiguities in existing tool
implementations.

In order to improve this situation, we propose a formal, algebraic semantics for QVT-Relations
check-only transformations, defining a notion of satisfaction of QVT-Relations specifications by
models.
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1. Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm where models are no longer pas-
sive documentation, but they are the principal assets of the development process and play an active role.

Among other activities, models are used to specify, simulate, test, generate code and maintain the final
application. In this way, as models are more abstract than code, the development process is shortened,

the productivity is increased, and higher levels of quality and standardization are easier to achieve [28].
A central activity in MDE is the manipulation of models. This is not performed using general-

purpose languages like Java, but using domain-specific languages which are more adequate for the task of
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model transformation. QVT [22] (for Query/View/Transformation) is a standard promoted by the OMG

comprising languages to specify model-to-model transformations. These are a special kind of model
manipulations that in the simplest case take one input model of a given language (e.g. Statecharts), and

produce one output model of a different language (e.g. Petri nets). Model-to-model transformations are
pervasive in MDE, as models frequently have to be refined or abstracted during the development process,

and may be transformed into different formal languages for analysis.

The QVT standard comprises three languages: QVT-Relations (QVT-R), QVT-Core (QVT-C) and

QVT-Operational (QVT-O). QVT-R is the one with highest level of abstraction. It has a declarative,

relational, bidirectional style. This means that we can use a single QVT-R specification operationally to
transform from a source to a target language (called forward transformation) and from target to source

(called backward transformation) either in batch (the source or target models are created from scratch)
or update modes. We can also use it in check-only mode to verify the conformance of two models with

respect to the transformation specification. QVT-C and QVT-O are both operational languages used to
implement forward and backward transformations. While QVT-C is a trace-based language similar to

triple graph grammars [24], QVT-O is lower level and includes imperative constructions.

Even though QVT-R is not having the same impact as other OMG standards like the UML [17],

there are already several tools giving support for its execution [15, 16]. However, one drawback is its
lack of formal semantics. The standard describes a compilation into QVT-C for solving the transfor-

mation scenario, but it only gives an informal procedure for solving the check-only scenario. However,
the check-only scenario is more fundamental than the transformation one, as it permits checking the

correctness of the result of a transformation. Hence, a detailed, formal semantics for the check-only
case is urgently needed by tool builders, users and researchers in order to be able to evaluate whether

two given models are synchronized, if one is a correct translation of the other, or to identify parts of the
specification that the models do not satisfy.

This work is a contribution towards solving this gap. In particular, we present a formal semantics

for the QVT-R check-only scenario based on algebraic specification and category theory. Our semantics
provides a formalization of QVT relations and their dependencies, and defines a notion of forward and

backward satisfaction of specifications by models. Our proposal also generalizes some details of the
standard. First, relations are formalized as bidirectional constraints based on equations instead of on

assignments. Second, our mechanism for parameter passing is more general and flexible than the one
described in the standard as, for instance, it permits passing different sets of parameters to a given

relation.

The first formal semantics of QVT-R was given in Stevens’ seminal paper using game theory [27],

but to the best of our knowledge, ours is the first formalization attempt that captures essential elements
like the structure of a relation (when, where clauses, declaration of formal parameters) and the binding.

Moreover, we also provide a validation of the proposed semantics with respect to existing tools [16] and
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the formalization given in [27].

The rest of the paper is organized as follows. Section 2 gives an overview of QVT-R, especially
the check-only scenario. Section 3 introduces the basic building blocks of our algebraic formalization,

which is presented next in Section 4. Section 5 compares our semantics with that implemented by tools

and other proposals in the literature. Section 6 reviews related research and, finally, Section 7 concludes.

2. Introduction to QVT-Relations

QVT-R is the highest-level of abstraction language of the OMG standard for Query/View/Transforma-

tion [22]. It has a declarative nature and a dual graphical/textual syntax. A QVT-R specification is made
of relations with two or more domains (usually two). Domains are described by patterns similar to UML

object diagrams, and with a flag indicating whether they are checkonly or enforced. Models of enforced
domains may be modified in order to satisfy the relations, whereas models of checkonly domains are just

inspected to check for disagreements, but cannot be modified.

Transformations are given a direction when they are applied. If the direction is a domain tagged as

enforced, the models of this domain may be modified to obtain a model that, together with a given model
from the other domain, satisfies the transformation specification. If a transformation is applied in the

direction of a checkonly domain, then the execution engine must report the locations where the model
does not conform to the transformation, but cannot modify the model.

Relations may contain when and where clauses. The former expresses conditions under which a

relation needs to hold. They usually refer to other relations, to which they may pass objects appearing in
the current relation. Where clauses may call other relations, and are similar to function calls in traditional

programming. In addition, relations can be top or non-top level. After executing a transformation all
top-level relations should hold, whereas the non-top level ones only need to hold when invoked from the

where section of other relations.

Throughout the paper we will use an example transformation from a subset of UML class diagrams
into relational database schemas. In order to ease understanding, the example is a simplification of the

one given in the QVT standard [22]. The meta-models for both languages are shown in Figure 1. The
UML meta-model to the left declares Packages made of Classes with typed attributes. Packages and

Classes inherit a persistent attribute, used to mark whether they are persistent and therefore they
should be reflected in the RDBMS schema. The RDBMS meta-model to the right defines Schemas with

Tables, and these contain Columns of a given type.

Figure 2 shows the QVT-R specification relating both languages. It defines three relations, two

of them being top-level. When interpreted in the uml → rdbms direction, relation PackageSchema

demands that for each persistent package in a UML model, there is a schema with the same name as

the package, but prefixed by “S ”. Relation ClassTable states that for each persistent class there must be
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Figure 1. The meta-model of the two languages used in the example transformation.

a table with same name, but prefixed by “T ”. Nonetheless, the when section demands this relation to
hold only if relation PackageSchema holds for the package and schema containing the class and table. In

addition, the where clause asks the AttributeColumn relation to hold for the class and the table. Finally,
relation AttributeColumn requires that for each attribute of a class, there is a column with the same name

and suitable type. The type of the column is calculated by the OCL expression in the where section.

s: Schema

name=Y

PackageSchema (top)

p: Package

name=X

persistent=true

uml rdbms

Y=‘S_’+X;

where

domain domain

c: Class

name=X

persistent=true

t: Table

name=Y

p: Package s: Schema

uml rdbms

ClassTable (top)

when

Y=‘T_’+X;

AttributeColumn (c, t);

where

PackageSchema (p, s);

domain domain

a: Attribute

name=X

type=T

co: Column

name=X1

type=T1

c: Class t: Table

AttributeColumn

Collection{‘int’,’float’,’double’}.exists(z|

z=T and T1=‘NUMBER’)

or (T=‘string’ and T1=‘VARCHAR’);

uml rdbms

where

domain domain

X1=X;

Figure 2. An example QVT-R transformation.

Relations indicate their signature by means of the ⟨⟨domain⟩⟩ keyword. In this way, the elements
tagged as ⟨⟨domain⟩⟩ should be passed as parameters when the relation is invoked in the when or where

clauses of any relation (including itself). For instance, p and s are marked as domain in relation Pack-

ageSchema, and whenever the relation is invoked from the when section of relation ClassTable, a package

and a schema are passed as actual parameters.

In checkonly mode, if we provide a UML and a RDBMS models and execute the transformation in

the uml → rdbms direction, we obtain whether the RDBMS model is consistent with the UML model
interpreting all relations in this direction, and the models are not modified. Similarly, we can execute the

transformation in the rdbms→ uml direction to inspect whether the UML model is consistent with the
RDBMS model, interpreting in this case all relations in the rdbms→ uml direction. If both models are

consistent with each other in each direction, we say that the models are synchronized with respect to the
specification.

The satisfaction checking procedure demands the satisfaction of all top-level relations in a specifi-

cation. Roughly, a relation is satisfied by two models in a given direction if, for each occurrence of its
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source pattern in the source model, we can find an occurrence of its target pattern in the target model

being a correct binding for the relation. To simplify the terminology, we speak of forward transformation
when the source domain is the one depicted to the left in the relation (uml → rdbms in our example),

whereas we speak of backward transformation if it is the one shown to the right (rdbms→ uml). Hence,
we define the concept of forward pre-condition as the source objects needed to enable a relation, and the

backward pre-condition is defined analogously. As we will show later, building this pre-condition given
a relation is slightly more complex. In particular, it has to include the source objects, the objects used by

the relations appearing in its when clause, as well as those appearing in invocations to the actual relation
from the where clause of a caller relation.

As an example, the left of Figure 3 shows two models where we want to check forward satisfaction,

i.e. check whether for each occurrence of the forward pre-conditions, there are elements in the target
domain that make such occurrence satisfy the relation. Relation PackageSchema is enabled in object p,

and is actually satisfied because there is a schema (object s) that is a correct binding for the relation.
The models also satisfy relation ClassTable forwards. This relation is enabled at objects {c, p, s},
and there is a table that completes the binding for the relation. Please note that p and s belong to the
forward pre-condition of ClassTable because they are passed to PackageSchema in the when clause.

Moreover, ClassTable has a where dependency with relation AttributeColumn, which should be satisfied
as well. The forward pre-condition for AttributeColumn is made of objects {c, a, t} (i.e. the objects

in the UML domain, and those received by the invocation from ClassTable). The models contain one
occurrence of these objects that satisfies the relation because object co1 is a correct binding. Hence,

altogether, we conclude that the RDBMS model is consistent with the UML one, when interpreting the
transformation forward.

On the contrary, the UML model is not consistent with the RDBMS one when interpreting the trans-
formation backwards, for two reasons. First, relation PackageSchema is backward-enabled twice, at

schemas s and s1. However, it is not satisfied at schema s1 because there is no suitable package for
it. Second, relation ClassTable is not satisfied because its where dependency is not satisfied. This is

so because there is no suitable translation for column co. The right of Figure 3 shows two models that
satisfy the specification both forwards and backwards, and therefore these models are synchronized.

Actually, two synchronized models do not need to have an isomorphic structure. This depends on the

transformation specification, and also on the fact that by default, elements in the source and target models
can be used several times to satisfy the relations. As an example, Figure 4 depicts two synchronized

models that are not structurally isomorphic. This is possible as the same table can be used to forward-
satisfy relation ClassTable for classes c and c1 in the source model. Moreover, the models also satisfy

the transformation backwards, as the table has two possible binding classes in the source model.

The standard does not provide a formal means to check the conformance of models with respect to

QVT-R specifications, but just an informal procedure. In the following, we develop such a formalization.
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c: Class

name=‘Person’

persistent=true

a: Attribute

name=‘age’

type=‘int’

p: Package

name=‘People’

persistent=true

UML RDBMS

s: Schema

name=‘S_People’

co: Column

name=‘name’

type=‘VARCHAR’

name=‘T_Person’

co1: Column

name=‘age’

type=‘NUMBER’

s1: Schema

name=‘S_Data’

t: Table c: Class

name=‘Person’

persistent=true

a: Attribute

name=‘age’

type=‘int’

p: Package

name=‘People’

persistent=true

UML RDBMS

s: Schema

name=‘S_People’

co: Column

name=‘name’

type=‘VARCHAR’

name=‘T_Person’

co1: Column

name=‘age’

type=‘NUMBER’

s1: Schema

name=‘S_Data’

p1: Package

name=‘Data’

persistent=true

a1: Attribute

name=‘name’

type=‘string’

t: Table

Figure 3. Example of forward satisfaction (left). Example of synchronized models (right).

c: Class

name=‘fruit’

persistent=true

p: Package

name=‘Pkg’

persistent=true

c1: Class

name=‘fruit’

persistent=true

t: Table

name=‘T_fruit’

s: Schema

name=‘S_Pkg’

p1: Package

name=‘Factories’

persistent=false

c0: Class

name=‘FruitFactory’

persistent=false

Figure 4. Two synchronized models that are not structurally isomorphic.

3. Formalising Model Pairs: Symbolic Tuples

Before presenting our formalization of QVT-R, we start by defining the notion of symbolic tuple, a

structure that we will use to represent pairs of models like those of Figures 3 and 4, as well as the pair
of domains inside a QVT relation, like those in Figure 2. The definition of each model in the structure

is based on E-graphs [8, 9], a kind of edge and node labelled graph. E-graphs have a component set VD

that stores all possible values (or labels) for the attributes. An attribute is represented as an edge from a

node or an edge to its value in VD. While the attributes for nodes are stored in the set ENA, the attributes
for edges are stored in the set EEA.

Definition 1. (E-graph (from [9]))
An E-graph is a tuple G = (VG, VD, EG, ENA, EEA, (sourcei, targeti)i∈{G,NA,EA}), where VG is a set

of graph nodes, VD is a set of data nodes, EG is a set of graph edges, ENA is a set of “node attribution”
edges, EEA is a set of “edge attribution” edges, sourceG : EG → VG and targetG : EG → VG are the

source and target functions for the graph edges, sourceNA : ENA → VG and targetNA : ENA → VD

are the source and target functions for the “node attribution” edges, and sourceEA : EEA → EG and

targetEA : EEA → VD are the source and target functions for the “edge attribution” edges.

An E-graph morphism h is made of five set morphisms (hVG
, hVD

, hEG
, hENA

, hEEA
) such that the

structure given by the source and target functions is preserved (see [8, 9] for details).
In MDE, models are typed by meta-models defining the node and edge types that can appear in the

models. Similarly, we can add typing to E-graphs by working with tuples (G, type : G → TG), where
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TG is the type graph or meta-model G is conformant to [8, 9] (that is, we use objects in the slice category

of E-graphs over TG). In the following formalizations, we usually omit the typing for simplicity. Please
note that meta-models may actually contain inheritance relations, which can be handled through clan-

morphisms [5, 8], but for clarity, we omit a treatment of inheritance in this paper.

E-graphs store all admissible attribute values in a possibly infinite set VD. Following the idea of

symbolic graphs [19], we replace such possibly infinite set by a finite set of variables together with a
formula α constraining their value.

Definition 2. (Symbolic Graph and Morphism (adapted from [19]))
A symbolic graph over the data Σ−algebra A is a tuple C = ⟨G,α⟩, where G is an E-graph whose set

of data nodes VD is a finite set of variables, and α is a first-order Σ-formula over the variables in VD and
over the values in A.

Given symbolic graphs ⟨G1, α1⟩ and ⟨G2, α2⟩ over the same data algebra A, a symbolic graph mor-
phism h : ⟨G1, α1⟩ → ⟨G2, α2⟩ is an E-graph morphism h : G1 → G2 such that A |= (α2 ⇒ h#(α1)),

where h#(α1) is the formula obtained by replacing in α1 every variable xi in the set of labels VD of G1

by hVD
(xi).

Example. Figure 5 shows a symbolic graph morphism between two symbolic graphs. The graphs are

depicted using the standard notation of UML object diagrams to show the typing, whereas the formulas

are depicted below. The symbolic graph to the left can be interpreted as a constraint or pattern that we
want to search in the symbolic graph to the right. It represents a model with a persistent package and

a persistent class, equally named. The morphism a identifies objects p and c in the two graphs and, as
required by the definition of symbolic graph morphism, the formula to the right implies the formula to

the left. On the contrary, the morphism cannot identify objects c in G1 and c1 in G2 because in that case
there is no implication for the formulas, as the value of variables M and Z is different.

c: Class

name=X

persistent=P

p: Package

name=N

persistent=P

X=N P=true

c: Class

name=Y

persistent=Q

p: Package

name=M

persistent=Q

M=“pck” Y=“pck” Z=“C2” Q=true

c1: Class

name=Z

persistent=Q

a

G1 G2

Figure 5. Example of symbolic graph morphism.

As we have seen, a symbolic graph can be used to represent both constraints (left graph in Figure 5)
and models (right graph of Figure 5). We call a symbolic graph ground if its formula restricts the variables

used for attribution to take exactly one value, as it is the case of G2 in Figure 5. In the following, we
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usually depict ground symbolic graphs by placing the unique attribute values in the compartment of the

attributes (just like in UML object diagrams) instead of showing the formula. Moreover, given a symbolic
graph C, we sometimes use D(C) to refer to its set of variables.

In our context, we are interested in manipulating pairs of models which may represent the two domain
patterns in a QVT relation, or two models for which we want to check conformance with respect to a

QVT-R specification. Hence, we define symbolic tuples made of two symbolic graphs and an additional
formula expressing constraints that involve variables of the two graphs.

Definition 3. (Symbolic Tuple)
A symbolic tuple over the data Σ−algebra A is a tuple P = ⟨CS , CT , β⟩, where CS and CT are symbolic

graphs over the data Σ−algebra A, and β is a first-order Σ-formula (sometimes called “relating formula”)
over the variables in D(CS) ⊎D(CT ) and over the values in A (⊎ denotes disjoint union).

Given P , we use the notation γ = β ∧ αS ∧ αT for the formula β in the context of the formulas αS

and αT of CS and CT .

Example. Figure 6 shows two symbolic tuples (actually, it also shows a morphism between them, which

we will explain later). The left tuple is not ground. It represents a pattern made of a package and a
schema with same name (except for the prefix “S ”). We take the convention of placing the formula β

that relates variables of the two graphs in the middle of the symbolic tuple, whereas the formulas αS

and αT in CS and CT are placed in their corresponding graph compartment. If an attribute is assigned

a variable which does not appear in the formulae of the symbolic tuple, we usually omit the attribute
for simplicity. The symbolic tuple to the right is ground, and represents a concrete pair of models. Its

relating formula is true and therefore we do not show it. As stated before, we do not show the formula
of ground tuples but place the attribute values in the attribute compartments instead.

s: Schema

name=Y

Y=‘S_’+X

PackageSchema

P=true

p: Package

name=X

persistent=P

s: Schema

name=‘S_pck’

M

p: Package

name=‘pck’

persistent=true

c: Class

name=‘person’

persistent=true

a

Figure 6. Example of symbolic tuple morphism.

Later, we will need to restrict a symbolic tuple to its source or target part. Hence, given a tuple

P = ⟨CS , CT , β⟩, its source restriction is given by P |S = ⟨CS , ∅, true⟩, whereas its target restriction is
given by P |T = ⟨∅, CT , true⟩.
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Definition 4. (Symbolic Tuple Morphism)
Given two symbolic tuples P i = ⟨Ci

S , C
i
T , β

i⟩ (i=1,2) over the data Σ−algebra A, a symbolic tuple

morphism (short S-morphism) a = (aS , aT ) : P
1 → P 2 is made of two symbolic graph morphisms

aS : C
1
S → C2

S , aT : C1
T → C2

T such that A |= (γ2 ⇒ a#(γ1)), where a#(γ1) is the formula obtained
by replacing in γ1 every variable xi in the first symbolic tuple by aS,VD

(xi) ∪ aT,VD
(xi).

Remark. a# accounts for the renaming of variables, and aS,VD
and aT,VD

are the function component

of the E-graph morphisms that map the sets of data nodes VD. Abusing of notation, we sometimes use a

instead of a# for the replacement of variables when no confusion is possible.

Example. Figure 6 shows an S-morphism that identifies the elements with same identifier in the two

tuples. The source and target formulas of tuple M imply the source and target formulas of tuple Pack-

ageSchema, respectively. These implications are demanded by the two symbolic graph morphisms aS

and aT that make the symbolic tuple morphism a. Moreover, the conjunction of the source, target and
relating formulas of tuple M (γM ) implies the conjunction of the source, target and relating formulas of

tuple PackageSchema (γPackageSchema). The latter implication is demanded by Definition 4.

Please note that two symbolic tuples P i = ⟨Ci
S , C

i
T , β

i⟩ (i=1,2) are isomorphic (P 1 ∼= P 2) if both
the source and target symbolic graphs are isomorphic (C1

S
∼= C2

S , C1
T
∼= C2

T ) and the relating formulae

βi are equivalent.

Symbolic tuples and S-morphisms over a data algebra A form the category SymbTupleA. It is easy

to see that if we have an S-morphism a : P 1 → P 2, then we also have S-morphisms from the source and
target restrictions of P 1 to P 2 (i.e. we have P 1|S → P 2 and P 1|T → P 2), as well as S-morphisms from

the source and target restrictions of P 1 to the source and target restrictions of P 2 respectively (i.e. we

have a|S : P 1|S → P 2|S and a|T : P 1|T → P 2|T ). Finally, given a symbolic tuple P , we also have the
inclusion S-morphisms P |S ↪→ P and P |T ↪→ P .

Our formalization of QVT-R will make use of pushouts and pullbacks of symbolic tuples. Roughly,
the former consist on gluing two tuples through a common intersection, and is calculated by performing

the pushout of the two symbolic graphs making the tuples, and taking the conjunction of the β formulas.
In its turn, the pushout of two symbolic graphs is built by taking the pushout of the graph components

and the conjunction of their formulas [18]. Pullbacks model the intersection of two tuples. They are
calculated by performing the pullback of the symbolic graphs in the tuples, and taking the disjunction of

the source, target and relating formulas. The details and proofs of the properties of these constructions

are in Appendix A.

Proposition 1. (Pushouts and Pullbacks of Symbolic Tuples)
Given the span of S-morphisms ⟨C1

S , C
1
T , β

1⟩ f← ⟨IS , IT , β0⟩ g→ ⟨C2
S , C

2
T , β

2⟩, the pushout ⟨C1
S , C

1
T , β

1⟩
d→ ⟨PS , PT , β

1∧β2⟩ e← ⟨C2
S , C

2
T , β

2⟩ is built component-wise, where PS and PT are the pushout objects

of C1
S

fS← IS
gS→ C2

S and C1
T

fT← IT
gT→ C2

T in symbolic graphs.
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Given the co-span of S-morphisms ⟨C1
S , C

1
T , β

1⟩ f→ ⟨IS , IT , β0⟩ g← ⟨C2
S , C

2
T , β

2⟩, the pullback

⟨C1
S , C

1
T , β

1⟩ d← ⟨PS , PT , θ⟩
e→ ⟨C2

S , C
2
T , β

2⟩ is built component-wise, where PS and PT are the pull-

back objects of C1
S

fS→ IS
gS← C2

S and C1
T

fT→ IT
gT← C2

T in symbolic graphs, and θ is the disjunction of β1

and β2, which are existentially quantified over the variables of β1 and β2 not present in PS and PT .

Proof: in Appendix A.

Example. The left of Figure 7 shows a pushout example. In particular, M ′ is the pushout object
of M ← F → PackageSchema, calculated by taking the pushout of the two graphs in M and

PackageSchema and the conjunction of their formulae. The right of the same figure shows a pull-
back example, where the relating formula in the pullback object F is the disjunction of the relating

formulas in M and PackageSchema, each with an existential quantification of the variables that are not
present in F . The formulas in the left and right graphs are computed in a similar way.

PackageSchemaF

s: Schema

name=Y

p: Package

name=X

persistent=P

p: Package

name=X

persistent=P

g

f

Y=‘S_’+XP=true

p
P=true

M

P.O.

M’
g d

p: Package

name=X

persistent=P

p: Package

name=X

persistent=P

s: Schema

name=Y

c: Class

name X2

persistent=P

c: Class

X2

persistent=P
e

name=X2

persistent=P2
name=X2

persistent=P2

Y=‘S_’+X
X=‘People’ P=true

X2=‘Person’ P2=true

X=‘People’ P=true

X2=‘Person’ P2=trueX2= Person P2=true X2 Person P2 true

s: Schema

name=Y

Y=‘S_’+XP=true

p: Package

name=X

persistent=P
P=true X2 P2
(X=‘People’ P=true

X2=‘Person’ P2=true)

p: Package

name=X

persistent=P

PackageSchema
F

f

c: Class

name=X2

persistent=P2

p: Package

name=X

persistent=P

M

c: Class

name=X2

persistent=P2

p: Package

name=X

persistent=P

s: Schema

name=Y

Y=‘S_’+X 
Z=‘T_’+X2

X=‘People’ P=true
X2=‘Person’ P2=true

X=‘People’ P=true
X2=‘Person’ P2=true

P.B.
M’

g
d

e

t: Table

name=Z

Y (Y=‘S_’+X)
true

Figure 7. Pushout example (left). Pullback example (right).

The pushout and pullback constructions are straightforward to generalize to finite co-limits and lim-
its, taking the conjunction and disjunction of the formulas respectively [18, 20].

We will use a symbolic tuple to model the source and target domain patterns in a QVT relation.
In order to check whether a pair of models is consistent with a given relation in a certain domain, we

need to look at symbolic tuples either source-to-target (forwards) or target-to-source (backwards). In this
way, given a QVT relation, we construct the so-called forward (backward) pre-condition, which in the

simplest case is made of the objects in the source (target) domain. This pre-condition is useful because,
when checking the forward (backward) satisfaction of a relation, we will demand that each occurrence

of its forward (backward) pre-condition can be extended to an occurrence of the whole symbolic tuple.
In case a relation defines a dependency with other relations in its when section, or is invoked from the

where section of other relations, the forward (backward) pre-condition consists of the amalgamation of
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the source (target) objects and the parameters in the invocations.

For this reason we introduce a construction called the forward and backward interpretation of a given
S-morphism or set of S-morphisms. The co-domain of the S-morphism represents a QVT relation. Its

domain may represent the parameters received by the relation in a where invocation, or those passed from
a when invocation in the relation. We need to consider sets of S-morphisms because a relation may have

several when dependencies and be called from different where sections of other relations.
The forward interpretation of an S-morphism D → R (with D representing the when or where

parameters and R the QVT relation) is calculated by making the pushout of D ←↩ D|S
d|S→ R|S . The

forward interpretation of a set of S-morphisms with same co-domain generalizes the previous pushout

construction by taking the amalgamation of all S-morphisms in the set. The backward interpretation is
similar but taking the target restriction of D and R. From now on, we just present the different concepts

for the forward direction, as those for backwards are analogous.

Definition 5. (Forward Interpretation of S-morphisms)
1. Given an S-morphism d : D → R, its forward interpretation is given by Fd(R) = u : F (d) → R

as the construction to the left of Figure 8 shows, where F (d) is the pushout object, and u exists
due to the pushout universal property.

2. Given a symbolic tuple R and a non-empty set of S-morphisms DS = {Dj
dj→ R}j∈J , its forward

interpretation is given by FDS(R) = u : F (DS)→ R as the center of Figure 8 shows, with I the
limit of {pj}, F (DS) the colimit of {ij}, and u exists due to the co-limit universal property.

3. If the set DS is empty, then by definition we consider an S-morphism from the empty symbolic

tuple to R, F∅(R)
def
= F (∅ → R) ∼= R|S ↪→ R, as the right of Figure 8 shows. An empty symbolic

tuple is made of two empty graphs and the true formula.

D|S
p P

����
��
�� d|S

  A
AA

AA
A

I
i0

{{www
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ww
ww
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##G
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GG ∅q Q

����
��
��
� ∅

��?
??

??
??

D
dS

��=
==

==
==

P.O.

d

""

R|S
pS

~~}}
}}
}}

]}
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F (d0)
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��
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GGG
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∅
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��9

99
99

9 P.O.

∅

!!

R|S
Oo

����
��
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{{

F (d)

u
��

F (DS)

u
��

R|S
u
��

R R R

Figure 8. Forward interpretation of an S-morphism d (left), of a non-empty set {dj} of S-morphisms (center),
and of an empty set ∅ of S-morphisms (right).

Example. Figure 9 shows to the left the forward interpretation of the S-morphism when→ ClassTable.

It amalgamates the symbolic tuple when together with the source symbolic graph of ClassTable. Due
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to the pushout universal property, we obtain a unique morphism from F (when → ClassTable) to

ClassTable. The center of the figure shows two S-morphisms from tuples D1 and D2 to another tuple
R, and the right shows their forward interpretation. In particular, the latter is built by taking the forward

interpretation of each S-morphism separately (F (d1) and F (d2)), calculating their limit together with R

(the result is I), and making the colimit of I and the forward interpretations (obtaining F (DS)).

c: Class

name=X

persistent=P

t: Table

name=Y

Y=‘T_’+X

ClassTable

p: Package s: Schema

P=true

s: Schemap: Package

when

p: Package

when|S

c: Class

persistent=P

p: Package

P=true

ClassTable|S

F(when ClassTable)

s: Schema

u

P.O.

c: Class

persistent=P

p: Package

P=true

c: Class

persistent=P

p: Package

t: Tablec1: Class

persistent=P1

P1=true P=true

s: Schema

R

p: Package s: Schema

t: Tablec: Class

persistent=P

P=true

D2

D1

d1

d2

F(d2) F(d1)

c: Class

persistent=P

p: Package

c1: Class

persistent=P1

P1=true P=true

s: Schema

c: Class

persistent=P

p: Package

c1: Class

persistent=P1

P1=true P=true

t: Table

c: Class

persistent=P

p: Package

t: Tablec1: Class

persistent=P1

P1=true P=true

s: Schema

R

c: Class

persistent=P

p: Package

c1: Class

persistent=P1

P1=true P=true

I

c: Class

persistent=P

p: Package

t: Tablec1: Class

persistent=P1

P1=true P=true

s: SchemaF(DS)

u

Figure 9. Example of forward interpretation of an S-morphism (left). Example of a set of two S-morphisms
(center) and their forward interpretation (right).

Once we have formalised pairs of models and some useful constructs, we are in the position to
formalise the check-only semantics of QVT-R.

4. An Algebraic Semantics for QVT-Relations

A QVT-R specification is made of a set of symbolic tuples, some of which are top. The when and where

dependencies are formalized as two sets of spans of S-morphisms. In this way, if the when section of
relation R0 has a dependency to relation R1, we model it with the span: R0

src← D
tar→ R1, where the

symbolic tuple D contains the parameters passed from R0 to R1. We restrict to the case in which QVT
relations have exactly two domains.

Definition 6. (QVT-R Specification)
A QVT-R specification S = ⟨r, top ⊆ r, when,where⟩ is made of:

1. a set r = {Ri} of symbolic tuples, called QVT relations or simply relations;

2. a set top ⊆ r of top-level relations;

3. a set when = {Ri
src← D

tar→ Rj} of when dependencies, with Ri, Rj ∈ r, Rj ∈ top, and

src : D → Ri, tar : D → Rj two S-morphisms. Given a relation Ri, we use the notation
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when(Ri) = {Ri
src← D

tar→ Rk|Ri
src← D

tar→ Rk ∈ when} for the set of when dependencies

for Ri;

4. a set where = {Ri
src← D

tar→ Rj} of where dependencies, with Ri, Rj ∈ r, Rj /∈ top, and
src : D → Ri, tar : D → Rj two S-morphisms. Given a relation Ri, we use the notation

where(Ri) = {Ri
src← D

tar→ Rk|Ri
src← D

tar→ Rk ∈ where} for the set of where dependen-
cies for Ri

such that S does not contain cycles of where or when dependencies. S contains a cycle of dependencies if
there is a set dep = {Ri

srci← Di
tarj→ Rj , Rj

srcj← Dj
tark→ Rk, . . . , Rn

srcn← Dn
tari→ Ri} ⊆ when⊎where.

Remark 1. Our formalization defines the when and where dependencies globally, whereas in the standard
notation, a relation Ri has associated a when section when(Ri) and a where section where(Ri). In this

way, our formalization provides more flexibility as relations do not encode which of their elements are
formal parameters (variables marked as domain), but instead, a relation can be invoked in different ways

from different relations.

Remark 2. We impose two conditions in the when and where dependencies. First, a when dependency
should refer to top-level relations (item 3, condition Rj ∈ top) only. Second, a top-level relation cannot

be invoked from a where section (item 4, condition Rj /∈ top). This corresponds well to practice, and the
available QVT-R tools also implement these restrictions (see Section 5 for a brief discussion on tooling

issues).

Remark 3. As we will notice later, the satisfiability of a relation is a procedure inherently recursive.

Definition 6 forbids cycles of dependencies to avoid infinite recursion. In Section 4.1 we will discuss
potential issues arising if no restriction is given.

Example. Figure 10 depicts the example QVT-R specification in Figure 2 using our formalization. Re-

lation ClassTable is the only one defining dependencies to other relations in the when and where clauses.
These dependencies are tuples containing the elements passed as parameters to the other relations, to-

gether with the corresponding S-morphisms. The OCL expressions in the original relations have been
added to the formula of the left/right symbolic graph if they only contain variables from them, or to the

relating formula β in the middle if they relate variables of both graphs. The relations contain an indica-
tion of whether they are top or not. The explicit representation used in the figure is only to illustrate the

formal definition, but we can use the standard visualization shown in Figure 2.

Given a specification S and one of its relations R, we use the notation when|R = {R src← D|R src←
D

tar→ R′ ∈ when} to denote a set like when(R) but containing only the first S-morphism src in the

spans that have R as the co-domain. An analogous notation is used for the set where.

Next, we define the forward pre-condition of a relation as the forward interpretation of its when

dependencies, using the construction shown in Definition 5. The forward pre-condition contains the part
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c: Class

name=X

persistent=P

t: Table

name=Y

Y=‘T_’+X

ClassTable (top)

p: Package s: Schema

a: Attribute

name=X

type=T

co: Column

name=X1

type=T1

c: Class t: Table

AttributeColumn

P=true

(Collection{‘int’,’float’,’double’}.exists(z|
z=T and T1=‘NUMBER’) or  

(T=‘string’ and T1=‘VARCHAR’))

s: Schema

name=Y

Y=‘S_’+X

PackageSchema (top)

P=true

p: Package

name=X

persistent=P

s: Schemap: Package

when1

t: Tablec: Class

where1

UML_RDBMS= { r={PackageSchema, ClassTable, AttributeColumn}, top={PackageSchema, ClassTable},

when = { ClassTable when1 PackageSchema }, where = { ClassTable where1 AttributeColumn }}

X1=X

srctar tarsrc

Figure 10. The example QVT-R specification using our theoretical notation.

of the relation that we will look for in the models in order to consider that the relation is enabled in the
models and should be satisfied.

Definition 7. (Forward Pre-condition of QVT Relation)
Given a QVT specification S and a relation R ∈ r, its forward pre-condition PreF (R) is the domain of

the forward interpretation Fwhen|R(R).

Remark. If the set when|R is empty, then Fwhen|R(R) : (PreF (R) = R|S) → R according to Defini-
tion 5.

Example. The left of Figure 9 shows the forward pre-condition PreF (ClassTable) = F (when →
ClassTable) for relation ClassTable, which is built by making the pushout of the tuple containing the

elements appearing in its when dependency, together with the source restriction of its symbolic tuple.
Should ClassTable have defined more dependencies in its set when, we should have taken the forward

interpretation for all of them, according to Definition 5.
Next we define the conditions for a relation R to be forward-enabled in a tuple M , where M contains

the models where we want to check the satisfaction of R. In particular, a relation is forward-enabled if
we find one occurrence of its forward pre-condition PreF (R), for which each when dependency is sat-

isfied. As we will see later, our semantics demands each forward-enabled top relation to be satisfied.
Satisfaction is checked using a predicate, presented in Definition 11. Hence, as the general notions of

enabledness and satisfaction involve a mutual recursion, we will start with the simpler case of enabled-

ness of relations with empty when, then continue with the satisfaction of relations with empty when and
where (which are the base cases of the recursion), and finally present the general cases of enabledness

and satisfaction.
A relation R with empty when is forward-enabled at any match of its forward pre-condition.
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Definition 8. (Forward Enabledness of QVT Relation with Empty When)
Given a QVT specification S and a relation R ∈ r such that when(R) = ∅, we say that R is forward-

enabled in a symbolic tuple M if there is a match mS : PreF (R) → M of its forward pre-condition,
written M ⊢mS ,F R. See the left of Figure 11.

PreF (R)
u //

mS

��

R

M

PreF (R)
u //

mS

��
=

R

m

ttM c: Class

name=‘fruit’

persistent=true

p: Package

name=‘Pkg’

persistent=true

c1: Class

name=‘drink’

persistent=true

t: Table

name=‘T_fruit’

s: Schema

name=‘S_Pkg’

s: Schema

name=Y

Y=‘S_’+XP=true

p: Package

name=X

persistent=P
P=true

p: Package

persistent=P

PackageSchema
PreF(PackageSchema)

=

u

mS
mM

Figure 11. Forward enabledness of a relation with empty when (left). Satisfaction of a relation with empty when
and where (center). Example of enabledness and satisfaction (right).

Example. The right of Figure 11 shows a tuple M where the relation PackageSchema is forward-enabled.
The relation has an empty set when, so according to Definition 5, the forward pre-condition is calculated

using the empty dependency ∅ → R, which yields a pre-condition equal to the source restriction of the
tuple (PackageSchema|S). As there is an occurrence of the forward pre-condition in M , the relation is

forward-enabled in M at such occurrence.

Next we present the satisfaction of a relation with empty when and where. In such a case, we only

need to find a commuting S-morphism with that of the pre-condition, as shown in the central diagram
of Figure 11. However, in a QVT-R specification, the satisfaction of a relation sometimes needs to be

checked with respect to a calling relation. That is, taking into account some parameters passed from the
calling relation, so that the occurrence of the called relation is checked in a certain location in M . In

this way, we define satisfaction using a general predicate SATF which receives three parameters: (i)
the relation R to be checked for satisfaction, (ii) an S-morphism mD : D → M indicating the actual

parameters received by R from an invoking relation (i.e., the place in the model M where the binding
is to be sought), and (iii) a dependency d : D → R defining the formal parameters of such an invoca-

tion. In the simplest case of a relation R with empty when and where, a tuple M forward-satisfies R if
SATF (R,D →M,D → R) evaluates to true.

Definition 9. (Forward Satisfaction of QVT Relation with Empty When and Where)
Given a QVT specification S and a relation R ∈ r such that when(R) = where(R) = ∅, we say that R

is forward-satisfied if predicate SATF (R,mD : D →M,d : D → R) holds.

Predicate SATF holds for R (with when(R) = where(R) = ∅) and the given S-morphisms, if

∀mS ∈ {mS : F (d)→ M |mD = mS ◦ e, with M ⊢mS ,F R,D
e→ F (d)}, ∃m : R → M s.t. (1) and
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(2) commute in Figure 12.

F (d)
u //

mS

))

R
(2)(1)

m

��

D
doo

e
=vv

mD

uu
M

Figure 12. Forward satisfaction of a relation with empty when and where dependencies.

Remark. As we will see later, the satisfaction of top relations requires the predicate SATF to hold for
the empty S-morphisms mD : D = ∅ → M and d : D = ∅ → R, which make any m commute with

mD in Figure 12. In such a case, as d is empty, F ({∅ → R}) is the source restriction of R. Hence,

for top relations without dependencies, the diagram in Figure 12 is equivalent to the one in the center of
Figure 11, where all possible mS morphisms forward-enabling R are sought.

Example. The right of Figure 11 shows a tuple M where the relation PackageSchema is forward-
satisfied. This is so as there is only one match mS at which the relation is forward-enabled, and for

which we find a commuting match m of the whole relation, making the relation forward-satisfied.
Next we generalize the definition of forward enabledness for any QVT relation with an arbitrary set

when (Definition 8 was the base case of the recursion). In the general case, in addition to demand a
match mS from the forward pre-condition to M , we ask for the satisfaction of its when dependencies

in a match commuting with mS . We use the predicate SATF with appropriate parameters to check this
satisfaction.

Definition 10. (Forward Enabledness of QVT Relation)
Given a QVT specification S and a relation R ∈ r, we say that R is forward-enabled in a symbolic tuple

M at match mS : PreF (R) → M of its forward pre-condition, written M ⊢mS ,F R, if ∀R src← D
tar→

R′ ∈ when(R), SATF (R′,mS ◦ e ◦ g, tar) holds. See Figure 13, and Definitions 9 and 11 for the

formulation of predicate SATF .

Example. The right of Figure 13 shows an example where we test the enabledness of relation ClassTable,
which has a non-empty when set. In this case, in addition to finding a match mS from the pre-condition

PreF (ClassTable) to M , we need to check the satisfaction of all relations in the when set commuting
with mS . For this latter case we invoke predicate SATF with the relation PackageSchema, the match

where this relation should be satisfied (objects p and s and the corresponding match mS ◦ e ◦ g), and the
dependency when1

tar→ PackageSchema which is used to build the pre-condition of PackageSchema.

According to Definition 9, the predicate holds for these parameters, meaning that PackageSchema is
satisfied at the passed match as we find a commuting S-morphism PackageSchema

m′
→M . Altogether,

ClassTable is forward-enabled in M .
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��7
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PreF (R)
u //

mS

��

R R′

M

=mS m

c: Class

name=X

persistent=P

t: Table

name=Y

Y=‘T_’+X

ClassTable (top)

p: Package s: Schema

P=true

c: Class

persistent=P

p: Package s: Schema

P=true

PreF(ClassTable)

u

s: Schemap: Package

when1

s: Schema

name=Y

Y=‘S_’+XP=true

p: Package

name=X

persistent=P

PackageSchema

src

e  g

tar

m’
M

c: Class

name=‘fruit’

persistent=true

p: Package

name=‘Pkg’

persistent=true

c1: Class

name=‘drink’

persistent=true

t: Table

name=‘T_fruit’

s: Schema

name=‘S_Pkg’

°

=

Figure 13. Forward enabledness of QVT relation (left). Example (right).

Next, we present the general case for satisfaction of a relation in a given span of S-morphisms, i.e. in

the context of a certain invocation from either a when or a where clause. This is checked through predicate
SATF with three parameters: (i) the relation R to be checked, (ii) an S-morphism D → M with the

actual parameters received from the invocation, and (iii) a dependency D → R defining the formal
parameters of the invocation. The second parameter of the predicate is used to restrict the occurrences of

the forward pre-condition PreF (R) in M that need to be satisfied, whereas the third parameter is treated
as an additional pre-condition in the when clause of the relation. In its turn, the predicate may demand

the satisfaction of other relations at certain matches if they appear in the when or where clauses of R.
This is handled by recursive calls to the predicate, as stated in Definitions 10 and 11. Thus, our definition

takes into account that the satisfaction of a particular relation is checked in the context of a specification
S, and it depends on how it is actually invoked from other relations. In this way, a specification can

require a certain relation to be satisfied under different conditions if the SATF predicate is checked with
different second and third parameters, meaning that the relation is invoked from different places or with

different sets of parameters.

Definition 11. (Forward Satisfaction of a QVT Relation R at a Span R
d← D

mD→ M )
Given a QVT specification S, a relation R ∈ r, and a span s of S-morphisms R d← D

mD→ M , we say

that R is forward-satisfied at s if predicate SATF (R,mD : D →M,d : D → R) holds.

Predicate SATF holds for R and R
d← D

mD→ M if ∀mS ∈ {mS : F ({d} ∪when|R)→M |mD =

mS ◦ e, with M ⊢mS ,F R,D
e→ F ({d} ∪ when|R)}, ∃m : R→M s.t.:

i) (1) and (2) commute to the left of Figure 14, and

ii) ∀R src← D′ tar→ R′ ∈ where(R), SATF (R′, m ◦ src, tar) holds (see the right of Figure 14).
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F ({d} ∪ when|R) u //

mS

++

R
(2)(1)

m

��

D
doo

e
=tt

mD

uu

R

m

��

D′srcoo tar // R′

M M

Figure 14. Forward satisfaction (left). Forward satisfaction of the where dependencies (right).

Example. Relation ClassTable is forward-enabled at two occurrences in the tuple M to the right of Fig-

ure 13. The first one with objects {p, s, c} satisfies the relation because there is an occurrence of the
relation that includes these objects and, in addition, the where dependencies are satisfied (AttributeCol-

umn is trivially satisfied as c has no attributes). However, the second one at objects {p, s, c1} does
not satisfy the relation because we do not find one occurrence of the relation for the objects (i.e. a table

with suitable name is missing).
The forward satisfaction of a QVT-R specification by a model pair M demands that M forward-

satisfies all top-level relations in the specification. For this purpose we use the predicate SATF .

Definition 12. (Forward Satisfaction of QVT-R Specification)
Given a QVT-R specification S = ⟨r, top ⊆ r, when,where⟩ and a symbolic tuple M , we say that M
forward-satisfies S, written M |=F S, if ∀R ∈ top, SATF (R, ∅ →M, ∅ → R).

Example. Our example specification has two top-level relations: PackageSchema and ClassTable. If we
consider the model pair M to the right of Figure 13, we see that relation PackageSchema is forward-

satisfied because there is only one occurrence of its forward pre-condition in M , which is satisfied.
However, relation ClassTable is not forward-satisfied because a suitable table for class c1 is missing. As

a result, M does not forward-satisfy the specification. More in detail, our formalization performs the
following steps to check the satisfaction:

1. check satisfaction of top-level relation PackageSchema, which is evaluated through predicate SATF

(PackageSchema, ∅ → M, ∅ → PackageSchema). The relation does not have dependencies,

therefore the predicate does not perform any recursion, but directly evaluates to true.

2. check satisfaction of top-level relation ClassTable, which is evaluated through predicate SATF

(ClassTable, ∅ → M, ∅ → ClassTable) (Definition 11). There are two matches of the forward
pre-condition of ClassTable in M : mS

1 identifying the class in the relation with c in M , and mS
2

identifying it with c1 (see Figure 15(a)).

(a) retain the matches that forward-enable relation ClassTable (Definition 10). Both mS
1 and mS

2

forward-enable the relation as PackageSchema is satisfied at both matches or, more precisely,

the predicates SATF (PackageSchema,ms
1◦e◦g, tar) and SATF (PackageSchema,ms

2◦
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e ◦ g, tar) hold (see Figure 15(b) for building morphism mD = ms
1 ◦ e ◦ g, and Figure 15(c)

for the satisfaction of the first predicate).

(b) check if there is a morphism m from relation ClassTable to M commuting with mS
1 and mD,

which exists.

(c) check if there is a morphism m from relation ClassTable to M commuting with mS
2 and mD,

which does not exist (see Figure 15(d)). Therefore relation ClassTable is not satisfied.

A model pair is synchronized with respect to a specification if it satisfies the specification both
forwards (|=F ) and backwards (|=B). In this section we have presented enabledness and satisfaction for

the forward case. The backward case is similar but taking the target restrictions of relations. Actually,
forward and backward satisfaction are symmetrical exchanging source and target models.

Definition 13. (Synchronization)
Given a QVT-R specification S and a symbolic tuple M , we say that M is synchronized with respect to

S, written M |= S, iff M |=F S and M |=B S.

Example. Figure 16 shows two model pairs that are synchronized with respect to our specification, as

both top relations PackageSchema and ClassTable are forward- and backward-satisfied at all occurrences.
In the model pair to the right, the two occurrences that forward-enable ClassTable are satisfied with the

same table.

4.1. Recursion

According to the standard [22], a when clause in a relation R specifies the conditions under which R

needs to hold. This definition is inherently recursive as, in order to check the enabledness of R, first we

need to check the satisfaction of the relations referenced in its when clause. Moreover, for R to hold,
all conditions in its where clause need to hold. This condition is again recursive as in order to check the

satisfaction of R, we need to check the satisfaction of all relations invoked in its where clause as well.
For this reason our SATF predicate is recursive, and the base case is the evaluation of a relation with

empty when and where (Definition 9). Definition 6 forbids cycles of when or where dependencies, hence
avoiding any problematic situation due to infinite recursion.

Should we refrain from imposing restrictions on the when and where dependencies, paradoxes could
arise in the evaluation of satisfaction. For example, assume a specification made of three top relations

R1, R2 and R3 in which there is a cycle of when dependencies: R1 includes R2 in its when clause, R2

includes R3 in its when clause, and R3 includes R1 in its when clause. Let us suppose that we have a

tuple M representing a pair of models where we want to check if they (forward) satisfy our specification.
Let us assume that each Ri have a match mS

i : PreF (Ri) → M , so that whether they are enabled or

not depends on the satisfaction of their when dependencies. Finally, let us suppose that if R1 is enabled
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c: Class

persistent=P

p: Package s: Schema

P=true

PreF(ClassTable)

M

mS
2={(c, c1)…}mS

1={(c, c)…}

SATF(ClassTable, M, ClassTable) = …

(a) Two pre-condition matches in M .

c: Class

persistent=P

p: Package s: Schema

P=true

PreF(ClassTable)

c: Class

persistent=P

p: Package s: Schema

P=true

F(when1 ClassTable)

e

M

mS
1={(c, c)…}

p: Package s: Schema

when1

g

s: Schema

name=Y

Y=‘S_’+X

PackageSchema

P=true

p: Package

name=X

persistent=P

tar

(b) Building morphism mD = mS
1 ◦ e ◦ g.

s: Schema

name=Y

Y=‘S_’+X

PackageSchema

P=true

p: Package

name=X

persistent=P

PreF(PackageSchema)=
PackageSchema|S

P=true

p: Package

name=X

persistent=P

u

M

tar

mD
= =
(1) (2)

mmS

e

SATF(PackageSchema, mD=mS
1 e g, tar) = true

p: Package s: Schema

(c) Checking satisfaction of relation PackageSchema at a given span.

c: Class

persistent=P

p: Package s: Schema

P=true

PreF(ClassTable)

M

mS
2={(c, c1)…}

SATF(ClassTable, M, ClassTable) = false

c: Class

name=X

persistent=P

t: Table

name=Y

Y=‘T_’+X

ClassTable

p: Package s: Schema

P=true

=d=

mD=
= =
(1) (2)

(d) No commuting match for mS
2 .

Figure 15. Evaluating the satisfaction of ClassTable.
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c: Class

name=‘fruit’

persistent=true

p: Package

name=‘Pkg’

persistent=true

c1: Class

name=‘drink’

persistent=true

t: Table

name=‘T_fruit’

s: Schema

name=‘S_Pkg’

t1: Table

name=‘T_drink’

c: Class

name=‘fruit’

persistent=true

p: Package

name=‘Pkg’

persistent=true

c1: Class

name=‘fruit’

persistent=true

t: Table

name=‘T_fruit’

s: Schema

name=‘S_Pkg’

Figure 16. Example model pairs synchronized with respect to the specification.

for the given match then it is not satisfied by M (there is no match m : R1 → M ) and similarly for R2

and R3. The question is, does M satisfy R1 (or R2 or R3)? We can check that any answer leads to a
contradiction:

• Assume that M satisfies R1 for the given match. This means that R1 cannot be enabled, since

otherwise – according to the initial assumption – R1 would not be satisfied. This means that its
when dependency R2 is not satisfied by M . But if R2 is not satisfied by M , then R2 is enabled,

and this means that R3 is satisfied. But if R3 is satisfied, then it is not enabled, which means that
R1, its when dependency, is not satisfied, leading to a contradiction.

• Assume then that M does not satisfy R1 for the given match. This means that R1 is enabled, and

hence its when dependency R2 is satisfied. Now, if R2 is satisfied, it is not enabled, which means
that R3 is not satisfied. But if R3 is not satisfied it means that it is enabled, which means that R1,

its when dependency, is satisfied. This is also a contradiction.

In order to avoid these paradoxes, we need some kind of restriction to forbid certain types of circu-
larities. The restrictions posed in this paper (i.e. the absence of cycles of when and where dependencies)

are however too restrictive in practice. For instance, Figure 17 shows an increment of the QVT specifi-
cation in Figure 10 with one additional non-top relation ParentClassTable (shown to the left in QVT-R

syntax, and to the right using our formalization). The resulting specification is similar to the example
presented in the Appendix of the standard [22]. The new relation is invoked from the where section

of relation ClassTable, and then it invokes itself in its where section to ensure that the table associated
to a class contains columns for the attributes of the class’s parents (checked by relation AttributeCol-

umn). Attributes of indirect parents are handled recursively. Thus, the specification contains a cycle of
dependencies given by ParentClassTable

src← where3
tar→ ParentClassTable.

This cycle is however not problematic unless the model under test contains a cycle in the inheritance
relation, in which case a program that simply evaluates the recursion (depth first) following the dependen-

cies will not terminate. Instead, the program may be provided with a cache, which prevents evaluating
satisfaction twice with same parameters in a chain of dependency evaluation. For example, Figure 18

shows a pair of models, where the one to the left has a cycle in the inheritance relation (we assume this
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sc: Class

persistent=P

t: Table

ParentClassTable

P=true

c: Class

UML_RDBMS=
{ r={PackageSchema, ClassTable, AttributeColumn, ParentClassTable},
top={PackageSchema, ClassTable},

when = { ClassTable when1 PackageSchema }, 
where = { ClassTable where1 AttributeColumn, 

ClassTable where2 ParentClassTable,

ParentClassTable where3 ParentClassTable,
ParentClassTable where4 AttributeColumn}}

c: Class

name=X

persistent=P

t: Table

name=Y

Y=‘T_’+X

ClassTable (top)

p: Package s: Schema

P=true

where2 c: Class t: Table

parent

src tar

ParentClassTable

uml rdbms

ParentClassTable (sc, t);

where

where3 c: Class t: Table

tar={(c, c), (t, t)}src={(sc, c), (t, t)}

sc: Class

persistent=true

t: Tablec: Class

parent

domain domain

AttributeColumn (sc, t);

Figure 17. Adding another relation to the example: A cycle.

is allowed by the meta-model). PackageSchema is satisfied in M since SATF (PackageSchema, ∅ →
M, ∅ → PackageSchema) holds as there is a suitable schema s for the only package p. Then, a

program might evaluate SATF (ClassTable, ∅ → M, ∅ → ClassTable) because ClassTable is also
top. The relation is enabled at two matches mS

1 and mS
2 identifying classes c1 and c2, for which find

two commuting matches m1 and m2 identifying the corresponding tables t1 and t2 (condition (i) of
Definition 11). Then, the program would need to evaluate SATF on the two where dependencies of

ClassTable. In order to evaluate the first one (relation ParentClassTable) at the match for class c1, the
program would need to check the satisfaction of relation ParentClassTable for class c2, and the other

way round, obtaining a recursive cycle. Nonetheless, as just stated, avoiding this kind of cycles can be

done if the program does not evaluate the predicate SATF on the same relation at the same match twice
in a sequence of recursive calls. Instead, the second time the predicate is not evaluated, but only the

other dependencies are checked. In our example, this means that the program would continue evaluating
the other where dependencies of ParentClassTable, namely the dependency of AttributeColumn, which

is satisfied. Therefore, the program would find that the specification is satisfied in M .

This idea of a cache can be used by tool builders to break certain cycles. However, finding the right
kind of restrictions in Definition 6 to avoid paradoxes but allowing non-problematic circularities is an

open question for us.
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c2: Class

name=“Child”

persistent=true

c1: Class
name=“Parent”

persistent=true

parent

a: Attribute
name=“age”

type=“int”
p: Package

name=“pckg”

persistent=true

t1: Table

name=“T_Parent”

t2: Table

name=“T_Child”

s: Schema

name=“S_pckg”

co1: Column
name=“age”

type=“NUMBER”

co2: Column
name=“age”

type=“NUMBER”

M

parent

Figure 18. A model tuple with a cycle.

5. Validating the Formalization

In this section, we show some validation results of the proposed semantics using as a reference existing

tools and other semantics proposed in the literature.

ModelMorf [16] is the only tool we are aware of that implements the checkonly scenario. In this tool,
QVT transformations are written using textual syntax, therefore we encoded the transformation shown

in Figure 2 in textual format. Attribute computations were an issue, as ModelMorf does not support
bidirectional constraints like the one in relation AttributeColumn, but only attribute assignments. Thus,

we had to transform the constraint in this relation into an assignment expression that explicitly assigned
a value to T1. Note that if the transformation is meant to be used both forwards and backwards, we need

to synthesize assignment expressions for the attributes in both domains. Hence, in ModelMorf, we have
to provide the forward and backward version of the β formula in our symbolic tuples. Apart from this,

the checkonly execution of the transformation over the model pairs shown in the figures of the paper
returned the expected results.

We also tested how the tools handle some cases of infinite recursion due to dependency cycles among
relations. For the example presented in Section 4.1 (a recursive call to relation ParentClassTable eval-

uated on the model in Figure 18), ModelMorf returns false not only in the check-only scenario, but
surprisingly, also in the transformation scenario. However the example model does satisfy the specifi-

cation. The same example executed in the MediniQVT [15] tool for the transformation scenario (as this
tool does not support checkonly) causes a non-terminating execution. We also experimented with other

cyclic transformations, obtaining the same results: while MediniQVT entered in a non-terminating loop,
ModelMorf always returned false. Other proposed semantics, as Stevens’ game semantics for QVT-R

currently forbids cycles of when and where dependencies [26], just like our Definition 6, so could not be
used for comparison. Therefore we discovered that different tools implement heterogeneous approaches

to recursive cycles. The procedure that we sketched before would prevent checking the satisfaction of
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a relation for the same elements twice, so that the checking procedure terminates and, in this particular

example, it returns true.

We have also applied our formalization to the transformation given in [26], where the author proposes
a semantics for QVT-R checkonly scenarios based on game theory. Figure 19 shows the transformation

using our formalization. It uses the same meta-model for the source and target, and consists of three
relations. Relation ContainersMatch is top. It demands connected Container and Inter objects in source

and target, and invokes relation IntersMatch in its where section using both Inter objects as parameters.
Relation IntersMatch demands one connected Thing object in both domains, and invokes relation Things-

Match using both Thing objects. Finally, relation ThingsMatch asks the attributes of the Thing objects to
have the same value.

ContainersMatch (top)

c1: Container

i1: Inter

c2: Container

i2: Inter

IntersMatch

i1: Inter

t1: Thing

i1: Inter

where1

t1: Thing

value=S1

t2: Thing

value=S2

S1=S2

i2: Inter

t2: Thing

i2: Inter

ThingsMatch

t1: Thing

where2

t2: Thing

Sim= { r={ContainersMatch, IntersMatch, ThingsMatch}, top={ContainersMatch},  

when = {}, where = { ContainersMatch where1 IntersMatch, IntersMatch where2 ThingsMatch}}

src tar tarsrc

Figure 19. Example QVT-R transformation, adapted from [26].

Figure 20 illustrates the process of forward satisfaction checking, over a model pair M borrowed

from [26]. M satisfies the transformation both forwards and backwards. The top of the figure depicts the
pre-condition PreF of the three relations, and how parameters are passed. The forward satisfaction of

the specification is evaluated through SATF (ContainersMatch, ∅ → M, ∅ → ContainersMatch),
as this is the only top relation. The pre-condition for ContainersMatch is made of the source objects, for

which there is only one match mS
C in M shown by equality of identifiers. The satisfaction of predicate

SATF demands the existence of one match for ContainersMatch commuting with the pre-condition and

satisfying the where dependencies. As it can be observed, there are two matches of ContainersMatch

commuting with mS
C : {c1, i1, c2, i2} (depicted mC,i2) and {c1, i1, c3, i3}. However, only

the first one satisfies the where dependencies. The parameters passed through where1 demand the satis-
faction of IntersMatch in the same Inter objects identified by the match of relation ContainersMatch: i1

and i2. The pre-condition of IntersMatch has two matches: mS
I,tc1 with objects {i1, i2, tc1}, and

mS
I,td1 with objects {i1, i2, td1}. For each of them, there is a commuting match of the whole rela-

tion at matches mI,tc1 and mI,td1, respectively. Finally, relation ThingsMatch is invoked, which checks
equality of values.

Altogether, our evaluation forward and backward coincides with that of [26] and the one given by

ModelMorf (up to cycles). We have tested our semantics with other examples, including the ones given
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c1: Container

i1: Inter

tc1: Thing

value=“c”

td1: Thing

value=“d”

c2: Container

i2: Inter

tc2: Thing

value=“c”

td2: Thing

value=“d”

c3: Container

i3: Inter

tc3: Thing

value=“c”

m1 m2

PreF(ContMatch)

c1: Cont

i1: Inter

c1: Cont

i1: Inter

c2: Cont

i2: Inter

ContMatch

i1: Inter

t1: Thing
i1: Inter

where1

i2: Inter

i2: Inter

t1: Thing

where2

t2:Thing

t1:Thing t2:Thing

t1:Thing

val=S1

t2:Thing

val=S2

S1=S2

i1: Inter

t1: Thing

i2: Inter

t2: Thing

PreF(IntersMatch)

IntMatch ThingsMatch

PreF(ThingsMatch)

M

mS
C

mC, i2

= =

mS
I, tc1 mI, tc1

mS
I, td1 mI, td1

=

=
=

mS
T, tc1

mS
T, td1

mT, tc1

mT, td1

src src

Figure 20. Forward transformation checking.

in [26]. This does not prove that our semantics capture the idea the authors of the QVT standard had in
mind, but it provides further evidence in favour of such a hypothesis.

6. Related Work

Even though QVT is the standard language for model transformation in the MDA, very few attempts
to formalize its semantics can be found in the literature, and even less address the formalization of the

check-only scenario. The only approach we are aware of is the seminal work of Stevens in [26]. This
is the first formal semantics for QVT-R checkonly transformations, and is based on game theory. The

semantics is described as a game between a refuter and a verifier, which at each state of the game pick
bindings in the source and target domains of the relations under evaluation. This semantics is high-level

in the sense that some concepts, like the binding, are left as an oracle. In contrast, our semantics relies
on an explicit formalization of bindings (S-morphisms) and provides constructions for the pre-conditions

(parameter passing). In this way, both semantics focus in different aspects: while ours explains how pa-
rameters are passed, how pre-conditions are built, and where they have to be sought, Stevens’ semantics

is focused on the ∀-∃ alternation when bindings are sought in source and target domains. Nonetheless,
the parametric aspects of Stevens’ semantics, like the binding or the parameter passing, could be for-

malized with the approach given here. As we have seen in the previous section, both semantics seem to
agree, except for the fact that in [27], cycles are not currently considered.

Regarding the formalization of operational scenarios, the authors in [2, 14] formalize QVT-R trans-

formations by using rewriting logic and Maude. In [12], inspired by the standard compilation of QVT-R



26 E. Guerra, J. de Lara / Algebraic Semantics for QVT-Relations

into QVT-C, the authors translate QVT-R into triple graph grammars which in this case play the role

of QVT-C. In [6], we compiled QVT-R specifications into coloured Petri nets for execution, debug and
analysis. Finally, the authors in [11] formalize both QVT-R and QVT-O by using theory of problems, be-

ing able to verify whether a QVT-O specification is correct with respect to a QVT-R specification. None
of these works consider the check-only scenario, which however is a fundamental aspect of the QVT-R

semantics. In this sense, it is difficult to evaluate whether the semantics provided here (for checkonly
scenarios) is compatible with that described in these works (for operational scenarios). However, we

believe that our algebraic formalization of symbolic tuples is somewhat close to the ones used by triple
graph grammars.

There are also works that follow semi-formal or non-formal approaches. For instance, [10] uses

OCL to represent the static semantics of relations, and Alloy for the dynamics. This approach is similar
to our previous work in [3], where we translated QVT-R into OCL and used a constraint solver for

execution and analysis. In [23], the authors translate QVT-R into QVT-O, so that the resulting models
can be executed in tools supporting the QVT operational mappings, like SmartQVT [25]. However, the

approach only supports the transformation scenario. A similar experiment is proposed in [13], where
QVT-R is transformed into the input language of the ATL virtual machine.

Concerning tools, MediniQVT [15], ModelMorf [16], MOMENT-QVT [1] and TROPIC [29] are
tools that support QVT-R. However, only ModelMorf supports check-only scenarios. One detail is of

interest though. Relations in our approach contain formulas, and therefore ’X=Y’ is interpreted as an
equality and not as an assignment. As a consequence, the obtained semantics is completely bidirec-

tional, as specifications can be interpreted forwards and backwards without any need to do algebraic
manipulation of formulas. On the contrary, current tools do not support this approach, but they are based

on assignments to variables, which hinders the use of specifications for bidirectional transformations.

Thus, the work presented here contributes to the understanding of the QVT-R check-only trans-
formations, and can serve as a blueprint for tool implementations, as well as a foundation for model

transformation activities.

7. Conclusions

In this paper we have presented a formal, algebraic semantics for QVT-R check-only transformations,

hence contributing to the foundations of model-to-model transformations in MDA. Our semantics is
based on a formalisation of QVT relations by model pairs and dependencies, taking into consideration

the binding of relations to models by means of S-morphisms.

The advantages of our semantics are the following. First, it explains the construction of enabling
pre-conditions for the relations and parameter passing. It does so by conceptually constructing a net-

work of symbolic tuples (the relations), from which commuting S-morphisms to the model pairs under



E. Guerra, J. de Lara / Algebraic Semantics for QVT-Relations 27

evaluation should be found. This relates our approach to the theory of graph constraints [8], especially

nested constraints and application conditions, developed by the community of graph transformations [7].
Hence, in the future, we plan to use the theoretical results for nested constraints to check the satisfiabil-

ity of specifications, obtain equivalent ones or simplify them. For example, we plan to investigate the
conditions needed to transform a where invocation into a when dependency of the invoked relation and

obtain an equivalent specification.

Second, the explicit network of constraints can be used to build valid models of the specifications

by calculating the co-limit of the network. This is particularly useful for the generation of test cases for
transformations, in particular white-box testing, where one selects the relations that are to be exercised

(i.e. how many occurrences of each relation we want in our test case). It must be noted that the model
obtained through the co-limit construction may not satisfy all meta-model constraints, and hence should

be extended with further elements. However, such model could be fed into a constraint solver like
UMLtoCSP [4] to complete it with the needed elements using techniques similar to those in [3].

Third, our semantics generalizes several aspects of the standard and current practice. In particular,

the formulae attached to our symbolic tuples are inherently bidirectional and do not need to be manip-
ulated when the tuples are interpreted forwards or backward. Our formalization also generalizes the

parameter passing mechanism of QVT-R, as it permits invoking a relation with different number of pa-
rameters without the need of duplicating the relation, as it should be done in the standard. Moreover, our

parameters may include both objects and links, being symbolic tuples in their own right, and may even
include formulae constraining those objects as well. Further exploration of this feature is left for future

work.

Finally, our formalization enables the verification of transformations using algebraic techniques de-

veloped in the graph transformation community. For example, one could use symbolic tuples to express
verification properties that should be satisfied (or not) by the transformation specification. For instance,

in the UML to RDBMS example, one may like to check that the transformation always stores every
attribute of a child class in the same table as the parent class. This property may not be stated explicitly

in the transformation specification, but we may want to verify it. For this purpose we could use the
refutation techniques developed in [21] to check whether the transformation verifies this property.

In the future, we plan to extend our formalization as follows. First, in this work we have modelled
the when and where dependencies as sets, whereas in the standard the dependencies can be embedded in

arbitrary OCL expressions. Also, the standard foresees relations with more than two domains to attack
problems concerned with multi-modelling. We also plan to investigate analysis techniques for QVT-R

specifications based on this formalization. Finally, we are investigating the right kind of restrictions in
Definition 6 to avoid paradoxes but allowing non-problematic circularities. We will tackle these issues

in a future contribution.
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[11] R. S. Giandini, C. Pons, and G. Pérez. A two-level formal semantics for the QVT language. In CIbSE’09,
pages 73–86, 2009.

[12] J. Greenyer and E. Kindler. Comparing relational model transformation technologies: Implementing
Query/View/Transformation with triple graph grammars. Software and System Modeling, 9(1):21–46, 2010.

[13] F. Jouault and I. Kurtev. On the architectural alignment of ATL and QVT. In SAC’06, pages 1188–1195,
2006. See also http://www.eclipse.org/m2m/atl/usecases/QVT2ATLVM/. Last accessed: November
2010.



E. Guerra, J. de Lara / Algebraic Semantics for QVT-Relations 29
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Appendix A: Proofs

Here we provide the proofs of the characterization of pushouts and pullbacks given in Proposition 1.

Actually, these proofs are adaptations of those of [19] for symbolic graphs to our symbolic tuples.
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Proposition 2. (Pushout of Symbolic Tuples (adapted from [19]))
Given the pushouts (1) and (2) in symbolic graphs, then square (3) is a pushout in SymbTupleA (see

Figure 21), where βP = d(βC) ∧ e(βD) and x = (xS , xT ) for x = {d, e, f, g}.

IS
gS //

fS
��

(1)

DS

eS
��

IT
gT //

fT
��

(2)

DT

eT
��

⟨IS , IT , βI⟩
g //

f
��

(3)

⟨DS , DT , βD⟩

e
��

CS
dS // PS CT

dT // PT ⟨CS , CT , βC⟩ d // ⟨PS , PT , βP ⟩

Figure 21. Pushouts in SymbTupleA.

Proof: The first step is to show that if (1) and (2) are pushouts, then e = (eS , eT ) and d = (dS , dT ) are

actually S-morphisms. This is straightforward since eS , eT , dS and dT are symbolic graph morphisms,
and γP = [d(βC) ∧ e(βD)] ∧ [dS(αS

C) ∧ eS(αS
D)] ∧ [dT (αT

C) ∧ eT (αT
D)]⇒ d(γC) = d(βC ∧ αS

C ∧ αT
C)

and γP = [d(βC)∧ e(βD)]∧ [dS(αS
C)∧ eS(αS

D)]∧ [dT (αT
C)∧ eT (αT

D)]⇒ e(γD) = e(βD ∧ αS
D ∧ αT

D)

are tautologies.

The second step is to show that if e′ : ⟨DS , DT , βD⟩ → ⟨P ′
S , P

′
T , β

′
P ⟩ and d′ : ⟨CS , CT , βC⟩ →

⟨P ′
S , P

′
T , β

′
P ⟩ are two S-morphisms with e′◦g = d′◦f , then there is a unique S-morphism u : ⟨PS , PT , βP ⟩ →

⟨P ′
S , P

′
T , β

′
P ⟩ s.t. e′ = u◦ e and d′ = u◦d, see Figure 22. First we proof existence, and then uniqueness.

⟨IS , IT , βI⟩
g //

f
��

(3)

⟨DS , DT , βD⟩

e
�� e′

��

⟨CS , CT , βC⟩ d //

d′ --

⟨PS , PT , βP ⟩

u
))

=

=

⟨P ′
S , P

′
T , β

′
P ⟩

Figure 22. Condition for Pushouts in SymbTupleA.

Existence. Since (1) and (2) are pushouts, then there are symbolic graph morphisms uS : PS → P ′
S

and uT : PT → P ′
T . But u = (uS , uT ) : ⟨PS , PT , βP ⟩ → ⟨P ′

S , P
′
T , β

′
P ⟩ is an S-morphism, because if

A |= γ′P ⇒ e′(γD) and A |= γ′P ⇒ d′(γC), then A |= γ′P ⇒ (e′(γD) ∧ d′(γC)). But we know that

e′(γD) ∧ d′(γC) = (u ◦ e)(γD) ∧ (u ◦ d)(γC) = u(e(γD) ∧ d(γC)). Hence A |= γ′P ⇒ u(γP ).
Uniqueness. If u′ : ⟨PS , PT , βP ⟩ → ⟨P ′

S , P
′
T , β

′
P ⟩ is an S-morphism such that u′ ◦e = e′ and u′ ◦d = d′,

then by the universal pushout property in symbolic graphs, we have that u′ = u. 2
Next, we prove the characterization of pullbacks. Similar to [19], we require the variables in D(IS)⊎

D(IT ) to be disjoint with those of D(DS) ⊎D(DT ) and D(CS) ⊎D(CT ) (see Figure 23), as it notably
simplifies the proof. However, this is not really a restriction because, if we are given a symbolic tuple

⟨CS , CT , βC⟩ and rename its variables in D(CS) ⊎ D(CT ), we obtain an isomorphic symbolic tuple
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⟨C ′
S , C

′
T , β

′
C⟩. Hence, in order to calculate the pullback of two symbolic tuples, we can rename their

variables (if needed) and then use the next proposition.

Proposition 3. (Pullbacks of Symbolic Tuples (adapted from [19]))
Given the pullbacks (1) and (2) in symbolic graphs, then square (3), where βI = (∃D(DS) ∃D(DT )(βD∧
eq(g))) ∨ (∃D(CS) ∃D(CT )(βC ∧ eq(f))) is a pullback in SymbTupleA (see Figure 23), with x =

(xS , xT ) for x = {d, e, f, g}, ∃D(DS) denoting an existential quantification over the variables in DS

(and similar for DT , CS and CT ), and eq(g) denoting the conjunction of equalities
∧

x∈D(IS)⊎D(IT ) x =

g(x)1 (and similar for eq(f)).

IS
gS //

fS
��

(1)

DS

eS
��

IT
gT //

fT
��

(2)

DT

eT
��

⟨IS , IT , βI⟩
g //

f
��

(3)

⟨DS , DT , βD⟩

e
��

CS
dS // PS CT

dT // PT ⟨CS , CT , βC⟩ d // ⟨PS , PT , βP ⟩

Figure 23. Pullbacks in SymbTupleA.

Proof: The first step is to show that if (1) and (2) are pullbacks, then g and f are actually S-morphisms.

For this purpose, we need to prove that A |= γC ⇒ f(γI) and A |= γD ⇒ g(γI).

Lets assume that σD : D(DS) ⊎ D(DT ) → A is a valuation, that is, an assignment of values to

the variables in D(DS) ⊎ D(DT ) such that A |= σD(γD). We have to show that A |= σD(g(γI)), or
equivalently that A |= σI(γI) for σI = σD ◦ g. Since

γI = [(∃D(DS) ∃D(DT )(βD ∧ eq(g))) ∨ (∃D(CS) ∃D(CT )(βC ∧ eq(f)))]

∧ [(∃D(DS) (α
S
D ∧ eq(gS))) ∨ (∃D(CS) (α

S
C ∧ eq(fS)))]

∧ [(∃D(DT ) (α
T
D ∧ eq(gT ))) ∨ (∃D(CT ) (α

T
C ∧ eq(fT )))]

(1)

then it is enough to prove that

A |= σI((∃D(DS) ∃D(DT )(βD ∧ eq(g))) ∧ (∃D(DS) (α
S
D ∧ eq(gS))) ∧ (∃D(DT ) (α

T
D ∧ eq(gT ))))

(2)

But this is equivalent to show that there are substitutions σ′
D : DS⊎DT → A, σ′S

D : DS → A, σ′T
D : DT →

A for the variables in DS ⊎ DT (existentially quantified) such that A |= σ′
D(σI(βD ∧ eq(g))) ∧

σ′S
D (σI(α

S
D ∧ eq(gS))) ∧ σ′T

D (σI(α
T
D ∧ eq(gT ))). Since βD, α

S
D, α

T
D do not involve any variable from

1g(x) means the variable in DS or DT that is the image of x through g = (gS , gT ).
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D(IS) ⊎D(IT ), we have that

σ′
D(σI(βD ∧ eq(g))) ∧ σ′S

D (σI(α
S
D ∧ eq(gS))) ∧ σ′T

D (σI(α
T
D ∧ eq(gT ))) =

[σ′
D(βD) ∧ σ′S

D (αS
D) ∧ σ′T

D (αT
D)] ∧ [σ′

D(σI(eq(g))) ∧ σ′S
D (σI(eq(gS))) ∧ σ′T

D (σI(eq(gT )))]

Now, if we take σ′
D = σD, σ

′S
D = σD|S and σ′T

D = σD|T , we have that A |= σD(γD) = σD(βD ∧
αS
D ∧ αT

D) by assumption. Moreover, if x ∈ D(IS) ⊎D(IT ), then by definition σI(x) = σD ◦ g(x) =
σD(g(x)), which means that A |= σD(σI(x = g(x))) for every x ∈ D(IS) ⊎ D(IT ) and therefore

A |= σD(σI(eq(g) ∧ eq(gS) ∧ eq(gT ))). Hence, A |= γD ⇒ g(γI). By the same reasoning, f is also an
S-morphism.

The second step is to show that if g′ : ⟨I ′S , I ′T , β′
I⟩ → ⟨DS , DT , βD⟩ and f ′ : ⟨I ′S , I ′T , β′

I⟩ → ⟨CS , CT , βC⟩
are two S-morphisms with e ◦ g′ = d ◦ f ′, then there is a unique S-morphism u : ⟨I ′S , I ′T , β′

I⟩ →
⟨IS , IT , βI⟩ s.t. g′ = g ◦ u and f ′ = f ◦ u, see Figure 24. First we proof existence, and then uniqueness.

⟨I ′S , I ′T , β′
I⟩

u
))

g′

**
f ′

&&

=
=

⟨IS , IT , βI⟩
g //

f
��

(3)

⟨DS , DT , βD⟩

e
��

⟨CS , CT , βC⟩ d // ⟨PS , PT , βP ⟩

Figure 24. Condition for Pullbacks in SymbTupleA.

Existence. First, as (1) is a pullback in symbolic graphs, we have that there is a unique symbolic tuple
morphism uS : I

′
S → IS such that gS ◦ uS = g′S and fS ◦ uS = f ′

S . Similarly, as (2) is a pullback

in symbolic graphs, there is a unique uT : I
′
T → IT such that gT ◦ uT = g′T and fT ◦ uT = f ′

T . We
first prove that u = (uS , uT ) : ⟨I ′S , I ′T , β′

I⟩ → ⟨IS , IT , βI⟩ is actually an S-morphism. If σI : D(IS) ⊎
D(IT )→ A is a valuation for the variables in ⟨IS , IT , βI⟩ such that A |= σI(γI), we have to prove that
A |= σI(u(γ

′
I)). Given the definition of γI in equation 1, assume A |= σI(γI) holds. Then, transforming

equation 1 into disjunctive form, one of the terms in the disjuntion has to satisfy the valuation σI . Without
loss of generality, lets assume that the term satisfying the valuation is that of equation 2, which means

that there are valuations σD : D(DS) ⊎D(DT ) → A, σS
D : D(DS) → A, σT

D : D(DT ) → A such that
A |= σD(σI(βD ∧ eq(g)))∧ σS

D(σI(α
S
D ∧ eq(gS)))∧ σT

D(σI(α
T
D ∧ eq(gT ))) and hence A |= σD(βD)∧

σS
D(α

S
D) ∧ σT

D(α
T
D) ∧ σD(σI(eq(g))) ∧ σS

D(σI(eq(gS))) ∧ σT
D(σI(eq(gT ))). Since g′ : ⟨I ′S , I ′T , β′

I⟩ →
⟨DS , DT , βD⟩ is an S-morphism and A |= σD(γD), we have that A |= σD(g

′(γ′I)). But as g′ = g ◦u, we

have that A |= σD(g ◦ u(γ′I)), or equivalently A |= σ′
D(u(γ

′
I)), where σ′

D = σD ◦ g. On the other hand,
since A |= σD(σI(eq(g))) for every variable x ∈ D(IS)⊎D(IT ), we have σD(σI(x)) = σD(σI(g(x))).

Since σD and σI are defined over disjoint sets, we have that σD(σI(x)) = σI(σD(g(x))), and since x is
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not in D(DS)⊎D(DT ), g(x) is not in D(IS)⊎D(IT ), and σ′
D = σD ◦ g, we have that σI(x) = σ′

D(x).

Therefore A |= σI(u(γ
′
I)).

Uniqueness. Uniqueness is derived from the universal pullback property in symbolic graphs. Hence, if

u′ = (u′S , u
′
T ) : ⟨I ′S , I ′T , β′

I⟩ → ⟨IS , IT , βI⟩ is an S-morphism satisfying g ◦ u′ = g′ and f ◦ u′ = f ′, by
the universal pullback property in symbolic graphs (so that uS and uT are unique), we have that u = u′.

2

Proof of Proposition 1: Direct consequence of the Proofs of Propositions 2 and 3.


