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Abstract
Model-driven engineering (MDE) promotes models as the

principal assets in software projects. Models are built using a

modelling language whose syntax is defined by a metamodel.

Hence, objects in models are typed by a metamodel class, and

this typing relation is static as it is established at creation

time and cannot be changed later. This way, objects in MDE

are closed and fixed with respect to the type they conform

to, the slots/properties they have, and the constraints they

should obey. This hampers the reuse of model-related arte-

facts like model transformations, as well as the opportunistic

or dynamic combination of metamodels.

To alleviate this rigidity, we propose making model ob-

jects open so that they can acquire or drop so-called facets,
each one contributing a type, slots and constraints to the ob-

ject. Facets are defined by regular metamodels, hence being

a lightweight extension of standard metamodelling. Facet

metamodels may declare usage interfaces, and it is possible to
specify laws that govern how facets are to be assigned to the

instances of a metamodel. In this paper, we describe our pro-

posal, report on an implementation, and illustrate scenarios

where facets have advantages over other techniques.
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1 Introduction
Model-driven engineering (MDE) promotes the active use

of models to drive the software development process [7, 38].

In MDE, models are created using a modelling language,

frequently a domain-specific one. This is defined by a meta-

model which declares the elements that can be used to create

the models, and the constraints that the models should obey.

Classes in metamodels are used as templates for object

creation, as they dictate the structural properties and well-

formedness constraints that the objects of a class must com-

ply with. When an object is created, it acquires its type, slots

and constraints and these cannot change afterwards. This

complicates some MDE activities. One of them is reuse as,

for example, a model transformation defined over a meta-

modelMM cannot be directly applied to instances of other

metamodels [8]. However, if we could assign types fromMM
to the instances of other metamodels, we could reuse the

transformation as is on them. Another case is model exten-

sion, i.e., being able to increase objects with additional slots.

This is useful to insert auxiliary model elements needed by

a transformation, or to enable layered modelling (i.e., build-

ing models incrementally according to predefined informa-

tion layers) [23]. These scenarios typically require merging

the metamodels that define the allowed extensions (e.g., the

auxiliary or layer elements) a priori, which precludes the

opportunistic and dynamic addition of information.

There are several proposals to enable more flexible mod-

elling, most notably a-posteriori typing and role-based mod-
elling. In a-posteriori typing [15], objects can be added new

types, but cannot acquire or drop new features dynamically.

In role-based modelling [4, 31, 39], objects can acquire and

drop roles dynamically, and such roles are typed by role types

and may have attributes. Still, approaches based on roles lack

declarative means to specify how the roles are to be acquired

or dropped by objects, how the slots provided by a role relate

to the object slots, or to impose additional constraints. More-

over, roles must be designed a priori, using new constructs

that increase accidental complexity and are often difficult to

integrate within existing metamodelling frameworks.

To overcome these problems, we take roles as inspiration

to propose a new lightweight mechanism to bring dynamism

and flexibility to modelling: the facets. In our proposal, ob-

jects are open and can acquire or drop types, features and

constraints, which are provided by facets. Facets are regular

https://doi.org/10.1145/3276604.3276610
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Figure 1. Metamodels used in the running example.

objects, so there is no need to introduce new concepts. Dif-

ferent types of specifications govern when objects can take

other objects as facets, favouring separation of concerns [17].

The approach is implemented on top of our metamodelling

toolMetaDepth [14]. This tool is integratedwith the Epsilon

languages [34], which include languages for in-place and

model-to-model transformation and for code generation. Our

implementation permits their use taking into account the

new semantics of facets. As a validation, we show how facets

simplify common MDE scenarios, like reuse of model-based

services and transformations, layered modelling, and multi-

view modelling, comparing with other solutions.

Paper organization. Sect. 2 motivates our proposal using a

running example. Sect. 3 introduces the notion of facet, and

Sect. 4 defines two mechanisms to control how facets can

be used: interfaces and laws. Sect. 5 reports on tool support.

Sect. 6 showcases some scenarios where facets are useful.

Sect. 7 discusses related research, and Sect. 8 finishes with

the conclusions and prospects for future work.

2 Motivation and Running Example
We are introducing a running example to support the presen-

tation of our approach. Assume a city hall needs a registry of

the people living in the city, and for that purpose it is using

the Census metamodel in Fig. 1(a). The metamodel allows

creating Person objects with a fullName, an age, a female flag to
indicate gender, a mandatory address and optionally a spouse.
With the aim to provide tax calculation services to cit-

izens, the city hall decides to increase the existing Census
models with employment data. The structure of these data

is expressed by the metamodel in Fig. 1(b). The intention

is extending Person objects representing employed people

with the fields in Employee or Owner, where Person.fullName
corresponds to name in the other two classes. This extension

should capture the dynamic nature of employments.

For this task, one may use different strategies based on

existing techniques. Fig. 2 shows a scheme of the most rep-

resentative ones, which we discuss in the following.

Metamodel merging.One option is merging the metamod-

els in Fig. 1 statically, hence obtaining the metamodel in

Fig. 2(a) or a similar one, and then migrating any existing

(a) Static metamodel merge (b) Cross-referencing

Census Employment

Person
fullName: String
age: int
…

Employee
name: String
salary: double
…

Jobs

Job
1 * 1*

(c) A-posteriori typing (d) Roles

Census Employment

Person

fullName: String
…

Employee
name: String
salary: double
…

Person.allInstances()->
select(age > 18) → Employee {
fullName → name
\fixWage:int=16000  → salary }

retyping specification

Person

CensusWithEmployment

Employee

Employed

fullName: String
…

name: String…

Proprietor…Unemployed

Owner

Census

Person

fullName: String…

EmploymentRT

Employee
name: String
salary: double…

RoleType
fills

Legend

NaturalType

…

Figure 2. Alternative solutions for the running example.

Censusmodel to this new metamodel. However, this solution

has some drawbacks. First, it is not modular as it requires

creating a new metamodel, as well as resolving possible is-

sues between attributes (e.g., Employee.name is deleted and

superseded by Person.fullName). Second, model migration

cannot be fully automated, as each Person object may have to

be converted into Employed, Unemployed or company owner

(Proprietor). Most importantly, this solution does not account

for the dynamic nature of employments, where a same Person
object should be able to take or leave employments without

changing its identity, have several jobs, or be both owner and

employee. While the latter can be allowed by adding a new

subclass, the number of combinations may be exponential.

Cross-referencing.Another option is to keep the metamodels

in Fig. 1 separate, and use a correspondence metamodel to

declare cross-references between them, as Fig. 2(b) shows.

This enables dynamicity, as Employees can be created and

deleted on demand, and be linked and unlinked to Person
objects. However, it complicates management by adding a

level of indirection, as accessing the salary of a Person or the

age of an Employee requires navigating the traceability links

explicitly. Instead, a solution supporting transparent access

to the slots of Person and those acquired from Employeewould
be simpler to use. Moreover, with cross-references it becomes

necessary to write a program that maintains the consistency

between the models, e.g., enforcing the fullName of a Person
to be the same as the name of the Employee objects it refers
to. Instead, a native solution for consistency is preferable.

A-posteriori typing. Fig. 2(c) presents a solution based on a-

posteriori typing. It requires writing a specification of the

conditions for a Person object to be assigned Employee as

additional type (in the figure, when age is bigger than 18).

This additional typing is dynamic as it depends on the object

properties, but it is not possible to assign the a-posteriori

type Employee to a specific Person object manually. In this

approach, each slot in Employee needs to be backed on a slot

of Person or on a derived attribute. In the figure, a derived

attribute fixWage is created and mapped to salary, so that

each Person earns the same and cannot be changed as the
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attribute is derived. This is not satisfactory in the scenario,

which requires adding new mutable slots to Person objects.

Roles. Fig. 2(d) sketches a solution based on roles. This solu-

tion is heavyweight and intrusive, as it requires the ad-hoc

construction of role types (e.g., Employee) that mimic the

metamodel types in Fig. 1(b). Some approaches [31] require

role types to reside in compartment types, but we omit this

for simplicity. Then, it is necessary to declare that Person (a
so-called natural type) may fill the role type Employee. How-
ever, there is no way to express relations between role type

attributes and natural type attributes (e.g., name should be

equal to fullName), conditions for natural types to take role

types (e.g., only adult Persons can be Employees), or facilities
to incorporate role type constraints into natural types. A

more detailed analysis of roles is presented in Sect. 7.

Altogether, in the presented scenario, we would favour a

solution that meets the following requirements:

R1. Be modular and non-intrusive, so that there is no need

to create or change existing models or metamodels.

R2. Allow objects to acquire new types, slots and constraints,

likely specified in other metamodels, and which become

transparently accessible.

R3. Support both manual and automatic acquisition and loss

of types, slots and constraints.

R4. Specification and automatic maintenance of relations

(e.g., equality) between owned and acquired slots.

As none of the analysed solutions support all these re-

quirements, next, we present a solution covering them.

3 Facets
This section presents the basics of facets (Sect. 3.1), manual

means to associate facets to objects (Sect. 3.2), and to view

models made of faceted objects in different ways (Sect. 3.3).

3.1 The Basics of Facets
Facets are defined as follows:

A facet is an object, which becomes part of another one(s),
called the host object(s), such that the slots of the facet become
transparently accessible from the host object, which also ac-
quires the type and constraints of the facet. Facets are dynamic,
and so a host object can acquire and drop facets dynamically.
Fig. 3(a) shows an example of a facet, which internally is

an object that relates to other ones (their hosts) in a special

way. This relation – represented with a dashed arrow – per-

mits seeing an object and its facets as a whole, as depicted

in Fig. 3(b). The host object acquires the type and slots pro-

vided by the facet in a transparent way. This means that, in

Fig. 3(b), homer.salary is a valid feature access, and the OCL

query Employee.allInstances() yields Sequence{homer}. Despite
Fig. 3(b) shows the facet of the host object using physical

containment, facets can be shared among objects, and an

object can have several facets of the same or different type.

homer :Person

fullName= “Homer”
age= 57
female= false emp: Employee

name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield :Census

emp: Employee[1]

: Employment
homer :Person :Employee

age= 57
female= false
fullName= name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield
:Census :Employment

(a) (b)

emp: Employee

host 
object facet

(a) Internal representation

homer :Person

fullName= “Homer”
age= 57
female= false emp: Employee

name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield :Census

emp: Employee[1]

: Employment
homer :Person :Employee

age= 57
female= false
fullName= name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield
:Census :Employment

(a) (b)

emp: Employee

(b) How an object and its facets

are externally perceived

Figure 3. Adding an Employee facet to the object homer.

If homer had additional facets, e.g., of type Owner, it would
acquire their types and slots as well.

Facets also bring the constraints defined in their type to

the host object. In the figure, the facet Employee adds con-
straint minSalary (cf. Fig. 1(b)) to homer. Hence, the assign-
ment homer.salary:=13000 makes homer violate the constraint.
Facet fields are exposed by the host object, but can also

be synchronized with the fields of the host. For example, in

Fig. 3(b), fullName (from Person) and name (from Employee) are
required to be equal. Hence, the assignment homer.fullName:=
’Homer Simpson’ causes homer.name to take the value ’Homer
Simpson’ as well. Likewise, changing home.namemakes homer.
fullName change its value in the same way. This equality

relation is not restricted to be binary, but as facets can be

shared, it may involve several objects. For example, imagine

that several people can share an employment, e.g., because

they work part-time. This can be modelled with various

Person objects (say o1, o2 and o3) sharing the same facet of

type Employee. This way, if we set o1.salary:=42567, the change
will be observed on o1, o2 and o3 as it is made on the field

salary of the shared facet. Sect. 6 will illustrate other relations
between fields we support, in addition to equality.

Our approach is agnostic on how host objects are created.

In Fig. 3(a), we use a creation metamodel (Census). While

this is the standard approach to create objects in MDE, some

systems support objects with no ontological type (i.e., do

not require any class to create objects) [14]. Such untyped

objects may be host objects as well, acquiring their type

from the facets. Fig. 4 illustrates this situation, where homer
is an untyped object with two facets of types Person and

Employee. Similar to host objects, facets may or may not have

an ontological type. While untyped facets are useful at the

metamodel level, we concentrate on the usage of facets at

the model level, where they are commonly typed. We call

facet metamodel to a metamodel used to define facet types.

As facets fields are reexposed as host object fields, there

may be ambiguities when field names collide in the host ob-

ject and its facets, or in different facets held by the same host

object. To disambiguate, we provide a mechanism to refer to

object facets explicitly. For example, assume object homer has
two jobs, for which two Employee facets are created. Facets
are named, so we can call the two facets dayJob and nightJob.
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cdata :Person

fullName= “Homer”
age= 57
female= false

emp: Employee

name= “Homer”
salary=47500
ssNumber=12345
active=true

:Census : Employment

homer:

Springfield: 

person: 
Person[1]

emp: 
Employee[1]

host object

facets

Figure 4. Host object (homer) with no creation type.

Accessing homer.salary is ambiguous as it can refer to the

field of either facet. Instead, the access should use the explicit

facet name: homer.dayJob.salary or homer.nightJob.salary.
Finally, as facets are regular objects, we allow facets to

have facets. However, we forbid cycles of facet relations.

Altogether, facets are modular and non-intrusive, satis-

fying requirement R1, while their characteristics can be

seamlessly accessed from the host objects, satisfying R2.

3.2 Facet Management
To add and remove facets to/from objects, we rely on queries

to select the host objects to which facets are assigned. Facets

may be either existing or new objects, and can be set to be

shared among the selected host objects.

To simplify management, we have designed a language to

manipulate facets. It is a domain-specific transformation lan-

guage [12] (i.e., a constrained transformation language [13])

with the following singularities. First, we may need to refer

to specific objects, and so, object identifiers may appear in

queries. Second, the facets may be existing objects, may be

created uniquely for each host object, or may be created and

shared by several host objects. Third, we may need to specify

relations among fields (like the equality relation mentioned

in the previous subsection) and field value assignments.

The language has two primitives to create and delete facets,

whose structure is shown in Listing 1. Both primitives sup-

port four types of queries to select host objects (line 3): by

providing an object identifier, a collection of object identi-

fiers, an OCL expression or a pattern. The last three query

types return a collection of objects. Primitive addFacet (line
1) adds a collection of facets to the selected objects. The

facets can be existing objects (line 4) or new ones (line 5). In

the latter case, it is possible to specify a value for the fields of

the added facets, or to define relations between those fields

and the ones in the host object or its current facets. Newly

created facets can be shared among the selected host objects

with the reuse option (see line 5).

1 addFacet ⟨query⟩ ⟨facet⟩ (, ⟨facet⟩ )∗
2 removeFacet ⟨query⟩ ( ⟨facetName⟩ | ⟨facetType⟩ )+

3 ⟨query⟩ ::= ⟨objId⟩ | ⟨objList⟩ | ⟨OCLexpression⟩ | ⟨pattern⟩
4 ⟨facet⟩ ::= ⟨facetName⟩: ⟨objId⟩ |
5 ⟨facetName⟩: ⟨facetType⟩ ( with { ⟨assignments⟩ } reuse? )?

Listing 1. Structure of the facet management commands.

Primitive removeFacet (line 2) permits deleting facets from

a set of host objects. The facets to delete can be specified

by name or type (in which case, all facets of the type are

removed from the objects).

1 addFacet homer
2 emp: Employment.Employee
3 with {
4 name = fullName [equality]
5 salary = 22345
6 ssNumber = 12345
7 active = true
8 }

Listing 2. Adding a new
Employee facet to homer.

As an example, Listing 2

shows the creation of a new

Employee facet for the object
homer. Line 1 contains the

query, made just of the object

identifier homer. We assume

a unique way to identify ob-

jects. While this is native in

our tool MetaDepth, meta-

modelling frameworks like EMF [40] may require selecting

objects interactively by clicking on the user interface. Line 2

creates the new facet named emp of type Employee (a class
from the metamodel Employment). Lines 5–7 assign a value

to the facet fields. In addition, line 4 establishes an equality

relation between the fields homer.fullName and emp.name. Re-
moving the annotation “[equality]” from line 4 would copy

the value of homer.fullName to emp.name, but the equality rela-
tion between both fields would not be maintained whenever

either of them change.

The excerpt in Listing 3 illustrates the use of OCL to define

object selection queries. In this case, a different facet emp is
added to all Person objects with age bigger than or equal to

18. We use the symbol ‘$’ to delimit the OCL expressions.

1 addFacet $Person.allInstances()→select(p | p.age>=18)$
2 emp: Employment.Employee ...

Listing 3. Adding a new Employee facet to every adult.

While the previous query style facilitates selecting ho-

mogeneous objects (i.e., with same or compatible type), a

pattern-like query may be more appropriate to select objects

that are heterogeneous or are required to satisfy complex

relations. Hence, we support pattern-based selection using

object tuples over which specific conditions can be specified

using the keyword where. As an example, the query in List-

ing 4 selects every two Person objects, and if married, assigns

a different facet named emp to each of them.

1 addFacet <h:Person, w:Person> where $h.spouse=w$
2 emp: Employment.Employee ...

Listing 4. Adding a new Employee facet to every couple.

An object can also be added more than one facet at a time.

For example, Listing 5 creates two Employee facets for homer.
Both facets share the fields ssNumber and active (lines 11-12),
while their field name is the same as field fullName of homer.

Finally, a facet can be shared by several objects. This can be

done in two ways. The first one is to assign an existing facet

to another host object. For example, by using the command

addFacet marge emp: homer.dayJob, the object marge is added
homer’s facet dayJob (created in Listing 5) renamed as emp.
The second way is to create a new facet, and indicate that

it is shared by all objects returned by a query. This is done

by adding the keyword reuse in the addFacet command. For
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1 addFacet homer
2 dayJob: Employment.Employee with {
3 name = fullName [equality]
4 salary = 15000
5 ssNumber = 12345
6 active = true
7 }
8 nightJob: Employment.Employee with {
9 name = fullName [equality]
10 salary = 16400
11 ssNumber = dayJob.ssNumber [equality]
12 active = dayJob.active [equality]
13 }

Listing 5.Making homer a moonlighter.

Springfield  
:Employment 

Springfield :Census :Employment Springfield :Employment 

(a)                (b)                  (c) 

 homer :Person :Employee 
age=57 
female=false 
fullName=“Homer” 
name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

 homer :Employee 

name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

  

nightJob :Employee 

name=“Homer”   
salary=16400  
ssNumber=12345  

active=true  

  

name=“Homer”   
salary=15000  
ssNumber=12345  
active=true 

dayJob :Employee 

simsHome :Address 

street=“Evergreen Terrace” 
city=“Springfield” 

:address 

(a)

Springfield  
:Employment 

Springfield :Census :Employment Springfield :Employment 

(a)                (b)                  (c) 

 homer :Person :Employee 
age=57 
female=false 
fullName=“Homer” 
name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

 homer :Employee 

name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

  

nightJob :Employee 

name=“Homer”   
salary=16400  
ssNumber=12345  

active=true  

  

name=“Homer”   
salary=15000  
ssNumber=12345  
active=true 

dayJob :Employee 

simsHome :Address 

street=“Evergreen Terrace” 
city=“Springfield” 

:address 

(b)

Springfield  
:Employment 

Springfield :Census :Employment Springfield :Employment 

(a)                (b)                  (c) 

 homer :Person :Employee 
age=57 
female=false 
fullName=“Homer” 
name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

 homer :Employee 

name=“Homer”    dayJob, nightJob 

ssNumber=12345 dayJob, nightJob 

active=true           dayJob, nightJob 

salary=15000        dayJob 

salary=16400        nightJob 

  

nightJob :Employee 

name=“Homer”   
salary=16400  
ssNumber=12345  

active=true  

  

name=“Homer”   
salary=15000  
ssNumber=12345  
active=true 

dayJob :Employee 

simsHome :Address 

street=“Evergreen Terrace” 
city=“Springfield” 

:address 

(c)

Figure 5. Three scenes of the same model: (a) total, (b) sliced

by Employment, (c) granulated by Employment.

example, adding reuse after the command in Listing 4 makes

each pair of selected objects to share the same facet.

Facet sharing, and field relations like equality, lead to a

reactive approach tomaintain consistency relations.While in

standardMDE, one can set OCL constraints demanding some

relation between fields across objects, there is no standard

way to enforce those constraints. Our proposal is a way to

do so, though currently restricted to equality. More complex

relations may need constraint solving in the general case.

Altogether, the presented commands cover requirement

R4, and partially R2, as they are a manual mechanism to

specify the acquisition and loss of facets. We will present an

automated mechanism for that purpose in Sect. 4.2.

3.3 Model Scenes
We propose different manners to visualize a model with

faceted objects. We say that they deliver a scene of a model,

as they effectively look at a model under a certain angle,

utilizing the facets as visualization criterion. We consider

three kinds of scenes: total, sliced and granulated.

Total scene. The default visualization shows each host object

reexposing the types and fields of its facets, as if the types

and fields were owned. We call these scenes total. Fig. 5(a)
shows a total scene of the Springfield model, where homer
has the two Employee facets created in Listing 5 (dayJob and
nightJob). In the figure, fields show their facets to the right.

Sliced scene. Since a model may contain objects with facets

typed by different facet metamodels, we enable slicing a

model w.r.t. a given facet metamodel. Figure 5(b) shows a

sliced scene of the Springfield model w.r.t. the Employment
metamodel. The slicing preserves the host objects, but it only

shows the types and fields of the facet metamodel the model

is sliced to. In the figure, homer is an object and not a facet,

but it shows the type and fields coming from the Employment
metamodel, and it lacks its original type (Person) and fields

(fullName, age, female). Similarly, the sliced scene does not

show the object simsHome because it has no facet from the

Employment metamodel. Slicing Springfield to Census would
eliminate the facet information from the model.

Granulated scene.A granulated scene visualizes all facets of a
model that are typed by a certain facet metamodel. For this

purpose, it reifies those facets as host objects, and then, it

slices the model w.r.t. the facet metamodel. Fig. 5(c) shows

a granulated scene of Springfield w.r.t. the Employment meta-

model, where the two facets of homer become visible as first-

class objects, and homer itself is not visible. This way, the
scene provides detailed employment data of Springfield.

Models can be filtered using OCL prior to scene generation.

For example, to create a scene that only considers adult per-

sons, we can use the filter Person.allInstances()->reject(p | p<18).
Scenes are visualization devices, so Employee.allInstances() re-
turns Sequence{homer} on model Springfield regardless of the
scene. To account for facets, we extend OCL with the prim-

itive ⟨type⟩.allFacets(). This way, Employee.allFacets() returns
Sequence{dayJob, nightJob} on Fig. 5.

4 Facet Laws and Interfaces
Adding facets to objects can be done in an opportunistic way,

as explained in Sect. 3. While this favours agility and light-

weight model extension, we also provide support for planned

or systematic facet-based modelling. This is useful to control

which elements can be used as facets, determine which facet

types can be combined within an object, or specify declara-

tive conditions for acquiring or losing facets, which are then

enacted automatically. The proposed mechanisms are facet
interfaces and facet laws, which are illustrated in Fig. 6.

The figure shows two metamodels, one playing the role of

creation metamodel (CMM), and the other defining classes

to be used as facet types (FMM). A facet interface for FMM
specifies which classes of FMM can be used to create facets

(white boxes in the interface), identifies the classes that can

be compatible facets of a same object, and may declare OCL

constraints to be satisfied by any model using facets of FMM.

Facet laws are specifications of how objects in the in-

stances of CMM can acquire and drop facets from FMM. Laws

can be used to check that addFacet commands issued man-

ually obey the laws, to complete new facets with default

field values, and to trigger the acquisition and loss of facets

automatically (hence fully satisfying requirement R3).
Our approach does not force the use of facet interfaces or

laws, which remain optional. Next, we describe them.
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Figure 6. Facet interfaces and laws.

4.1 Facet Interfaces
A facet interface restricts how a metamodel can be used for

facet-based modelling. It declares the classes that can be

used to create facets, their allowed combinations, and extra

well-formedness constraints. The latter are useful to ensure

additional requirements that arise when a same host object

combines facets of different types, but which make no sense

when the facet metamodel is used in a standard way.

Listing 6 shows the structure of a facet interface specifica-

tion. It declares the public classes that can be used to create

facets, either all or a list of them (line 2). It may define (line

3) sets of compatible classes, i.e., classes whose instances

can be facets of the same host object. Classes not defined

compatible are incompatible. Finally, the interface may de-

clare additional constraints that facets and their host objects

should obey (line 4).

1 FacetInterface for ⟨MM⟩ {
2 public: all | ⟨typeList⟩
3 (compatible: ⟨typeList⟩ (, ⟨typeList⟩)∗)?
4 (constraints: (⟨type⟩.⟨cName⟩ = ⟨OCLexpression⟩)+ )?
5 }

Listing 6. Structure of a facet interface.

Listing 7 shows an example of interface specification for

the Employmentmetamodel. Line 2 indicates that all its classes

can be used as facets. Line 3 states that host objects can take

Employee and Owner facets simultaneously, and implicitly,

precludes all other facet combinations. For example, objects

cannot have facets of Employee and Company at the same time.

Line 4 declares a constraint named repToIrreflexive which for-

bids an employee reporting to itself. This cannot happen if

Employment is used as a standard metamodel because classes

Employee and Owner are disjoint, but the interface allows

that possibility, so the constraint requires that reportsTo is
irreflexive. Interestingly, the OCL expression seamlessly in-

terprets that self is both an Employee (in self.reportsTo) and an

Owner (in excludes(self)).

1 FacetInterface for Employment {
2 public: all
3 compatible: [Employee, Owner]
4 constraints: Employee.repToIrreflexive = $ self.reportsTo.excludes(self) $
5 }

Listing 7. An interface for using facets of Employment.

4.2 Facet Laws
Facet laws are metamodel level specifications governing how

instance models of a creation metamodel can use facets of

a facet metamodel. Essentially, laws are mappings between

classes in the creation and facet metamodels, to be mandato-

rily or optionally satisfied by the instances of those classes.

They can assign a default value to the facet fields, establish

field relations, and define constraints. Any facet law must

respect the interface of the facet metamodel, if it exists.

Listing 8 shows the structure of facet laws. For generality,

laws can apply to any number of creation and facet meta-

models (see line 1). Hence, it is possible to specify laws for

a metamodel that has facets from other metamodels; and

to specify laws for several creation metamodels. Sect. 6.3

will present an example of this feature. The mappings in a

facet law (lines 2–3) have a similar structure to the addFacet
command, but in addition, they specify an optionality (must
or may) and can add constraints to the facets.

1 FacetLaws for ⟨MM⟩ (, ⟨MM⟩)∗ with ⟨MM⟩ (, ⟨MM⟩)∗{
2 ( (must | may) extend ⟨query⟩ with ⟨fctName⟩: ⟨fctType⟩
3 (with { ⟨assignments⟩ ⟨constraints⟩ } reuse? )? )+
4 }

Listing 8. Structure of a facet law.

Listing 9 shows a law governing Employment facets over
Census models. Lines 2–3 specify that every adult person

(age>17) must have an Employee facet. Alternatively, we could
specify that a Person may have a facet Employment. If there
is no law specifying that some objects (may or must) take

a facet of a certain type, then it is forbidden. For example,

Address objects cannot have any facet, and neither can Persons
with age<=17. Lines 4–5 assign default values to the facet

fields, and lines 6–7 define two constraints. The first one is a

more restrictive constraint for the salary than the one in the

Employment metamodel. The second one states that people

over 65 cannot be active.

1 FacetLaws for Census with Employment {
2 must extend <p:Person> where $p.age>17$
3 with work:Employee with {
4 name = fullName [equality]
5 salary = 24000
6 minLocalSalary: $ self.salary>16000 $
7 retirement: $ self.age>65 implies not self.active $
8 }
9 }

Listing 9. Laws for Employment facets in Census models.

Facet laws are useful in the following scenarios:

• To check manually issued facet management commands.
After issuing an addFacet/removeFacet command, every

facet law that involves the metamodels of the host ob-

ject and the facet is checked for consistency, banning the

command if a problem is found.

• To check faceted models for consistency. Given a model with

facets and a facet law, we can check if each object has the

facets that the law establishes.
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• To complete addFacet commands. A law establishes default

values for facet fields (see lines 4–5 of Listing 9), so that

they need not be repeated in every manual addFacet com-

mand. Thus, laws make explicit knowledge on how facets

should be created explicitly.

• To constrain facets. By adding extra constraints to created

facets (see lines 6–7 of Listing 9), facets are ensured to be

consistent with their host objects.

• To automate facet acquisition and loss. Every mandatory

(must) mapping in a law can be enforced automatically.

For this purpose, an addFacet command is automatically

issued whenever the mapping conditions are met, and a

removeFacet is automatically issued when they no longer

hold. For example, if we enforce the law in Listing 9, every

adult Person object receives an Employee facet and two

constraints (minLocalSalary and retirement). If we change
the salary of an adult Person object to 14000, then the object
violates the metamodel constraint minSalary and the law

constraintminLocalSalary. If we decrease the age of an adult
Person to 17, then the object automatically drops the facet

Employee. If we create a new Person with age 18, then it

automatically acquires an Employee facet.

5 Tool Support
These ideas have been implemented on top of ourMetaDepth

tool [14]. The new version of the tool, along with all exam-

ples in the paper, is available at http://metadepth.org/mtl.
MetaDepth is a textual modelling tool that supports mod-

elling with an arbitrary number of metalevels [1]. Hence,

elements at every metalevel can be both classes (as they can

be the types of lower level elements) and objects (they can be

typed by other elements). This way, they are called clabjects,
from the union of the words class and object. This makes

MetaDepth level-agnostic.

1 Model Census {
2 Node Person{
3 name: String;
4 age: int;
5 female: boolean = true;
6 spouse: Person[0..1];
7 address: Address[1];
8 }
9 Node Address {
10 street: String;
11 city: String;
12 }
13 }

Listing 10. Census.

1 Census Springfield {
2 Address simsHouse {
3 street= "Evergreen...";
4 city= "Springfield";
5 }
6 Person homer {
7 name= "Homer";
8 age= 50;
9 female= false;
10 spouse= marge;
11 address= simsHouse;
12 }
13 ... }

Listing 11. Springfield.

Listing 10 shows the definition of the Census metamodel

in MetaDepth’s syntax, while Listing 11 has an excerpt of

a Census model called Springfield. The keyword to declare

a metamodel (more precisely, a model with no ontological

typing) is Model, and the one to create classes (clabjects with
no ontological typing) is Node. Their name can be used to

create instances. For example, line 1 in Listing 11 creates an

instance of Census, and line 2 instantiates Address.

MetaDepth integrates with the Epsilon family of lan-

guages [34]. This permits defining in-place model transfor-

mations with EOL [26], model-to-model transformations

with ETL [28], and code generators with EGL [36].

For this work, MetaDepth has been extended to support

the definition of facets as a special relationship between

clabjects, and by extending the semantics of (read and write)

field accesses to make the access of facet fields from host

clabjects transparent. To implement the equality relation

between facet and host clabject fields, we use a technique that

we call mirror fields. These are field wrappers which allow

sharing the field value with other field(s). While mirror fields

support equality only, this design will permit in the future

to add in/out data transformation functions as decorators.

MetaDepth’s typing system has been extended to incor-

porate into the host clabject the typing provided by its facets.

To implement the dynamic acquisition and loss of facets

upon OCL conditions, we add to all clabjects of the type

mentioned in the law condition what we call a triggered con-
straint. These constraints contain the OCL condition stated

in the law, and create the facet when the condition is satisfied.

In addition, we add another constraint with the negated OCL

condition that triggers the deletion of the facet. Currently,

the constraints are restricted to be “type-local”, i.e., they are

restricted to conditions on fields of the clabject types that

take/drop the facet. For example, the condition p.age>17 in
line 2 of Listing 9 is type-local (p is of type Person, which
is the type of the clabjects taking the facet), while a condi-

tion like Address.allInstances()->exists(a | a.city=’Springfield’) (on
Person objects) is not. Non type-local conditions would re-

quire an analysis to decide on which clabject type the trigger

should be placed. This is left for future work.

The command set of MetaDepth has been extended to

allow adding and deleting facets (addFacet, removeFacet),
defining facet laws (FacetLaws), interfaces (FacetInterface),
and enforcing laws (addFacet all).

1 var p : Person := new Person;
2 p.age := 23; // implicitly creates an Employee facet (as p.age > 17)
3 p.salary := 15100; // OK, as p has now an Employee facet
4 p.age := 16; // p loses its Employee facet (as p.age <= 17)
5 p.salary := 21000; // Error! p has no Employee facet

Listing 12. EOL program showing facet dynamicity.

Altogether, facets are transparent to the model manage-

ment language and can be seamlessly used within Epsilon

programs. For example, assume we enforce the law in List-

ing 9 automatically. Then, the EOL program in Listing 12

causes the creation of a new facet Employee associated to

p when line 2 is executed. Line 3 succeeds, because p has

now the field salary and can be accessed transparently. If we

evaluate the correctness of the model at this moment via the

command verify, MetaDepth reports an error because the

minLocalSalary constraint specified in the law (line 6 of List-

ing 9) fails. Line 4 makes the object p drop its facet Employee
because there is no law permitting a Person to have such a

http://metadepth.org/mtl
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facet if the age is not greater than 17. Hence, line 5 causes

an error (access to undefined field salary).

6 Application Scenarios
Next, we present three scenarios where facet-based mod-

elling is useful. Our goal is, on the one hand, to showcase

the benefits of our proposal, and on the other, to compare

with other techniques for resolving the same scenarios.

6.1 Integrating Annotation Models
Several scenarios require annotating a domain model with

additional information, e.g., regarding concrete syntax rep-

resentation [21], uncertainty [18], access control [5], con-

figuration of abstraction operations [16] or variability [37].

This extra information is typically provided as a separate

annotation model that references the domain model. Then,

services defined on the annotation model (e.g., reasoning

services for uncertainty annotations [18]) become available

for the domain model.

1 Model ConcreteSyntax {
2 abstract Node GraphicalElem {
3 x, y : int;
4 label : String;
5 linkedTo : GraphicalElem[∗];
6 }
7 Node Rectangle : GraphicalElem {
8 width, height : int;
9 }
10 Node Circle : GraphicalElem {
11 radius : int;
12 }
13 }

Listing 13. Metamodel for

visual concrete syntax.

Facets can be used for

the same purpose. As an

example, we show how

to use facets to provide

a graphical concrete syn-

tax to domain models. The

metamodel in Listing 13

defines simple graphical

representations to be used

as facets, like rectangles

and circles, as subclasses

of GraphicalElem. These

have a position (x, y, in line 3), a label (line 4) and can be

connected (line 5).

A facet interface (omitted for space constraints) exposes

Rectangle and Circle and makes them compatible, so that

objects can be represented by none, either of them, or both.

Finally, Listing 14 contains the laws for addingConcreteSyn-
tax facets to Census models. They add Circle facets to female

Person objects, and Rectangle facets tomales. In both cases, the

label in the concrete syntax is the person name, persons are

linked to their spouse, and the size (radius or height/weight)

is given by the age. Since the laws require field equality,

changing the age or name of a Person updates the visual

representation, changing the graphical size modifies the age,
and changing the label modifies the name.

As a proof of concept, we have implemented a new Meta-

Depth command, called draw, which creates a visualization

like the one to the left of Fig. 7, from a ConcreteSyntax model.

ConcreteSyntax models are made of facets over objects of

another model, like Springfield. This way, we obtain a textu-

al/graphical bidirectional model synchronization for free, as

for example, the graphical view is updated when a new Per-
son is created textually, while the fields of Person objects are

1 FacetLaws for Census with ConcreteSyntax {
2 must extend <p:Person> where $p.female$
3 with c:Circle with {
4 label = name [equality]
5 linkedTo = spouse [equality]
6 radius = age [equality]
7 }
8 must extend <p:Person> where $not p.female$
9 with r:Rectangle with {
10 label = name [equality]
11 linkedTo = spouse [equality]
12 height = age [equality]
13 width = age [equality]
14 }
15 }

Listing 14. Laws to add concrete syntax to Census models.

Census Springfield { 
Person marge{
name   = "Marge";
age    = 47;
spouse = homer;
address= simsHouse;

}
…

}

Synch.

(scene sliced by Census)

Figure 7. Concrete syntax of the Springfieldmodel via facets.

modified whenever some graphical attribute (like the radius)
changes. Facets provide this bidirectional synchronization

natively, which otherwise has to be implemented ad-hoc.

Comparison with other model extension approaches.Next, we
compare several ways to extend a domain model with an

annotation model, for which we use the following criteria:

• Dynamicity:whether the approach permits adding/deleting

annotations to/from domain objects at runtime, as well as

annotating new objects automatically.

• Sharing: whether a domain object can have several annota-

tions, or an annotation can be shared by several objects.

• Field access: whether accessing the fields of an annotation

from a domain object (or vice versa) is done explicitly (e.g.,

navigating a link) or transparently.

• Typing:whether the domain objects can be recovered using

the type of the annotations.

• Bx change propagation: whether the domain objects can get

updated upon annotation changes, and vice versa (i.e., in a

bi-directional way, bx in short). We only consider that an

approach fulfils this criterion if it provides native support.

Dynamicity and bx change are important features to sim-

plify coordination of domain and annotation models. Sharing

enhances expressivity. Support for typing and field access

simplify the definition of transformations over annotated

domain models. If unsupported, a transformation languages

able to cope with several input models would be required,

and the transformation becomes more complex.

Table 1 compares facets with other approaches to solve

this scenario. Cross-referencing, which is the baseline, con-

sists in having a separate annotation model that refers to the
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Table 1. Approaches for model annotation

Approach Dynamic Sharing Field access Typing Bx change
Cross-ref. (base.) no yes navigation no no

EMF profiles [33] limited yes navigation no no

A-posteriori [15] limited limited transparent yes limited

Facets yes yes transparent yes yes

objects in the domain model, similarly to Fig. 2(b). This ap-

proach is not dynamic, as creating annotations automatically

for new domain objects is possible, but requires manual en-

coding. The approach allows any kind of sharing. However,

field access is not transparent as one needs to navigate from

the object to the annotation, and domain objects cannot be

retrieved using the type of the annotations. Finally, domain

objects cannot be retrieved using the types of the annotation,

there is no native support for bx change propagation.

Stereotypes can be used to emulate annotations. This ap-

proachwould add a profile (the annotationmetamodel) to the

domain metamodel. While profiles were proposed to extend

the UMLmetamodel [41], some proposals have adapted them

to EMF metamodels [33]. Dynamicity is limited, because

there is no mechanism to automatically create stereotypes,

but they have to be manually added. Several stereotypes can

be added to the same domain object, and stereotypes can be

shared. Field access is not transparent as the stereotype and

the domain object are different objects. Domain objects can-

not be directly retrieved from annotation types. Bx change

propagation is not supported as the fields in classes and

stereotypes cannot be synchronized natively. Overall, the

underlyingmechanism of EMF profiles aremodels with cross-

references, presenting benefits over the baseline in terms of

the specification of the correspondences, and tooling.

A-posteriori typing [15] permits typing a domain model

w.r.t. the types of an annotation metamodel. Dynamicity

is limited because the new typing is automatic based on a

specification, but new annotation types cannot be assigned

to objects manually. Sharing is limited too, as annotations

cannot be shared between objects. Field access is transparent,

but annotations cannot add new fields to objects, i.e., all state

must reside in the domain model. Domain objects receive the

type of the annotation objects, and so these can be retrieved

using that typing. Bx change propagation is limited as all

state must reside in the domain model.

Finally, facets are dynamic, can be shared among host

objects, and host objects can have several facets. Field ac-

cess is transparent, domain objects can be retrieved by the

annotation types, and bx change is supported natively.

For our example of graphical/textual concrete syntax syn-

chronization, an approach based on cross-references would

need to provide ad hoc support to bx. A-posteriori typing is

not fully applicable as it does not permit mapping facet fields

like x or y onto the host object fields. Finally, approaches

based on stereotypes do not support conditional graphical

styles (e.g., based on the female field). Overall, existing ap-

proaches either should be augmented with manually written

code, or do not fully cover this scenario. Hence, we conclude

that facets have advantages to tackle this scenario, and may

simplify works like [5, 16, 18, 21, 37].

6.2 Reuse of Model Management Operations
Models are manipulated using model management opera-

tions, like model transformations and code generators. Such

operations are defined over a metamodel and cannot be di-

rectly reused for a different one [8]. Without proper reuse

support, developers typically clone the operation and adapt it

for the new metamodel manually. Next, we show that facets

can provide support for reuse that avoids this potentially

costly and error-prone manual adaptation.

1 Model Metrics {
2 Node Group { elems : Element[∗]; }
3 Node Element { quantity : int; }
4 }
5 operation Group average () : Real {
6 if (elems.isEmpty()) return 0;
7 return elems.collect(quantity).sum()/
8 elems.size();
9 }

Listing 15. Metrics

metamodel and operation.

As an example, lines

1–4 of Listing 15 show

a simple metamodel to

represent groups of el-

ements, having an in-

teger field. The goal of

this metamodel is be-

ing able to generically

define different kinds

of metrics. For instance,

lines 5–9 show an EOL operation defined over the classGroup
that computes the average of a group of elements.

1 FacetLaws for People with Metrics {
2 must extend <p:Person>
3 where $p.age > 17$ with
4 ageMetric : Metrics.Element with {
5 quantity = age [equality]
6 },
7 averageAge : Metrics.Group with {
8 elems = ageMetric [collection]
9 } reuse
10 }

Listing 16. Laws to make

Census models measurable.

We would like to

reuse the operations de-

fined over the Metrics
metamodel, to measure

Census models. With

our approach, this can

be done by adding El-
ement facets to the set

of Person objects of in-

terest, and mapping El-
ement.quantity to the property to be measured. Listing 16

shows a facet law that creates a group with all adult Per-
sons, mapping Element.quantity to Person.age. All adult Persons
share a Group facet (see reuse in line 9), and have a different

Element facet that belongs to the field elems of the group. By
defining a collection relation in line 8, every time a new adult

Person is created, it is automatically added a new Element
facet, which in its turn is added to field elems.

1 operation main() {
2 for ( m in Group.allFacets() )
3 ('Average '+m.average()).println();
4 }

Listing 17. Reusing operation
average on Census models.

After defining the laws,

we can execute the pro-

gram in Listing 17 over

any Census model to

compute the average of

all objects with facet

Group, without the need
to adapt the original operation in Listing 15. In this case, it

returns the average age of all adults. Moreover, if the age of a

Person changes, or a new adult Person is created, the appropri-
ate Group and Element facets are automatically added/deleted.
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Table 2.Approaches for model management operation reuse

Approach Reuse
interf.

Checking
type Style Mult.

occur. Adaptation

Model adaptation

(base)

MM no intens. yes arbitrary

A-posteriori [15] MM syntactic

extens.

intens.

no

arbitrary,

bx, derived feats

Concepts [11] MM syntactic extens. no

arbitrary,

derived feats/classes

Model typing [22] MM

syntactic,

semantic

extens. no

renaming,

derived feats

Facets

MM +

interf.

syntactic,

semantic

extens.

intens.

yes arbitrary, bx

Comparison with other reuse approaches.Next, we compare

with other approaches to reusingmodel operations and trans-

formations across metamodels. We base the comparison on

the following subset of classification criteria identified in [8]:

• Reuse interface: reusable operations expose an interface for

reuse which differs depending on the approach.

• Checking type: to validate that an operation is being cor-

rectly reused on a given model or metamodel, reuse ap-

proachesmay enable static checkings (simple type-checking)

or semantic checkings (e.g., well-formedness constraints).

• Style: the objects over which an operation is to be reused

can be specified either by extension (i.e., enumerating them)

or by intension (i.e., providing conditions to select them).

• Multiple occurrences: this is the ability to define multiple

reuse contexts for an operation within a metamodel.

• Adaptation: to widen the reuse opportunities, reuse ap-

proaches may provide means to bridge the heterogeneities

between the metamodel over which an operation is defined,

and the metamodel where it is being reused.

Table 2 compares several reuse approaches. We take model

adaptation as the baseline. This widely used approach con-

sists in translating the models to be manipulated into in-

stances of the metamodel over which the reused operation

is defined. In our example, it means transforming the Census
models intoMetricsmodels. Thus, reuse is achieved by means

of a transformation, and so, any kind of adaptation of the

source model is possible by using an intensional style. How-

ever, there are no specific checkings of the transformation

correctness (thorough testing is required). Multiple occur-

rences are allowed, as in order to measure, e.g., the average

age and weight of Persons, these can be transformed into Ele-
ments within two different Groups. However, this solution is

heavyweight and complicates management, as if the Census
model changes, we need to reexecute the adaptation transfor-

mation before the metrics operation. If the reused operation

makes in-place modifications, then another transformation

is needed to propagate the changes backwards.

A-posteriori typing can assign types of Metrics to the Cen-
sus models, so that the metrics operations can be applied

directly on them. Compared to the baseline, this approach is

bx as the operation is executed directly in the Census models

(but considering the assigned Metrics typing).

Concepts [11] is a reuse approach inspired by generic

programming. Model operations are defined over concepts

(simple metamodels), which need to be bound to the concrete

metamodel the operation is to be reused for. This binding

induces a high-order transformation that rewrites the opera-

tion to make it applicable to the metamodel.

Model typing [22] requires specifying a subtyping rela-

tion between the metamodel where an operation wants to be

reused, and themetamodel for which the operation is defined.

This enables a safe reuse of the operation over instances of

the former metamodel. Differently from the previous ap-

proaches, it supports pre/postcondition semantic checks.
Facets can be seen as an extension of a-posteriori typ-

ing with increased control of the reuse interface by facet

interfaces; support for semantic checkings expressed as OCL

constraints; more expressive mappings through sharing; and

support for multiple occurrences of the reused operation

(e.g., to compute metrics by several criteria). In particular,

the latter has been identified as one of the lacking features

in current approaches to transformation reuse [8].

To deal with the example in Listing 17, the model adapta-

tion approach would require transforming the Censusmodels

intoMetricsmodels, reapplying the transformation whenever

the Census models change. A-posteriori typing and model

typing cannot directly deal with Group objects as the Census
metamodel lacks an equivalent class. While concepts can

tackle Group objects by defining a derived class, the approach
is only applicable to ATL.

6.3 Multi-View Modelling
Frequently, the specification of complex systems is done by

separate descriptions in different views. Having different

modelling views permits separation of concerns and helps

tackling the complexity of the system [3, 9]. While each

view is understandable on its own, to achieve a meaningful

description of the system, views need to be consistent with

each other. Facets, scenes and laws can support multi-view

modelling, as we describe next.

1 ModelMedicalRecords {
2 Node Patient {
3 name : String;
4 insurance : boolean;
5 surgeries : Surgery[∗];
6 }
7 Node Surgery { desc: String; }
8 }

Listing 18. Facet

metamodel for health.

Building on the running ex-

ample, assume we would like

to describe a system made of

three types of views: a Census
view, an Employment view and

a MedicalRecords view. Each

view is specified according

to its metamodel, while facet

laws describe how they relate

to each other. The metamodels for Census and Employment
were presented in Fig. 1, while Listing 18 shows an excerpt of

the metamodel for MedicalRecords, where Patients may have

an insurance and go through surgeries.
Facet laws can be used to specify how different view types

are related and can overlap. For example, the laws in Listing 9

describe how a Census view is related to the Employment view.
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plant :Company

name= “nuclear plant”

SpCompanies: 
Employment

homer :Person
:Employee :Patient

Springfield 
:Census :Employment
:MedicalRecords

tbp: Surgery

desc= “triple bypass”

SpHealth: 
MedicalRecords

:employees :surgeries

«import»

«import»

Figure 8. Models depicting different views of Springfield.

In particular, it says that, under some conditions, they overlap

in classes Person and Employee.
Facet laws also permit specifying constraints involving

several views, as Listing 19 shows. These laws specify how

the Census and Employment view are related with Medical-
Records. The first law in lines 2–6 specifies that any Person
that is also an Employee (i.e., has a facet Employee) needs to
have a medical record (i.e., it should have a facet Patient).
The second law in lines 7–12 states that Person objects that
are not Employees need a private insurance. Finally, the third

law in lines 13–18 specifies that spouses of Employees have a
medical record, and get the insurance of their partner.

1 FacetLaws for Census, Employment with MedicalRecords {
2 must extend <p:Person> where $p.isKindOf(Employee)$
3 with healthRecord : Patient with { // job insurance
4 name = name [equality]
5 jobInsurance : $ self.active implies self.insurance $
6 }
7 may extend<p:Person> where $not p.isKindOf(Employee)$
8 with healthRecord : Patient with { // private insurance
9 name = name [equality]
10 insurance = true
11 privateInsurance : $ self.insurance=true $
12 }
13 must extend <p:Person> where
14 $p.spouse.isDefined() and p.spouse.isKindOf(Employee)$
15 with healthRecord : Patient with { // partner insurance
16 name = name [equality]
17 partnerIns: $ self.spouse.insurance implies self.insurance $
18 }
19 }

Listing 19. Laws for adding MedicalRecords facets to Census
with Employment models.

Once view types and their relations are defined, views are

given by models. Overlapping in view types is realized by ob-

jects with facets. Views can be separated in different models,

as Fig. 8 shows. The figure depicts three models: Springfield,
SpHealth, and SpCompanies. The first model imports the other

two, creating a common name space. It shows homer with
facets of types Patient and Employee, where the link surgeries
is due to its facet of type Patient.

Comparison with other multi-view approaches.Next, we com-

pare with some multi-view modelling approaches. There are

many proposals to handle multi-views (see [9] for a recent

survey), so we just compare with some representative ones.

We use the features identified in [3] as criteria:

• View types: in projective multi-view modelling, there is a

single underlying model (SUM) for the system from which

views are derived using a projection / filtering mechanism.

Table 3. Approaches for multi-view modelling

Approach View types View corr. Corr. defi. SUM type
Central repos. synthetic explicit extensional n/a

OpenFlexo [20] synthetic explicit extensional n/a
∗

OSM [2] projective implicit intensional essential

Vitruvius [29] projective implicit intensional pragmatic

Facets both both both pragmatic

In synthetic approaches there is no SUM, i.e., an executable

system is synthetized by integrating the different views.

• View correspondences: views can be related by explicit traces,
or their relation may be implicit.

• Correspondence definition: correspondences between ele-

ments of multiple views may be defined at the instance

level (extensional) or at the type level (intensional).
• SUM type: in projective approaches, the SUM may be free

of internal redundancies (essential), or it may be structured

as an amalgamation of numerous, inter-related submodels

which may store redundant information (pragmatic).
Our baseline for comparison is the central repository ap-

proach, which stores all models/views of a system in a central

location. The views are synthetic, and correspondences must

be explicitly managed at the level of models (extensional).

OpenFlexo [20] is a model federation framework that sup-

ports the gathering of data from basemodels expressed in het-

erogeneous technical spaces (EMF, XML, OWL, Excel, etc.)

into virtual views. Correspondences are explicitly managed

and specified at the level of models (extensional). Through

views it is possible to propagate changes from one basemodel

to the others, a feature that could be used to create the illu-

sion of an essential SUM (hence the
∗
in Table 3).

Orthographic Software Modelling (OSM) [2] implements

the classic SUM approach, where views are dynamically

generated based on transformations from and to the SUM.

Hence, it is a projective approach with implicit correspon-

dences that are typically specified intensionally. The SUM in

OSM is minimalistic, hence it is an essential SUM.

In Vitruvius [29], all the system information is accessed

through views. It adheres to the ideas of OSM by providing

means to construct and maintain a modular, virtual SUM

consisting of individual models expressed in different mod-

elling languages. Views are projections, and correspondences

between elements are implicitly defined using one of three

languages: an imperative language to specify unidirectional

consistency enforcement from one view to another, a lan-

guage for specifying bi-directional mappings, and a third lan-

guage for specifying parameterized consistency invariants.

The specifications are defined between view metamodels,

and hence are implicit and intensional. The virtual SUM is

pragmatic, as the views might contain duplicate information.

While facet-oriented modelling follows primarily a syn-

thetic approach to view definition, our scenes also permit

projecting selected facet information from objects. Our facet

laws can specify correspondences implicitly and intension-

ally (with the construct must extend), or allow a modeller
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to define them explicitly (using may extend and then the

command addFacet). While it would be possible to build

an essential SUM using facets, it is more likely that some

facets duplicate information stored in other facets, hence we

classify facets as providing a pragmatic SUM.

7 Related Work
While Sect. 6 has compared several approaches to solve spe-

cific scenarios, next, we discuss additional related works.

Facets are similar to roles and fulfil most features of role

languages [24, 25, 31, 32, 39]. For example, roles have prop-

erties (like facets), and objects can play several roles at the

same time (host objects can acquire several facets at a time).

Comparing with specific role modelling approaches, Lod-
wick [39] unifies features of several role-based languages.

However, it does not account for the instance level, nor con-

siders model management operations as we do. ORM 2 is a

well-established modelling language, but it only sees roles

as relationship ends, similarly to languages such as UML

or MOF. CROM [30–32] is a recent proposal to cover most

features of role modelling languages. It provides a graphical

editor for role types [30], but the support for role instances

is still incipient. While it is a rich language with sophisti-

cated concepts (compartment types, natural types, constraint

groups), it lacks some essential elements for its use in MDE,

like inheritance, explicit attribute handling, OCL constraints,

or integration with model management languages as we do.

Moreover, facets are lightweight and do not require migrat-

ing existing metamodels into a role language.

Regarding model extension approaches, EMF-facet [19] is

an Eclipse project enabling to extend metamodels externally.

Extensions are defined for individual classes using so-called

EFacets that can add read-only derived fields, and optionally,

a subtype of the class. The goal is producing customized tab-

ular views of models. Instead of introducing new concepts

(the EFacet), our facets are created using regular metamodels.

Facets can be acquired or dropped both manually or automat-

ically via facet laws, and provide a type, full-fledged fields

and constraints to the host objects. Facets are objects and

can be shared, which is not possible with EFacets. Finally,
our facets are transparent to the model management lan-

guages, while this not the case for EMF-facet, which persists

extended models using a specific tabular metamodel.

Model merging languages, like EML [27], permit compar-

ing two models of the same or different metamodels, and

produce a new model. While model merging has some simi-

larities with facet-based modelling, the crucial point is that a

facet and its hosts can be instances of different metamodels,

and the fields of the facet are acquired by the host. This is

not possible in standard model merging, as the object ex-

tension would not conform to the metamodel. Moreover,

facets can be acquired and dropped dynamically, which is

not supported in merging languages.

Some programming languages support incremental class

definitions, like open classes (e.g., Python) and partial classes

(e.g., C#). In our case, facets can work at the class or at the ob-

ject level. Some programming languages have experimented

with roles. For example, in [35], roles are emulated in a Scala

library using a lightweight mechanism that avoids changing

the language. Compared to roles in programming, our laws

permit specifying declarative conditions for facet acquisition,

while programming languages use imperative commands

(which we also support with addFacet/removeFacet). More-

over, we handle constraints, field relations, and can configure

how a facet metamodel is to be used, using interfaces.

Objects in dynamic programming languages are open:

they can be added and removed slots. This has advantages,

like reduced code size and increased reuse and flexibility [10],

at the cost of less static assumptions and difficulty of analysis.

Some modelling systems, like MetaDepth, permit adding

new slots to objects at design time [14]. Instead of dealing

with single slots, facets are regular objects that encapsulate

slots, constraints and typing. Moreover, being defined by a

metamodel facilitates defining operations over them.

8 Conclusions and Future Work
In this paper, we have proposed facets as a way to add flex-

ibility to modelling in MDE. In contrast to standard MDE

practice, facets effectively make objects open, so that they can
acquire and drop types, slots and constraints. We have pro-

posed explicit facet management operations for the oppor-

tunistic reuse of metamodels to create facets, as well as facet

interfaces and laws for planned facet-oriented modelling. We

have discussed some scenarios where facets present advan-

tages with respect to current MDE solutions, and shown an

implementation atop MetaDepth.

Facet-based modelling brings dynamicity to modelling,

which opens the door to new possibilities. First, facet laws

assume a model that is to be extended with facets of another

metamodel. This imposes a directionality, while some ap-

plications (e.g., multi-view modelling) would benefit from

a symmetrical approach, which we will develop in the fu-

ture. Second, we would like to be able to analyse conflicts

between the constraints in a metamodel and those in its laws

and interfaces. Finally, we also plan to explore further usage

scenarios for facets, like multi-abstraction modelling (where

high-level elements can be seen as facets of lower-level ele-

ments) [16], models at runtime (where runtime models may

change dynamically by acquiring and dropping facets) [6],

or multi-level modelling (where facets may replace deep

characterization mechanisms, like potency) [1].
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