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Abstract—Model-Driven Engineering (MDE) promotes models
throughout development. However, models may become large
and unwieldy even for small to medium-sized systems. This
paper tackles the MDE challenges of model complexity and
scalability. It proposes FRAGMENTA, a theory of modular design
that breaks down overall models into fragments that can be put
together to build meaningful wholes, in contrast to classical MDE
approaches that are essentially monolithic. The theory is based on
an algebraic description of models, fragments and clusters based
on graphs and morphisms. The paper’s novelties include: (i) a
mathematical treatment of fragments and a seaming mechanism
of proxies to enable inter-fragment referencing, (ii) fragmentation
strategies, which prescribe a fragmentation structure to model
instances, (iii) FRAGMENTA’s support for both top-down and
bottom-up design, and (iv) our formally proved result that shows
that inheritance hierarchies remain well-formed (acyclic) globally
when fragments are composed provided some local fragment
constraints are met.

Index Terms—Model-driven engineering, meta-modelling,
modularity, graphs, scalability, model composition

I. INTRODUCTION

The construction of large software systems entails issues of
complexity and scalability. Model-Driven Engineering (MDE)
emphasises design; it raises the level of abstraction by pro-
moting models to primary artifacts of software development.
The goal is to master and alleviate the complexity of software
through abstraction; despite abstraction, models’ sizes can
still be overwhelmingly large and complex even for small to
medium-size systems, impairing comprehensibility and com-
plicating the refinement of models into running systems.

This paper presents FRAGMENTA, a mathematical theory
that tackles the complexity and scalability challenges of
modern day MDE. FRAGMENTA is based on the ideas of
modularity and separation of concerns [1], allowing an overall
model to be broken down into fragments that are organised
around clusters. A fragment is a smaller model, a sub-model
of an ensemble constituting the overall model. FRAGMENTA is
a modular approach that supports both top-down and bottom-
up ways of building bigger fragments from smaller ones that
covers both the instance and type perspectives of models (also
known as models and metamodels). The theory presented here
is based on proxies, which act as the seams or joints of
fragments and enable inter-fragment referencing, mimicking
a similar mechanism of the popular EMF [2].

FRAGMENTA’s primary goal is to establish a mathematical
theory of model fragmentation for MDE that is formally
verified and validated, and that provides a sound and rigorous
foundation for FRAGMENTA implementations as part of MDE
environments, languages, frameworks and tools. The theory is
built upon the algebraic theory of graphs and their morphisms.

Its complexity was tackled with the aid of formal languages
and tools, namely: the Z language and its CZT typechecker,
and the Isabelle proof assistant [3]. All formal proofs that
validate and verify the theory were undertaken in Isabelle.
Contributions. The paper’s contributions are as follows:
• A mathematical theory of model fragments and the as-

sociated seaming mechanism of proxies, which mimics
a similar mechanism used in practice [2]. To our knowl-
edge, this particular combination together with a study on
the particularities of proxies, is missing in similar works.

• A formal treatment of the meta-level notion of fragmen-
tation strategies, which is, to our knowledge, missing in
other theories such as ours.

• The formally proved result that demonstrates that our
local fragment constraints ensure that the resulting com-
positions will be inheritance cycle free, a fundamental
well-formedness property of object-oriented inheritance,
precluding the need for global checks.

• A theory of incremental definition based on proxies that
supports both bottom-up and top-down design. The top-
down concept of continuation is novel, as far as we know.

• FRAGMENTA’s three-level architecture: local fragment,
global fragment and cluster, which is, to our knowledge,
absent in previous works.

Paper Outline. The remainder of this paper starts by giving
an overview of FRAGMENTA (sec. II). Then, it presents:
FRAGMENTA’s graph-based foundations (sec. III), the basis
of fragmented graphs and the way they are organised and
clustered (sec. IV), the way to compose fragmented models to
obtain monolithic models (sec. V), and FRAGMENTA’s notion
of typing and fragmentation strategies (sec. VI). The paper
then concludes by discussing the presented results (sec. VII)
and their relation to related work (sec. VIII), and by briefly
summarising the paper’s main findings (sec. IX) .

II. FRAGMENTA IN A NUTSHELL

FRAGMENTA is a theory to design fragmented models.
It enables the construction of model fragments that can be
processed and understood in isolation and put together to make
consistent and meaningful bigger fragments. An overall model
is a collection of fragments. FRAGMENTA’s primitive units are
fragments, clusters and models:
• A fragment is a graph with proxy nodes for referencing

that act as seams or joints; proxies are surrogates that
represent some other element of some fragment.

• Clusters are containers to put related fragments together.
They provide means for hierarchical organisation: a clus-
ter may contain other clusters and fragments.
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Fig. 1: Running Example: metamodel with fragmentation strategy and fragmented model instance

• A model is a collection of fragments organised with
clusters. This enables fragmentations that mimic mod-
ern programming projects; in implementations, fragments
may be deployed as files and clusters as folders.

FRAGMENTA supports both top-down and bottom-up frag-
mented designs based on imports and continuations. Fragmen-
tation strategies (FSs) are metamodel annotations that stipulate
a fragmentation structure to model instances.

Figure 1 presents our running example, based on an indus-
trial language to model software controllers for wind turbines
(WTs) taken from the MONDO EU project1. Figure 1a shows
this language’s metamodel, and Fig. 1b presents an abstracted
instance model that omits proxy nodes. WT controllers are
organised in subsystems made up of components, containing
several input and output ports. A component’s behaviour is
described by a state machine. The metamodel’s FS defines
regions (rounded rectangles) of type cluster (solid line) or
fragment (dashed line). Related instances of the nodes inside
a region must pertain to a corresponding instance-level cluster
or fragment. Hence, this FS stipulates the following:

• WT models are placed in clusters (region CR WTProj),
containing clusters for each WT subsystem (region
CR SubsysPkg), which contain a structural and a
behavioural fragment (regions FR strt and FR beh,
respectively). A region’s stem node (symbol �) indicates
that the creation of its instances entails the creation of
corresponding instance-level cluster or fragment.

• A FS specifies how cross-border associations are to
be fragmented. We consider two alternatives: top-down
(symbol ⇓) and bottom-up (symbol ⇑). Top-down frag-
mentations are realised as continuations; bottom-up as
importings. In Fig. 1a, cross-border edges coming out of

1http://www.mondo-project.org/

WindTurbine and WTSubsystem are top-down; the
remaining ones, bottom-up.

Continuations and imports constitute alternative ways to use
proxies. If a fragment B imports or continues a fragment A, it
means, in both cases, that B may have proxies that reference
elements of A. The difference lies in the way in which the
relation between the two fragments is interpreted, leading to
two different ways of making use of incremental definition.
A fragment to be continued is extended by its continuing
fragments; this gives top-down because it is like defining
the root of a tree that is continued through proxies in the
leafs (continuations). Importing gives bottom-up, because the
tree grows by defining composite fragments that import leaf
fragments and that contain proxies to elements in the leafs.

The overview model of Fig. 1b (a detailed model is given
in Fig. 6) complies with its metamodel FS.

III. GRAPHS AS THE FOUNDATIONS OF FRAGMENTA

FRAGMENTA’s foundations lie on graphs and their mor-
phisms. We present most notions informally and intuitively.
Most formal definitions are given in the appendix, an abridged
version of the accompanying technical report [4].

We assume sets V and E of all possible nodes and edges
of graphs (def. 1). As usual, a graph G, a member of set Gr
(def. 2), is made of sets VG ⊆ V and EG ⊆ E of nodes and
edges, and (total) functions s, t : EG → VG for the source and
target of edges (see Fig. 2a). Graph morphisms (G-morphisms,
def. 3) are made of two functions mapping nodes and edges,
and preserving the source and target functions – functions fV
and fE depicted in Fig. 2b. G-morphisms can be composed
(def. 4). Graphs and their morphisms form category Graph.

Structural graphs (SGs) enrich graphs to support MDE
conceptual or structural models, like UML class diagrams.
Typically, such models include: (i) inheritance relations, (ii)

http://www.mondo-project.org/
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containment, whole-part or composition relations, and (iii)
relations subject to multiplicity constraints.

An SG, member of set SGr (def. 7), is a tuple SG =
(G, nt, et, sm, tm) (see Fig. 2c), comprising: (a) a graph G : Gr,
(b) two colouring functions nt, et giving the kinds of nodes
and edges, and (c) two partial multiplicity functions sm, tm to
assign multiplicities to the source and target of edges.

SGs (Fig. 2c) support edges of type inheritance (einh),
composition (ecomp), relation (erel), link (elnk) and reference
(eref , used by proxies in sec. IV-A). We call association edges
to edges of type composition, relation and link. All relation
and composition edges (and no other) have multiplicities.
Inheritance is reified with edges, and we permit dummy self
edges (to enable more morphisms), but require the inheritance
graph formed by restricting to non-self inheritance edges to be
acyclic. SGs’ node types are normal (nnrml), abstract (nabst
for abstract classes) and proxy (nprxy). Fig. 2f shows two SGs.

SG-morphisms (def. 8) cater to the semantics of inheritance:
the association edges of parent nodes become edges of child
nodes. In Fig. 2f, owns of SG2 is also an edge of nodes
Employee and Car. To capture this semantics, we introduce
functions src∗ and tgt∗, which yield relations E↔ V between
edges and vertices that extend functions s and t to support the
fact that an edge can have more than one source or target
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Fig. 3: A model (M1) made up of two clusters (C1 and C2) and
three fragments (F1, F2 and F3). A model has three levels:
cluster (Ci), global fragment (Fi) and local fragment (LFi).

node (see [4])2. The transition from G- to SG-morphisms
considers this new set-up: the equality commuting expressed
in terms of functional composition (Fig. 2b) is replaced by
subset commuting expressed in terms of relation composi-
tion (Fig. 2d). Likewise, for the actual inheritance relation
between nodes, captured by relation 4; SG morphisms may
shrink (removing nodes) or extend (adding nodes) inheritance
hierarchies and they should, therefore, preserve the inheritance
information, which is described as subset commuting (Fig. 2e).
SG-morphisms disregard the preservation of multiplicities and
colouring (considered as part of typing, sec. VI). SGs and their
morphisms form category SGraphs (see [4]).

Figure 2f presents a valid SG-morphism. It is also possible
to build a (non-injective) morphism from SG2 to SG1 by
adding dummy inheritance self-edges to SG1 (omitted in
figures); both morphisms were proved correct in Isabelle [4].

IV. FRAGMENTED MODELS

Figure 3 sketches a FRAGMENTA model, comprising two
clusters and three fragments. It highlights FRAGMENTA’s
three-layered architecture, local fragment (LFi), global frag-
ment (Fi) and cluster (Ci), related through morphisms.

A. Fragments

Fragments provide referencing, allowing proxies to refer
to other nodes, possibly belonging to other fragments. This
is realised through reference edges (introduced as part of
SGs in sec. III), which point to themselves in SGs – they
are unreferenced3. Fragments provide the actual targets of
reference edges.

A fragment (see Fig. 4a) is a pair F = (SG, tr), comprising
an SG plus a target function for reference edges (def. 9 intro-
duces set Fr, F ∈ Fr). Referencing (through tr) is illustrated
in Fig. 4: in fragment F2 of Fig. 4b, proxy Person (thick

2In Isabelle, we proved that src∗ and tgt∗ preserve the information of base
source and target functions; see [4].

3This is because SGs require that all nodes pertain to the graph, not allowing
references that may be located in other graphs
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line) refers to node with same name, likewise for Figs 4c, 4d
and 4e. A referred node may be either in the proxy’s fragment
or elsewhere (F2 contains an intra-fragment reference, and
F5 and F7 contain inter-fragment references). Three different
representations can be extracted: (i) an unreferenced graph (SG
view), (ii) a graph with referenced proxies only, and (iii) a
referenced graph.

FRAGMENTA forbids inheritance cycles, such as the ones
illustrated in Fig. 4c: F3 contains an explicit (direct) cycle
that is excluded through a constraint deeming the inheritance
relation enriched with references to be acyclic, and F4 together
with F5 contain a semantic (indirect) cycle that is excluded by
stating that proxy nodes cannot have supertypes – see def. 9
for details. In Isabelle, we proved that the local fragment
constraints preclude both local and global inheritance cycles
(see fact 1 in appendix).

FRAGMENTA provides a composition based on set-union
to put fragments together without resolving the references
(def. 10), as illustrated in Fig. 4e with fragments F6 and F7 of
Fig. 4d. The composition that resolves the references (called
colimit composition, section V below) is illustrated in Fig. 4f.
The inheritance edges of proxies in Figs. 4d and 4e are valid:
proxies may not have supertypes, but subtypes are allowed.
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Fragment morphisms (F-morphisms) handle the semantics
of reference edges, which is akin to inheritance: an edge
attached to a node is an edge of that node and all its
representations in the fragment. In F2 of Fig. 4b, edges lives
and owns pertain to both nodes named Person. To support
this, fragments extend relations ≺, 4, src∗ and tgt∗ of SGs
to cover the semantics of references4. This extension is based
on functions refs, which gives the references relation between
proxies and their referred nodes (obtained from a restricted
graph with reference edges only), and function ;, which
yields a relation giving all the representatives of a given node
(;F= refsF ∪ (refsF)

∼), and the actual inheritance relation
for fragments, which extends the inheritance of SGs with the
representatives relation (≺F=≺sg F ∪;F) [4].

F-morphisms (def. 11) are similar to SG-morphisms, but
taking references into account using the extended relations.
In Isabelle, we proved the correctness of the F-morphism of
Fig. 4b and the one in the inverse direction.

B. Global Fragment and Cluster Graphs

Global fragment graphs (GFGs) represent fragment rela-
tions. A GFG (Fig. 5a) is a pair GFG = (G, et) made
of a graph and an edge colouring function, stating whether
the edge is an imports or continues (set GFGr of def. 12,
GFG ∈ GFGr). Graph GFG MONDO M of Fig. 6 is a GFG-
specimen. We define two sets of morphisms for GFGs: GFG-
morphisms (def. 13), which preserve edge-colouring, and
fragment to GFG morphisms [4] from fragment local nodes
to their corresponding global fragment nodes.

A cluster graph (CG) identifies clusters and their relations.
As shown in Fig. 5b, a CG is a pair CG = (G, et) made of a
graph G and an edge colouring function et, stating whether
the related clusters are in a relation of imports, continues
or contains (def. 14 introduces set CGr, CG ∈ CGr); the

4In Isabelle, we proved that the extensions preserve the information of the
corresponding SG relation (e.g 4F⊆4sg F); see [4].
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relation formed by the contains edges must form a forest.
Graph CG MONDO M of Fig. 6 is a CG. We define two sets
of morphisms for CGs: CG-morphisms [4] and GFG to CG
morphisms [4]; both preserve edge-colouring.

C. Models

A FRAGMENTA model is a collection of fragments. As
shown in Fig. 5c, a model is a tuple M = (GFG,CG,mc, fd),
comprising a GFG, a CG, a morphism mc : GFG→ CG, and
a function fd : NsGFG → Fr mapping nodes of the GFG to
fragment definitions (Fr is set of all fragments) – def. 15
introduces set Mdl, M ∈ Mdl. In Fig. 5c, FrM is the set
of fragments of a model, as given by the range of fd. Each
fragment has its own nodes and edges.

As outlined in Fig. 3, FRAGMENTA’s models have three
layers. Hence, each model has an underlying tower of mor-
phisms relating these three layers. Fig. 5d depicts this: from
a model M, we can obtain the union of all the model’s
fragments (function UFs), and from this we can construct
a morphism to the model’s GFG (function UMToGFG), and
from here the model’s morphism mc gets to the model’s
CG. Figure 6 illustrates this: M MONDO at the bottom is the
fragment resulting from UFs (union of all model fragments).

V. MODEL COMPOSITION AS REFERENCE RESOLUTION

The previous section highlighted FRAGMENTA’s overall
model built as the union of all fragments (fragment M MONDO
in Fig. 6). This constitutes a simple form of composition: the
overall model retains proxy nodes and their references.

This section presents fragment composition as a process of
reference resolution: proxy and referred nodes are merged,
and reference edges eliminated. This is based on the colimit
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construction of category theory. All details of colimit compo-
sition are given in [4]. Here, we outline the approach using
the example of Fig. 6 (whose composition is given in Fig. 7b):
• We construct interface graphs (IGs) for each fragment,

only containing proxies. This is illustrated in Fig. 7a
(graphs named IG F...).

• For each IG, we construct morphisms from the reference
edges, using the source and target reference functions of
the fragment. In Fig. 7a, we have morphisms that map
node :WT of IG F Subsys1 to nodes with same name
in F WT1 and F Subsys1 (the target reference and
source of corresponding reference edge, respectively).

• Following this scheme, we build a diagram of IGs and
SGs without reference edges corresponding to the frag-
ments being composed as show in Fig. 7c.

• By applying the colimit to all the graphs of a diagram,
we obtain a SG without references as shown in Fig. 7b.

VI. TYPING AND FRAGMENTATION STRATEGIES

A. Typed Fragments

The core of FRAGMENTA’s typing approach lies at the
fragment level. This covers both the local and global realms; as
shown in sec. IV-A, global properties (including conformance)
are then considered in the realm of a global fragment that is
built as the union of all fragments of a model.
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We introduce two structures to represent fragment typing:
• A type fragment, TF = (F, iet), comprises a fragment F

and a colouring funcion iet : EsAF → SGET , giving the
type of instance edge being prescribed (def. 16).

• A typed fragment (Fig. 8a), FT = (F,TF, type), is made
of an instance F, a type fragment TF and a morphism
type : Fr→ TFr, mapping instance to type (def. 17).

Fig. 8b presents a typed fragment, describing a simple class
model that includes proxies.

Section IV-A introduced a relaxed notion of fragment mor-
phism. This covers a variety of model relations at same and
different meta-levels, but misses certain typing specificities,
such as multiplicities. To complement F-morphisms, we intro-
duce the notion of type conformance to check that the instance
conforms to the constraints imposed by the type. The confor-
mance constraints are: (a) edge types of instance fragment
conform to those prescribed by type fragment (commutativity
of diagram in Fig. 8a); (b) abstract nodes may not have direct
instances; (c) containments are not shared; (d) multiplicity
constraints; and (e) the relation formed by instances of con-
tainment edges forms a forest. These constraints cater to proxy
nodes (as illustrated in Fig. 8b).

B. Typed Models with Fragmentation Strategies

Model typing builds up on fragment typing and FSs enrich
model typing. The following support model typing and FSs:
• A FS is a tuple FS = (GFGS,CGS, sc, sf ), comprising

the FS’s CG (cluster regions), a FS’s GFG (fragment
regions), and morphisms sc (GFGS to CGS) and sf (model
fragment elements to GFGS) – illustrated in Fig. 1a.

• A type model (a fragmented metamodel) differs from a
model (section IV-C) in that it uses type rather than plain
fragments. A type model with FS, depicted in Fig. 9a,
is a tuple TFSM = (TM,FS), containing a type model
TM = (GFG,CG,mc, fd) and a FS (see [4]).

• A typed model puts together type and instance models. It
is a tuple MT = (M,TM, scg, sgfg, ty), made of a model
M, a type model TM and three morphisms: (i) scg maps
CG of M into the FS’s CG of TM, (ii) sgfg maps GFG
of M into the FS’s GFG of TM, and (iii) ty maps model
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Fig. 9: Typed FRAGMENTA models

elements of M into their types in TM. Typed models and
their morphisms are depicted in Fig. 9b.

A typed model requires the commutativity of diagrams in
Fig. 9b, entailing FS conformance (morphisms scg and sgfg)
and typing (ty, through union of fragments of M and TM).

Fig. 9c depicts the morphisms that exist between a model’s
CG and GFG and their counterparts in the metamodel’s FS
for the example of Fig. 1. The top graphs describe the cluster
and fragment regions of the FS of Fig.1a.

VII. DISCUSSION

Modular design. FRAGMENTA aims to support separation
of concerns effectively. This, however, brings a complexity
cost to the underlying theory. SGs, with their support for
inheritance, add complexity to plain graphs; fragments, with
their proxies, add further complexity to SGs. FRAGMENTA
hides this complexity to enable design of fragmented models
that harness separation of concerns. The support for both
top-down and bottom-up design means that designers can
choose the scheme that best suits their problems and way of
thinking. This is realised through FRAGMENTA’s concepts of
continuations and imports that are variations on how proxies
and their references are interpreted at upper level of GFGs.

To gain the important result of global preservation of inher-
itance acyclicity checked locally (fact 1), we forbid proxies
with supertypes. We do not see this as a serious restriction. It
can be seen as a design rule whereby a concept’s supertypes
must be defined when the concept is first introduced; proxies



may then have subtypes, but no supertypes. In the end, what
we gain is greater than what we loose, given the applicability
of the result at both meta and instance levels, and the prevalent
use of inheritance in MDE- and DSL-based modelling.
A theory of separation. Section V presented colimit-based
model composition, which resolves references through substi-
tution. FRAGMENTA, however, keeps the models fragmented.
The compositions that are required for global purposes are
based on the union of all model fragments without reference
resolution, a simpler operation. FRAGMENTA lives well with
separation; its machinery handles a world where a concept may
be represented by many nodes, in contrast with monolithic ap-
proaches that support one node per concept only. We envision
the resolution compositions outlined in sec. V as being an aid
to designers to get a clean big picture.

The definition of fragments connects proxies to their re-
ferring nodes through a function (tr, def. 9), which does not
preclude or impede use of fragments in isolation. This function
may be implemented externally to the fragment definition.
Fragmentation strategies complement metalevel definitions
of types with definitions of fragmentation structure. This
ensures uniform fragmentations across model instances, which
is useful when dealing with big models and collections of
related models. This paper’s running example (Fig. 1) illus-
trates usefulness of FSs concept; the different models of wind-
turbine controllers should have a uniform structure. Often,
such uniformities are agreed among developers with no means
to express or enforce them, which complicates the processing
of models, introducing accidental complexity. Our approach
formally defines FSs so that their conformity can be enforced
and checked by tools. In our theory, such conformances are
described as a commuting of instance and type diagrams, as
shown in Fig. 9b.
FRAGMENTA’s realisations. FRAGMENTA and its underlying
ideas have been implemented in two Eclipse-based tools as
part of EU project MONDO: (i) DSL-tao [5] enables the
pattern-based construction of DSL meta-models and their sup-
porting modelling environments, supporting FRAGMENTA’s
concepts of fragment and cluster; (ii) EMF-Splitter [6] im-
plements the notion of FS proposed here5. FRAGMENTA can
also be used as a modularity paradigm with the notions of
cluster and fragments realised in its many guises. VCL’s [7],
[8] modularity mechanisms resemble FRAGMENTA. In VCL,
FRAGMENTA’s clusters are packages and fragments are VCL
diagrams. VCL does not provide any support for top-down
design. FRAGMENTA’s contructions could greatly simplify the
design of a modelling language such as VCL.
Machine-assisted specification and proof. FRAGMENTA was
specified in the Z language and its consistency was checked
using the CZT typechecker to ensure consistency with respect
to names and types. Z’s expressivity, grounded on its math-
ematical generality, high-order capabilities and its Zermelo-
Fraenkel set-theory underpinning (a widely accepted founda-
tion of mathematics), enabled us to describe FRAGMENTA’s

5DSL-Tao: http://bit.ly/1CPTYZd. EMF-Splitter: http://bit.ly/1Eq1TZD

mathematical definitions based on graphs, functions, sets,
relations and categories. This powerful expressivity was known
to us based on our prior experience with Z. The Z specification
(very close to the presentation given here and provided in [4])
was then encoded in the state of the art Isabelle proof assistant6

and its expressive high-order logic. This step required some
meaning-preserving changes to cater to Isabelle’s specificities
(e.g., Isabelle’s lack of partial function primitive). Isabelle
was used to validate and verify FRAGMENTA; we proved
general theorems concerning desired properties (verification)
and theorems concerning examples (validation). Table I gives
the number of Isabelle proofs that were undertaken.

Verification 268
Validation 123
Total 391

TABLE I: Number of
Isabelle proofs under-
taken to validate and
verify FRAGMENTA.

The real world. Our case stud-
ies [4] include the industrial lan-
guage used here and several exam-
ples drawn from VCL [7], [8], a
medium sized modelling language.
FRAGMENTA’s SGs are an abstrac-
tion of MDE structural models, sup-
porting inheritance, composition and
multiplicities. FRAGMENTA’s proxies

are an abstraction of EMF proxies [2] and VCL’s referencing
mechanism. Our proved result (fact 1) showing that the well-
formedness of a inheritance hierarchy (acyclicity) checked
locally at the fragment level is preserved globally (provided
some local constraints are met, namely that proxies may not
have supertypes) is relevant for the current practice due to
the popularity of EMF; this means that any code that is
generated from a FRAGMENTA-compliant structure of models
and metamodels is guaranteed to be free of compilation errors
concerning inheritance well-formedness.

FRAGMENTA’s three-level architecture can capture the
tree-based structure of modern modelling and programming
projects; in terms of a file system, fragments can be mapped
to files and clusters to folders.
Formalisation. FRAGMENTA formalises inheritance using
coloured edges in SGs, as any other edge, unlike similar
graphs [9], [10], which capture inheritance as a relation.
The edge solution gives uniformity to our theory and makes
inheritance amenable to typing (as illustrated in Fig. 8b); our
edge-colouring solution also simplifies checking the prescribed
edge type to a simple diagram commuting (Fig. 8a).

A formalisation of references as coloured edges was chosen
in detriment of a partial function (refs : V 7→ V). This choice
benefits FRAGMENTA’s uniformity, coherence (all edges are
formalised as such) and clarity (such edges appear in the
morphisms from local fragment nodes to GFGs as inter-
fragment GFG edges). The drawback of reference edges is that
they lie unreferenced in SGs, requiring use of the reference
target function of fragments to get graphs that are referenced.

VIII. RELATED WORK

There is widespread acknowledgement of MDE’s scalability
challenge and the need for modularity. The popular EMF

6The Isabelle theories can be found at http://www.miso.es/fragmenta/

http://bit.ly/1CPTYZd
http://bit.ly/1Eq1TZD
http://www.miso.es/fragmenta/


provides the means to partition models with proxies, but lacks
support for fragmentation strategies (FSs). To improve this,
[11] proposes a non-formal persistence framework for EMF
to fragment models along annotated metamodel compositions.
Our theory is formal and provides a powerful notion of
fragmentation regions that allows metamodel-defined fragmen-
tations along our container primitive of clusters.

Heidenreich et al [12] propose a non-formal language
independent modularisation approach that puts together frag-
ments through composition interfaces made of reference and
variation points. FRAGMENTA is more abstract than [12]; it
provides a mathematical notion of joints based on proxys and
their references, similar to the reference points of [12], that is
amenable to model composition based on the general colimit.

Weisemöller and Schürn [13] try to improve the modulari-
sation of MOF, a popular metamodelling language. Their for-
malisation introduces metamodel components equipped with
export and import interfaces to enable composition. Their
definition of metamodel equates to the simple graphs presented
here, not considering important concepts such as inheritance,
composition and multiplicities. Furthermore, [13] deals with
metamodels only; FRAGMENTA covers both levels, not making
a substantial distinction between models and metamodels.

Certain formal approaches to merge composition [14], [15]
also use the colimit construction of category theory. Our work
does a more thorough treatment of the proxy mechanism
for referencing and incremental definition, which is slightly
different from the merge, and puts forward the simpler union
composition, where references are not resolved.

Hermann et al [9] investigate inheritance in a graph trans-
formation setting, considering a special condition in meta-
model morphisms to ensure existence of co-limits of arbitrary
categorical diagrams. FRAGMENTA does not perform co-limits
over arbitrary diagrams, considering only those that are re-
lated through proxies (interface graphs, see Fig. 7). Although
related, settings of [9] and FRAGMENTA are different; [9] is
not concerned at all by inheritance acyclicity and proxies.

Component graphs [10] with its two-layer structuring, lo-
cal and network, resemble FRAGMENTA’s local and global
fragment levels. FRAGMENTA provides an extra third level of
clusters. [10] provides IC-graphs, which are similar to SGs but
without multiplicities, and uses import and export interfaces
to enable composition. FRAGMENTA uses proxies to build
fragments incrementally in either a bottom-up or top-down
fashion, which is closer to EMF proxies. [10] acknowledges
how such graph structures are capable of capturing the EMF,
but without providing a formal study of proxies (an EMF con-
cept). [10] also acknowledges that inheritance well-formedness
issues (cycles) may arise when parts are composed, but there
is no proved result, like the one presented here, concerning the
global preservation of inheritance well-formedness (acyclicity,
fact 1) provided some local constraints are met.

Hamiaz et al [16] formalise in the Coq theorem prover the
model composition operations of [12]. This shares FRAG-
MENTA’s emphasis on formalisations developed with proof
assistants. FRAGMENTA, however, is more abstract; it is a

general approach that mimics common features of MDE;
composition is expressed in terms of general mathematical
operators, such as colimit and set-union.

Several approaches split monolithic models. Kelsen et
al [17] propose an algorithm to split a model into submodels,
where each submodel is conformant to the original metamodel
with association multiplicities taken into account. Strüber et
al [18] provide a splitting mechanism for both metamodels
and models based on the component graphs of [10]. In [19],
Strüber et al use [10] as the basis of an approach to split a
model based on the relevance of its elements using information
retrieval methods. Unlike these works, FRAGMENTA is a
design theory, supporting the novel idea of metamodel defined
FSs and a hierarchical organisation of fragments into clusters.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented FRAGMENTA, a formal theory to
fragment MDE models. This paper’s main result (fact 1),
formally derived from the theory, is that the satisfaction of
some local fragments constraints (particularly, the fact that
proxies may not have supertypes) is enough to ensure that
inheritance hierarchies remain well-formed (acyclic) globally
when fragments are composed. This means that implementa-
tions complying with FRAGMENTA’s constraints will be free
of inheritance cycle errors. This is relevant because the widely
diffused EMF uses a similar proxy mechanism and inheritance
is prevalent in current practice.

FRAGMENTA’s main novelties include: (a) the formal treat-
ment of model fragments exploiting the particularities of a
seaming mechanism based on proxies, (b) metalevel frag-
mentation strategies that stipulate a fragmentation structure
to model instances, (c) support for both bottom-up and top-
down fragmented designs and (d) three-level model architec-
ture. Other minor novelties include: (i) the observation that
although fragmented models are amenable to colimit-based
composition, this operation is not necessary for the theory’s
internal global processing, which can live with unresolved
references; and (ii) fragment graphs and the way they capture
the proxy concept.

FRAGMENTA was developed with the assistance of tools,
using specification type-checkers and proof assistants. Two
tools, DSL-tao and EMF-Splitter, were developed based on
FRAGMENTA. We are currently working on FRAGMENTA’s
merging mechanisms, further developing the tools and apply-
ing the theory to additional case studies.
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APPENDIX

This appendix gives an abridged presentation of [4]. Each
structure that is introduced has an associated set of functions,
predicates and proof laws that are given in full in [4].

Definition 1. The disjoint sets V and E represent all possible
nodes and all possible edges of graphs, respectively. �

Definition 2. A graph G = (VG,EG, s, t) (Fig. 2a) consists of
sets VG ⊆ V of nodes and EG ⊆ E of edges, and source and
target functions s, t : EG→ VG.

The set of graphs Gr, such that G : Gr, is defined as:

Gr={(VG,EG, s, t) |VG ∈ PV ∧ EG ∈ PE ∧ s ∈ EG→VG ∧ t ∈ EG→VG}

In the following, we write NsG, EsG, srcG and tgtG to
refer to the nodes, edges, source and target functions of a
graph G, respectively (defined as functions in [4]). Predicate
disj(G1,G2) says whether two graphs are disjoint (no nodes
or edges in common, defined in [4]). �

Definition 3. A graph morphism m : G1 → G2 defines a
mapping between graphs G1,G2 : Gr; it comprises a pair of
functions m = (fV , fE), fV : NsG1→NsG2 and fE : EsG1→EsG2,

mapping nodes and edges respectively that preserve the source
and target functions of edges: fv ◦ srcG1

= srcG2
◦ fe and

fv◦ tgtG1
= tgtG2

◦ fe (see Fig. 2b). Sets GrMorph (all possible
graph morphisms) and G1 → G2 (morphisms between two
graphs), such that G1→ G2 ⊆ GrMorph, are defined as:

GrMorph = {(fv, fe) | fv ∈ V 7→ V ∧ fe ∈ E 7→ E}
G1→ G2 = {(fv, fe) | fv ∈ NsG1 → NsG2 ∧ fe ∈ EsG1 → EsG2

∧ fv ◦ srcG1 = srcG2 ◦ fe ∧ fv ◦ tgtG1 = tgtG2 ◦ fe}

Above, the two equations involving function composition (sym-
bol ◦) ensure diagram commutativity (depicted in Fig. 2b). �

Definition 4. The composition of graph morphisms f : G1→
G2 and g : G2→ G3, Gi∈{1,3} : Gr, is defined as:

g ◦G f = ((fV g) ◦ (fV f ), (fE g) ◦ (fE f ))
�

Definition 5. The node types of a SG (set SGNT) are:
normal, abstract and proxy. The edge types (set SGET) are:
inheritance, containment, relation, link and reference:

SGNT = {nnrml, nabst, nprxy} SGET = {einh, ecomp, erel, elnk, eref}
�

Definition 6. Sets MultUVal (upper bound values) and Mult
(multiplicities) are defined below. MultUVal is disjoint union
(symbol ]) of natural numbers and singleton set with ∗
(many); Mult is a set of lower and upper bound pairs.

MultUVal = N ] {∗}
Mult={(lb, ub) | lb ∈ N∧ub ∈ MultUVal∧(ub=∗∨(ub ∈ N∧ lb ≤ub))}

�

Definition 7. A structural graph SG = (G, nty, ety, sm, tm)
comprises a graph G : Gr, two colouring functions for nodes
and edges, nt : NsG→SGNT and et : EsG→SGET, and source
and target multiplicity functions, sm, tm : EsG 7→Mult (Fig. 2c).

Base set SGr0 of SGs, such that SG : SGr0, is defined as:

SGr0 = {(G, nt, et, sm, tm) | G ∈ Gr ∧ nt ∈ NsG→ SGNT
∧ et ∈ EsG→ SGET ∧ sm ∈ EsG 7→Mult ∧ tm ∈ EsG 7→Mult}

Actual set of SGs, SGr, is defined from the base set, using
functions and predicates of [4], as:

SGr = {SG : SGr0 | EsRSG ⊆ EsIdSG
∧ srcmSG ∈ EsTy(SG, {erel, ecomp})→Mult
∧ tgtmSG ∈ EsTy(SG, {erel, ecomp})→Mult
∧ srcmSG L EsTy(SG, {ecomp}) M = {(0, 1), 1} ∧ acyclicI SG}

SGs have the following constraints: (a) reference edges
(EsRSG) are self edges (EsIdSG), (b) relation and containment
edges must have multiplicities, (c) source multiplicity of con-
tainment edges should be 0 . . 1 or 1, and (d) the inheritance
graph must be acyclic (predicate acyclicI). �

Definition 8. Given SGs SG1, SG2 : SGr, a SG morphism
m : SG1 → SG2 is a pair of functions m = (fv, fe) mapping
nodes and edges, respectively. The set of morphisms between
two SGs, SG1→ SG2, is defined as:

SG1→ SG2 = {(fv, fe) | fv ∈ NsSG1 → NsSG2 ∧ fe ∈ EsSG1 → EsSG2

∧ fv ◦ src∗SG1
⊆ src∗SG2

◦ fe∧ fv ◦ tgt∗SG1
⊆ tgt∗SG2

◦ fe∧ fv◦ 4SG1⊆4SG2◦fv}

http://bit.ly/1rHlxrc


This states subset commuting (⊆ rather than =) of under-
lying graphs to preserve inheritance constraints (depicted in
Figs. 2d and 2e); here, ◦ is relation composition. �

Definition 9. A fragment F = (SG, tr) (depicted in Fig. 4a)
comprises a SG : SGr, and a function tr : EsRPSG → V,
mapping reference edges attached to proxies to referred nodes.

The base set of local fragments Fr0 is defined as:

Fr0 = {(SG, tr) | SG ∈ SGr ∧ tr ∈ EsRPSG→ V
∧ (EsRPSG C srcSG) ∈ EsRPSG � NsPSG
∧ EsTy(SG, {einh}) C srcSG B NsPSG = ∅}

Above, C and B are domain and range restrictions, respec-
tively. The constraints say that (i) tr is a total function from
reference edges attached to proxies (EsRP) to some node, (ii)
that the references edges are attached to at most one proxy,
(iii) and that proxy nodes (NsPSG) cannot have supertypes.

Set of fragments Fr extends base set using functions of [4]:

Fr = {F | F ∈ Fr0 ∧ (∀ v : NsPF • nonPRefsOf F v 6= ∅) ∧ acyclicIF F}

This states that, ultimately, proxies must reference non-proxy
nodes and that the extended inheritance relation is acyclic. �

Definition 10. The union composition of fragments F1,F2 : Fr
is the union of the fragments’ SGs (function sg and operator
∪SG of [4]) and union of target reference functions (tgtr):

F1 ∪F F2 = (sg F1 ∪SG sg F2, tgtrF1 ∪ tgtrF2 ) �

Fact 1. Given fragments F1,F2 : Fr, we have the following:
• The union of two disjoint fragments is inheritance acyclic

provided that individually the fragments are acyclic also:

F1 ∈ Fr; F2 ∈ Fr; disjFs(F1,F2)
` acyclicIF (F1 ∪F F2)⇔ acyclicIF F1 ∧ acyclicIF F2

• The union of two disjoint fragments is well-formed pro-
vided the individual fragments are well-formed also:

disjFs(F1,F2)`(F1 ∪F F2) ∈ Fr⇔ F1 ∈ Fr ∧ F2 ∈ Fr

• Every fragment obtained after resolving the references is
well-formed (and hence acyclic).

Proof. These three theorems were proved in Isabelle7; proof
outlines can be obtained from [4]. �

Definition 11. Given fragments F1,F2 : Fr, a fragment mor-
phism m : F1→F2 is a pair of functions m = (fv, fe) mapping
nodes and edges, respectively. The set of such morphisms is:

F1→ F2 = {(fv, fe) | fv ∈ NsF1 → NsF2 ∧ fe ∈ EsF1 → EsF2

∧ fV ◦ src∗F1
⊆ src∗F2

◦ fE ∧ fV ◦ tgt∗F1
⊆ tgt∗F2

◦ fE ∧ fV◦ 4F1⊆4F2 ◦fV}

Above, we restate the same conditions as SG morphisms
(def. 8), using the updated functions and relations for frag-
ments (see [4]) that cater to the semantics of references. �

Definition 12. The set of extension edge kinds (imports and
continues) is:

ExtEdgeTy = {eimpo, econti}

7The first theorem shows impossibility of direct cycles (as per F3, Fig. 4c)
in union fragment compositions, the second theorem is a closure property of
fragment union, and third theorem shows impossibility of indirect cycles (as
per F4 and F5 in Fig. 4c) in a well-formed fragment

A global fragment graph (GFG) is a pair GFG = (G, et),
where G : Gr is a graph (def. 2), and et : EsG→ExtEdgeTy is
a colouring function mapping edges to extension edge types.
The imports and continues relations taken together (edges of
graph) and excluding self edges must be acyclic. Set of valid
GFGs, GFGr, is defined as:

GFGr = {(G, et) | G ∈ Gr ∧ et ∈ EsG→ ExtEdgeTy
∧ acyclicG(restrict(EsG \ EsIdG))} �

Definition 13. Given GFG1,GFG2 : GFGr (def. 12), a GFG
morphism m : GFG1 → GFG2 defines a mapping between
them. The set of GFG-morphisms is defined as:

GFG1→GFG2={m |m∈gr GFG1→gr GFG2∧etyGFG2 ◦ fE m = etyGFG1}

This requires that GFG morphisms are normal graph mor-
phisms (function gr) that preserve colouring of edges. �

Definition 14. Set of cluster edge kinds is extension edge kinds
(ExtEdgeTy, def. 12) plus containment:

CGEdgeTy = ExtEdgeTy ∪ {econta}

A cluster graph (CG) is a pair CG = (G, et), comprising
a graph G : Gr (definition 2) and a colouring function et :
EsG → CGEdgeTy mapping edges to cluster edge types. The
set of valid cluster graphs CGr is defined as:

CGr = {(G, et) | G ∈ Gr ∧ et ∈ EsG→ CGEdgeTy
∧ acyclicG(restrict(G, et ∼ L{eimpo, econti} M \EsIdG))
∧ rel(restrict(G, et ∼ L{econta} M \EsIdG)) ∈ forest}

This states: (i) relation formed by the imports and continues
edges (together), subtracted with self edges, must be acyclic,
and (ii) relation formed by containment edges, subtracted with
self edges, must constitute a forest. �

Definition 15. A model is quadruple M = (GFG,CG,mc, fd),
consisting of a GFG : GFGr, a CG : CGr, a morphism mc :
GFG → CG, and a mapping from GFG nodes to fragment
definitions fd : NsGFG→ Fr. Base set of models Mdl0 is:

Mdl0 = {(GFG,CG,mc, fd) | GFG ∈ GFGr ∧ CG ∈ CGr
∧ mc ∈ GFG→ CG ∧ fd ∈ NsGFG→ Fr}

Set of all models extends base set using definitions of [4]:
Mdl = {M : Mdl0 | UMToGFG M ∈ UFs M→ (gfg M)
∧ (∀ vf1, vf2 : Ns(gfg M) | vf1 6= vf2 • disjFs(fdefM vf1, fdefM vf2))}

This says that morphism obtained from UMToGFG maps a
fragment (union of model’s fragments) to a GFG, and that all
fragments of model are disjoint (predicate disjFs). �

Definition 16. A type fragment is a pair TF = (F, iet) that
comprises a fragment F : Fr and a colouring function iet :
EsAF → SGET that indicates stipulated instance edge type.
Set TFr, such that TF : TFr, is defined as:

TFr = {(F, iet) | F ∈ Fr ∧ iet ∈ EsAF → SGET} �

Definition 17. A typed fragment is a triple FT = (F,TF, ty),
consisting of an instance fragment F : Fr, a type fragment
TF : TFr, and fragment morphism ty : F→ TF from instance
to type. Set of typed fragments FrTy is defined as:

FrTy = {(F, TF, ty) | F ∈ Fr ∧ TF ∈ TFr ∧ ty ∈ F→ fr TF} �
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