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Abstract—Model Driven Engineering promotes models as
the core assets of projects and hence model transformations
become first-class citizens in this approach. Likewise, the de-
velopment of large scale transformations necessitates a system-
atic engineering process and supporting modelling notations.
However, although many languages have been proposed to
implement transformations, few allow their specification at a
higher level of abstraction.

In this paper we present a visual, formal, declarative spec-
ification language to express model-to-model transformations
and their correctness properties. The language supports the
two main approaches to model-to-model transformation –
trace-based and traceless – with a unified formal semantics.
Moreover, we provide a compilation of specifications into OCL
as this has many practical applications, e.g. it allows injecting
assertions and correctness properties for automated testing of
transformation implementations based on OMG standards.

Keywords-model-driven engineering; model-to-model trans-
formation; specification languages; transformation testing

I. INTRODUCTION

Model Driven Engineering (MDE) is a software engineer-
ing approach that seeks increasing productivity and quality
by raising the level of abstraction at which engineers work.
For this purpose, models (in contrast to programs) are key
assets in the development, and hence model transformations
are the pillars of the process. A model transformation
receives one input model and produces one output model, in
the simplest case. If both models conform to the same meta-
model the transformation is called endogenous, whereas
if the meta-models are different it is called exogenous or
model-to-model (M2M) transformation [1].

In order to become useful in industrial practice, engineers
need methods and tools to analyse, design, implement and
test complex and large M2M transformations. However,
although many languages have been proposed to implement
transformations [1], [2], [3], there is a lack of methods,
notations and tools to cover further stages of the complete
transformation life-cycle.

In standard software development, specification languages
are commonly used to express desired properties about
the applications to be built [4]. They focus on what the
application should do without stating how to do it. Hence,
they are closer to the system analysis (which could also

be refined into design) than to its actual implementation.
Formal specification languages like Z [4] or Alloy [5] have
a mathematical underpinning that allows formal reasoning,
refinement, proof, and specification-based testing of imple-
mentations [6].

In this paper we propose a high-level, formal, visual,
declarative language to specify M2M transformations. Its
purpose is not to implement transformations, but to express
what the transformation is to do (but not how), as well
as properties that transformed models should satisfy. In
this sense, the role of our language for transformations is
similar to the role of Z for software: providing support to
the analysis and design of transformations. The language
provides constructive and non-constructive primitives to
specify relations that should hold between the input and
output models, or forbidden situations. It also supports the
two usual approaches to M2M transformation: trace-based,
where explicit mappings define relations between the input
and output models (as e.g. in QVT-Core [7] and triple graph
grammars [8]), and traceless (as e.g. in QVT-R [7], ATL [2]
and ETL [3]). Specifications can be used in two ways: (i)
as a functional, potentially loose, definition of (part of) the
expected behaviour of transformation implementations; and
(ii) to provide correctness properties of the transformation.

Fig. 1 outlines our approach. First, the transformation
designer uses our specification language to define the trans-
formation behaviour, verification properties, and require-
ments on the valid input models (label 1). This specification
has a formal semantics and can be analysed to discover
redundancies, contradictions, and to measure coverage of
the involved languages (label 2). Next, the developer uses
the specification as a high-level model to implement the
transformation (label 3). This implementation is tested by
injecting assertions automatically derived from the speci-
fication (label 4). Assertions act as an oracle describing
structural invariants that output models should satisfy, and
are used for automated testing (labels 5, 6). They are also
used to test whether a model can be used as input for the
transformation.

Altogether, the contributions of this paper are the fol-
lowing. We propose a novel, visual specification language
for M2M transformation, supporting both trace-based and



Figure 1. Scheme of our approach.

traceless styles. This language can be used in initial stages of
the transformation development cycle (analysis and design)
and enables the automated verification of implementations.
To the best of our knowledge, no such language has been
proposed before. We also provide a compilation of specifi-
cations into OCL. This enables the injection of correctness
assertions in order to automate testing of implementations
for QVT and other languages based on OMG standards, such
as ATL or ETL. Since complex, large-scale transformations
are frequently encoded using textual languages, we aim
at keeping the best of visual and textual transformation
languages. Finally, we report on an Eclipse-based prototype,
and illustrate the injection of OCL assertions for testing ETL
transformations.
Paper organization. Section II presents the syntax and
formal semantics of our language. Section III shows its
compilation into OCL. Section IV describes tool support and
an example. Finally, Section V discusses related research and
Section VI concludes.

II. A M2M SPECIFICATION LANGUAGE

Our language is used to test implementations, but it
is independent of them. It supports both trace-based and
traceless styles of specification, which allows one to express
properties for implementation languages that use an explicit
handling of traces (e.g. QVT-Core, TGGs), and also for
languages that do not make use of them (e.g. QVT-R, ATL,
ETL). The first style is closer to implementation, since it
implies creating traces for each transformed element and
its targets. Traceless specifications do not use traces, but
a mechanism to express pre- and post-conditions which
may refer to other parts of the specification. For instance,
QVT-R uses when and where constructs to define pre-
and post-conditions, respectively. Interestingly, both styles
share similar semantics and can be formalized in a unified
framework.

A. Constraint triples

A specification in our language is made of patterns. Here
we extend our theory developed in [9] for the definition
of both trace-based and traceless specifications. Patterns are

based on the concept of triple graph [8] to represent the
input, output and trace models (called source, target and
correspondence). A triple graph G = ⟨GS , GC , GT , cs, ct⟩
is made of two graphs GS and GT called source and target,
related through a correspondence graph GC and two graph
morphisms cs : GC → GS and ct : GC → GT . For trace-
based patterns, GC contains the traces between nodes in GS

and GT , while for traceless patterns, GC is empty.
We use symbolic graphs [10] to describe the structure

of the three graphs. Symbolic graphs are typed and have
attributed nodes and edges, but instead of having a possibly
infinite set of data values, they use a finite set of sorted
variables ν, and a formula α constraining the allowed values
for these variables. Thus, constraint triples have the form
C = ⟨G, ν, α⟩, where G is a triple graph whose data nodes
are replaced by variables in ν. We use constraint triples
to represent both usual models (called ground constraints,
where α restricts the attributes to take exactly one value),
as well as constraints to be satisfied by models.
Example. Fig. 2 shows examples of trace-based and trace-
less constraints, modelling part of the class-to-relational
transformation [7]. They relate persistent UML packages
with RDBMS schemas. The traceless constraint does not
show the correspondence graph as it is empty. In both cases
the formula α is shown at the bottom, we omit the conjunc-
tions between terms, and place in the left compartment the
terms containing only variables from the source graph, in the
right compartment the terms containing only variables from
the target, and in the middle the terms containing variables of
both graphs. Note that “=” denotes equality, not assignment.
We can use any logic for α, but here we use first-order logic
with OCL-like syntax.

p: Package

name=X
persistent=P

s: Schema

name=Y

Trace-based PackageSchema

s: Schema

name=Y

Traceless PackageSchema (top)

P=true P=true

m: P2S
p: Package

name=X

persistent=P

Figure 2. Trace-based and traceless constraints.

Constraint triples are related through C-morphisms
a : C1 → C2, made of a triple graph morphism with the
following conditions: the formula α2 of C2 must imply the
formula α1 of C1, and the same implication is demanded
for the source and target restrictions (α2|S ⇒ α1|S and
α2|T ⇒ α1|T ). Roughly, the source restriction α|S (resp.
target α|T ) of a formula is the formula α but considering
the variables of the source (resp. target) graph only [9]. The
source restriction C|S of a constraint triple C is made of
the source graph and the formula α|S , and similar for the
target restriction.

B. Trace-based Patterns

We use the previous concepts to build trace-based pat-
terns. We define two kinds of pattern with same structure



but different interpretation: positive and negative (called
P-patterns and N-patterns). A pattern is made of a main
constraint triple Q (to be satisfied in the case of P-patterns,
and forbidden to occur in the case of N-patterns), and may
contain a positive pre-condition C and a set of negative pre-
conditions Ni.

Def. 1 (Trace-based pattern). A trace-based pattern P =
⟨C q→ Q, Npre = {ni : Q → Ni}i∈I⟩ consists of a
main constraint triple Q, a (possibly empty) positive pre-
condition C, a C-morphism q, and a set Npre of negative
pre-conditions.

Example. Fig. 3 shows our concrete visual syntax for
a trace-based P-pattern, which contains a main constraint
(named ClassTable), a negative pre-condition (denoted by
N(Parent)), and a positive pre-condition (annotated on the
main constraint with ⟨⟨param⟩⟩). The pattern states that
each persistent class should be related to a table, when the
class has no parent (negative pre-condition) and if the class’
package is mapped to a schema (positive pre-condition).

c: Class
name=X
persistent=P

t: Table
name=Y

n:C2T

Y=‘T_’+XP=true

c: Class

pa: Class
parent

N(Parent)
p: Package m:P2S

«param» «param»
ClassTable

s: Schema
«param»

⇒⇒⇒⇒

Figure 3. Example of trace-based P-pattern.

Fig. 4 shows an N-pattern. While the P-pattern can be used
to specify constructively a transformation, this N-pattern
expresses an invariant, i.e. a verification property reflecting
the beliefs of the designer about the properties that should
hold in all related models. The N-pattern states that if a
class has no two attributes with same name (negative pre-
condition N(AttrDup)) then the associated table should not
have duplicated columns (main constraint N(ColDup)). This
property is indeed false, if attributes of children classes are
stored in the same table, and classes can redefine attributes.

N(AttrDup)

a: Attribute
name=A

A=B

c: Class c: Class
persistent=P

P=true

N(ColDup)

C=D

m:C2T

⇒⇒⇒⇒

b: Attribute
name=B

c1: Column
name=C

t: Table

c2: Column
name=D

Figure 4. Example of trace-based N-pattern.

Sometimes, M2M transformations are not designed to
cope with every valid source model, but to work with a
subset of models of the source language. Our patterns can
also be used to explicitly express the conditions that we
ask the source models to qualify for the transformation.

As an example, Fig. 5 shows an N-pattern that forbids
attribute redefinition (operation ancestors returns the set
of ancestors of a given class). Similarly, we can also use
patterns to specify properties that any output model of the
transformation should fulfill.

N(AttribRedef)

a: Attribute

name=A
c: Class

b: Attribute

name=B
c1: Class

ancestors(c1).includes(c)

A=B

Figure 5. N-pattern constraining the source language.

In M2M transformation, we are interested in know-
ing whether a target model is a correct translation of a
source model, or vice-versa. For this purpose we inter-
pret patterns either source-to-target or target-to-source (for-
wards/backwards). In the former case, we check that each
forward-enabled pattern is actually satisfied, and similar for
the backward case. If two models satisfy the patterns both
forwards and backwards, we say that they are synchronized.
We start by defining enabledness of a pattern for the forward
case; the backward case is symmetrical.

Def. 2 (Forward pre-condition). Given a pattern P , its
forward positive pre-condition F+(P ) = C +C|S Q|S
is given by the pushout of its positive pre-condition C
and the source restriction of the main constraint Q, while
its set of forward negative pre-conditions is F−(P ) =
{qS : F+(P )→ NS

i , with NS
i = C +C|S Ni|S}i∈I .

Example. Fig. 6 shows the forward positive pre-condition
of pattern ClassTable, F+(ClassTable), which results from
merging C (objects p, s and m) and Q|S (objects p, c and
their link) through C|S (object p). This is called a pushout in
category theory. In our case, pushouts are made like in triple
graphs, and then taking the conjunction of the formulae [9].
The pattern has one forward negative pre-condition NS

1 ,
depicted to the left.

parent

s:Schemam :
P2S

p:Package

pa: Class

c: Class

persistent=P

N
s
1 F  (ClassTable)

−

m :
P2S

p:Package

c: Class

persistent=P

F  (ClassTable)
+

p:Package m :
P2S

n :
C2T

s:Schema

t: Table

name=Y

c: Class

name = ’Person’
persistent=true

p:Package

name = ’Pkg’

a: Attribute

type = ’int’
name = ’Age’

m:P2S

n:C2T

o:A2C
co: Column

type = ’NUMBER’
name = ’Age’

s:Schema

name = ’S_Pkg’

t: Table

name =’T_Person’

c: Class

name = X
persistent=P

P=true

s:Schema

P=true

Q

P=true Y=’T_’+X
M

Figure 6. Trace-based forward satisfaction example.



A pattern P is forward-enabled in a constraint triple M
(not necessarily ground) if an occurrence of its forward pos-
itive pre-condition F+(P ) is found in M , and no occurrence
of its negative forward pre-conditions is found. A P-pattern
(N-pattern) is satisfied at an enabled match, if the match can
be (cannot be) extended to the pattern’s main constraint Q.

Def. 3 (Forward enabledness). Given pattern P and
constraint triple M , P is forward-enabled at match
mS : F+(P ) → M , written M ⊢mS ,F P , iff ∀i ∈
I, @nS

i : N
S
i →M s.t. (1) commutes in the diagram below.

NS
i

/
nS
i

(1)

,,

F+(P )oo //

mS

%%
(2)

Q

m�
�

����
M

Def. 4 (Forward satisfaction). Given pattern P , constraint
triple M and M ⊢mS ,F P , P is forward-satisfied at mS ,
written M |=mS ,F P , iff ∃m : Q→M s.t. (2) commutes in
the diagram above if P is a P-pattern, or iff @m : Q→M
if P is an N-pattern. P is forward-satisfied in M , written
M |=F P , iff ∀mS s.t. M ⊢mS ,F P , M |=mS ,F P .

Example. The pattern in Fig. 6 is forward-enabled in one
occurrence, the one identifying objects p, m, s and c in
F+(ClassTable) and M , as the forward negative pre-
condition NS

1 is not found in M . The pattern is actually
forward-satisfied by M because this occurrence can be
extended to Q.

Specifications are conjunctions of patterns, hence M
forward-satisfies a specification S (M |=F S) if it forward-
satisfies all its patterns. Two models are synchronized if each
other is a correct forward/backward translation of the other:
M |=F S and M |=B S.

C. Traceless Patterns

Similar to QVT-R, patterns in the second style of spec-
ification do not make use of traces, but provide constructs
to check if other patterns in the specification are satisfied
(when clause, a pre-condition), or to demand the satisfaction
of other patterns (where clause, a post-condition). Therefore
they need a way to express dependencies between patterns.
As for trace-based specifications, we consider P- and N-
patterns having the same structure, although for N-patterns
we demand where = ∅ (we cannot ask for additional con-
ditions on a non-existing occurrence of Q). As a difference
from trace-based patterns, we distinguish between top and
non-top patterns. The former must be satisfied always, and
the latter only when invoked from the where clause of other
patterns. Recall that we use the same underlying structure as
for trace-based patterns, but in this case the correspondence
graph is not shown because it is empty.

Def. 5 (Traceless pattern). A traceless pattern R =
⟨Q,Npre = {ni : Q → Ni}i∈I , when,where, top⟩ is made

of a main constraint triple Q, a set Npre of negative pre-
conditions, two sets when and where of dependencies for Q,
and a boolean flag top.

Example. Fig. 7 depicts three traceless patterns for the
specification of the class-to-relational transformation. Pattern
ClassTable is top and demands a table for each class without
parents (negative pre-condition N(Parent)). The when clause
makes this necessary only if the class’ package and the
table’s schema satisfy the PackageSchema pattern (shown
in Fig. 2). Moreover, if this is the case, then both patterns
AttributeColumn and ParentClassTable should be satisfied
for the class and table. While the former demands pairs
of attributes and columns in the given class and table, the
latter descends recursively through the inheritance hierarchy
demanding the satisfaction of AttributeColumn at each child
class.

c: Class
name=X
persistent=P

t: Table
name=Y

Y=‘T_’+X

ClassTable (top)

N(Parent)
p: Package s: Schema

when { PackageSchema(p,s); }
where { AttributeColumn(c,t);

ParentClassTable(c,t); }

a: Attribute
name=X
type=T

co: Column
name=Y
type=T1

Y=X

c: Class t: Table

AttributeColumn

ch: Class

ParentClassTable
c: Class t: Table

P=true

parent

c:Class

parent

(Collection{‘int’,’float’,’double’}.exists(z| 
z=T and T1=‘NUMBER’) or  

(T=‘string’ and T1=‘CHAR(*)’))

where { 
ParentClassTable(ch,t);
AttributeColumn(ch,t); }

⇒⇒⇒⇒

pa:Class

Figure 7. Traceless patterns.

The use of when and where clauses creates dependencies
between patterns. In particular, given the main constraints
Q1 and Q2 of two patterns, a dependency is given by
Q1

d1← D
d2→ Q2, where D contains the elements passed

as parameter in a when or where clause relating them.
Thus, similar to the forward pre-condition notion for trace-
based patterns, we define forward dependencies for traceless
patterns generalizing the pushout construction in Def. 2 to
an arbitrary number of dependencies (not just one). Then
we take the amalgamation of all of them.

Def. 6 (Forward dependency). Given a traceless pattern
R and a dependency Q

d← D, the forward positive de-
pendency is given by F+

d (R) = F+(⟨D → Q,Npre⟩),
while the set of forward negative dependencies is given by
F−
d (R) = F−(⟨D → Q,Npre⟩), see Def. 2.

Given R and a dependency set DS = {Q dj← Dj}j∈J ,
the forward positive dependency is given by F+

DS(R) = W
as shown to the left of Fig. 8, with I the limit of {pj},



W the colimit of {ij}, and u exists due to the limit
universal property. The set of forward negative dependencies
is F−

DS(R) =
∪

dj∈DS

{W → NW
i }i∈I , with NW

i a pushout

calculated as shown to the right of Fig. 8.

I
i0

||yy
yy
yy
y

in

""F
FF

FF
FF Qj

F+
d0
(R)

p0

��

e0
EE

""E
EE

. . . F+
dn
(R)

pn

��

en
yy

||yyy

NS
i

P.O.
��

F+
dj
(R)

ej
��

oo Dj

dj

��

gjoo

fj

OO

W

u
��

NW
i

ni
/
(1)

))

W
u //

mS

��

oo Q

m
(2)

vv
Q M

Figure 8. Forward dependency set.

Next we define the conditions for a traceless pattern
R to be forward-enabled. As in the trace-based case, we
have to find an occurrence of F+(R) and no occurrence
of F−(R), but here there is no positive pre-condition but a
set of when dependencies. Thus, for a traceless pattern to
be forward-enabled, we build F+

when(R) and demand each
when dependency to be satisfied.

Def. 7 (Forward enabledness). R is forward-enabled in a
constraint triple M at match mS : W → M (with W =
F+
when(R)), written M ⊢mS ,F R, iff @ni : N

W
i → M with

(1) commuting to the right of Fig. 8, and ∀Qj
fj← Dj

dj→
Q ∈ when, SATF (Rj ,m

S ◦ ej ◦ gj , fj) (see Def. 8).

Example. Fig. 9 shows a constraint M where the pattern
ClassTable is enabled: there is an occurrence of W =
F+
when(ClassTable) (made of objects p, s and c) that

satisfies the pattern PackageSchema for the commuting
dependency F+

f1
(PackageSchema). The forward positive

dependency F+
f1
(PackageSchema) is calculated taking

D1
f1→ Q1. For simplicity we have omitted the negative pre-

condition, which avoids the pattern to be enabled in class
c2. We demand non-cyclic dependencies between patterns
as otherwise we may obtain an infinite loop when testing
the when clause.

We define the forward satisfaction of traceless patterns
using a predicate SATF with three parameters: (1) the
pattern R to be checked, (2) a morphism D → M with
which its forward positive dependency F+

when(R) has to
commute, and (3) a dependency D → Q, which may come
from a caller where section, and is actually treated as an
additional pre-condition in the when clause. In this way, the
predicate may demand the satisfaction of other patterns at
certain matches that are passed as parameters from invoking
when or where clauses, the former coming from Def. 7, and
the latter from recursive calls in Def. 8.

Def. 8 (Forward satisfaction). Given a P-pattern R, pred-
icate SATF (R,mD : D → M,d : D → Q) holds iff:
∀mS ∈ {mS : W → M | mD = mS ◦ e, with W =
F+
when∪{d}(R),M ⊢mS ,F R,D

e→ W}, ∃m : Q → M s.t.

(2) commutes to the right of Fig. 8, and ∀Qk
fk← Dk

dk→
Q ∈ where, SATF (Rk,m ◦ dk, fk).

If R is an N-pattern, everything is the same, but we
demand the non-existence of m : Q→M s.t. (2) commutes
to the right of Fig. 8 (and nothing else as where = ∅).

M

p:Package s:Schema

c: Class

persistent=P

+
whenW = F       (ClassTable)

P=true

d1

p:Package s:Schema

D1

p:Package s:Schema

+
F  (ClassTable)
d1

p:Package s:Schema

+
F  (PackageSchema)
f1

c: Class

p:Package

t: Table

name=Y

P=true

Q

name = X
persistent=P

Y=’T_’+X

s:Schema

f 1

name = ’Pkg’
persistent = true

p:Package

c: Class

name = ’Person’
persistent = true

c2: Class

name = ’Employee’
persistent = true

s:Schema

name = ’S_Pkg’

t: Table

parent

name = ’T_Person’

s:Schema

name = Yname = X
persistent=P

Q

Y=’S_’+X

p:Package

1

P=true

=

=

Figure 9. Traceless forward satisfaction example.

Example. The forward-enabled occurrence of pattern
ClassTable in Fig. 9 is satisfied because we find an oc-
currence of the pattern’s main constraint Q and the where
dependencies are satisfied: (i) AttributeColumn is trivially
satisfied as c has no attributes, and (ii) ParentClassTable is
satisfied as we find one occurrence of it but the child class
has no attributes.

The satisfaction of a traceless specification demands the
satisfaction of all their top-level patterns.

Def. 9 (Specification forward satisfaction). Given a traceless
specification S and a constraint triple M , M |=F S iff
SATF (R, ∅ →M, ∅ → Q) ∀R ∈ S|R is top.

Satisfaction of traceless specifications can be tested on
traced models (i.e. triple graphs where the correspondence
graph is not empty). This makes such specifications more
independent of the implementation mechanism, which can
be based on traces or not. On the contrary, trace-based
specifications necessitate from traced models.

III. COMPILATION INTO OCL

In this section we provide a practical way for testing
satisfaction of our patterns by their compilation into OCL
(using the EOL syntax [11]). Our aim is generating invari-
ants to automatically check the satisfaction of specifications
by models, and which can be injected in the transforma-
tion implementations for testing purposes. We choose OCL
because it is an OMG standard and can be integrated in
transformation languages of widespread use, such as QVT,
ATL or ETL. We start by showing the compilation of



traceless patterns, as the compilation of trace-based ones
can be expressed in terms of the former.

For traceless patterns, we generate one set of operations
from each (P- and N-) pattern, which only differ in their
parameters. In particular, one operation is generated from
each pattern call in a when or where clause, and one
additional operation without parameters is generated for
top patterns. We only show the compilation schema for
the operation without parameters, since the others are built
similarly (but omitting finding a match for the objects
received as parameter). We assume just one pattern in the
when and where clauses for readability reasons, and use the
following notation:

- p: name of compiled pattern
- when-p: name of pattern in the when clause
- where-p: name of pattern in the where clause
- when-p.param, where-p.param: objects in the call to

when-p and where-p, respectively
- check-p(...): OCL expression that checks the graphical

and attribute conditions imposed by p on the objects
received as parameter

- check-n(...): like check-p, but checks a negative pre-
condition n instead of p

The scheme of the OCL code for checking the forward
satisfaction of a traceless P-pattern is:
operation sat_p () : Boolean {

return
-- a) for each occurrence of objects a1,...,am
-- in when-p.param that satisfy when-p
a1.type.allInstances().forAll(a1 | ...

am.type.allInstances().forAll(am |
when-p(a1,...,am) implies

-- b) for each occurrence of objects b1,...,bn
-- in the source of p and not in when-p.param

b1.type.allInstances().forAll(b1 | ...
bn.type.allInstances().forAll(bn |

check-p(a1,...,am,b1,...,bn)
-- c) if it does not violate any negative pre-condition
-- of p (being c1,...,co the objects in the negative
-- pre-condition different from the a and b objects)

and not
c1.type.allInstances().exists(c1 | ...

co.type.allInstances().exists(co |
check-n(a1,...,am,b1,...,bn,c1,...,co)

-- d) then there must be an occurrence of p (being
-- d1,...,dp the objetcs in the target of p which
-- are not in when-p.param)

implies
d1.type.allInstances().exists(d1 | ...

dp.type.allInstances().exists(dp |
check-p(a1,...,am,b1,...,bn,d1,...,dp)

-- e) and satisfies where-p for the objects e1,...,eq
-- in where-p.param (already matched by a, b and d)

and where-p(e1,...,eq);
}

In the previous operation, fragments a), e) and c) are
omitted if the pattern has an empty when clause, an empty
where clause, or an empty set of negative pre-conditions,
respectively. The compilation schema for N-patterns is sim-
ilar to that for P-patterns, but the existential operator in
fragment d) is preceded by not. Finally, the compilation
for backward satisfaction implies just substituting source by
target (and vice-versa).

Example. The compiled code for the traceless pattern
ClassTable is:

operation sat_ClassTable () : Boolean {
return
Package.allInstances().forAll(p | --------------- a)

Schema.allInstances().forAll(s |
PackageSchema(p,s) implies
Class.allInstances().forAll(c | ------------- b)
(p.class.includes(c) and c.persistent=true)
and not ----------------------------------- c)
Class.allInstances().exists(pa |

c.parent.includes(pa))
implies ----------------------------------- d)
Table.allInstances().exists(t |

s.table.includes(t) and t.name=’T_’+c.name
and AttributeColumn(c,t) ---------------- e)
and ParentClassTable(c,t))))));

}

The compilation schema of trace-based patterns is much
simpler: (i) only one operation without parameters is gener-
ated from each pattern; (ii) fragments a) and b) are merged
so that the resulting fragment looks for all matches of the
pattern pre-condition (i.e. all elements in the positive pre-
condition and the source of the main constraint which satisfy
the graphical and attribute constraints); and (iii) no fragment
e) is generated. Note that in this case, the generated OCL
conditions actually check that traces exist when they appear
in a pattern, while for traceless patterns this is not so, so
they are independent of the implementation mechanism.
Example The operation derived from the trace-based pattern
ClassTable is:

operation sat_ClassTable () : Boolean {
return
Package.allInstances().forAll(p | ---------------- a+b)

Schema.allInstances().forAll(s |
Class.allInstances().forAll(c |
P2S.allInstances().forAll(m |

(p.class.includes(c) and c.persistent=true and
m.source=p and m.target=s
and not --------------------------------- c)
Class.allInstances().exists(pa |

c.parent.includes(pa)))
implies ---------------------------------- d)
Table.allInstances().exists(t |

C2T.allInstances().exists(n |
s.table.includes(t) and t.name=’T_’+c.name
and n.source=c and n.target=t))))));

}

As stated previously, this OCL code can be used in many
ways. The next section shows an application to automated
testing of transformation implementations.

IV. TOOL SUPPORT AND EXAMPLE

We have built an Eclipse tool to define pattern specifica-
tions using a visual concrete syntax. It has been developed
with GMF, and includes a code generator to synthesise
EOL code [11] (an extension of OCL) for the chosen
scenario (forwards/backwards, either for traceless or trace-
based specifications). This code can be injected in ETL
transformation implementations in two ways: (i) assertions
coming from patterns expressing conditions on the source
model, like the pattern in Fig. 5, are tested before executing



the transformation; (ii) patterns expressing expected proper-
ties of the target model, as well as verification or functional
properties of the transformation, are tested after executing
the transformation. Hence, given an input model, it is first
checked if it qualifies for the transformation. If it does, the
transformation is executed and the user is informed of the
patterns that are or are not satisfied, and of the rules that
should be revised.

Fig. 10 shows a verification traceless P-pattern defined
in the tool. The pattern specifies how to handle multiple
inheritance. In particular, it seeks two top-level persistent
classes c1 and c2, ancestors of a third class c. The fact
that c1 and c2 are top-level is checked by the negative pre-
conditions NoAncestor1 and NoAncestor2, whereas the fact
that c1 and c2 are ancestors of c is checked by operation
ancestors in the formula. Then, for each attribute a of
c, the pattern demands a matching column in both tables t1
and t2. This is checked in the where section by calling
the functional requirement pattern AttributeColumn for each
table. Moreover, the when section checks that t1 and t2
are associated with c1 and c2 by calling ClassTable2 (equal
to ClassTable but without where section). An additional
verification pattern checks that if a top-level class does not
have attributes with same name (e.g. no redefined attributes
in children), its associated table does not have columns with
same name.

Figure 10. Verification pattern.

After defining the patterns with the functional require-
ments and verification properties, we can generate EOL
code to verify a particular transformation implementation.
Fig. 11 shows part of the ETL code that implements
the forward transformation. The implementation is a re-
finement of the functional specification, as in addition
it creates primary and foreign keys and considers object
references. This implementation is incorrect because it
does not consider multiple inheritance: when an attribute
is translated into a column, the column is placed in the
table associated to the top-most class (line c.table ::=

a.owner.getTopClass();). However, the operation
getTopClass assumes single inheritance and returns a
unique class (and ::= returns its associated table). There-
fore, this implementation fails when tested with models
having multiple inheritance, and is detected by our patterns,
as the pop-up window in Fig. 11 shows. The feedback
mentions the rules to be revised because these are annotated
with the patterns they address (line @patterns=...).

Figure 11. Testing an implementation.

It is interesting to note that a specification expresses
requirements, and is independent of how the implementation
actually performs its job. In our example, the implementation
does not use recursion on children classes (like pattern
ParentClassTable does), but a method to obtain the table
of the top-most class. Second, we found it useful to clas-
sify patterns as functional or verification patterns, where
the latter usually depend on the former. Third, functional
patterns do not need to specify the behaviour of the complete
transformation and cover all requirements, but only the most
critical ones (in our example, it did not address primary or
foreign keys nor references). Moreover, we do not even have
to use the same meta-model for specification and implemen-
tation, but the meta-model of the implementation can be a
refinement of the specification one. Finally, specifications
are independent of the implementation language, and they
can be used for testing implementations written in different
languages. In particular, the approach is useful to test large
textual implementations, and we used it for the run-time
verification of a transformation of more than 1600 lines of
code in the context of a European project.

V. RELATED WORK

Our traceless language is inspired by QVT-R [7], but
enriched with N-patterns (i.e. non-constructive primitives),



graphical negative pre-conditions and bidirectional attribute
computations. Whereas QVT-R implementations are able
to execute parts of the standard [7], we are working in
execution support for functional patterns, but there are some
issues. First, our attribute computations are bidirectional,
which means doing either algebraic manipulation of formu-
lae or using constraint solving when the transformation is
given a direction. Bidirectional conditions like X+Y=Z+V,
which involve variables of source and target elements, are
not supported by existing QVT-R implementations (assign-
ments are supported, but not general formulae). The non-
constructive nature of N-patterns would also need constraint
solving. Finally, specifications may be loose: a source model
may have several correct target models. Implementations can
refine this behaviour choosing deterministically one solution.

The formal semantics of our traceless language is imme-
diately applicable to QVT-R. There are few attempts to give
formal semantics to QVT-R. In [12], the authors compile
simplified QVT-R into TGGs. In [13], a game-theoretic
semantics for check-only QVT-R is given, but the semantics
is given in an abstract way, neglecting issues like bindings,
pattern matching and parameter passing. There are a few
QVT-R concepts we do not cover yet though, like having
arbitrary formulae in when and where instead of sets.

Even though there are many languages to implement
transformations, very few works propose higher-level nota-
tions for transformation design [14]. To our knowledge, no
language has been proposed for specification of implementa-
tion properties, as we do in this paper. Even though there are
languages for expressing bi-directional transformations, they
are unsuitable for their use as formal specification languages.
Some of them, like QVT-R, have no formal semantics.
Others, like TGGs, are based on rules and hence they are not
suitable for testing, where a language based on constraints
is more appropriate.

Finally, our work also contributes to the area of transfor-
mation testing by providing a language that simplifies the
specification of oracles to automate the comparison of the
actual and expected results of transformations, where current
approaches require the manual specification of complex
OCL constraints [15].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a high-level M2M speci-
fication language, its formal semantics, its compilation into
OCL, tool support, and its application for M2M transfor-
mation testing. Concerning the latter, we have shown the
benefits of a visual specification language to guard the
correctness of large, textual transformation implementations.
Moreover, our traceless language has a formal algebraic
semantics applicable to QVT-R.

We are currently working on executability of specifi-
cations by combining transformation languages with con-
straint solvers. However, in some scenarios, implementations

coded by hand may be more efficient or scalable. We are
also working in the analysis of specifications, studying the
strengths and equivalence of both styles of specification, and
on methods to derive test cases from specifications.
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[8] A. Schürr, “Specification of graph translators with triple graph
grammars,” in WG’94, ser. LNCS, vol. 903. Springer, 1994,
pp. 151–163.

[9] E. Guerra, J. de Lara, and F. Orejas, “Pattern-based model-
to-model transformation: Handling attribute conditions,” in
ICMT’09, ser. LNCS, vol. 5563. Springer, 2009, pp. 83–99.

[10] F. Orejas, “Attributed graph constraints,” in ICGT’08, ser.
LNCS, vol. 5214. Springer, 2008, pp. 274–288.

[11] D. S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Object
Language (EOL),” in ECMDA-FA’06, ser. LNCS, vol. 4066.
Springer, 2006, pp. 128–142.

[12] J. Greenyer and E. Kindler, “Comparing relational
model transformation technologies: implementing
query/view/transformation with triple graph grammars,”
Softw. and Syst. Mod., vol. 9, no. 1, pp. 21–46, 2010.

[13] P. Stevens, “A simple game-theoretic approach to checkonly
QVT relations,” in ICMT’09, ser. LNCS, vol. 5563. Springer,
2009, pp. 165–180.

[14] M. Siikarla, M. Laitkorpi, P. Selonen, and T. Systä, “Trans-
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