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Abstract. Testing model transformations poses several challenges, among
them the automatic generation of appropriate input test models and
the specification of oracle functions. Most approaches to the generation
of input models ensure a certain level of source meta-model coverage,
whereas the oracle functions are frequently defined using query or graph
languages. Both tasks are usually performed independently regardless
their common purpose, and sometimes there is a gap between the prop-
erties exhibited by the generated input models and those demanded to
the transformations (as given by the oracles).
Recently, we proposed a formal specification language for the declarative
formulation of transformation properties (invariants, pre- and postcon-
ditions) from which we generated partial oracle functions that facilitate
testing of the transformations. Here we extend the usage of our speci-
fication language for the automated generation of input test models by
constraint solving. The testing process becomes more intentional because
the generated models ensure a certain coverage of the interesting prop-
erties of the transformation. Moreover, we use the same specification to
consistently derive both the input test models and the oracle functions.

1 Introduction

Model transformations are the pillars of Model-Driven Engineering (MDE), and
therefore they should be developed using sound engineering principles to en-
sure their correctness [12]. However, most model transformation technologies
are nowadays centered on supporting the implementation phase, and few efforts
are directed to the specification of requirements, design or testing of transforma-
tions. As a consequence, transformations are frequently hacked, not engineered,
being hard to maintain, incorrect or buggy.

In order to alleviate this situation, we proposed in the past transML, a family
of modelling languages for the engineering of transformations using an MDE
approach [12]. transML provides support for the gathering of requirements, its
formal specification, the architectural, high- and low-level design, as well as the
specification of test scripts, which themselves are also models. An engine called
mtUnit is able to execute these test suites in an automated way.

transML includes a visual language with formal semantics called PaMoMo
(Pattern-based Model-to-Model Specification Language) [11] for the contract-
based specification of transformation requirements. In this way, the designer may
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specify requirements of the input models of a transformation (preconditions), ex-
pected properties of the output models (postconditions), as well as properties
that any pair of input/output models should satisfy (invariants). Similar to soft-
ware requirement specification languages like Z or Alloy, PaMoMo’s formal se-
mantics enables reasoning at the level of requirements, while being independent
of the particular transformation language used for the implementation.

In [11], we explored the use of PaMoMo for testing. In particular, we showed
how to automatically derive OCL partial oracle functions from PaMoMo spec-
ifications, and used these oracles to assert whether a particular implementation
satisfied a specification. Still, the transformation tester had the burden to: (a)
produce a reasonable set of input test models, (b) build a mtUnit script to ex-
ercise the transformation with the different input models, and (c) select the
partial oracle functions produced from the specification to assert whether the
tests passed or failed. In particular, the manual creation of input models is te-
dious and time-consuming, and it does not guarantee an appropriate coverage
of all requirements in the specification.

In this paper, we tackle these problems by deriving, from the transformation
specification, not only the oracle functions, but also a set of input test models
ensuring a certain level of coverage of the properties in the specification. These
input models are calculated using constraint solving techniques. Besides, a ded-
icated mtUnit test suite is generated for the automated testing of the transfor-
mation implementation using the generated input models and oracle functions.

While there are several approaches for the automated testing of transforma-
tions, ours is unique because our test models aim at testing the requirements
and properties of interest as given in a specification. Current approaches either
focus on producing input test models ensuring a certain coverage of the input
meta-model [7, 21], or do not consider specification-based testing. Hence, our
approach is directed to test the intention of the transformation. Moreover, the
use of the same specification to consistently derive both the input models for
testing and the oracle functions is also novel.

Paper organization: Section 2 reviews existing approaches to model trans-
formation testing. Then, Section 3 sketches our proposal. Section 4 introduces
our specification language PaMoMo, whereas Section 5 describes our approach
to derive input test models with a certain level of specification coverage. We
present tool support in Section 6 and discuss some conclusions in Section 7.

2 State of the art

There are three main challenges in model transformation testing [2]: the gener-
ation of input test models, the definition of test adequacy (or coverage) criteria,
and the construction of oracle functions.

Most works dealing with the generation of input test models consider only
the features of the input meta-model but not properties of the transformation
(i.e. they support black-box testing). For instance, in [7, 21], the authors per-
form automatic generation of input test models based on the input meta-model
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and some coverage criteria (e.g. partitioning of attribute values and number of
classes). In [10], the generation of input test models must be hand-coded using
an imperative language with features for randomly choosing attribute values and
association ends. There are a few white-box testing approaches, like [15] where
the authors propose using all possible overlapping models of each pair of rules
in a transformation as input models for testing.

Regarding the third challenge, we distinguish between complete and partial
oracle functions. The former are defined by having the output models at hand.
For instance, the test cases for the C-SAW transformation languages [16] consist
of a source model and its expected output model. Partial oracle functions express
contracts that the input and output models of a transformation should fulfil.
Most proposals to partial oracle functions use OCL to specify the contracts [6, 10,
18]. The approaches in [8, 9] follow a similar philosophy to the xUnit framework,
and the oracle functions can be specified as OCL/EOL assertions. Finally, some
approaches permit the specification of partial oracle functions as graph patterns
or model fragments [1]. None of these approaches provide a mechanism to assert
the adequacy of the specified tests and automate their generation.

In conclusion, we observe that some transformation testing approaches pro-
vide automated test execution [8, 9], but do not support the generation of in-
put models, and the oracle needs to be specified manually. Other works focus
on the automatic generation of input models [7, 21], but without considering
transformation properties. Finally, the works proposing contracts for specifying
transformations do not use the contracts for input test generation. In this pa-
per, we will present our approach to specification-based transformation testing
which automates the generation of the input test models, the oracle function
and executable test scripts from the same transformation specification.

It is worth noting that the idea of synthesizing both input test data and
oracle functions from a specification has been successfully applied to general
software testing, if we look at the broader scope of model-based testing. For
instance, in [3], the authors generate both artifacts for automated testing of
Java programs based on Java predicates from which all possible non-isomorphic
inputs (up to a certain size bound) are efficiently generated. This yields complete
coverage of the input state space. In our case, we aim at generating test models
exhibiting relevant properties; complete meta-model coverage (i.e. generating all
meta-model instances of a certain size) does not guarantee this, and may lead to
the so-called state explosion problem. The model-based testing approach in [23]
uses symbolic execution to generate unit tests ensuring a certain path coverage,
i.e., it supports white-box testing. In our case, we follow a black-box testing
approach.

3 A framework for specification-driven testing

Fig. 1 shows the working scheme of our approach. First, the designer specifies the
requirements (i.e. the pre/postconditions and invariants) of the transformation
using our language PaMoMo. The developer can use this specification as a guide
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Fig. 1. Framework.

to implement the transformation us-
ing his favourite language (e.g. ATL
[13], ETL [14], etc.). Starting from the
specification, the transformation tester
can automatically generate a complete
test suite which can be directly used
to test the transformation implementa-
tion. This test suite comprises: (i) an
oracle function that encodes the invari-
ants and postconditions in the specifica-
tion as assertions [11]; (ii) a set of input
test models which enables the testing of
all requirements in the specification ac-
cording to certain coverage criteria; and
(iii) a test script that automates the ex-
ecution of the transformation for each
test model, checks the conformance of
the result using the oracle function, and reports any detected error using our
mtUnit engine [12].

4 A specification language for model transformations

PaMoMo is a formal, pattern-based, declarative, bidirectional specification lan-
guage to describe, in an implementation-independent way, correctness require-
ments of the transformations and of their input and output models [11]. These
requirements may correspond to preconditions that the input models should
fulfil, postconditions that the output models should fulfil (beyond meta-model
constraints), as well as invariants of the transformation (i.e. requirements that
the output model resulting from a particular input model should satisfy).

Preconditions, postconditions and invariants are represented as graph pat-
terns, which can be positive to specify expected model fragments, or negative
to specify forbidden ones. They can have attached a logical formula stating ex-
tra conditions, typically (but not solely) constraining the attribute values in the
graph pattern. In this paper and in our prototype tool, these formulas are written
in OCL. Optionally, patterns can define one enabling condition and any number
of disabling conditions, to reduce the scope of the pattern to the locations where
the enabling condition is met, and the disabling conditions are not.

Formally, an invariant I = (C,Cen, {Cdis}) is made of a main constraint C,
an enabling condition Cen (which may be empty), and a set {Cdis} of disabling
conditions. The main constraint and conditions Cx = ⟨Gs, Gt, α⟩ are made of two
graphs typed by the source and target meta-models of the transformation, and
a formula α over their elements. A positive invariant holds on a pair of source
and target models if: (i) for each occurrence Occ of the source graph of the main
constraint C plus the enabling condition Cen, (ii) if there is no occurrence of the
disabling conditions {Cdis} in the context of Occ, (iii) then there is an occurrence
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Fig. 2. BPMN model (left) and equivalent Petri net (right).

of the target graph of C in the context of Occ. If the invariant is negative, then
we should not find an occurrence of the target graph of C in step (iii). Pre- and
postconditions have the same structure as invariants, but the target (source)
graph in preconditions (postconditions) is always empty. Their interpretation is
also different. A pre/postcondition holds if, for each occurrence of the enabling
condition, there is an occurrence of the main constraint for which no occurrence
of the disabling conditions is found. See [11] for a complete description of the
formal semantics of PaMoMo.

As a running example, we use PaMoMo to specify a transformation from
the Business Process Modeling Notation (BPMN) [4] to Petri nets. The goal is
to analyse BPMN models to detect deadlocks, incorrect termination conditions
or tasks that can never be completed. The left of Fig. 2 shows a BPMN model.
It specifies a flow initiated in a start event (the circle), and consisting in the
completion of different tasks (rounded rectangles). The diamonds in the model
are called parallel gateways, and split the execution in several parallel branches
(first gateway) which are later synchronized (second gateway). From this BPMN
model, our transformation should create a Petri net like the one to its right.

The left of Fig. 3 shows some transformation preconditions, expressing re-
quirements that any input model should fulfil beyond its meta-model constraints1.
For instance, our transformation expects models with one start event from which
only one sequence flow goes out. This is formalised by the positive precondition
OneStartEvent (i.e. there must exist one start event with one outgoing flow in the
input model) and the negative precondition MultipleStartEvents (there cannot
be several start events). These conditions are not demanded by the BPMN meta-
model, which allows models with any number of start events, each one of them
with multiple outgoing flows, but are required by our transformation. The figure
shows another precondition, PathsForGateway, with an enabling condition. It
demands that each gateway (enabling condition) defines at least one input and
one output flows (main constraint). The precondition contains the abstract class
Gateway, becoming applicable to all concrete gateway types inheriting from it.

Postconditions express requirements of the output models, beyond their meta-
model constraints. The right of Fig. 3 shows some postconditions for the gener-
ated Petri nets, like the absence of unconnected places (UnconnectedPlaces), the
existence of input and output places for all transitions (ConnectedTransitions),

1 In this section, we use a graphical concrete syntax for the specification. In Section 6,
we will show an alternative textual syntax that is supported by our prototype tool.
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Fig. 3. Preconditions (left) and postconditions (right) of the transformation.

and the existence of a single place with one token and without input transitions
(InitialPlace and InitialMarking).

Finally, Fig. 4 shows some invariants describing the transformation of tasks
and gateways. Tasks must be transformed into equally named places (Task1).
Since tasks can only have one outgoing flow, the corresponding places cannot be
connected to two output transitions (Task2). Each parallel gateway should be
transformed into a transition (ParallelGateway1), and the places for all incoming
tasks to the gateway should be input to the transition (ParallelGateway2). In-
variant ParallelGateway3 states that if a parallel gateway does not have a task t2
as input (disabling condition), then the place for t2 cannot be connected to the
transition (as the invariant is negative). There are similar invariants for the tasks
going out from a parallel gateway. The two remaining invariants state that ex-
clusive (also called choice) gateways should be transformed into an intermediate
place, plus one transition for each outgoing branch.

The use of a formal specification language like PaMoMo to specify trans-
formation properties has the following advantages: (i) it enables reasoning on
the transformation requirements before their implementation, as well as detect-
ing contradictions in the requirements early in the project; (ii) it provides a
high-level notation to specify pre/postconditions and invariants of the transfor-
mations; and (iii) it is possible to automate the generation of an oracle function
from the specification and use it for automated testing [11]. However, the chal-
lenge of generating appropriate input test models remains, as these have to be
built by hand, which is a tedious and error-prone task. Moreover, it is difficult to
ensure that the input test set will enable the testing of all relevant properties in
the specification. To solve this problem, next we present an approach to generate
input test models ensuring the coverage of a specification.

5 Specification-driven generation of input test models

Our approach to specification-driven testing consists of the following steps: (1)
translation of the properties in the specification into a suitable format for model
finding, (2) selection of a level of specification coverage, resulting in a particular
strategy to build expressions that demand the satisfaction (or not) of a number
of properties in the generated models, (3) use of a constraint solver to find
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Fig. 4. Invariants of the transformation.

models satisfying concrete combinations of properties and the input meta-model
integrity constraints, and finally, (4) identification of the assertions that should
be checked after testing the transformation with a particular input model. In
the remaining of this section we present in detail this procedure.

5.1 Translation of properties in the specification

As a first step, we translate the specification into a language that allows au-
tomating the generation of models. In particular, we use OCL as target language
because we already had support to generate OCL assertions from our specifica-
tions [11], there are available solvers that find models satisfying a set of OCL
constraints [5], and we do not need to parse the OCL formulas in the properties
of the specification to a different language. Nonetheless, this is our particular op-
tion and the framework could be used with a different target language whenever
a translation from our specification language is provided.

Although a specification includes preconditions, postconditions and invari-
ants, only preconditions and invariants contain useful information for the input
model generation. Postconditions refer to properties of the output models and
are only used to generate oracle functions, but not input models.

An invariant expresses a property of the form: if certain source pattern ap-
pears in the input model, then certain target pattern should be present (or not)
in the output model. Thus, it is interesting to generate input models containing
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instances of the source pattern, to test whether transforming these models actu-
ally yields output models containing the target pattern. For this purpose, from
each PaMoMo invariant we generate an OCL expression which characterises
the source pattern of the invariant. Listing 1 shows a scheme of the generated
expression. It iterates on the objects of the source graph of the main constraint
(lines 1–3), and checks that there is no occurrence of the source graph of any
disabling condition (lines 4–7, this code is generated for each disabling condi-
tion). The function conditions corresponds to an OCL expression checking the
conditions that the traversed objects should fulfil, namely the existence of the
links specified in the invariant (oi.link->includes(oj)), inequalities for the objects
with same type (oi<>oj), and all terms in the invariant formula over elements of
the input domain only. The enabling condition of the invariants is ignored as we
do not want models where the invariant is satisfied vacuously due to the absence
of the enabling condition in the models. Moreover, if the invariant is negative,
the generated expression is the same (i.e. it is not preceded by the not particle)
because the source part of the invariant is still positive (if X appears then...).

o1.type::allInstances()−>exists(o1 | ...
oi.type::allInstances()−>exists(oi |
conditions(o1,...,oi)
< and not

oj.type::allInstances()−>exists(oj | ...
ok.type::allInstances()−>exists(ok |
conditions(o1,...,oi,oj,...,ok) >∗ ) ...)

Listing 1. OCL for invariants.

< not >?
< o1.type::allInstances()−>forAll(o1 | ...

oi.type::allInstances()−>forAll(oi |
conditions(o1,...,oi)
implies >?
oj.type::allInstances()−>exists(oj | ...
ok.type::allInstances()−>exists(ok |
conditions(o1,...,oi,oj,...,ok)
< and not

ol.type::allInstances()−>exists(ol | ...
om.type::allInstances()−>exists(om |
conditions(o1,...,oi,oj,...,ok,ol,...,om) >∗ ...)

Listing 2. OCL for preconditions.

As an example, from invariant ParallelGateway3 we generate the expression:

Task::allInstances()−>exists(t1 |
Task::allInstances()−>exists(t2 |
ParallelGateway::allInstances()−>exists(g |
t1.outgoing−>includes(g) and t1<>t2 and not t2.outgoing−>includes(g) )))

Frequently, specifications include invariants with same source and different
target. For instance, Task1 and Task2 have both a task as source, whereas the
former specifies how to translate a task correctly, the latter identifies an incorrect
translation. In this case, generating an input model containing a task enables the
testing of both invariants. Thus, from the set of generated OCL expressions, we
eliminate redundant source conditions (i.e. equal source in the main constraint
and disabling conditions). We do not eliminate subsumptions to allow for the
testing of models with different size and context conditions.

Finally, preconditions specify requirements of the input models of a transfor-
mation. A transformation is not demanded to work properly for input models
that do not satisfy these preconditions. The validity of the input models is hardly
ever done by the transformation, but by an external procedure, or otherwise it is
ensured by the transformation application context. Thus, we take the convention
that all generated input models must fulfil all preconditions in the specification.
For this purpose, we generate an OCL constraint from each precondition, and
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enforce their satisfaction in all generated input models by adding them to the
expressions used to generate them (see next subsection). The scheme of the gen-
erated OCL code is shown in Listing 2. The expression looks for all occurrences
of the enabling condition (lines 2–4), and demands that for each one of them
there is an occurrence of the main constraint (lines 6–8) satisfying the disabling
conditions (lines 9–10). If the precondition has no enabling condition the result-
ing expression is the same as the one for invariants, and if it is negative, the
generated expression is preceded by not.

5.2 Input model generation for different coverage criteria

The model generation process is performed in two steps. First, we compose an
OCL expression for each input model to be generated, identifying the properties
that this model should fulfil. These expressions are built according to certain
specification coverage criteria. Then, we feed each expression, together with the
input meta-model and the OCL code generated from the preconditions, to a
constraint solver. The solver will try to find a valid input model satisfying the
given OCL expression, preconditions and meta-model integrity constraints. For a
particular expression, the solver may not find a model in the given scope, or due
to some inconsistency in the specification. In such a case, we can either widen
the search scope, or do not generate a model for that particular expression.

We identify seven levels of specification coverage for the generated test set,
with increasing degrees of exhaustivity: property, closed property, t-way, closed
t-way, combinatorial, closed combinatorial and exhaustive. The property, t-way
and exhaustive levels generate models enabling the testing of a number of in-
variants in the specification by combining their source models. The remaining
levels generate also models that do not contain occurrences of certain invariants.
In the following, we present in detail each one of them.

Property coverage. This is the least exhaustive level of coverage, appropriate
when the invariants in the specification are independent. It generates as
many input models as invariants in the specification, each one including at
least one occurrence of the source of an invariant. The rationale is to use
each generated model to test one property of the transformation, given by
one invariant in the specification. For this purpose, given a specification with
I = {I1, ..., In} invariants (with different source), we generate n expressions
of the form ocl(Ii). Each expression demands the existence of an occurrence
of the source of invariant Ii. As an example, Table 1 shows in the first column
the expressions generated from a specification with three invariants, where
each ix term represents the OCL code generated from the invariant x.

Closed property coverage. This criterion extends the previous one by gener-
ating additional models that do not contain occurrences of the source of some
invariant in the specification. The goal is checking whether the transforma-
tion under test handles properly the absence of certain patterns in the input
models. These limit cases, usually due to underspecifications, frequently lead
to errors in the final implementations, yielding malformed output models.
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Thus, given a specification with I = {I1, ..., In} invariants, we also generate
n additional expressions of the form not ocl(Ii). The second column of Table
1 shows the generated expressions assuming three invariants.

Interestingly, any model that does not contain the source of an invariant
will satisfy the invariant vacuously, as an invariant states the consequences
of having some pattern in the source model, but not the consequences of
its absence. Nonetheless, the input models generated in this way are still
interesting because their transformation have to yield valid target models
satisfying the rest of invariants and postconditions in the specification as
well as the target meta-model integrity constraints.

Finally, this coverage criterion is also indicated for specifications that use a
closed world assumption (i.e. any property not included in the specification
is false) by generating models which potentially may not belong to the in-
put language according to the specification. Currently, PaMoMo does not
support a closed world semantics.

t-way coverage. Most faults in software systems are due to the interactions of
several factors or properties. Based on this observation, t-wise testing [22]
consists of the generation of test cases for all possible combinations of t
properties in the system under test. Pairwise testing is a particular case of
this kind of testing for t = 2 (i.e. the generation of test cases for pairs of
properties) which yields smaller test suites than exhaustive generation yet
being able to find many errors. In our case, we are interested in detecting er-
rors coming from an incorrect implementation of the combination of several
requirements in a specification. These errors are frequent when each require-
ment is implemented as a rule or relation that interacts with other rules in
the transformation, e.g. through explicit invocation.

In this case, given a specification with I = {I1, ..., In} invariants, we generate
an expression of the form ocl(Ij) and ... and ocl (Ik) for each t-tuple of
invariants in the specification, demanding the existence of an occurrence of
the source part of each invariant in the tuple. In the limit, 1-way testing is

Table 1. Expressions generated from a specification with 3 invariants. The terms i1,
i2 and i3 represent the OCL code generated from the invariants in the specification.

closed closed closed exhaustive
property property 2-way 2-way combinatorial combinatorial (for i1, i2)

i1 i1 i1 and i2 i1 and i2 i1 i1 -
i2 i2 i1 and i3 i1 and i3 i2 i2 i1
i3 i3 i2 and i3 i2 and i3 i3 i3 i2

not i1 not i1 i1 and i2 i1 and i2 not i1
not i2 not i2 i1 and i3 i1 and i3 not i2
not i3 not i3 i2 and i3 i2 and i3 i1 and i2

i1 and i2 and i3 i1 and i2 and i3 i1 and not i2
not i1 not i1 and i2
not i2 not i1 and not i2
not i3
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Fig. 5. Generated models for the OCL expressions: (a) ocl(Task1) and ocl(Parallel-
Gateway3); (b) ocl(ParallelGateway1) and not ocl(ParallelGateway3); (c) ocl(Parallel-
Gateway1) and not ocl(ParallelGateway3), with failure due to disabling condition.

equivalent to property coverage. Table 1 shows the expressions generated for
pairwise (i.e. 2-way) testing.
As an example, Fig. 5(a) shows a model generated for pairwise testing, con-
sidering the properties Task1 and ParallelGateway3. The model contains
two tasks, the first one is input to the gateway, and the second one not (as
required by the disabling condition of the second invariant). The solver in-
troduces a start event which does not appear in any of the invariants, as it
is required by precondition OneStartEvent. Moreover, the tasks in the two
invariants are not required to be different in the generated model, hence we
obtain a model with two tasks instead of three.
In the MDE community, pairwise testing is being successfully used for soft-
ware product line testing [19, 20], considering pairs of features in a feature
model. In our case there are additional challenges, because our specifications
do not explicitly encode dependencies between their requirements, and the
model generation procedure has to consider the constraints given by the
input meta-model and preconditions.

Closed t-way coverage. As discussed previously, sometimes it is desirable to
test also that the input models that do not contain occurrences of the source
of invariants are handled correctly. Hence, in this criteria we generate the
same models as in t-way coverage, as well as models generated from expres-
sions of the form not ocl(Ii), as Table 1 shows for t=2.

Combinatorial coverage. It generates all models for 1-way, 2-way, ... t-way
coverage, where t is the number of invariants in the specification. Thus, here
we consider all combinations of properties, including all of them simultane-
ously (t-way case). A total of 2n − 1 models are generated (see Table 1).

Closed combinatorial coverage. It generates the same models as in combi-
natorial coverage, and a model from each negated invariant (see Table 1).

Exhaustive coverage. This is the most exhaustive level of coverage, generat-
ing models for all combinations of the occurrence or absence of the source
of the invariants in a specification, or their obliteration. For this purpose
it generates different OCL expressions where the existence of the source of
each invariant can be either mandatory (ocl(Ii)), forbidden (not ocl(Ij)) or
ignored (i.e. the invariant is not taken into account). This yields a number of
3n potential models. The last column of Table 1 shows the OCL expressions
for a specification with two invariants.
As an example, Fig. 5(b) shows a model generated for the OCL expres-
sion ocl(ParallelGateway1) and not ocl(ParallelGateway3). In particular,
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invariant ParallelGateway3 is not satisfied in the model as there is no occur-
rence of its main constraint (i.e. there are not two different tasks).
For a more exhaustive coverage we can enforce the absence of a property
in the generated models in several ways. Up to now, this was achieved by
negating the source of the invariant (not ocl(Ij)). However, there are different
ways in which we can “disable” the testing of a particular invariant: either
because there is no occurrence of the source of its main constraint, or because
there are occurrences of the main constraint but these do not satisfy some
disabling condition. Thus, we generate an OCL expression for each way to
disable the property (the source of the main constraint of the invariant is not
found, or it is found but it does not fulfil some disabling condition). Fig. 5(c)
shows a model used to test invariant ParallelGateway1 and the absence of
ParallelGateway3, the latter due to the occurrence of its disabling condition
(both tasks are input to the gateway).
Altogether, this coverage uses a brute-force approach to the generation of
test models. Unfortunately, many of the generated OCL expressions are un-
satisfiable because they contain contradicting requirements. For instance,
the expression ocl(ParallelGateway2) and not ocl(ParallelGateway1) has
no solution because it looks for an input model with two tasks connected
to a gateway (first invariant), and simultaneously forbids having tasks con-
nected to gateways (negation of the second invariant). The problem is that
the negated invariant is included in the required one. Given that the gen-
eration of models using constraint solving is time-consuming, it is advisable
to discard unsatisfiable expressions prior to model generation. Thus, if the
source of one invariant is included in another one, no expression requiring the
invariant with bigger source and negating the other should be considered.
Finally, it is for us an open question whether such a deep degree of exhaustiv-
ity is worth for certain kinds of specifications, or whether it is more effective
to use less exhaustive types of coverage as the previous ones, enriched with
heuristics that allow for the generation of bigger sets of test input models
(for instance, generating several models from the same OCL expression, or
demanding more than one occurrence of the invariants).

Regardless the chosen level of coverage, there are some configurable aspects
(or heuristics) in the model generation process, which may affect the size and
number of generated models. For example, when looking for models aimed at
testing several invariants with non-empty intersection, different levels of overlap-
ping between them can be considered, ranging from non-overlapping (the source
of the invariants is taken to be disjoint) to a maximal overlap. Second, for spec-
ifications with a high number of requirements or for exhaustive testing, we can
minimise the size of the generated test set by skipping the generation of a model
for a particular combination of properties if this combination is already present
in a model previously generated.

Finally, as the reader may have noticed, the solver may yield the same model
for the resolution of two different OCL expressions. For instance, if the input
meta-model for our running example requires exclusive gateways to have at least
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two output tasks, then the solver will always try to complete the source model
in invariant ExclusiveGateway1 with a new task connected to the gateway, i.e.,
it will try to find a model like the one in invariant ExclusiveGateway2. Thus, the
expressions ocl(ExclusiveGateway1) and ocl(ExclusiveGateway2) are likely to
produce the same input model. At this point, we can simply remove one of the
generated input models from the test set and continue processing the next OCL
expression, as the model enables the testing of both invariants.

5.3 Linking input models and oracles

As a final step, we automatically generate an mtUnit script – another language
in our transML family of languages [12] – to automate the testing of the trans-
formation using the generated models. The script includes a test case for each
invariant and postcondition in the specification, defining the input models to be
used in the test case, and the oracle function checking the particular invariant
or postcondition. By default, all generated models are added to all test cases.
However, if a model was generated from an expression that negated an invariant,
then it is not added to the test case for that invariant, as we already know that
such a model satisfies the invariant vacuously. This allows for a more efficient
testing process, as a given oracle function will not be checked in any model for
which we already know that the oracle function will always hold.

Altogether, the generation of input models, oracle functions and scripts is
done automatically from the same specification. This has the advantage that the
transformation tester does not need to build them separately by hand, identify
the oracle functions to be used for each input model, and build a script to execute
the test. More importantly, being generated from the same specification, both
the models and the oracle functions will work together to validate the same
properties of interest: the models will enable the testing of these properties, and
the oracle functions will check their satisfaction.

The right of Fig. 6 shows an excerpt of the mtUnit script generated from
our specification example, using the property coverage level. Lines 4–17 in the
upper window contain the definition of the test case generated from the invariant
ParallelGateway1. For space constraints, the figure only shows two of the input
models for this test case (lines 5–6). Below, the figure partially shows the result
of running the test.

6 Tool support

The presented framework is supported by an Eclipse, EMF-based prototype
tool which allows building PaMoMo specifications using a textual editor, and
automates the generation of input models and mtUnit test scripts for them. The
left of Fig. 6 shows part of our specification example using the textual editor,
in particular the definition of the invariants ParallelGateway1 (lines 4–12) and
ParallelGateway3 (lines 14–31). The generation of the test suite and input models
from this specification is push-button. In our case, it yields the mtUnit file that
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is partially shown to the right of the figure, in the upper right window. The first
two lines declare the file with the transformation to be tested (either ATL or
ETL) and the source and target meta-models. Lines 4–17 correspond to the test
case for the ParallelGateway1 invariant (for brevity we only show two of its input
test models in lines 5–6). Executing the test suite will run the transformation
for each input model and report whether the result verifies the assertions in the
different test cases (see lower right window in Fig. 6).

Fig. 6. Tool support for PaMoMo specifications (left) and testing (right).

In the back-end, we are using the UMLtoCSP constraint solver [5] for model
finding. UMLtoCSP receives an Ecore meta-model and a file with OCL invari-
ants, and generates a “.dot” file with a model that satisfies the meta-model
integrity constraints and the OCL invariants. Then, we parse this file into an
EMF-conformant representation for its use in mtUnit. Currently, we do not pro-
vide support for model generation heuristics like different overlapping degrees or
detection of redundant models.

7 Discussion and lines of future work

As discussed in Section 2, most black-box testing approaches use meta-model
coverage criteria to ensure that the generated input models will include, alto-
gether, instances of all classes and associations in the meta-model, and extreme
values for the attributes. However, it is difficult to ensure that the generated
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models will include certain structures enabling the testing of relevant transfor-
mation properties, whereas unimportant class instances or model fragments may
appear repeatedly in the generated models.

In contrast, the presented specification-driven approach aims at testing the
intention of the transformation, and ensures that the generated models will allow
testing transformation properties of interest. In this sense, the quality of the gen-
erated test set highly relies on how complete a specification is. If a specification
only covers part of the transformation requirements, then the generated models
may not enable the testing of the underspecified parts. For instance, our running
example does not include invariants over the EndEvent BPMN class, and there-
fore the generated test models may not include instances of this type, leaving its
transformation untested. Thus, we foresee complementing our techniques with
additional coverage criteria, also meta-model based.

Finally, the models we generate with our technique tend to be small. This
has the advantage that the test models remain intentional: they are generated
for testing a particular combination of transformation invariants, which will be
checked by the oracle function more efficiently.

We are currently conducting some experiments of our approach with promis-
ing results. For the specification in this paper, we have implemented an ATL
transformation of 120 lines of code, and performed pairwise testing. To test
the effectiveness of the generated test set, we manually created 40 mutants of
this transformation by injecting faults that followed the systematic classification
in [17] (i.e. navigation, filtering and creation mutations), and then used the test
set on the transformation mutants. The test discovered the faults in 28 out of
the 40 mutants, which gives a mutation score (or effectiveness) of 70% (28/40).

Starting from the results in this and subsequent experiments, in the future
we plan to investigate the effectiveness of our generated input models to detect
transformation failures. This is called vigilance, which is the degree in which
contracts can detect faults in the running system. A relevant question is the level
of detail required in contracts to find a significant number of failures and obtain
high vigilance. Another interesting issue is whether the size of the generated
input test models has an influence on the effectiveness of the test set. In order to
obtain “bigger” test models, we are considering (a) the possibility of including
extra constraints, stating that e.g., models should have a certain number of
instances of each class, and (b) extending the coverage criteria to allow several
instances of the same invariant. Regarding tool support, the most critical factor
is the constraint solver, which is time-costly, and therefore we are currently
working towards a domain-specific constraint solver for models.
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