
Automated Analysis of Integrity Constraints in
Multi-level Models

Esther Guerra∗, Juan de Lara

Computer Science Department
Universidad Autónoma de Madrid (Spain)

Abstract

Multi-level modelling is a technology for model-based development that enables
the incremental refinement of models in successive meta-levels, which results
in simpler and more intentional system descriptions in some scenarios. In this
approach, integrity constraints can be placed at any meta-level, and need to
indicate the meta-level below at which they should hold. This requires a careful
design, as constraints defined at different meta-levels may interact in unexpected
ways. Unfortunately, current techniques for the analysis of the satisfiability of
constraints are designed for two meta-levels only. Hence, nowadays, the analysis
of multi-level solutions is performed by hand, which is tedious and error-prone.

In this paper, we define an automated procedure to check the satisfiabil-
ity of integrity constraints in a multi-level setting, leveraging on “off-the-shelf”
model finders. This procedure is supported by our multi-level modelling tool
MetaDepth, which has been extended to reason on the satisfiability of con-
straints in multi-level models, and to perform automated model completion.

Keywords: Multi-level modelling, Deep meta-modelling, Conceptual
modelling, Management of integrity constraints, Meta-level flattening, Model
finders, Constraint solving, MetaDepth

1. Introduction

Modelling is at the core of every model-based development approach [11]. In
this context, multi-level modelling [7] is a promising technology which promotes
a flexible way of modelling by allowing the use of multiple meta-levels at a time,
instead of just two, as it is customary in mainstream modelling architectures
nowadays [44]. This extra flexibility results in simpler models [9, 20], typically

∗Corresponding author: Esther Guerra, Department of Computer Science, Escuela
Politécnica Superior, Universidad Autónoma de Madrid, Ciudad Universitaria de Canto-
blanco, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain.

Email addresses: Esther.Guerra@uam.es (Esther Guerra), Juan.deLara@uam.es (Juan
de Lara)

Preprint submitted to Data & Knowledge Engineering December 7, 2016

in scenarios where the type-object pattern [33] or some of its variants arise.
Recent works [20] show that this pattern appears frequently in the software ar-
chitecture and enterprise/process modelling domains. Furthermore, multi-level
modelling makes available native meta-modelling facilities at each meta-level,
like type definition, type inheritance, or feature definition. This enables the
creation of domain-specific modelling languages through successive refinements
in different meta-levels, the reuse of language definitions, as well as the dynamic
addition of new types, relations, attributes and constraints at any meta-level in
a straightforward way [20].

While multi-level modelling has benefits, it also poses some challenges that
need to be addressed in order to foster a wider adoption of this technology [18].
One of these challenges is the definition and analysis of constraints in multi-level
models. In a two-level setting, constraints are placed in the meta-models and
evaluated in the models one meta-level below. This enables the use of “off-the-
shelf” model finders [1, 13, 23, 31, 43, 45] to reason about correctness properties,
like satisfiability (is there a valid instance model that satisfies all constraints?).
However, constraints in multi-level models can be placed at any meta-level and
be evaluated several meta-levels below, which may cause unanticipated effects.
This makes the design and reasoning on the validity of constraints more intricate.

In this paper, we present a systematic method for the analysis of a basic qual-
ity property in multi-level modelling: the satisfiability of integrity constraints.
Our method relies on the use of “off-the-shelf” model finders which are able
to perform a bounded search of models conforming to a given meta-model and
satisfying a set of OCL constraints. Since the state-of-the-art model finders only
work in a two-level setting, the method needs to “flatten” the multiple levels in
a multi-level model to be able to use the finders for our purposes. This process
has two orthogonal dimensions, which account for the number of meta-levels
provided to, and searched by, the finder. In this paper, we discuss alternative
flattening algorithms for different analysis scenarios involving combinations of
these two dimensions. Our analysis method is directed to level-agnostic multi-
level modelling approaches, supporting a notion of potency or level, as e.g.
advocated in [8] and supported by tools like MetaDepth [17] or Melanee [5].

This work extends a previous workshop paper [25] with the following con-
tributions: it provides a more rigorous and comprehensive discussion of the
flattening alternatives for each analysis scenario; it expands the related works;
it generalizes the satisfiability checking procedure for an arbitrary number of
meta-levels (instead of just 3); and it demonstrates the feasibility of the pro-
posal through a working implementation atop the MetaDepth [17] multi-level
tool and the USE Validator model finder [31]. This implementation enables the
analysis of the satisfiability of multi-level models and the dynamic completion
of model instances satisfying a number of integrity constraints.

The remainder of the paper is organised as follows. First, Section 2 intro-
duces multi-level modelling using a running example, and Section 3 presents
properties and scenarios in the analysis of multi-level models. Next, Sections 4
and 5 discuss strategies for flattening multi-level models for their analysis with
standard model finders. Then, Section 6 describes the integration of a model

2

finder into MetaDepth to analyse multi-level models. Finally, Section 7 re-
views related works, and Section 8 draws some conclusions and lines of future
work. The paper includes an appendix with the general algorithm for flattening
multi-level models.

2. Multi-level modelling

Multi-level modelling was introduced by Atkinson and Kühne [8] as a way to
overcome the rigidity imposed by the dominant praxis in meta-modelling, where
only two meta-levels are considered at a time: one defining types and the other
defining their instances1. This is problematic, especially when the type-object
pattern comes into play [20]. This pattern arises when there is the need to
define new types and their features dynamically at the instance level (e.g., new
kinds of tasks, like a coding task with a start day), as well as creating instances
of these types (e.g., a particular coding task starting the 11th of May). Since
instances in a two-level meta-modelling architecture do not exhibit properties
of types, like the possibility of being instantiated or define attributes, these
meta-modelling facilities must be explicitly modelled at the type-level, adding
accidental complexity to the definition of a language or problem.

Multi-level modelling overcomes this problem by enabling the use of an ar-
bitrary number of meta-levels, and providing a dual type/instance facet to the
elements within a model, so that they are instances with respect to the meta-
level above, and types with respect to the meta-level below. For this reason, they
are sometimes called clabjects, from the union of the words class and object [8].

As an example, Fig. 1 shows the multi-level definition and usage of a very
simple language for domain-specific process modelling. The upper model, which
corresponds to the language definition, contains the clabject TaskKind represent-
ing types of tasks. This generic language can be refined at subsequent meta-
levels to create domain-specific process modelling languages. For example, the
intermediate meta-level in the figure specializes the language for software en-
gineering process models; hence, the TaskKind clabject is instantiated to create
the new task kinds Coding and Testing. These elements are clabjects, being both
types (they can be instantiated to create specific tasks, like cd1 and cd2) and
instances (of TaskKind, and thus they can assign a value to its feature name).

Since clabjects in the intermediate level have a type facet, they can de-
fine new features (e.g., final in clabject SoftwareEngineeringTask) and inheritance
relationships. Technically, this is possible by adhering to an orthogonal classi-
fication architecture (OCA) [8] which distinguishes two orthogonal typings for
model elements: ontological and linguistic. The ontological typing of an element
expresses the instantiation within a domain. For example, the ontological type
of Coding is TaskKind, and the one of nextPhase is next. The linguistic typing refers

1Although the OMG defines a four-layer meta-modelling architecture [36], only two con-
secutive layers are considered at a time, in the sense that a layer only influences the one
immediately below.

3

TaskKind

next
*name@1: String[0..1]

startDay: Integer

��

��

��� ��������	
����	�����������	��	��� ����	��	��� �

�
������������������������
����	���	�

	������ ������� 	�����������������

SoftwareEngineeringTask: TaskKind

Coding: TaskKind Testing: TaskKind

final: boolean=false
nextPhase:
next

1..*

nextPhase:
next

*

��

name='Coding' name='Testing'

��� ������	��	�����

��� �������������������
�������� �

��� �����!���" �������

��������	#$���
�������%�

��� �����!���"%�����

cd1: Coding

t1: Testing

��

final=false
startDay=1

final=false
startDay=1

��� �������������������
�������� �

 ��	��	��� %������	��	��� �

cd2: Coding

final=false
startDay=5

t2: Testing

final=true
startDay=5

�
n1:nextPhase

n2:nextPhase

n3:nextPhase

Figure 1: Running example: simplified domain-specific process modelling using
multi-level modelling.

to the concept of the meta-modelling language used to define an element. For
example, the linguistic type of Coding is Clabject, whereas the linguistic type of
final is Field. All model elements have a linguistic type, whereas they may lack an
ontological one (e.g., field final has no ontological type). The elements without
ontological type are called linguistic extensions in [17].

Fig. 2 shows the OCA applied to Fig. 1. The simplified linguistic meta-
model to the left pertains to a multi-level modelling architecture. It reflects the
fact that most modelling elements (models, clabjects and fields) have a dual
type/instance facet. The multi-level model to the right, which is an instance
of the linguistic meta-model, shows the ontological typing of elements explicitly
using the ontInstanceOf relation. The linguistic meta-model, also called pan-level
model in other approaches [29], enables uniform modelling at every meta-level.

4

This is why this modelling approach is sometimes called level-agnostic [4].

Model

InstanceType

potency: int

ontInstanceOf

*

Linguistic meta-model (simplified)

*

Clabject

«linguistic

instanceOf»

Field

*

top:Model

potency=2

TaskKind:Clabject

potency=2

middle:Model

potency=1

Coding:Clabject

potency=1

bottom:Model

potency=0

cd1:Clabject

potency=0

:ontInstanceOf :ontInstanceOf

:ontInstanceOf:ontInstanceOf

clabs

fields

:clabs

:clabs

:clabs

Multi-level model (linguistic view)

Figure 2: Dual typing in the OCA: simplified linguistic view of the multi-level
model in Fig. 1.

References have the same type/instance duality as clabjects. In the example,
nextPhase is an instance of next, as well as the type of link n1 in the lowest meta-
level. In this paper, we assume that the instantiation of references is mediated.
This means that it is necessary to create a reference at level 1 (like nextPhase)
to be able to create an instance of next at level 0 (like n1). Moreover, the
cardinality of references constrains the number of instances at the meta-level
right below, but not lower meta-levels. Thus, the cardinality of next controls the
instantiations at level 1, and the cardinality of nextPhase the ones at level 0.

As multi-level modelling spans several meta-levels, it is useful to control the
instantiation depth of elements beyond the immediate meta-level below. This
can be achieved using the notion of potency [8], which is a positive number
(or zero) that can be attached to models, clabjects, fields, references and con-
straints. The potency specifies in how many meta-levels an element can be
instantiated. It gets automatically decremented at each deeper meta-level, and
when it reaches zero, the element cannot be instantiated in lower meta-levels.
If the potency is assigned to a field, then this can be assigned a value only in
the deepest meta-level allowed for the field. In the example, this is useful to
characterize the instances of instances of TaskKind, for which we know that they
have a startDay. If an element does not define a potency, it receives the potency
from its enclosing container, and ultimately from the model. The potency of a
model is similar to the notion of level in some multi-level approaches [7], i.e.,
it defines the relative meta-level at which the elements within a model reside.
In this paper, we use model potency and level interchangeably, and specifically
assume a level-agnostic, potency-based multi-level modelling approach.

In Fig. 1, the potency of elements is indicated with the @ symbol. In this way,
the upper model has potency 2, which is also the potency of all the elements
it contains except those defining a potency explicitly. The clabject TaskKind

has potency 2, which allows the creation of types of tasks in the next meta-

5

level (e.g., Coding), and their subsequent instantiation into concrete tasks in the
bottom meta-level (e.g., cd1). TaskKind defines two fields: name has potency 1 and
therefore it receives values in the intermediate level, while startDay has potency
2 and is used to set the start day of specific tasks in the lowest meta-level.

Constraints can be declared at any meta-level. They are OCL [35] boolean
expressions defined in the context of a model or clabject, expressing additional
requirements for its instances. The potency of a constraint states how many
meta-levels below the constraint will be evaluated. In Fig. 1, clabject TaskKind

defines two constraints named C1 and C2. Constraint C1, which ensures unique-
ness of task kind names, has potency 1; hence, it will be evaluated one meta-level
below, ensuring that all direct instances of TaskKind have a different name. Con-
straint C2 has potency 2, and hence it states that two meta-levels below, the
start day of a task must be less than the start day of any task related to it
by next references. C2 needs to refer to the instances of the instances of the
reference next, two levels below, but the (direct) type of the instances two lev-
els below is unknown beforehand because it depends on the elements created
at level 1. In the example, it means that C2 cannot make use of nextPhase to
constrain the models at level 0. In prior work [25], we solved this problem by
using reflective operations within the constraint. In this paper, we provide a
more natural solution: the constraint uses the reference next, but when this is
evaluated at level 0, it is interpreted as the union of the instances of next at
level 1 (in general, of the instances defined one meta-level above the level where
the constraint is evaluated). For example, when self.next is evaluated on clabject
cd1, it will consider the reference nextPhase that the type of cd1 declares. Should
Coding have declared another instance of next, say named nextOther, then cd1.next

would be evaluated to cd1.nextPhase–>union(cd1.nextOther).
Similarly, a constraint with potency 2 may use types defined at its same level,

like TaskKind.allInstances(). When evaluated at level 0, this constraint will consider
the set of instances of instances of TaskKind ({cd1, cd2, t1, t2} in the example).

Constraints can also be defined in intermediate levels. In the example, con-
straints C3, C4, C5 and C6 are defined at level 1, and thus they need to be satisfied
by models at the subsequent meta-level 0. The purpose of C3 is to enforce posi-
tive starting days, where note that the feature startDay is defined one meta-level
above. C4 ensures that Coding tasks are not final, while C5 requires final Testing

tasks to have no subsequent tasks. Finally, C6 is an attempt to enable some
degree of parallelization of tasks, where the modeller wanted to express that
any coding task should have a testing task starting the same day.

The lower meta-level in Fig. 1 is an attempt (with no success) to instantiate
the model with potency 1. The modeller started adding the coding tasks cd1

and cd2 at days 1 and 5. Then, to satisfy the constraint C6, he added two testing
tasks starting at days 1 and 5 as well. Coding tasks must be followed by some
other task to avoid they are left untested (controlled by the cardinality 1..* of
nextPhase), and the start day of consecutive tasks must be increasing (controlled
by constraint C2). Thus, the modeller connected the tasks as shown in the figure
to satisfy these constraints. However, then, he realised that the coding task cd2

needed to be followed by some other task. Connecting cd2 with t2 is not a valid

6

solution because this would violate constraint C2, which demands increasing
start days for any two connected tasks.

The next section explains how model finders can help developers during the
modelling phase to solve scenarios like the one described, as well as language
designers when refining language definitions at higher meta-levels.

3. Analysis of multi-level models: properties and scenarios

A meta-model should satisfy some basic correctness properties, like the
possibility of creating a non-empty instance model that does not violate the
meta-model integrity constraints. Several works [14, 31, 43] use model finding
techniques to check correctness properties of meta-models in a two meta-level
setting, like:

• Strong satisfiability: There exists a valid instance model that contains
at least one instance of every class and association in the meta-model.

• Weak satisfiability: There exists a non-empty valid instance of the
meta-model.

• Liveliness of a class c: There exists some valid instance of the meta-
model that contains at least one instance of class c.

We claim that model finding can be helpful in a multi-level setting as well. If
we consider level 0 in Fig. 1, a model finder can help model developers by provid-
ing a suitable model completion, or indicating that no such completion exists.
At level 1, it can help language designers to check the consistency of the integrity
constraints at levels 1 and 2 through the analysis of the above-mentioned cor-
rectness properties. At level 2, it can provide example instantiations for levels
1 and 0, to ensure that potencies of the different elements at the top-most level
work as expected.

However, existing model finders only work in a two-level setting: they receive
a meta-model and produce an instance of it, if it exists within the search bounds.
In a multi-level setting, a solver would need to receive several models at different
meta-levels, and produce a set of models at different meta-levels as well. This
could be emulated by flattening operations that:

(a) merge several models at different meta-levels into a single model, which
can be input to the finder.

(b) extend models with linguistic concepts to emulate several meta-levels
within a single model snapshot, which can be produced by the finder.

In this way, these operations must take into account the number of meta-
levels to be used in the analysis (depth of model, item (a) in the previous list), as
well as the number of meta-levels in the generated snapshot (height of snapshot,
item (b) of the list). Fig. 3 shows the analysis scenarios that arise in multi-
level modelling when combining these two dimensions. The background colour

7

of the meta-levels indicates whether the analysis uses an existing model of the
meta-level (shaded), generates a model of the meta-level (blank), or ignores the
meta-level (striped).

@2 depth of

model:1

(a) (b) (c) (d)

@1

@0
height of

snapshot:2

@2
depth of

model:2
@1

@0 height of

snapshot:1

@2
depth of

model:1

@1

@0

height of

snapshot:1

@2
depth of

model:1

@0 height of

snapshot:1

 gap: 1 @1

Figure 3: Different scenarios in the analysis of a multi-level model.

In Fig. 3(a), only the definition of the top-most model is available, and we
want to check whether this model can be instantiated at each possible meta-level
below (2 in the case of having an upper model with potency 2). Thus, in the
figure, the depth of the model to be used in the analysis is 1, while the height of
the sought snapshot is 2. As standard model finders only provide snapshots of
models residing in one meta-level, we need to emulate the generation of models
at several meta-levels (1 and 0 in the figure) within one model.

In Fig. 3(b), several models at successive meta-levels are given, and the goal
is checking whether there is an instance at the next meta-level (with potency 0)
satisfying all integrity constraints in the provided models. This situation arises
when there is the need to check the correctness of the constraints in a meta-level
(e.g., @1) with respect to those in the meta-levels above (e.g., @2). Thus, this
scenario would help in the analysis of the constraints at levels 2 and 1 in Fig. 1.
A particular case of this scenario is model completion, where a fragment of a
model at level 0 is given, and the goal is adding the necessary elements to the
model to make it a valid instance according to the provided models at higher
meta-levels. In Fig. 3(b), the depth of the model to be used in the analysis is
2. Thus, we will need to flatten these two models into a single one, which can
be fed into a model finder for standard snapshot generation.

Fig. 3(c) corresponds to the scenario that standard model finders are able to
deal with, where a model is given, and its satisfiability is checked by generating
an instance of it. However, here the difference is that the generated model
contains elements with type facet (e.g., instances of reference next in Fig. 1
have cardinalities, and SoftwareEngineeringTask declares a new field), while model
finders normally produce models whose elements have only the instance facet.
Moreover, the meta-model to be fed into the solver still needs to be adjusted,
removing constraints with potency bigger than 1.

Finally, in Fig. 3(d), only the top-most model is available, and the designer
is just interested in the analysis of the lowest meta-level. This can be seen
as a particular case of scenario (a), where after the snapshot generation, the
intermediate levels are removed. This scenario is of particular interest to verify
the existence of instances at the bottom level with certain characteristics, like
a given number of objects of a certain type, or to assess whether the designed
potencies for attributes work as expected.

8

Once we have seen the different scenarios, the next two sections describe
how to flatten the depth of models to be used in the search, and how to deal
with the height of the searched snapshot. Scenarios where both the height and
depth are bigger than one are also possible, being resolved by combining the
flattenings we present next. The general algorithm for these flattenings, dealing
with arbitrary depths and heights, is outlined in the Appendix.

4. Static flattening to deal with the depth of the analysed models

To analyse a model in an intermediate meta-level (like in Fig. 3(b), where
the goal is analysing level 1), we need to merge it with its type models at all
meta-levels above in order to consider all constraints and attributes defined
at higher meta-levels. We call this flattening static because it “freezes” the
models to be analysed and eliminates the instance facet of their elements, i.e.,
the merged models become fixed and cannot be modified (e.g., the model at
level 1 cannot be increased with instances of the model at level 2). We do so as
our unique concern for the flattening operation is to ensure that the instances
of the resulting flattened model can be seen as instances of the original multi-
level model, and vice versa. In other words, the flattening operation should
produce a plain (meta-)model that accepts and rejects the same instances as
the multi-level model.

For simplicity of presentation, we illustrate the merging of just two meta-
levels, while the Appendix shows the general algorithm to deal with the merging
of any number of meta-levels.

4.1. The static flattening operation

Next, we describe the flattening of each kind of modelling element separately.
Every case is illustrated with figures showing the original levels 2 and 1, and
the result of the flattening. The flattened model has potency 1, as it becomes a
standard meta-model which can be fed into a model finder. Since the flattening
should preserve the set of instances of the original model, we will illustrate the
equivalence of the original and flattened models by showing examples of valid
and invalid instances at level 0.

Flattening of clabjects. Clabjects at level 2 are set to abstract to prevent
their instantiation at level 0. Moreover, the flattening replaces instantiation
by inheritance relationships. To avoid redundancies, such inheritance rela-
tionships between a clabject at level 1 and its type are only added when the
clabject has no parents. The existing inheritance relations between clabjects
at the same level are kept.

Fig. 4 illustrates the two flattening cases that we distinguish: (a) clabjects
with potency 2 at level 2, and (b) clabjects with potency 1 at level 2. More
in detail, Fig. 4(a) shows on the left a multi-level model made of a clabject
A with potency 2, and an instance of it (A1) with potency 1. In its flattened
version to the right, A becomes abstract and A1 inherits from it. In the

9

multi-level model of Fig. 4(b), the clabject A1 at level 1 has potency 0, and
therefore, the flattening makes it abstract to avoid its instantiation.

@2

@1

A1: A

A

@0

@1

A1

A {abs}

a: A1
@0

a: A

(a) clabject@2 at level@2 (b) clabject@1 at level@2

@2

@1

A1@0: A

A@1
@1

A1 {abs}

A {abs}

@0

a: A1
@0

a: A

M
u

lt
i-

le
v
e

l
m

o
d

e
l F

la
tte

n
e

d
 m

o
d

e
l

F
la

tte
n

e
d

 m
o

d
e

l

M
u

lt
i-

le
v
e

l
m

o
d

e
l

Figure 4: Static flattening of clabjects.

At level 0, both the multi-level models and their flattened versions accept
the instances of clabjects created at level 1 with potency 1 (A1 in case (a)),
and reject the instances of clabjects with potency 2 at level 2 (A in case (a)),
potency 1 at level 2 (A in case (b)), or potency 0 at level 1 (A1 in case (b)).
In the figure, valid model instances at level 0 are marked with a Xsymbol,
while invalid instances are shown with a cross.

Flattening of attributes. Fig. 5 illustrates the three different cases for flat-
tening attributes, and example models at level 0 that are accepted by both
the multi-level models and their flattenings. The attributes with potency
2 defined at level 2 are just copied to the flattened model (see Fig. 5(a)).
This permits assigning them a value at level 0. Similarly, the attributes with
potency 1 defined at level 1 only need to be copied (see Fig. 5(c)).

@2

@1

A1: A

A

@0

@1

A1

A {abs}

a: A1

b: int

b=5

b: int

@2

@1
A1: A

A

@0

@1

A1

A {abs}

a: A1

b@1: int b: int

b=5 C: self.b=5

(a) attribute@2 at level@2 (b) attribute@1 at level@2 (c) attribute@1 at level@1

@2

@1
A1: A

A
@1

A1

A {abs}

b: intb: int

@0
a: A1

b=5

Figure 5: Static flattening of attributes.

The attributes with potency 1 defined at level 2 are also copied to the flat-
tened model, but in addition, their value is emulated by means of a constraint
(see Fig. 5(b)). Taking the example of the figure, this approach permits that
a query at level 0, like a.b, yields the same result 5 in the multi-level and
flattened models. There is a subtle difference though. In the multi-level
model, the slot b is not present at level 0, but the query a.b returns the value
of the attribute in a’s type. In the flattened version, there is a slot for b in

10

every instance of A1, but the constraint forces all of them to have the value
5. Indeed, this is the desired behaviour if we want to use a constraint solver
to instantiate the flattened version of the multi-level model.

Flattening of references. The instantiation semantics of references in multi-
level models is as follows. References with potency 2 defined at level 2 can
be instantiated at level 1, and in turn, such instances can be instantiated at
level 0. Moreover, the cardinality defined by a reference at each level only
affects the level immediately below. In Fig. 6(a), reference r with cardinality
card at level 2, has the instance r1 with cardinality card1 at level 1. At level 0,
there can be instances of reference r1 (as in the left model at level 0, marked
with a X) but not direct instances of r (as in the right model at level 0,
marked with a cross because it is incorrect). Thus, the flattening removes
reference r to avoid its instantiation at level 0, and it copies the reference r1

of potency 1 at level 1 so that it can be instantiated one level below.

@1

A1

A {abs}

A2
r1

card1

(a) reference@2 at level@2 , reference@1 at level@1 (b) reference@1 at level@2

@2

A

r@1card

@1

A1: A

r1: r
A2: A

@1

A1

A {abs}

A2

a1: A1

a2: A2

:r

@0
a1: A1

a2: A2

:r1

@0

@2

A

rcard

@1

A1: A

r1: r
A2: A

card1

a1: A1

a2: A2

:r

@0
a1: A1

a2: A2

:r1

@0

Figure 6: Static flattening of references.

The references of potency 1 at level 2 and their instances at level 1 are
removed in the flattening, as they cannot be instantiated at level 0 (see
Fig. 6(b)). The bottom of Fig. 6(b) shows two incorrect level 0 models, one
attempting to instantiate r1, and the other attempting to instantiate r.

Flattening of constraints. Fig. 7(a) illustrates the flattening of constraints
with potency 2 defined at level 2. These constraints are copied to the cor-
responding class in the flattened model. However, every navigation through
a reference with potency 2 (like r) is replaced by an operation call with the
same name (e.g., by r()). This is so because, as explained above, the flat-
tening removes all references with potency 2; hence, we need to emulate the
removed reference by means of an operation, which is defined in the owner
class of the reference (in A). This operation will be overridden in the sub-
classes to return the union of all instances of the reference the subclasses
define. As an example, Fig. 7(a) shows the redefinition of operation r() in A1.
In the model at level 0, the navigation a1.r yields {a2, a3} in the multi-level
case, while a1.r() yields the same result in the flattened version.

Constraints with potency 1 defined at level 2 are discarded because they

11

@2

@1

A1: A

A

@1

A1

A {abs}

C@1

@2

A

@1

A1

A {abs}
C: … self.r() …

r

A2
r1

(a) constraint@2 at level@2 (b) constraint@1 at level@2

operation r() : Bag(A) = Bag{}

operation r() : Bag(A) =

self.r1->union(self.r2)

A3

r2

@0

a1: A1

a2: A2

a3: A3

:r1

:r2

C@2: … self.r …

a1.r = {a2, a3} a1.r() = {a2, a3}

@1

A1: A

A2: A

A3: A

r1: r

r2: r

@0

a: A1

Figure 7: Static flattening of constraints.

do not constrain level 0, as seen in Fig. 7(b). In the figure, constraint C is
omitted in the flattened model, because it only affects the model at level
1, which we assume correct. Finally, constraints with potency 1 defined at
level 1 are copied without modification, and there is no need to generate
operations that emulate references because any reference of potency 1 at
level 1 will be copied to the flattened model as well.

While we have used two meta-levels to illustrate the static flattening, the
Appendix shows how to generalize this procedure to an arbitrary number of
meta-levels. In particular, when merging more than two levels (say m levels,
where the potency of the highest model is m), the flattening ensures that only
the clabjects with potency 1 at level 1 can be instantiated, as those at higher
levels are set to abstract (Fig. 4). The flattening also ensures that, at level 0,
the attributes with potency m at level m, with potency m-1 at level m-1, etc.
are available (Fig. 5). Attributes with potency p defined at any level n with
p < n are also available in clabjects at level 0, but the value they received at
level n-p is emulated via constraints. The references with potency 1 at level 1
are copied to the flattened model (Fig. 6), while the rest of references are not
copied to disallow their instantiation and their value is emulated with operations
if needed. Finally, only the constraints applicable at level 0 are kept (Fig. 7).

4.2. Example

Fig. 8 shows the static flattening applied to the running example. Levels 1
and 2 are merged, as the purpose is creating a regular instance model at level
0, which is accepted both by the multi-level model and the flattened model.

First, the flattening handles the top level. All its clabjects (TaskKind) are set
to abstract to disable their instantiation. All references are deleted (next), as
only the references at level 1 can be instantiated at level 0. All attributes (name,
startDay) are kept. Constraints with potency different from 2 (C1) are deleted
as they do not constrain the level we want to instantiate (level 0). Constraints
with potency 2 are kept (C2), but any reference navigation expression (next) is
substituted by calls to homonym operations that collect the knowledge about
the instantiation of the reference. In this example, the generated next operations

12

TaskKind

name: String[0..1]

startDay: Integer

SoftwareEngineeringTask

Coding Testing

final: boolean=false

nextPhase

*

nextPhase

*

C7: self.name='Coding' C8: self.name='Testing'

C2: self.next()->forAll(n|

 self.startDay < n.startDay)

C3: self.startDay>0

C6: Coding.allInstances()->exists(c |

 c.startDay = self.startDay)

C5: self.final implies

 self.nextPhase->size()=0

C4: self.final=false

operation next (): Bag(TaskKind) =

 self.nextPhase

operation next () : Bag(TaskKind) = Bag{}

operation next (): Bag(TaskKind) =

 self.nextPhase

operation next (): Bag(TaskKind)= Bag{}

TaskKind

next
* name@1: String[0..1]

startDay: Integer

SwEngineeringTask:

TaskKind

Coding:

TaskKind

Testing:

TaskKind

final: boolean=false

nextPhase:
next

1..*

nextPhase:
next

*

@2

@1

name='Coding' name='Testing'

C1@1: …

C4: …

C3: …

C5: …

C2: self.next->forAll(…)

C6: …

Figure 8: Example of static flattening (for depth 2 and height 1).

encode the fact that nextPhase in Coding and Testing are instances of next, and will
be used when evaluating the constraint. The figure does not show the potency
of elements, which is interpreted as all elements having potency 1.

Then, the model at level 1 is handled. For clabjects, the instantiation rela-
tion is replaced by inheritance. In this way, SoftwareEngineeringTask is set to inherit
from TaskKind instead of being an instance of it. This is not required for Coding

and Testing, as they already inherit from SoftwareEngineeringTask. This flattening
strategy allows clabjects in level 1 to inherit all attributes that were assigned
potency 2 at level 2 (startDay), and receive a value at level 0. The value of at-
tributes at level 1 is emulated by constraints. Thus, the slot name in Coding and
Testing gets substituted by constraints C7 and C8. All attributes, references and
constraints at level 1 are kept. The result of this flattening can be used as input
to a model finder to check whether there is a valid instance at level 0.

4.3. Discussion: effects and limitations of the static flattening

From an ontological point of view, replacing inheritance by instantiation
does not fully preserve the semantics of the multi-level model. For example, in
the multi-level model to the left of Fig. 9, c1 and c2 in the bottom level are not
direct instances of TaskKind. However, in the flattened version to the right, c1

and c2 can be seen as instances of TaskKind, as this is a superclass of Coding (their
direct type). From a pragmatic point of view, this suffices our purposes as we
only need the flattened version of the multi-level model to accept and reject an
equivalent set of instances.

In this respect, note that the instances at the bottom level are slightly dif-
ferent in the multi-level and flattened models: in the multi-level model to the

13

left, the clabjects at level 1 assign a value to the attributes that defined potency
1 (like name), while in the flattened version to its right, the clabjects at level
0 assign these attributes a value which we emulate and fix using constraints.
Again, this equivalence of instances is enough for our goals.

TaskKind

name: String[0..1]

startDay: Integer

SoftwareEngineeringTask

Coding Testing

final: boolean=false

TaskKind

name@1: String[0..1]

startDay: Integer

SoftwareEngineeringTask: TaskKind

Coding: TaskKind Testing: TaskKind

final: boolean=false

@2

@1

name='Coding' name='Testing'

@1

c1: Coding c2: Testing

final=true

startDay=5

final=false

startDay=0

@0

self.name='Coding' self.name=‘Testing'

«instance of» «instance of»

c1: Coding c2: Testing

final=true

startDay=5

name=“Testing”

final=false

startDay=0

name=“Coding”

@0

Figure 9: Comparing instances of multi-level and flattened models.

Finally, there may also be reflective constraints [19] that navigate to upper
ontological meta-levels using meta-modelling facilities, e.g., to obtain the set of
ancestors of a clabject. As our flattening does not preserve this ancestors set, our
method currently does not support the analysis of this kind of constraints. For
example, suppose clabject TaskKind in the multi-level model defines the following
constraint with potency 2:

self.type.ancestors→excludes(TaskKind)

The tasks in the bottom-left level of Fig. 9 fulfil this constraint, but the ones
in the bottom-right level do not. This is so as, to the right, c1.type is Coding, and
Coding.ancestors = Set{SoftwareEngineeringTask, TaskKind}. Emulating the behaviour of
reflective operations in the presented flattening is future work. Nonetheless,
in our experience, reflective constraints are much less frequent than ontological
constraints like the ones we have shown so far, which only access ontological
information [19].

5. Linguistic flattening to deal with the height of generated snapshots

To analyse whether a model can be consecutively instantiated several meta-
levels below (like in Fig. 3(a), where the goal is finding instance models at levels
1 and 0), we need to emulate a set of models spawning several meta-levels within
a single one. For this purpose, we use an operation called linguistic flattening

14

that enriches a model with linguistic information, such as the potency of its
elements and other artefacts, emulating a multi-level model within a flat one.

For clarity of presentation, we assume the scenario in Fig. 3(a), aimed at
generating two models at consecutive levels from a given model at level 2. The
algorithm in the Appendix generalises this scenario to any number of levels.

5.1. The linguistic flattening operation

Fig. 10 shows the schema of the linguistic flattening operation. In this case,
we want to generate instances of MM at levels 1 and 0. For this purpose, we
define MM as an extension of the linguistic meta-model (see Fig. 2), performing
a kind of static flattening. The result of merging MM and the linguistic meta-
model can then be used as the input to a model finder in order to produce
instances at levels 1 and 0 encoded within a single model.

����

���

���

height of
snapshot:2��

	

�
��
�
�

�
�
�
��

�
�
�
�

��	
�����

���������

��

Static flattening

���

���

Linguistic view of
M@1 and m@0

flattening

Figure 10: Schema of linguistic flattening.

In the simplest case, the linguistic meta-model only contains a class named
Clabject that defines typical clabject features like ontological typing and potency
(see Fig. 11(a)). This class is equipped with the following integrity constraints:

C1: This constraint regulates the allowed values for the potency. In Fig. 10, the
potency must be in the interval [0..1] because we consider the generation
of models at levels 1 and 0. In general, the upper bound for the potency
is the potency of the analysed model minus one.

C2: This constraint ensures that the potency of an element is one less than
the potency of its type (if it has one), and both the element and its type
are ontological instances of the same clabject.

C3: This constraint ensures that the elements with potency 0 have no in-
stances.

This linguistic meta-model does not include explicitly the notion of Model
because it is possible to deduce the clabjects that belong to the same model
given an initial multi-level model.

The flattening operation will merge this linguistic meta-model with the
model under analysis, adding the field potency and the relation modelling in-
stantiation to every clabject in the model. This is enough for the purpose of
satisfiability checking if the sought models at level 1 do no need to include
linguistic extensions, i.e., elements without an ontological type like new fields

15

Clabject

potency: int

type 0..1

C1: self.potency>=0 and self.potency<=1

C2: not self.type.oclIsUndefined() implies

(self.potency = self.type.potency – 1 and

self.oclType() = self.type.oclType())

instance

C3: self.potency=0 implies self.instance->isEmpty()

*

(a) (b)

Clabject

name: String

potency: int

type

0..1

instance

*

Feature

DeepElement

FieldReference

Type

DataType

IntType BoolType

Instance

*

features

min: int

max: int

DataValue

IntValue BoolValue

val: int val: boolean

fieldValuefieldType

0..1 0..1

refersTo 0..1

Figure 11: (a) Basic linguistic meta-model. (b) Linguistic meta-model enabling
linguistic extensions.

or new clabjects. To support linguistic extensions, one would need to use a
more complete linguistic meta-model like the one in Fig. 11(b) (in which OCL
integrity constraints are omitted). This meta-model is inspired by the one of
MetaDepth [17]. Using this linguistic meta-model, a model finder could pro-
duce clabjects with new fields and references by instantiating classes Field and
Reference. For simplicity, we will use the simpler meta-model in Fig. 11(a) in the
remaining of this section.

Next, we describe the linguistic flattening of each element kind in detail.

Flattening of clabjects. Fig. 12(a) illustrates the flattening of clabjects with
potency 2. They are copied to the flattened model, and have a constraint
(labelled Ainst) attached to them controlling that their instances at level 0
have an ontological type. In addition, if they have no superclasses, they
are set to inherit from class Clabject from the linguistic meta-model, which
becomes abstract to avoid its instantiation. At the bottom, the figure shows a
multi-level instance to the left, and an equivalent flattened model to the right.
This flattened model provides a linguistic view of the multi-level instance,
reifying the potency as a field of the objects and the instance of relation as a
link. In this way, the flattened model can be produced by a standard model
finder as the two meta-levels are embedded within one.

The flattening of clabjects with potency 1 is very similar to the flattening
of clabjects with potency 2. The only difference is the constraint that gets
generated, which in this case forces the instances of the clabject to have
potency 0. Fig. 12(b) shows an example. At the bottom, the instance of the
flattened model contains an instantiation of A with potency 0. Since A was
originally defined at level 2, its direct instances belong to level 1 (i.e., to the
level of A minus its potency).

Flattening of attributes. Attributes of potency 2 defined at level 2 are copied
to the flattened model, as Fig. 13(a) shows. However, they are set to optional

16

@2

A

@1

Clabject

A

potency: int

type 0..1

instance
*

A1: A

a: A

potency=1

potency=0

:type

Ainst:

 self.potency<1

 implies not

 self.type.oclIsUndefined()

@1

Clabject

A

potency: int

type 0..1

instance
*

a: A

potency=0

Ainst:

 self.potency<1

(a) clabject@2 at level@2 (b) clabject@1 at level@2

@1

A1: A

@0

a: A1

@2

A@1

@1

a: A

@0

m
u

lt
i-

le
v
e

l
in

st
a

n
ce

equivalent

flattened

instance

equivalent equivalent

Figure 12: Linguistic flattening of clabjects.

because their value is mandatory at level 0, but optional at level 1. This
behaviour is enforced by a constraint (bval) that is added to the owner clabject
of the attribute. Fig. 13(a) shows at the bottom a valid multi-level instance
and its equivalent flattened model. The flattened model makes explicit the
instance of relation and the potency, while the object a needs to provide a
value for attribute b, emulating the potency 2 of the attribute in the multi-
level model.

@1

Clabject

A

potency: int

type 0..1

instance
*

A1: A

a: A

potency=1

potency=0

b=true

:type

b: bool

b= true

b: bool [0..1]

bval:

 self.potency=0

 implies not

 self.b.oclIsUndefined()

@1

Clabject

A

potency: int

type 0..1

instance
*

A1: A

a: A

potency=1

b=true

potency=0

b=true

:type

b: bool [0..1]

(a) attribute@2 at level@2 (b) attribute@1 at level@2

@2

A

@1

A1: A

@0

a: A1

b@1: bool

b= true

@2

A

@1

a: A1

@0

A1: A

bval:

 self.potency=1

 implies not

 self.b.oclIsUndefined()

bval2:

 self.potency<1

 implies

 self.b=self.type.oclAsType(A).b

equivalent equivalent

Figure 13: Linguistic flattening of attributes.

Attributes of potency 1 are also copied and set to optional, and a constraint
bval is added to enforce that they receive a value in the clabjects with potency
1 (i.e., at level 1). In addition, we add an extra constraint bval2 to enforce
that the value of the attribute at level 0 is the same as the value of the
attribute at level 1 (see Fig. 13(b)). This is so as the attribute assigned at
level 1 is interpreted as a class attribute (in contrast to an object attribute)
and hence it defines the same value for all instances of the class. This means
that, in the original multi-level model, the query a.b evaluated at level 0

17

yields true. Constraint bval2 ensures that the same result is obtained when
the query is evaluated in the flattened model.

Flattening of references. References with potency 2 can connect clabjects
with potency 2 or higher; for simplicity, we will assume they connect clabjects
of potency 2. This case is illustrated in Fig. 14(a). The flattening copies
the reference r, relaxing its cardinality [m..M] to *, because this reference
will be used to create instances at level 1 (where the cardinality constraint
applies) and at level 0 (where it does not). The two generated constraints
rmin and rmax control the number of instances of the reference at level 1. The
first constraint is not generated if the minimum cardinality is 0, while the
latter is not generated if the maximum cardinality is * (i.e., the reference is
unbounded). The remaining constraint rdef is added to ensure that, given
a reference r connecting two clabjects: (a) the clabjects are at the same
level (self.potency=n.potency), and (b) either the clabjects are at the top-level
(self.type.oclIsUndefined()), or their types are connected by a reference as well.

The figure shows a valid instance of the flattened model that emulates levels
1 and 0. The constraint rdef allows connecting a with b because they have
the same potency, and their types (A1 and B1 respectively) are connected.
On the contrary, a cannot be connected with B1 because their potency is
different. Similarly, rdef allows connecting A1 and B1 because they have the
same potency and are at the top-level (1 in this case).

@2

B

@1

Clabject

B

potency: int

type 0..1

instance
*

A1: A

a: A

potency=1

potency=0

:type

A
r@1

m..M

A
*

r

B1: B

b: B

potency=1

potency=0

:type

:r

(a) reference@2 at level@2 (b) reference@1 at level@2

rdef :

 self.potency=0 implies

 self.r.isEmpty()

rmin [if (m>0)]:

 self.potency=1 implies

 self.r.size()>=m

rmax [if (M<>*)]:

 self.potency=1 implies

 self.r.size()<=M

@1

B1:B A1:A
r1: r

@0

b:B1 a:A1

@2

B

@1

Clabject

B

potency: int

type 0..1

instance
*

A1: A

a: A

potency=1

potency=0

:type

A
r

m..M

A
*

r

B1: B

b: B

potency=1

potency=0

:type

:r
@1

B1:B A1:A
r1: r

@0

b:B1 a:A1

rdef :

 self.r.forAll(n |

 (self.potency=n.potency) and

 (self.type.oclIsUndefined() or

 self.type.oclAsType(A).r

 ->exists(ntype |ntype = n.type))

rmin [if (m>0)]:

 self.potency=1 implies

 self.r.size()>=m

rmax [if (M<>*)]:

 self.potency=1 implies

 self.r.size()<=M

m’..M’

:r1
:r

equivalent equivalent

Figure 14: Linguistic flattening of references.

Note that this flattening does not create an explicit instance of relation be-
tween a reference at level 0 and its type at level 1, and does not emulate the
possibility of setting cardinality values in the references at level 1. These as-
pects would require the use of a more detailed linguistic meta-model like the
one in Fig. 11(b), where references are represented as classes. Nonetheless,
this simpler flattening we propose is enough for our analysis purposes.

Fig. 14(b) illustrates the flattening of references with potency 1. A reference
with potency 1 can connect clabjects with potency 1 or bigger. In the figure,

18

we show a reference that connects clabjects of potency 2. The flattening
copies the reference, relaxing its cardinality to *, and generating three con-
straints. Constraints rmin and rmax control the number of instances of the
reference at level 1, as in the previous case. The remaining constraint rdef

forbids connecting clabjects of potency 0, as a reference with potency 1 can
be instantiated at the next level (1) but not two levels below (0). In case the
potency of the connected clabjects is different from 2, the potencies checked
by this constraint should be adjusted accordingly.

The bottom of Fig. 14(b) shows a multi-level instance and the equivalent
flattened one. In both cases, connecting a with b is forbidden due to the
potency of r in the original multi-level model to the left, and due to the rdef

constraint in the flattened instance to the right.

Flattening of constraints. The flattening of constraints with potencies 2 and
1 is similar, as Figs. 15(a) and 15(b) illustrate. In both cases, the constraint
is added a precondition to ensure the constraint is checked only if the object
has the appropriate potency. Hence, let C be the body of any constraint of
potency 2 defined on a clabject with potency 2 at level 2. Then, the con-
straint is modified in the flattened model to self.potency=0 implies C, reflecting
the fact that the constraint should be evaluated two levels below.

@2

A

@1

Clabject

A

potency: int

A1: A
@1

type 0..1

instance
*

a: A1
@0

A1: A

a: A

potency=1

potency=0

:type

C@2

self.potency=0

implies C

C applies to a

(a) constraint@2 at level@2 (b) constraint@1 at level@2

@2

A

@1

Clabject

A

potency: int

A1: A
@1

type 0..1

instance
*

a: A1
@0

A1: A

a: A

potency=1

potency=0

:type

C@1

self.potency=1

implies C

C applies to A1

equivalent
equivalent

Figure 15: Linguistic flattening of constraints.

Similarly, any constraint C of potency 1 defined on a clabject with potency
2 at level 2 is rewritten to self.potency=1 implies C. In addition, if the constraint
includes the operation allInstances() to retrieve all instances of a type, this
must be modified to select only the instances with the appropriate potency.
In this way, a query like A.allInstances() is replaced by A.allInstances()–>select(a

| a.potency=0) in constraints with potency 2, and by A.allInstances()–>select(a |
a.potency=1) in constraints with potency 1.

Although we have explained the linguistic flattening for two meta-levels, the
Appendix generalizes this flattening to any number of meta-levels. For example,

19

to emulate three meta-levels within a single model, we need to ensure that the
objects in the model have potencies 2, 1 and 0, and define correct instance of
relations. This is checked by OCL constraints similar to those in Fig. 12. In gen-
eral, given a clabject A with potency m, the constraint Ainst shown in Fig. 12(a)
can be generalized to: self.potency < (m-1) implies not self.type.oclIsUndefined(). Sim-
ilarly, we need to generate constraints like those in Fig. 13 to emulate potencies
2, 1 and 0 for attributes. In particular, given an attribute f with potency n,
owned by a clabject A with potency m (where n ≤ m), we generate the following
two constraints attached to A:

fval: self.potency = m-n implies not self.f.oclIsUndefined()

fval2: self.potency < m-n implies self.f=self.type.oclAsType(A).f

Constraint fval2 does not need to be generated if m-n=0. The generalization
of the flattening for the rest of elements is available in the Appendix.

5.2. Example

Fig. 16 shows the result of applying the linguistic flattening to the top level
of the running example. The flattening adds a parent abstract class Clabject

that makes explicit the ontological typing and potency, as well as the integrity
constraints C9 to C12 to ensure correct potency values and typing for types and
instances (cf. Fig. 11(a) and Fig. 12(a)).

TaskKind
next

*

name: String[0..1]

startDay: Integer[0..1]

Clabject

potency: int

type 0..1

C9: self.potency>=0 and self.potency<=1

C10: not self.type.oclIsUndefined() implies

 (self.potency = self.type.potency – 1 and

 self.oclType() = self.type.oclType())
instance

C11: self.potency=0 implies self.instance->isEmpty()

*

C13: self.potency=0 implies not self.startDay.oclIsUndefined()

C15: self.next->forAll(n |

 (self.potency = n.potency) and

 (self.type.oclIsUndefined() or

 self.type.oclAsType(TaskKind).next->

 exists(ntype | ntype = n.type)))

C2: self.potency=0 implies

 self.next->forAll(n |

 self.startDay < n.startDay))

C1: self.potency=1 implies

 (TaskKind.allInstances()->select(a | a.potency=1)->

 forAll(t | t<>self implies t.name <> self.name))

C12: self.potency<1 implies not self.type.oclIsUndefined()

TaskKind

next
* name@1: String[0..1]

startDay: Integer

@2

C1@1: …

C2: self.next->forAll(…)

C14: self.potency<1 implies

 self.name = self.type.oclAsType(TaskKind).name

Figure 16: Linguistic flattening for the example (depth 1 and height 2).

All attributes are set to optional (cardinality [0..1]), and we add constraints
C13 and C14 to ensure that they receive a value in the appropriate level (cf.
Fig. 13). Attribute startDay has originally potency 2, and hence it has to receive

20

a value in tasks with potency 0 (constraint C13). Attribute name has potency 1,
and hence objects at level 0 should have the same value as their types (constraint
C14). As the minimum cardinality of name was originally 0, we do not add a
constraint demanding a value at potency 1 (cf. constraint bval in Fig. 13(b)).

Regarding references, we add constraints ensuring that they are instantiated
in the appropriate levels according to their potency (cf. Fig. 14(a)). In partic-
ular, constraint C15 ensures that reference next does not cross meta-levels and is
correctly instantiated at every meta-level. The latter means that, if two tasks
with potency 0 are related by a next reference, then their types must be related
via a next reference as well. As previously stated, this does not fully capture
the multi-level instantiation semantics as there is no explicit instance of relation
between references with different potencies, but it suffices our purposes.

Finally, the constraints in the original model are modified to take into ac-
count their potency. Thus, C1 is added the premise self.potency=1 implies... so that
it gets applicable only to tasks with potency 1, and similar for constraint C2 for
tasks at potency 0. Additionally, the expression TaskKind.allInstances() in C1 needs
to be replaced by TaskKind.allInstances()–>select(a|a.potency=1) to select only TaskKind

instances at level 1.
The resulting flattened model can be used to search valid models at levels 1

and 0 using a model finder. As an example, the left of Fig. 17 shows a snapshot
with height 2 generated by the USE Validator from the definition in Fig. 16.
The right of the same figure shows the equivalent multi-level model resulting
from the “unflattening” of the generated snapshot.

taskkind3: TaskKind

taskkind4: taskkind3

@1

@0

name = ‘string1’

startDay = -4

n:next
*

Figure 17: Snapshot with height 2 and explicit potency and instantiation re-
lationships, generated by the USE Validator tool (left). Equivalent multi-level
model (right).

5.3. Discussion: alternative flattenings

Next, we discuss the advantages and disadvantages of some flattening alter-
natives that could be used to deal with the analysis of snapshots with height
bigger than 1, and compare those solutions with the one we have proposed.

21

Type-object flattening. The first alternative consists in making explicit the
type/instance facet of clabjects with potency 2. Hence, each clabject C with
potency 2 is split into two classes CType and CInstance holding the attributes,
references and constraints with potency 1 and 2, respectively, and related by a
reference type. For instance, Fig. 18 shows the result of applying this flattening to
the running example, where the original clabject TaskKind becomes split in classes
C TaskKind and I TaskKind. These two classes together can be seen as an instance
of the type-object design pattern [20, 33] or the materialization relation [16].
Similarly, each reference with potency 2 (like next in the example) is split in
two. Though a faithful representation of typing would need a class holding the
type of a reference, we refrain to do so for comparison with our approach.

C_TaskKind
*

name: String[0..1]

type1

instance*

I_TaskKind

startDay: Integer

C1: C_TaskKind.allInstances()->forAll(t |

t <> self implies t.name <> self.name)

next

A

B

C

CA

CB

CC

IA

IB

IC

r

type-object

flattening

@2

*

next

r

ir

type

type2

{redefines

type}

type

C3: self.next->forAll(next |

self.type.next->includes(next.type))

C2: self.next->forAll(n|

self.startDay < n.startDay)

A

B

C
r

Clabject

type 0..1

*

instance

linguistic

flattening

[m..M]

[m..M]

*

*

instance
*

*
instance

instance2

{redefines

instance}*

Figure 18: Type-object flattening: clabjects and references with potency 2 are
split in two, which makes their type and instance facets explicit.

This flattening is valid and it has the advantage that it adds less constraints
to the result than the linguistic flattening. However, it may require rewriting ex-
isting constraints in terms of the introduced types and relations (see for instance
constraint C1, where type TaskKind was replaced by C TaskKind). Constraints that
consider attributes or references with potencies 1 and 2 in the same expression
also need to be rewritten, as we need to navigate the type relation in order to
access features with potency 2 from the class with instance facet, and to access
features with potency 1 from the class with instance facet. Moreover, this flat-
tening duplicates the number of classes and relations (see right of Fig. 18), or
even more if the height of the sought snapshot has more than 2 levels, as this
would require splitting each clabject in more than two classes.

Altogether, we have opted for the linguistic flattening because the result
is more compact, and it is very easy to configure the linguistic meta-model
to accommodate semantic variants or to support the generation of linguistic
extensions (i.e., new clabjects and features without an ontological type).

22

Promotion-based flattening. Another possibility is to proceed in two steps:
first, a model at level 1 is generated, and then, this model is promoted into a
meta-model that can be instantiated at level 0. A disadvantage of this solution
is that it may require rewriting the constraints with potency 2 in terms of the
types and relations generated at level 1. Moreover, it does not consider all
constraints at a time, which may result in different attempts before two valid
models at levels 1 and 0 are obtained. Fig. 19 shows an example of this situation.
The model defined at level 2 forbids task instances at level 0 to be disconnected
(constraint C1), or be followed by another task of the same type (constraint C2).
In the first attempt, the model built at level 1 cannot be instantiated at level 0
(or more precisely, the only valid instance model at level 0 is the empty model)
because coding tasks can only be connected to other coding tasks, thus violating
constraint C2. Thus, it is necessary a second attempt, where the model at level
1 can be instantiated at level 0.

@2

TaskKind

next
*

@1

Coding:TaskKind

@0

Testing:TaskKind

nextPhase:
next

c1: Coding t1: Testing

Step 1: generate

instance at level 1

attempt 1 attempt 2

Step 3: generate

instance at level 0

C1: self.next->notEmpty() or self.taskKind->notEmpty()

taskKind

@1

Coding:TaskKind

@0

nextPhase:
next

C2: self.next->forAll(n | self.oclType() <> n.oclType())

coding:

taskKind

Coding
*

Testing

nextPhase

Coding
*

nextPhase

coding

coding

coding:

taskKind

Step 2: promote

objects into types

C1: self.nextPhase->notEmpty() or self.coding->notEmpty()

C2: self.nextPhase->forAll(n | self.oclType() <> n.oclType())

Figure 19: Promotion-based flattening: models at different levels are generated
separately in successive steps.

Linguistic embedding. This flattening represents the elements of the model
to analyse as instances of a linguistic meta-model. As an example, Fig. 20 shows
the top level of the running example as an instance of the linguistic meta-model
in Fig. 11(b). Checking for instantiability at levels 1 and 0 is equivalent to
completing this model while requiring the existence of clabjects with potency 1
and 0.

Although this approach provides much flexibility, the disadvantage is that
it requires a heavy rewriting of the OCL constraints, because ontological types
like TaskKind do not exist in the linguistic meta-model, and features are explicitly
modelled. For instance, constraint C1 in Fig. 1 should be rewritten as shown in
Listing 1.

23

:Clabject

name= “TaskKind”

potency= 2

:Field

name= “name”

potency= 1

min=0

max=1

:Field

name= “startDay”

potency= 2

min=1

max=1

:IntType

:StringType

:Reference

name= “next”

potency= 2

min=0

max=-1

features

features

features

fieldType

refersTo

fieldType

Figure 20: Linguistic embedding: the model elements are represented as in-
stances of a linguistic meta-model.

1 Clabject.allInstances()−>forAll(c | c.name = ’TaskKind’ implies −− sets the context to TaskKind
2 c.instance−>forAll (self | c.instance−>forAll (t | t <> self implies
3 t.oclAsType(Clabject).features−>select(f | f.name=’name’)−>asSequence()−>first().
4 oclAsType(Field).value.oclAsType(StringValue).val −− emulates t.name
5 <>
6 self.oclAsType(Clabject).features−>select(f | f.name=’name’)−>asSequence()−>first().
7 oclAsType(Field).value.oclAsType(StringValue).val −− emulates self.name
8)))

Listing 1: Rewriting an ontological constraint into a linguistic constraint.

6. Automated analysis of constraints in MetaDepth

This section presents the support of our analysis method by theMetaDepth
tool. MetaDepth [17] is a potency-based multi-level modelling tool developed
by our research group. It provides a simple textual syntax to define multi-level
models, which can be exported into PlantUML2 for their graphical visualiza-
tion. In addition, it is possible to query and manipulate MetaDepth models
using the Epsilon languages [37] to specify constraints, in-place model transfor-
mations, model-to-model transformations and code generators.

As an example, Listings 2 and 3 show the definition of the two upper meta-
levels in Fig. 1, using MetaDepth’s syntax. As in the figures of this paper,
the potency of elements is specified after the ’@’ symbol; if an element does
not specify any potency, it takes the one of its immediate container. Node is
MetaDepth’s keyword for clabject (line 2 in Listing 2), and inheritance is
declared with a colon (lines 7 and 13 of Listing 3). Constraints in MetaDepth
can be defined using Java or the Epsilon Object Language (EOL) [30]. EOL is a
variant of OCL extended with model manipulation primitives, like assignments
and loops. Constraints have a name and a potency, and can be defined in the
context of nodes (i.e., clabjects), edges and models. In Listing 2, the TaskKind

node defines a constraint named C1 with potency 1 (line 7), and a constraint
named C2 with potency 2 (line 11).

Recently, we have extended MetaDepth to automate the analysis of EOL/

2http://plantuml.sourceforge.net/

24

1 Model ProcessModel@2 {
2 Node TaskKind {
3 name@1 : String[0..1];
4 startDay : int;
5 next : TaskKind[∗];
6

7 C1@1:
8 $ TaskKind.allInstances()−>forAll(t |
9 t <> self implies

10 t.name <> self.name) $
11 C2:
12 $ self.next−>forAll(n |
13 self.startDay < n.startDay) $
14 }
15 }

Listing 2: Definition of level 2 in
Fig. 1, using MetaDepth.

1 ProcessModel SEProcessModel {
2 abstract TaskKind SoftwareEngineeringTask {
3 final : boolean = false;
4 C3: $ self.startDay>0 $
5 }
6

7 TaskKind Coding : SoftwareEngineeringTask {
8 name = ’Coding’;
9 nextPhase : SoftwareEngineeringTask[1..∗]{next};

10 C4: $ self.final = false $
11 }
12

13 TaskKind Testing : SoftwareEngineeringTask {
14 name = ’Testing’;
15 nextPhase : Testing[∗]{next};
16 C5: $ self.final implies self.nextPhase−>size()=0 $
17 C6: $ Coding.allInstances()−>exists(c |
18 c.startDay = self.startDay) $
19 }
20 }

Listing 3: Definition of level 1 in Fig. 1,
using MetaDepth.

OCL integrity constraints in multi-level models. For this purpose, we have
integrated the USE Validator [31] model finder, and have made available the
following two new commands in MetaDepth:

• complete: it completes a model at a certain level, to make it satisfy the
constraints of all its model types at higher levels. This corresponds to
the analysis scenario in Fig. 3(b), but the depth is not constrained to be
2. This command can receive additional constraints that the result of the
completion should satisfy, or a model fragment that should be part of the
completion.

• sat: it checks the strong or weak satisfiability of a given model, and gen-
erates a witness model if the model is satisfiable. This corresponds to the
analysis scenario in Fig. 3(a). In this case, it is possible to indicate the
range of levels where satisfiability has to be analysed, that is, the height
of the output snapshot.

Fig. 21 shows the working scheme of the tool to tackle these two commands.
It consists of the following steps:

1. Provision of input for the analysis, using the commands provided by
MetaDepth. Here, the user selects the multi-level model to be analysed
and the analysis scenario (completion, additional constraints, weak/strong
satisfiability).

2. Flattening of multi-level model according to the selected analysis scenario.
This step is internally encoded as a model-to-model transformation.

3. Compilation of the flattened model into the input format of the USE
Validator.

25

4. Automated analysis of the flattened model by the generation of a snapshot
with the USE Validator. If no model satisfying the scenario is found, the
user is warned.

5. Translation of results back to MetaDepth.

multi-level
model

(MetaDepth)

flattened
model

(MetaDepth)

flattened
model
(USE)

flattening
(transformation)

compilation
(generation)

2 3

analysis
(USE Validator)

4

translation of results back into METADEPTH

5

M
E

T
A

D
E

P
T

H

snapshot
(USE)

- model completion
- satisfiability
 - strong-sat
 - weak-sat
 - class liveness

1

Figure 21: Automated analysis of integrity constraints in MetaDepth.

Steps 2 to 5 are automatic, triggered by the selection of the analysed scenario
in step 1. In this way, the user is unaware of the usage of the USE Validator in
the background, or the translation between different formats.

We will demonstrate these steps for the running example, considering the
scenario in Fig. 3(b), i.e., we start from models at levels 2 and 1, and check
their instantiability at level 0. Fig. 8 shows the merging of levels 1 and 2 for
the running example, while part of its translation into the input format of USE
is shown in Listing 4. The USE Validator does not currently support solving
with arbitrary strings. All strings must adhere to the format ’string<number>’.
Thus, our code generator converts any string in the original OCL constraints
and operations into this format. This is why the string ’Coding’ in constraint
C7 gets substituted by ’string0’ in the USE file (line 26 in the listing). Another
limitation of the USE Validator is that it only supports collections of type Set.
Hence, the return type of the operations introduced by our compilation is Set

instead of Bag (see lines 11, 20 and 28). As a consequence, no reference in the
generated snapshot will contain the same object twice.

1 −− generated by MetaDepth
2 model ProcessModelFlattened
3

4 abstract class TaskKind
5 attributes
6 name : String
7 startDay : Integer

26

8 constraints
9 inv C2 : self.next()−>forAll(n | self.startDay < n.startDay)

10 operations
11 next() : Set (TaskKind) = Set{}
12 end
13

14 abstract class SoftwareEngineeringTask < TaskKind
15 attributes
16 final : Boolean
17 constraints
18 inv C3 : self.startDay>0
19 operations
20 next() : Set (TaskKind) = Set{}
21 end
22

23 class Coding < SoftwareEngineeringTask
24 constraints
25 inv C4 : self.final=false
26 inv C7 : self.name=’string0’
27 operations
28 next() : Set (TaskKind) = self.nextPhase
29 end
30 ...

Listing 4: Flattening in Fig. 8 expressed in the input format of USE.

The USE file is given as input to the model finder. In addition, the USE
Validator permits configuring the search scope by setting the minimum and
maximum number of instances of each class and association allowed in the gen-
erated model. To analyse strong satisfiability, the minimum bound of all classes
and associations is set to 1, to enforce there is at least one instance of each one
of them. To analyse weak satisfiability, we set the minimum of all classes and
associations to 0, and introduce a dummy class with minimum and maximum
instantiation scope of 1, and which defines an OCL invariant demanding a non-
empty model as result of the model search. All these settings are automatically
performed by MetaDepth.

If we check the satisfiability of the running example, we discover that the
model is neither weak nor strong satisfiable. Revising the constraints at level
1, we realise that C6 does not express what the designer had in mind (that for
any coding task, there should be a testing task starting the same day), but it
expresses the converse (that for each testing class, a coding class exists). One
solution is moving constraint C6 from class Testing to Coding, modified to iterate on
all instances of Testing (i.e., Testing.allInstances()...). If we perform this change, the
resulting model becomes satisfiable, and the USE Validator generates snapshots
that demonstrate this satisfiability. Such snapshots are translated back into
MetaDepth as feedback to the user, and can be visualized graphically using
PlantUML. Fig. 22 shows to the left the model found by the USE Validator
when checking weak satisfiability, and to the right the one generated in case
of strong satisfiability. As it can be noted, each clabject is decorated with its
potency.

If the scenario to solve is completing a partial model, like the one at the
bottom level of Fig. 1, we need to provide a seed model for the search. For this
purpose, MetaDepth internally encodes the partial model as an additional
OCL constraint demanding the existence of the starting model structure, and

27

Figure 22: Showing weak (left) and strong (right) satisfiability of the running
example.

which is defined in the context of the abovementioned dummy class. Fig. 23
shows the constraint representing our example model in Fig. 1 at level 0 (left),
as well as the found complete valid model (right).

Coding.allInstances()−>exists(cd1,cd2|
Testing.allInstances()−>exists(t1,t2|
cd1 <> cd2 and
t1 <> t2 and
cd1.final = false and
cd2.final = false and
t1.final = false and
t2.final = true and
cd1.startDay = 1 and
cd2.startDay = 5 and
t1.startDay = 1 and
t2.startDay = 5 and
cd1.nextPhase−>includes(cd2,t2)
and
t1.nextPhase−>includes(t2)))

Figure 23: Encoding of incomplete model at level 0 (left). Complete valid
instance (right).

By inspecting the generated model, one can realise that it contains a non-
final Testing task without output tasks. This can be forbidden by modifying
constraint C5 to require non-final Testing tasks to have some task in its collection

28

nextPhase. In this way, the generation of models with different characteristics can
also serve to validate multi-level models.

7. Related work

In this section, we review the main lines of related research. First, we focus
on multi-level approaches with support for expressing constraints. Then, we
review approaches for the analysis of integrity constraints and model completion.
Next, we study works on flattening several meta-levels. Last, we discuss other
multi-level modelling variants and how to adapt our analysis method for them.

Support of constraints in multi-level modelling. There are a few multi-
level approaches that provide support for constraints. Some of them define an
underlying semantics based on constraints, like Nivel [3], which is based on
the Weight Constraint Rule Language (WCRL). This allows some decidable,
automated reasoning procedures on Nivel models, but they lack support for
integrity constraints beyond multiplicities. Other tools like Melanee [5], which
is a graphical multi-level modelling tool based on Eclipse, support the definition
of OCL constraints but not their analysis as we have done in this paper.

Analysis of integrity constraints. There are several tools able to analyse the
satisfiability of integrity constraints in a two-level setting. We have illustrated
our method with the USE Validator [31], which translates a UML model and
its OCL constraints into relational logic, and uses a SAT solver to check its sat-
isfiability. UML2Alloy [2] follows a similar approach. Instead, UMLtoCSP [13]
and EMFtoCSP [23] transform the model into a constraint satisfaction problem
(CSP) to check its satisfiability, and ocl2smt [43] translates it into a set of op-
erations on bit-vectors which can be solved by SMT solvers. The approach of
Queralt [38, 39] uses resolution, and Clavel [15] maps a subset of OCL into first-
order logic and employs SMT solvers to check unsatisfiability. HOL-OCL [12]
is a theorem proving environment for OCL; in contrast to the previous tools,
it does not rely on bounded model finding, but it is able of proving complex
properties of UML/OCL specifications, though sometimes it requires user guid-
ance to complete the proofs. In [24], a thorough review of state-of-the-art tools
devoted to the verification of static software models is presented. All these tools
consider two meta-levels and could be used to solve the multi-level scenarios in
Section 3, once they have been translated into a two-level setting. That is, they
are not directly applicable to a multi-level setting.

There are also works that rely on constraint solving for model completion
in different contexts, but always in a two-level setting. For instance, in [41],
the authors synthesize model editors with model completion capabilities which
take into account the meta-model well-formedness constraints to automatically
build correct models from partial models. For this purpose, the partial model
is transformed into Alloy, and a SAT solver is used to complete it. Thus, in
this approach, meta-model constraints must be expressed as Alloy facts, while
constraints inMetaDepth can be expressed in EOL, which is much closer to the

29

standard constraint language OCL. Moreover, we allow the user to fine-tune the
search by providing features of the desired model by means of constraints. Other
applications of constraint solving for model completion include the synthesis of
input test models from model fragments for transformation testing [26, 42].

Altogether, the use of model finders to verify properties in models is not
novel. However, to the best of our knowledge, ours is the first work targeting
the analysis of integrity constraints in multi-level models.

Flattening of multiple meta-levels. In [28], the authors describe a method
to generate promotion transformations (i.e., model-to-metamodel transforma-
tions) by performing a kind of static flattening. Their goal is enabling deep
meta-modelling atop standard two-level meta-modelling tools. The proposed
flattening has some commonalities with our static flattening, like the substitu-
tion of instantiation by inheritance, or the removal of elements which cannot be
instantiated due to their potency. However, the approach does not deal with in-
tegrity constraints, and only two consecutive meta-levels are considered in each
promotion. In fact, the flattening in Fig. 19 uses this same idea of promoting
models into meta-models, but as we discussed then, this may be inefficient in
our scenario (satisfiability checking) as it may require several model generation
attempts before a valid model at each meta-level is obtained.

In [21], the authors describe a way to represent in a single model a collection
of models at different meta-levels. The approach is similar to our linguistic
embedding in Section 5.3; however, the authors do not discuss the representation
of OCL constraints. One goal of that work is to be able to precisely define and
compare different meta-modelling concepts. Instead, our primary goal is to
flatten existing multi-level models for analysing integrity constraints, for which
we propose several flattenings. Such flattenings could also serve as a means to
compare different variations of multi-level modelling concepts.

In [10], partial instance models are represented as class diagrams. Moreover,
the authors also discuss the usefulness of partial object diagrams to encode
model uncertainty, model variability or underspecification. For this purpose,
they propose a technique similar to our static flattening.

In [32], the authors propose designing UML profiles by first creating a (multi-
level) domain model which yields a more comprehensible design, and then to
convert this domain model into a profile. They represent multi-level models
by means of an UML profile, too. As our goal is to analyse multi-level models
with model finders, we do not flatten into stereotypes. Encodings of multi-level
models using stereotypes were discussed in our previous work [20].

Multi-level modelling variants. In this paper, we have followed a potency-
based, level-agnostic approach to multi-level modelling, as implemented by our
tool MetaDepth. Other approaches, called level-blind [4, 27], abstract away
the notion of level. While our approach is founded on assigning a potency
to constraints to allow their application to the clabjects in a certain level, we
believe our analysis mechanisms could be adapted to level-blind approaches as
well.

30

Some level-agnostic approaches provide variations of certain multi-level fea-
tures, which requires fine-tuning the proposed flattening algorithm. For in-
stance, in dual deep instantiation [34] (DDI) – a variant of deep instantiation
– references can relate clabjects at different meta-levels, and it is possible to
indicate the depth of characterization of the source and target of relationships.
Instead, our algorithm considers that references always connect clabjects at the
same level (although perhaps with different potency). It would be possible to
consider this particular behaviour in our approach, by modifying the generated
constraints (rdef in Fig. 14).

Another source of variability concerns the semantics of deep characteriza-
tion. This paper assumed that instantiation is always mediated (i.e., in order
to create an instance, its type must be defined in the meta-level immediately
above). In [40], the so-called single-potency assigned to an element constrains its
instantiation to only the nth meta-level below (if the specified single-potency is
n). To take this semantics into account, the flattening should not include a clab-
ject if its single-potency is outside the desired snapshot height, and additional
constraints should ensure that instances only have the specified single-potency.

The concepts of multi-level modelling are similar to the materialization pat-
tern [16]. For instance, the work in [16] explains the usefulness of multi-level
constraints, and our method could be used as an analysis mechanism.

Altogether, our approach is novel because the few multi-level modelling tools
that permit specifying constraints (like Melanee) do not permit their analysis,
and the approaches the permit analysing constraints do not support multiple
meta-levels. Finally, the flattenings we have proposed compile multi-level mod-
els into two-level models that accept an equivalent set of instance models. We
believe these flattenings could serve as an effective means to compare different
multi-level modelling approaches.

8. Conclusions and future work

In this paper, we have proposed a method to check the satisfiability of con-
straints in multi-level models using “off-the-shelf” model finders. To this aim,
the method proposes two flattenings that depend on the number of levels fed to
the finder and the height of the generated snapshot. The method is supported
by the MetaDepth multi-level modelling tool, which now permits checking
the satisfiability of a multi-level model, as well as to complete a given model to
make it satisfy all integrity constraints defined at the meta-levels above.

The analysed scenarios consider a top-down or constructive meta-modelling
approach, i.e., one or several instance models are built from a given meta-model.
In the future, we intend to tackle other scenarios, like the completion of models
at level 1 and 2 given a model at level 0, so that they accept the model provided
at level 0. This would be useful to rearchitect meta-models upon introduction
of new model requirements, and in exploratory modelling [6]. For that purpose,
it is not enough to use a simplified linguistic meta-model such as the one in
Fig. 11(a), but a more complete meta-model like the one in Fig. 11(b) would be

31

needed instead. We also plan to analyse other correctness properties in multi-
level models, like independence of constraints [22]. Finally, another goal is to
use the proposed flattenings to clarify the semantics of the different multi-level
modelling variants proposed in the literature.
Acknowledgements. We are grateful to the reviewers for their comments,
which helped in improving previous versions of the paper. This work was sup-
ported by the Spanish Ministry of Economy and Competitivity with project
Flexor (TIN2014-52129-R), and the Madrid Region with project SICOMORO
(S2013/ ICE-3006).

References

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: a chal-
lenging model transformation. In MoDELS, volume 4735 of LNCS, pages
436–450. Springer, 2007.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of
model transformation from UML to Alloy. Software and Systems Modeling,
9(1):69–86, 2010.

[3] T. Asikainen and T. Männistö. Nivel: a metamodelling language with a
formal semantics. Software and Systems Modeling, 8(4):521–549, 2009.

[4] C. Atkinson, R. Gerbig, and T. Kühne. Comparing multi-level modeling
approaches. In MULTI@MODELS, volume 1286 of CEUR Workshop Pro-
ceedings, pages 53–61. CEUR-WS.org, 2014.

[5] C. Atkinson, M. Gutheil, and B. Kennel. A flexible infrastructure for mul-
tilevel language engineering. IEEE Trans. Soft. Eng., 35(6):742–755, 2009.

[6] C. Atkinson, B. Kennel, and B. Goß. Supporting constructive and ex-
ploratory modes of modeling in multi-level ontologies. In SWESE, 2011.

[7] C. Atkinson and T. Kühne. The essence of multilevel metamodeling. In
UML, volume 2185 of LNCS, pages 19–33. Springer, 2001.

[8] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM
Trans. Model. Comput. Simul., 12(4):290–321, 2002.

[9] C. Atkinson and T. Kühne. Reducing accidental complexity in domain
models. Software and Systems Modeling, 7(3):345–359, 2008.

[10] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski. Partial
instances via subclassing. In SLE, volume 8225 of LNCS, pages 344–364,
2013.

[11] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engi-
neering in Practice. Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers, 2012.

32

[12] A. D. Brucker and B. Wolff. HOL-OCL: a formal proof environment for
UML/OCL. In FASE, volume 4961 of LNCS, pages 97–100. Springer, 2008.

[13] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal
verification of UML/OCL models using constraint programming. In ASE,
pages 547–548, 2007.

[14] J. Cabot, R. Clarisó, and D. Riera. On the verification of UML/OCL class
diagrams using constraint programming. Journal of Systems and Software,
93:1–23, 2014.

[15] M. Clavel, M. Egea, and M. A. G. de Dios. Checking unsatisfiability for
OCL constraints. Electronic Communications of the EASST, 24:1–13, 2009.

[16] M. Dahchour, A. Pirotte, and E. Zimányi. Materialization and its metaclass
implementation. IEEE Trans. on Knowl. and Data Eng., 14(5):1078–1094,
Sept. 2002.

[17] J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In
TOOLS, volume 6141 of LNCS, pages 1–20. Springer, 2010. See also http:

//miso.es/tools/metaDepth.html.

[18] J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena. Extending
deep meta-modelling for practical model-driven engineering. Comput. J.,
57(1):36–58, 2014.

[19] J. de Lara, E. Guerra, and J. S. Cuadrado. Model-driven engineering with
domain-specific meta-modelling languages. Software and System Modeling,
14(1):429–459, 2015.

[20] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. When and how to use
multi-level modelling. ACM Transactions on Software Engineering and
Methodology, 24(2):12, 2014.

[21] M. Gogolla, J.-M. Favre, and F. Büttner. On squeezing M0, M1, M2,
and M3 into a single object diagram. In MoDELS’2005 Workshop Tool
Support for OCL and Related Formalisms, LGL-REPORT-2005-001, EPFL
(Switzerland), 2005.

[22] M. Gogolla, L. Hamann, and M. Kuhlmann. Proving and visualizing OCL
invariant independence by automatically generated test cases. In TAP,
volume 6143 of LNCS, pages 38–54. Springer, 2010.

[23] C. A. González, F. Büttner, R. Clarisó, and J. Cabot. EMFtoCSP: a tool
for the lightweight verification of EMF models. In FormSERA, pages 44–50.
IEEE, 2012.

[24] C. A. González and J. Cabot. Formal verification of static software mod-
els in MDE: A systematic review. Information & Software Technology,
56(8):821–838, 2014.

33

[25] E. Guerra and J. de Lara. Towards automating the analysis of integrity con-
straints in multi-level models. In MULTI, volume 1286 of CEUR Workshop
Proceedings, pages 63–72. CEUR-WS.org, 2014.

[26] E. Guerra and M. Soeken. Specification-driven model transformation test-
ing. Software and Systems Modeling, 14(2):623–644, 2015.

[27] B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez. On the search for a
level-agnostic modelling language. In CAiSE, volume 7908 of LNCS, pages
240–255. Springer, 2013.

[28] G. Kainz, C. Buckl, and A. Knoll. Automated model-to-metamodel trans-
formations based on the concepts of deep instantiation. In MODELS, vol-
ume 6981 of LNCS, pages 17–31. Springer, 2011.

[29] B. Kennel. A unified framework for multi-level modeling. PhD thesis, U.
Mannheim, 2012.

[30] D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language
(EOL). In ECMDA-FA, volume 4066 of LNCS, pages 128–142. Springer,
2006.

[31] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive validation of OCL
models by integrating SAT solving into USE. In TOOLS (49), volume 6705
of LNCS, pages 290–306. Springer, 2011.

[32] F. Mallet, F. Lagarde, C. André, S. Gérard, and F. Terrier. An automated
process for implementing multilevel domain models. In SLE, volume 5969
of LNCS, pages 314–333. Springer, 2009.

[33] R. C. Martin, D. Riehle, and F. Buschmann. Pattern Languages of Program
Design 3. Addison-Wesley, 1997.

[34] B. Neumayr, M. A. Jeusfeld, M. Schrefl, and C. Schütz. Dual deep instan-
tiation and its ConceptBase implementation. In CAiSE, volume 8484 of
LNCS, pages 503–517. Springer, 2014.

[35] OMG. Object Constraint Language (OCL) 2.4.
http://www.omg.org/spec/OCL/, 2014.

[36] OMG. OMG’s meta-object facility (MOF). http://www.omg.org/mof/,
2016.

[37] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Po-
lack. The design of a conceptual framework and technical infrastructure
for model management language engineering. In ICECCS, pages 162–171.
IEEE Computer Society, 2009.

[38] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas. Data & Knowledge Engi-
neering, 73:1–22, 2012.

34

[39] A. Queralt and E. Teniente. Verification and validation of UML conceptual
schemas with OCL constraints. ACM Transactions on Software Engineer-
ing and Methodology, 21(2):13, 2012.

[40] A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation
of deep metamodelling. Formal Asp. Comput., 26(6):1115–1152, 2014.

[41] S. Sen, B. Baudry, and H. Vangheluwe. Towards domain-specific model
editors with automatic model completion. Simulation, 86(2):109–126, 2010.

[42] S. Sen, J.-M. Mottu, M. Tisi, and J. Cabot. Using models of partial knowl-
edge to test model transformations. In ICMT, volume 7307 of LNCS, pages
24–39. Springer, 2012.

[43] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verify-
ing UML/OCL models using boolean satisfiability. In DATE, pages 1341–
1344. IEEE, 2010.

[44] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework, 2nd Edition. Addison-Wesley Professional, 2008. See
also http://www.eclipse.org/modeling/emf/.

[45] E. Torlak and D. Jackson. Kodkod: A relational model finder. In TACAS,
volume 4424 of LNCS, pages 632–647. Springer, 2007.

Appendix

For understandability, sections 4 and 5 presented our flattening strategies
for three meta-levels. Next, we provide a general algorithm that implements
such strategies in a systematic way for any depth of multi-level model and any
height of snapshot. Listing 5 presents the pseudocode of a procedure flattening

implementing this algorithm. It has the following four parameters:

• mlm: multi-level model to analyse

• t: potency of the top-most level in the multi-level model

• d: depth, that is, number of levels to analyse

• h: height, that is, number of levels to be generated in the snapshot

The procedure returns a new model with the flattened version of the multi-
level model (i.e., it does not modify the multi-level model in-place, but it per-
forms a model-to-model transformation). The function target(elem) that is used in
the pseudocode receives an element of the input multi-level model, and returns
the element into which it was transformed in the output flattened model.

35

proc flattening (mlm: MultiLevelModel, t: int, d: int, h: int)
result = create model

for level=t to (t−d+1) step −1 do /∗ process each meta−level for the considered depth ∗/

/∗ step 1: copy all clabjects; non−top clabjects are copied as abstract ∗/
for each clabject in mlm.at(level) do

var class = clabject.clone
if level > (t−d+1) then // Fig. 4(a), the level is not the top

set class to abstract
else if clabject.potency = 0 // Clabject cannot be instantiated, set to abstract (cf. Fig 4(b))

set class to abstract
endif
add class to result

/∗ step 2: copy all attribute definitions; if height of snapshot is bigger than 1, the attributes are set to
optional, and forced to have a value according to their potency (see constraints C13−C14 in Fig. 16) ∗/

for each attribute in clabject do
var att = attribute.clone
if h > 1 then

set att.mincardinality to 0
var cr1 = ”self.potency = ” + (clabject.potency−attribute.potency) +

” implies not self.” + attribute.name + ”.oclIsUndefined()”
var cr2 = ”self.potency < ” + (clabject.potency−attribute.potency) +

” implies self.” + attribute.name + ” = ” +
” self.type.oclAsType(” + clabject.name + ”).” + attribute.name

add cr1 to class
add cr2 to class

endif
add att to class

endfor

/∗ step 3: attribute values (i.e., slots) become constraints in the owner class (see C7 in Fig. 8) ∗/
for each slot in clabject do

var cr = ”self.” + slot.name + ” = ” + slot.value
add cr to class

endfor

/∗ step 4: replace instantiation between levels by inheritance (only for clabjects without ancestors) ∗/
if level <> t and clabject.superclasses is empty then

add target(clabject.type) to class.superclasses
endif

endfor

/∗ step 5: copy all inheritance relationships ∗/
for each clabject in mlm.at(level) do

for each superclass of clabject do
add target(superclass) to target(clabjet).superclasses

endfor
endfor

/∗ step 6: copy all constraints evaluated in levels of the snapshot to generate; if height of snapshot
is bigger than 1, modify constraints to consider their potency (see constraints C1−C2 in Fig. 16) ∗/

for each constraint in mlm.at(level) do
if (level−constraint.potency) >= (t−d) and

(level−constraint.potency) <= (t−d−h+1) then
var cr = constraint.clone
if h > 1 then

var execLevel = level−constraint.potency // execution level of constraint
cr = ”self.potency=” + execLevel + ” implies ” + cr
/∗ replaces T.allInsances() by T.allInsaces()−>select (x | x.potency=execLevel) ∗/
cr = replaceAllInstancesOfType (cr, execLevel)

endif
add cr to target(constraint.context)

endif

/∗ step 7: for constraints which are not in the lowest depth, obtain navigated references, and add

36

homonym operations in the reference’s owner class and its subclasses (see operations next in Fig. 8) ∗/
if level > (t−d+1) then

for each reference in constraint do
for each subclass of reference.sourceClass (including itself) do

var op = create operation
set op.name to reference.name
set op.type to Bag of target(reference.sourceClass)
set op.body to union of instances of reference defined in subclass
add op to target(subclass)

endfor
endfor

endif
endfor

endfor

/∗ step 8: copy all references in the lowest depth; if height of snapshot is bigger than 1, add
constraint to control depth of instantiation ∗/
for each clabject in mlm.at(t−d+1)

for each reference in clabject do
var ref = reference.clone
set ref.cardinality to ∗
if h > 1 then

var cr = ”self.potency < ” + (clabject.potency−reference.potency) +
” implies self.” + reference.name + ”−>isEmpty()”

add cr to target(clabject)
endif
add ref to target(clabject)

endfor
endfor

/∗ step 9: if height of snapshot is bigger than 1, add superclass Clabject (see Fig. 16) and integrity
constraints ensuring correct values for the potency (see constraints C9 to C12 in Fig. 16) ∗/
if h > 1 then

var class−clabject = create class ”Clabject”
add integrity−constraints to class−clabject
add class−clabject to result
for each clabject in mlm do

if clabject.superclasses is empty then
add class−clabject to target(clabject).superclasses

endif
endfor

endif

return result
endproc

Listing 5: Flattening algorithm for any depth (d) and height (h).

37

