
Graph Transformation for Domain-Specific
Discrete Event Time Simulation

Juan de Lara1, Esther Guerra2, Artur Boronat3, Reiko Heckel3, and Paolo
Torrini3

1 Universidad Autónoma de Madrid (Spain), Juan.deLara@uam.es
2 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es

3 University of Leicester (UK), {aboronat, reiko, pt95}@mcs.le.ac.uk

Abstract. Graph transformation is being increasingly used to express
the semantics of domain specific visual languages since its graphical na-
ture makes rules intuitive. However, many application domains require an
explicit handling of time in order to represent accurately the behaviour
of the real system and to obtain useful simulation metrics.
Inspired by the vast knowledge and experience accumulated by the dis-
crete event simulation community, we propose a novel way of adding
explicit time to graph transformation rules. In particular, we take the
event scheduling discrete simulation world view and incorporate to the
rules the ability of scheduling the occurrence of other rules in the future.
Hence, our work combines standard, efficient techniques for discrete event
simulation (based on the handling of a future event set) and the intu-
itive, visual nature of graph transformation. Moreover, we show how our
formalism can be used to give semantics to other timed approaches.

1 Introduction

Graph Transformation [5] (GT) is becoming increasingly popular as a means to
express and analyse the behaviour of systems. For example, it has been exten-
sively used to describe the operational semantics of Domain Specific Visual Lan-
guages (DSVLs) in areas such as reliable messaging in SOA [7], web services [12],
gaming [16] and manufacturing [3]. The success of GT is partly because rules
are intuitive and allow the designer to use the concrete syntax of the DSVLs.

When used to specify the DSVL semantics, the rules define a simulator, and
their execution accounts for the state change of the system. This is enough for
languages with a discrete, untimed semantics, where the time elapsed between
two state changes is not important. However, for its use in simulation applica-
tions or real-time systems, where system behaviour depends on explicit timing
(e.g. time-outs in network protocols) and performance metrics are essential, a
mechanism is needed to model how time progresses during the GT execution.

Computer simulation [6] is the activity of performing virtual experiments on
the computer (instead of in the real world) by representing real systems by means
of computational models. Simulation is intrinsically multi-disciplinary, and is at
the core of research areas as diverse as real-time systems, ecology, economy

2

and physics. Hence, users of simulations are frequently domain experts (but
not necessarily computer scientists) who are hardly proficient in programming
languages but on the domain-specific notations used in their scientific domain.

Discrete-event simulation (DES) [2, 6] studies systems where time is modelled
in a continuous way (R), but in which there is only a finite number of events or
state changes in a finite time interval. Many languages, systems and tools have
been proposed over the years in the DES domain [6]. However, these require
specialized knowledge that domain experts usually lack, or consist of libraries
for programming languages like Java. Therefore simulationists would strongly
benefit from a domain-specific, graphical language to describe simulations.

In this paper, we propose such a language by incorporating an explicit han-
dling of time into the GT formalism. In this way, based on the event scheduling
approach to simulation [14], we allow rules to program the occurrence of other
rules in the future. For this purpose, our approach makes use of two concepts:
(i) explicit rule invocation (and cancellation) with parameter passing between
invocations and (ii) time scheduling of those matches. This improves efficiency
in two ways: rule execution is guided by the parameter passing, and the global
time is increased to the time of the next occurring event (instead of doing small
increments). Our goal is to provide the simplest possible time handling primitive,
on top of which other more advanced constructs can be added. We show that
scheduling is one such primitive mechanism, and demonstrate its use to model
(stochastic) delays, timers, durations and periodic activities.
Paper organization. §2 gives an overview to DES and event scheduling. §3
introduces the use of (untimed) GT to describe the semantics of DSVLs. Next, §4
extends GT with rule invocations and parameter passing, called flow grammars.
These are extended with time scheduling in §5. §6 discusses how to model other
timed approaches with ours. §7 covers related research and §8 concludes.

2 Discrete Event Simulation: World Views

Discrete-event systems can be modelled using different styles, or world-views [2,
6]. Each world-view focuses on a particular aspect of the system: events, activ-
ities or processes. An event is an instantaneous change in an object’s state. An
object activity is the state of an object during a time interval, between two events.
A process is a succession of object states defining its simulation life-cycle. There-
fore, there are three different approaches to describe discrete time models [2]:
Event Scheduling (ES) focussing on events, Activity Scanning (AS) focussing on
activities, and Process Interaction (PI) focussing on object processes.

ES languages offer primitives to describe events, their effect on the current
state, and the scheduling of future events. Time is managed efficiently by simply
advancing the simulation time to the time of the next event to occur. AS lan-
guages focus on describing the conditions enabling the start of activities. They
are less efficient because, lacking the concept of event to signal state changes,
they have to advance the time using a small discrete increment. To increase ef-
ficiency, the three-phase approach combines ES and AS so that the start of new

3

activities is only checked after handling an event. Finally, PI provides constructs
to describe the life-cycle of the active entities of the system.

Among the three approaches, ES is the most primitive, as events delimit the
start and end of activities, and a flow of activities makes up a process. Hence,
we concentrate on the ES approach, and in particular on the Event Graphs
notation [14], an example of which is shown to the left of Fig. 1. The event
graph models a simple communication network, where a node sends messages
periodically to a receiver node through a channel with limited capacity.

Nodes in the event graph represent events, and there are two special ones:
the start and the end of the simulation, identified with a tick and a double circle
respectively. The state is represented with variables (ch being the load of the
channel and w the number of messages waiting). Below event nodes, a sequence
of variable expressions describes state changes. Arrows between events represent
schedulings. For instance, the arrow from the event start to end means that,
once start happens, an occurrence of end will happen after tf time units. If no
time is indicated (like in the arrow from start to create) then the target event is
scheduled to occur immediately. Arrows can be decorated with a condition that
is evaluated after processing the source event, and that must be true in order
to schedule the target event at the indicated time. For example, the arrow from
create to send means that after creating a message, this will be sent only if there
is some message waiting and the channel has enough capacity. Finally, although
not shown in the example, event graphs can also contain event-cancelling edges,
represented as dashed arrows. These edges indicate the deletion of all events
of the target type scheduled after the indicated time units, if the condition (if
given) holds at the time the source event is processed [14].

start

{ch=0,
w=0}

create

tm

{w++}

send

w>0 and
ch<cap

rec
tch

{w--,ch++} {ch--}

w>0 and ch<cap

end

tf

start
@0

time=0

create
@0

end
@100

time=0

(ch=0,w=0)

create
@5

end
@100

time=0

(ch=0,w=1)

send
@0

create
@5

end
@100

time=0

(ch=1,w=0)

rec
@7

rec
@7

end
@100

time=5

(ch=1,w=1)

create
@10

FES FES FES FES FES

Fig. 1. An event graph model (left). An execution of the model (right).

DES simulators use a future event set (FES) which contains the events sched-
uled to occur in the future. The simulation proceeds by taking the event with
earliest occurrence time and executing its specification as given by the event
graph (i.e. modifying the system state and scheduling new events). Many algo-
rithms and data structures exist to handle the FES efficiently [6].

The right of Fig. 1 shows some execution steps of the model, using as pa-
rameters tm = 5, tf = 100, cap = 1, tch = 7. Each state transition consumes
the earliest event in the set, updates the current time to the time of this event,

4

modifies the variables, and schedules new events according to the model. The
simulation continues until processing the end event.

The execution of event graphs is efficient, but its modelling sometimes lacks
intuitivity. This is so because event graphs are not domain-specific and force
the use of scattered variables for expressing state changes instead of full-fledged
models and DSVLs. Next we show how GT provides such intuitive formalism,
but lacks time handling capabilities, which we subsequently add in §5.

3 Rule-Based, Domain-Specific, Untimed Simulation

In this section we give an overview of the use of GT to describe the semantics
of DSVLs. The syntax of DSVLs is usually defined through a meta-model, or
type graph, which contains the node and edge types that models can use. For
example, Fig. 2 shows on the left an example meta-model describing a DSVL
in the domain of communication networks and protocols. In this language, a
network is made of nodes which exchange messages through channels. Messages
can be either requests or replies. There are two special kinds of nodes: initiators,
whose attribute isInit is true, and terminal, whose attribute isFinal is true.

Container Message

Node

-isInit:boolean

-isFinal:boolean

Channel Reply Request

*1 at

** out

** in

Fig. 2. The DSVL meta-model (left). A model (right).

The right of Fig. 2 shows an example model in concrete syntax, with an
initiator node to the left (marked with a “play” icon), and a terminal node
marked with a cross to the right. Requests are shown as closed envelopes (like
the one to the left) and replies as open envelopes (like the one to the right).
Channels are depicted as pipes.

We are using this DSVL to describe the dynamics of a simple protocol where
the messages are propagated through the network at random. When a request
reaches a terminal node, this node sends back a reply which traverses the network
randomly until it reaches the initiator. Since channels can lose messages, the
initiator sends a new request periodically. We also model changes in the topology,
so that nodes are connected and disconnected from channels.

We define this protocol with DPO GT rules [5], in which rules have the
form p : 〈L l← K

r→ R, NAC = {ni : L → Ni}i∈I〉. NAC is a set of Negative
Application Conditions. In this paper, we sometimes depict rules using just their
LHS and RHS, and use the concrete syntax of the DSVL.

5

A morphism m : L → G is a valid match for rule p in the host graph G, written
m |=G p, if m satisfies the gluing conditions [5], and if ∀ni : L → Ni ∈ NAC
@n : Ni → G with n ◦ ni = m. If m |=G p, we can perform a direct derivation.

Fig. 3 shows some GT rules of the simulator. Messages are generated from
initiators by rule init. Nodes can send and receive messages. As in [5], objects in
rules can be matched to objects in the host graph with a more concrete type. For
example, rule send contains an object m of type message (depicted as a dotted
envelope) which can be matched to both requests and replies. The rule does not
apply if the message is a request and the node is terminal (first NAC), or if
the message is a reply and the node is initial (second NAC). The first case is
handled by rule reply, which processes the request and generates a reply, whereas
the second case is handled by rule end, which removes the reply from the net.
Rules createConnection and deleteConnection model the creation and deletion
of connections from nodes to channels. The former only applies to nodes without
output channels. Finally, rule lose simulates the loss of messages.

LHS RHS

init

n n m

receive
RHS

mn

c

LHS

n

c

m

reply

RHS

m’

LHS

n m
RHSLHS

end

nn m

LHS

deleteConnection

n

c

RHS

n

c

LHS

send

mn

c

RHS

n

c

NAC

mn

NAC

n m

m

c c

LHS

createConnection

n

c

RHS

n

c

NAC

n

c

NAC

c

c2n

lose
RHS

c

LHS

c

m

Fig. 3. Some rules of the DSVL simulator.

For the purpose of simulation, the standard approach to GT has two draw-
backs. First, even though these rules capture the untimed semantics of the lan-
guage, they cannot represent time-outs, delays or be used to obtain metrics
about the system performance. For example, we would like to set a time-out
in the initiator so that it sends requests each 50 time units, and also to model
transmission delays and the average rate at which channels lose messages.

Second, rules represent events which signal the start or end of activities of the
entities in the system. Thus, the focus on active entities requires an explicit model
for event processing (a process) which identifies the context in which events are
executed in order to pass part of this context to subsequent events. This would
result in more efficient simulations. Moreover, different processes may interact,
e.g. we would like to prevent the deletion of connections if they are being used
to send a message. Hence, next we extend GT with these two features.

6

4 Flow Graph Grammars

An important need in modelling DES is the ability to describe the order in
which events should be executed and their context of execution. For example,
a message has to be sent before it is received. Even though these conditions
can be encoded in the LHS and NACs of the rules, it is sometimes simpler to
resort to rule invocations, as well as more efficient to provide a data dependency
between rules so that the context is passed as a parameter. These dependencies
are conceptually the edges of the event graph (cf. Fig. 1), where for the moment
we are not taking into account the time scheduling.

This feature is already present in tools like Fujaba, GReAT and VMTS4,
but here we give a novel formalization in terms of DPO, and include event
cancelling edges, also new in the GT literature. This formalization will be used
in the next section to incorporate a time scheduling distribution function to rule
invocations. By separating rule invocation from time scheduling we show how to
extend existing tools to handle time.

Hence we start by defining flow grammars as a set of productions P with two
sets I and C of invocation and cancelling edges between productions. Each edge
defines in addition a parameter passing from the source to the target rule. For
technical reasons, we define an auxiliary empty rule ⊥ = 〈∅ ← ∅ → ∅〉, which is
used to invoke the initial rules of the flow.

Def. 1 (Flow grammar) A flow grammar FG = 〈P ∪ {⊥}, end, I, C,G0〉 is
made of a set P ∪ {⊥} of rules; a set end ⊆ P of final rules; a set of invocation
edges I = {(pi, Ri ← Mik → Lk, pk)}, where pi, pk ∈ P ∪ {⊥}, Ri is pi’s RHS
and Lk is pk’s LHS; a set C = {(pj , Rj ← Mjl → Ll, pl)} of cancelling edges;
and an initial graph G0.

Given a rule pi ∈ P ∪ {⊥}, we use the notation I(pi) = {s = (pi, Ri ←
Mik → Lk, pk) | s ∈ I} and C(pi) = {s = (pi, Ri ← Mik → Lk, pk) | s ∈ C}.
Remark. The structure Ri ← Mij → Lj of invocation and cancelling edges is
used to pass the context of execution from Ri to Lj . Mij identifies the elements
of Ri and Lj that have to be matched in the same elements of the host graph.
If Mij is empty, there is no data dependency, but still rule invocation.
Example. Fig. 4 shows to the left the definition of an invocation edge which
passes the node and linked message from rule init’s RHS to rule send’s LHS.
The typing of the message in the Minit,send component is abstract, as the typing
of the message in Lsend is abstract too. The figure shows in the center a visual
representation of a flow grammar built using the rules of Fig. 3 plus the rule
channelCheck shown to the right. We use a notation similar to that of event
graphs, where each node represents a rule, but in the edges we depict the pa-
rameters passed between rules (i.e. the Mij), as these are more informative. For
example, the invocation edge depicted to the left is represented as a directed
edge decorated with Minit,send in this visual representation. The rules marked

4
http://www.fujaba.de, http://www.isis.vanderbilt.edu/tools/GReAT,

http://avalon.aut.bme.hu/∼tihamer/research/vmts/

7

with a tick are the initial rules, which receive an invocation from rule ⊥. We
take the convention of not showing the rule ⊥ and its invocation edges I(⊥).
This event graph representation reveals three processes, given by the connected
components. Hence there are three active entities: messages (their process starts
in init and ends in end), connections and channels. The latter makes each chan-
nel to lose a message periodically. Processes can interact explicitly by means
of cancelling edges. For example, if a connection is used by rule send, then we
cancel its programmed (i.e. invoked) deletions so that the network connectivity
is optimized to the most used connections.

send

receive

reply create
Connection

end

delete
Connection

init

lose

channel
Check

c

ccn

cn

n

n

n m

m

c

n m’

n m
n m

n m

cn

Rinit

n m

mn

c

Lsend

mn

Minit,send

channel
Check
LHS

c

RHS

c

Fig. 4. Parameter passing (left). Flow grammar (center). Additional rule (right).

In order to define the semantics of a flow grammar, first we need to define
the system state. This is made of the host graph, plus a set of events storing
rule invocations (i.e. elements in I) together with the match in which the rules
should be applied (i.e. matches of the invoked rule’s LHS).

Def. 2 (Event and state) Given a flow grammar FG, an event is a tuple e =
〈m : Lj → G, s〉, with s = (pi, Ri ← Mij → Lj , pj) ∈ I and m |=G pj. We write
m(e) = m, s(e) = s, p(e) = pj to refer to e’s match, edge and invoked rule.

A state S = 〈G,E〉 is a tuple made of a graph G, and a set E of events such
that ∀e ∈ E, m(e) |=G p(e).

The execution of a flow grammar starts from the matches of the initial rules
(those invoked from ⊥). These matches are converted into events to populate
the event set E0 of the initial system state.

Def. 3 (Initial state) Given a flow grammar FG, the initial system state init
(FG) is given by S0 = 〈G0, E0〉, where G0 is the initial graph of FG, and
E0 = {(m : Li → G0, s = (⊥, ∅ ← ∅ → Li, pi))|s ∈ I(⊥) and m |=G0 pi}.
Example. The initial system state for the flow grammar of Fig. 4, taking as
initial graph the one shown to the right of Fig. 2, contains one event e whose
production p(e) is init, 6 events due to matches of deleteConnection, and 6 events
due to matches of channelCheck. Thus, there is an event for each match of the

8

initial rules. These events are the initial starting points for the autonomous
execution of each of the three processes in the grammar.

A direct derivation of a flow grammar from a state 〈G,E〉 consists of taking
one event e ∈ E (if more than one exist, one is taken at random), performing
a standard DPO direct derivation using the match m(e), and then calculating
the new set of enabled events E′. This set E′ contains the old matches in E
that were not destroyed by the application of p(e) (set OLD in the definition),
and incorporates at most one event for each rule invoked from p(e) (set NEW).
Moreover, E′ excludes e from the system state, as well as the events cancelled
by the cancelling edges C(p(e)) (set CANC). Please note that the events in E
whose match is destroyed by the application of p(e) are not transferred into E′.

Def. 4 (Derivation) Given a flow grammar FG = 〈P ∪ {⊥}, end, I, C,G0〉,
and a state S = 〈G,E〉, a direct derivation S = 〈G,E〉 e=⇒ S′ = 〈H, E′〉 due to
the event e = 〈mi, (ps, Rs ← Msi → Li, pi)〉 ∈ E is performed as follows:

– H is obtained by a standard DPO direct derivation G
mi,pi=⇒ H, as the left of

Fig. 5 shows, where p(e) = pi and m(e) = mi : Li → G,
– E′ = NEW ∪ (OLD \ CANC), where:

• NEW = {(mk : Lk → H, s) | s = (pi, Ri ← Mik → Lk, pk) ∈ I, @(m′
k, s)

6= (mk, s) ∈ NEW , (1) commutes in Fig. 5 and mk |=H pk},
• OLD = {(h ◦ m′

j , sj = (pk, Rk ← Mkj → Lj , pj)) | ej = (mj : Lj →
G, sj) ∈ E, ej 6= e,∃m′

j : Lj → D with d ◦m′
j = mj (see left of Fig. 5)

and h ◦m′
j |=H pj},

• CANC = {(mc : Lc → H, s′c) ∈ OLD | sc = (pi, Ri ← Mic → Lc, pc) ∈
C, p(s′c) = pc and (2) commutes to the right of Fig. 5 }.

A derivation S0 ⇒∗ Sn is a sequence of zero or more direct derivations.

Li

mi

²²

Ki

ri //lioo

k
²²

Ri

g

²²

Mik
oo

²²
(1)

Li

mi

²²

Ki

ri //lioo

k
²²

Ri

g

²²

Mic
oo

²²
(2)

Lj

mj //
=

m′j

88G D
h //doo H Lk

mkoo G D
h //doo H Lc

mcoo

Fig. 5. NEW and OLD events (left). CANC events (right).

Remarks. The condition @(m′
k, s) 6= (mk, s) ∈ NEW ensures that at most one

match of each invoked rule is added to the set of new enabled matches NEW .
Hence, if more than one match exists, one is chosen non deterministically.

The set NEW contains at most one event for each rule invoked from e. Such
events are demanded to contain a valid match of the LHS of the invoked rule. If
no match is found for a certain invoked rule, then no event is generated for it. In

9

this way, the LHS and NACs of the invoked rules are conditions for programming
the rules, although in contrast to traditional event graphs, we do not visually
show these conditions in the edges (cf. Fig. 4). The set OLD contains the existing
events in the system state whose matches are preserved by the rule execution.
In fact, all matches that are right-parallel independent with the execution of e
are preserved. Finally, the set CANC contains those events in OLD which are
cancelled due to the execution of e. It can be noted that cancellation only affects
to events in OLD (pre-existing events), so that if an event e both invokes and
cancels the same kind of events, invocation prevails.
Example. Fig. 6 shows an example of derivation. The initial system state is
given by the graph G and the events to the left (the actual matches in the
events are given by equality of identifiers in Li and G). Applying the match for
send in the upper left gives as a result graph H. The set of events is updated as
shown to the right of the figure: (i) the applied event is removed, (ii) a new event
receive is added due to the invocation edge coming out from send in the flow
grammar, and (iii) the old event deleteConnection for the match given by objects
n and c is removed due to the cancelling edge. Note how the cancelling edge only
removes one of the deleteConnection events in the system state, namely the one
that contains the node and channel involved in the execution of send, which
are passed as parameters (cf. Fig. 4). As this shows, cancellation edges cannot
always be modelled easily with NACs.

Lsend RsendKsend

c

d

H

e

c

d

D

e

c

d

G

e

Events
before derivation

n n n

m

mn

c

n

c

mn

c

m

m m

n2n2 n2

n3n3n3

...

n

c

m

Lsend

d

n

LdeleteConn.

n

c

LdeleteConnection

n

Linit

Events
after derivation

...

n2

c

m

Lreceive

d

n

LdeleteConn.

n

Linit

Fig. 6. Example of derivation.

Parallelism. A direct derivation adds to NEW at most one match from each
invoked rule. However, for certain applications (e.g. to model broadcasting in
networks), it is interesting to introduce all enabled matches instead. In that case
we would just have to remove the condition @(m′

k, s) 6= (mk, s) ∈ NEW in Def. 4.
This feature is related to the degree of parallelism of the system, called server
semantics in timed Petri nets [10]. The single server semantics assumes that the
system can process one invocation at a time, which corresponds to the original
Def. 4. The infinite server semantics takes into account all enabled matches. The

10

k-server semantics limits the parallelism to at most k matches. These semantics
can be included in our model by adding a function par : I → N ∪ {∗} (“*” for
unbounded). We visually annotate the invocation edges in the event graph by
placing the value of this function near the arrow end. If no annotation is used
in the arrow end, then we assume it is the default value 1.

Next we define the semantics of a flow grammar as the set of all derivations
whose last direct derivation was performed by a final rule. We use a set of traces
(instead of a set of reachable graphs) in order to take performance metrics.

Def. 5 (Flow grammar semantics) Given a flow grammar FG, its seman-
tics is defined as SEM(FG) = {init(FG) ⇒∗ Sn

e⇒ Sn+1|p(e) ∈ end}.

5 Time Scheduling

A flow grammar describes the structure of an event graph, but still lacks the
ability to handle time explicitly. That is, we need to introduce an implicit notion
of simulation time, and to decorate the edges of the event graph with explicit
time values. To this purpose, we extend our grammars with scheduling functions,
associating edges with relative time values, or more generally with probability
density functions p(t). These distributions give the relative likelihood p(t) of the
target rule to be scheduled at relative time t. In this way, we can model either
specific times (e.g., 4 using a degenerate distribution δ4), as well as discrete and
continuous distributions, like the uniform, normal and exponential negative.

Def. 6 (Scheduling grammar) A scheduling grammar SG = 〈FG, tI , tC〉 is
made of a flow grammar FG, a time scheduling function tI : I → R → [0, 1],
and a time cancelling function tC : C → R→ [0, 1].

Remark. Given s ∈ I, tI(s) maps s to a probability density function tI(s) : R→
[0, 1], which assigns each time value x ∈ R a probability tI(s)(x). Hence at a
particular derivation step, we make use of a random variable Xi with density
tI(s), which in the case of scheduling edges can be interpreted as the waiting time
before the corresponding rule is applied, and therefore added to the simulation
time gives the absolute time the rule application is scheduled for.
Example. The left of Fig. 7 shows part of the example flow grammar annotated
with time. For instance, when send happens, an event receive is scheduled with
uniform probability between 5 and 7 units of time later. Rule init is scheduled to
happen periodically each 50 units of time. The cancelling edge and the invocation
edge from init to send have no timing annotation, so 0 is assumed. channelCheck
schedules itself at times given by a normal distribution, and then deletes one
message, if there is any. This periodic behaviour is similar to a timer.

Now we define the semantics of a timed grammar. For this purpose, we extend
states and events presented in Def. 2 with a concrete absolute occurrence time.
The time of events should be greater or equal than the current simulation time.
The occurrence time of an event is produced when it gets scheduled.

11

Def. 7 (Timed event and timed state) Given a scheduling grammar SG, a
timed event is a tuple e = 〈m : L → G, p, t〉, where 〈m : L → G, p〉 is an event
according to Def. 2 and t ∈ R. We write t(e) = t, to refer to e’s scheduled time.

A timed state S = 〈G, FES, t〉 is made of a state 〈G,FES〉 and the current
simulation time t ≥ 0, where ∀e ∈ FES, t(e) ≥ t ∧m(e) |=G p(e).

Remark. We use FES (future event set) instead of E to remark the similarity
of this concept with that of discrete-event systems.

The initial state of a scheduling grammar is a state S0 = 〈G0, FES0, 0〉,
where G0 is the grammar initial graph, zero is the simulation start time, and
FES0 contains one event for each valid match of the initial rules. These are
scheduled to occur at an absolute time given by a set of variables Xi that follow
the density function assigned to the scheduling edges from ⊥. For brevity we do
not include the formal definition, straightforward from Def. 3.

A timed derivation step is performed according to Def. 4, but we select the
event with lowest time (if several, one is taken at random), and we update the
current simulation time to the time of this selected event. In addition, when we
schedule a new event, we choose an absolute time equal to the actual time plus
a random variable with the probability distribution of the scheduled edge e ∈ I.
Finally, given a cancelling edge c ∈ C, we cancel all events that have a greater
occurrence time than the current time plus a random variable that follows the
probability distribution tC(c). In the interest of brevity, we avoid duplicating
Def. 4, only indicating how the times for events and states are calculated.

Def. 8 (Timed derivation) Given a scheduling grammar SG = 〈FG, tI , tC〉,
and a timed state S = 〈G,FES, t〉, a direct timed derivation or state change
S = 〈G,FES, t〉 e=⇒ S′ = 〈H, FES′, t′〉 due to the event e = 〈mi, (ps, Rs ←
Msi → Li, pi), t′〉 ∈ FES can be performed iff @e′ ∈ FES with t(e′) < t(e). The
resulting state S′ is calculated as in the untimed case (see Def. 4), while the time
of events and the set CANC are calculated as follows:

– ∀ei ∈ NEW, t(ei) = t′ + Xi, s.t. Xi is a random variable with density
tI(s(ei)).

– ∀ei ∈ OLD, its occurrence time t(ei) remains unchanged (so that ei “ages”).
– CANC = {(mc : Lc → H, s′c, t

′
c) ∈ OLD | sc = (pi, Ri ← Mic → Lc, pc) ∈

C, p(s′c) = pc, (2) commutes to the right of Fig. 5, t′c ≥ t′ + Xc, with Xc

being a random variable with density tC(sc)}.

Remark. Two conditions are needed for cancelling an event: its match should
commute as square (2) in Fig. 5 indicates, and the absolute time of the cancelled
event should be greater or equal than the current time plus the relative time
the cancelling edge indicates (through a probability distribution). Usually, the
relative time tC of cancelling edges is zero.
Example. The right of Fig. 7 shows a timed derivation like the one in Fig. 6 but
considering time. Before applying the timed derivation, the simulation time is 40
and there are scheduled the following events: send at time 50, deleteConnection

12

at two different matches at time 70, and init at time 100. Applying the first
scheduled rule, which is send, updates the system state as follows: (i) the host
graph is modified by the derivation of the DPO rule (not shown, it is performed
as depicted in Fig. 6), (ii) the simulation time advances to 50 (as this was the
scheduled time for the event), (iii) a new event receive is scheduled at time
50 + 6 = 56, and (iv) one of the deleteConnection events is cancelled.

...

@50

n

c

m

Lsend

@70

n

c

LdeleteConnectiontime = 40

@70

n

d

LdeleteConnection

@100

n

Linit

send

receive

m

c

[5,7]

...

time = 50

@70

n

d

LdeleteConnection

@100

n

Linit

@56

n2

c

m

Lreceive

delete
Connection

cn

init

n

n

m

50

lose

channel
Check

c

c
N(40,2)

Fig. 7. Scheduling of events (left). Update of events in timed derivation example (right).

The language of a scheduling grammar is similar to that of a flow grammar,
but each state is decorated with its absolute time. This is useful to take metrics,
as demonstrated next.

5.1 Metrics

One of the objectives of simulation is to obtain metrics on the system behaviour.
We can take metrics in three ways. The first one is just observing the occurrence
time of events. In particular, the time of the final event in our example tells us the
time taken for the initiator node to get a response. The second is by counting the
occurrences of events of different types. In our case we can, e.g., count the number
of lost messages. The third way involves defining domain-specific metrics. For this
purpose we define graph constraints [5] and use them to check the states in which
the constraints start to be satisfied or are no longer satisfied, so that we obtain
the different time intervals in which the constraint holds. For example, the figure

P Q

c

m

c

to the right shows the definition of a constraint that is satisfied
whenever a channel has at least one message. Then, for all
channels (matches of P), we check the states in which we find a
message (matches of Q). This allows measuring the utilization
time for each channel.

Other more advanced metrics can be taken by counting matches. For instance,
in our example, we not only check that a match for Q exists, but we count how
many of them are in order to measure the utilization level of the channels. Even
though theoretically the metrics are defined on derivations of the language, for
practical purposes these metrics are taken while the simulation is running, to
avoid storing all intermediate states.

13

6 Modelling Higher-level Timed Primitives

Now we show that our formalism is low-level and general enough to give seman-
tics to other timing schemes and primitives [1, 4, 9, 13, 17].
Three phase approach. One of the features of standard GT is that, when the
host graph changes, new matches for the rules of the grammar can be created and
then “discovered” by the pattern matching algorithm. In our approach, matches
for a certain rule are only sought if the rule is explicitly scheduled.

Inspired by the three phase approach [6], we can combine scheduling and
activity scanning by extending the definition of scheduling grammar with an
additional set act ⊆ P . The rules in act represent the start of activities, so that
whenever we execute a rule in P \act, in addition to scheduling events, we seek all
matches from rules in act and schedule them for immediate execution. This does
not increase the expressive power of our original formalism, but is a shortcut
notation that can be modelled by just adding explicit schedulings from all rules
in P \ act to each rule in act (we schedule all matches, as the “*” indicates), at
relative time 0, with empty Mij , as shown to the left of Fig. 8.

p0

pm

a0

ak
… …

act
P

*

*

*

*

pinit

p’init

…

act
P

pend

p’end

σ

σ’

L→L L→R

L’→L’ L’→R’

L→Rσ

L’→R’σ’
…

Delays Event Scheduling

{

}

L→Rτ

L’→R’
…

Event Scheduling

{

}τ’

Stochastic
Delays

pinit

p’init

…

act
P

pend

p’end

τ

τ’

L→L L→R

L’→L’ L’→R’

Fig. 8. Activities (left). Rules with delays (center). Stochastic delays (right).

Delays. Delays are used in [4, 17] to extend GT with time. Once a valid match
for a rule is found, the execution of the rule at such match is delayed by a time
σ (an interval in [4] and other distributions in [17]). We write these rules as
p = 〈L σ→ R〉.

Our events can be used to give semantics to delays. Delayed rules can be
seen as activities that do not modify the system state when they start but only
when they finish after a delay of σ. Hence, we split a delayed rule p in two, pinit

and pend, with the former scheduling the latter after σ. pinit is the identity rule
L → L, pend is the original rule, and the dependency passes L from pinit to pend.
The scheme is shown in the center of Fig. 8.

In the semantics of [4], new matches are sought whenever a delayed rule is
executed. Its infinite server semantics corresponds to our three-phase approach,
where the set act of initial conditions for starting the activities (which in this
case are the delayed rules) is given by the events pinit. To model the single
server semantics of [4], we need to ensure at most one activity of the same type
executing on the same set of objects, hence each pend would have a cancelling
self-loop with the context of execution as parameter.

14

Stochastic delays. In [9], GT rules are extended with stochastic delays given
by a negative exponential distribution. A rule with stochastic delay p = 〈L τ→ R〉
has similar semantics to a delayed rule, but the difference concerns the mem-
ory policy when it is executed. After executing a rule, the remaining time of
scheduled events has to be restarted and resampled again. We can model this by
using cancelling edges. In particular, we split a stochastic rule in two as before,
and in addition, we add cancelling edges from the event pend to each rule pk in
the original stochastic grammar (see the right of Fig. 8). This is so as, at each
derivation, we have to “forget the past” stored in the FES.
Activities, duration and conflicts. As seen before, activities are represented
by an initial event, a final event, and a duration. However, as a difference from
delays, activities may have an observable behaviour when started, and hence
pinit does not need to be the identity rule. Activities can be interruptible or not.
In the first case, the behaviour corresponds with the semantics of our formalism.
The behaviour of non-interruptible activities is more complex to model, because
an initiated activity has to be completed. This means that one cannot schedule
the start of new activities if such activities would destroy the match of the final
event of running activities. This behaviour can be modelled using FES policies.
In this way, a new event at a match m : L → G cannot be scheduled to occur at
absolute time t, if ∃e ∈ FES, where e is the end of some activity, with t(e) ≥ t,
and where m and m(e) are in conflict (executing the rule at m breaks m(e)).
Timers. Several approaches associate timers to model elements [1, 13]. Timers
get an initial value to that is decremented as time progresses. When they expire,
an action represented by a rule act is executed. As the rule channelCheck in our
example shows, we can model timers by an identity rule identifying the element
the timer should be added to, which schedules the rule act after to time units.
Periodic activities. These are activities that are repeated periodically. In our
case, the final event of an activity schedules the initial event of the activity,
passing certain elements in the match, like the init rule does.

7 Related Work

There are three ways of adding time to GT rules: (i) embedding the time in the
host graph (time as data); (ii) incorporating it into the GT formalism (time as
control); and (iii) embedding GT into some other simulation formalism.

In the first approach, [8] proposes using time stamps to mark the elements of
the host graph. GT rules are standard untimed rules, but two conditions are de-
manded concerning the manipulation of local clocks: monotonicity (time should
progress) and uniformity (time should progress at equal rates locally). In [15],
the authors develop a timed approach with the purpose of animating the execu-
tion of GT rules. Conceptually, their rules are classified as internal or external
events (the latter may be triggered by users), but the timing information is rep-
resented in the model, as additional attributes for the different elements. In [3],
the author encodes the list of scheduled events in the host graph, and the events
that have to be executed are modelled as edges pointing to the different graph

15

elements. In our view, these approaches pollute the model (and the simulation
formalism) with timing elements for control purposes.

In the second approach, [4] adapts concepts from timed Petri nets, so that
rules are assigned a range, and rule executions are delayed with uniform proba-
bility in such range. The work of [9] takes concepts from stochastic Petri nets,
so that rules are assigned a delay given by a negative exponential distribution.
An important difference is that, while time is assigned to rules in [4, 9, 17], we
assign it to schedulings. Hence, while they interpret rules as activities with un-
observable initiation, we interpret rules as events, making our approach able to
model all of them in a unified way. In [17], events are related to equivalence
classes of matches modulo renaming, and time can follow a general distribution.
Our approach, based on parameter passing and scheduling, is more efficient as
we do not need to compute the equivalence classes at each derivation step.

Other approaches based on rewriting logic follow a similar purpose. In [1]
elements in models can be assigned timed constructs like clocks or timers. The
work of [13] provides a variety of high-level timed primitives, like periodic ac-
tivities. Rules can manipulate the FES, mixing both control and data. In our
case, a neat separation between control and data is achieved through the use of
scheduling and cancelling relations between events.

With respect to the third approach, in [16], GT rules are embedded into the
DEVS simulation formalism. Rule concurrency issues are difficult to handle and
have to be solved in an ad-hoc way, whereas we use cancelling edges and the
theory of GT to eliminate scheduled matches that are no longer valid.

Finally, our work also relates to the models of computations proposed by the
embedded systems and systems-on-chip communities [11]. However, whereas we
follow the discrete-time model of computation, our approach is not based on
modules (processes) and communication channels between these. Instead, our
behavioural specifications are decoupled from the actual model where they are
executed, allowing its dynamic change.

8 Conclusions and Future Work

Inspired by the Event Scheduling world view of discrete-event simulation, we
have presented a new way to incorporate time into GT. We model events as
rule matches, which may explicitly schedule and cancel the occurrence of other
events in the future, and may pass information (partial matches) between such
event occurrences for efficiency purposes. We have presented the approach in two
steps. Flow grammars organize rule flows into processes with parameter passing,
formalizing a mechanism that is present in several tools such as Fujaba, VMTS
or GReAT. Scheduling grammars are built on top of flow grammars adding time
in a modular way so that other (untimed) approaches can be extended in a
similar way. We have shown that the approach is general enough to model other
timing approaches to GT. Finally, the visual nature of GT makes the approach
suitable in application domains where simulation is used.

16

In the future, we will implement tool support for the approach. We also plan
to work on analysis methods, both taken from Event Graphs theory [14] and
from GT theory, in particular the analysis of rule independence.
Acknowledgements. Work partially sponsored by the Spanish Ministry of Sci-
ence and Innovation, under project “METEORIC” (TIN2008-02081) and mobil-
ity grants JC2009-00015 and PR2009-0019, as well as by the R&D programme
of the Community of Madrid, project “e-Madrid” (S2009/TIC-1650). We are
grateful to the anonymous reviewers, which helped in improving the paper.

References

1. A. Boronat and P. C. Ölveczky. Formal real-time model transformations in MO-
MENT2. In FASE, volume 6013 of LNCS, pages 29–43. Springer, 2010.

2. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, 2nd
Ed. Springer, 2008.

3. J. de Lara. Meta-modelling and graph transformation for the simulation of systems.
Bulletin of the EATCS, 81:180–194, 2003.

4. J. de Lara and H. Vangheluwe. Automating the transformation-based analysis of
visual languages. Formal Aspects of Computing, 22(3–4):297–326, 2010.

5. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

6. G. S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer, 2001.

7. L. Gönczy, M. Kovács, and D. Varró. Modeling and verification of reliable mes-
saging by graph transformation systems. ENTCS, 175(4):37–50, 2007.

8. S. Gyapay, D. Varró, and R. Heckel. Graph transformation with time. Fundam.
Inform., 58(1):1–22, 2003.

9. R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems.
Fundam. Inform., 74(1):63–84, 2006.

10. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

11. D. A. Mathaikutty, H. D. Patel, S. K. Shukla, and A. Jantsch. SML-Sys: a func-
tional framework with multiple models of computation for modeling heterogeneous
system. Des. Autom. Embed. Syst., 12:1–30, 2008.

12. M. Naeem, R. Heckel, F. Orejas, and F. Hermann. Incremental service composition
based on partial matching of visual contracts. In FASE 2010, volume 6013 of LNCS,
pages 123–138. Springer, 2010.

13. J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for modeling
time-dependent behavior of DSLs. In VL/HCC’09, pages 51–55. IEEE, 2009.

14. L. Schruben. Simulation modeling with event graphs. Commun. ACM, 26(11):957–
963, 1983.

15. T. Strobl and M. Minas. Specifying and generating editing environments for in-
teractive animated visual models. In GT-VMT’10, 2010.

16. E. Syriani and H. Vangheluwe. Programmed graph rewriting with DEVS. In
AGTIVE’07, volume 5088 of LNCS, pages 136–151. Springer, 2008.

17. P. Torrini, R. Heckel, and I. Rath. Stochastic graph transformation with regions.
In GT-VMT’10, 2010.

