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Abstract. Model transformation is one of the core techniques in Model
Driven Engineering. Many transformation languages exist nowadays, but
few offer mechanisms directed to the reuse of whole transformations or
transformation fragments in different contexts.
Taking inspiration from generic programming, in this paper we define
model transformation templates. These templates are defined over meta-

model concepts which later can be bound to specific meta-models. The
binding mechanism is flexible as it permits mapping concepts and meta-
models with certain kinds of structural heterogeneities. The approach is
general and can be applied to any model transformation language. In
this paper we report on its application to ATL.

1 Introduction

Model Driven Engineering (MDE) proposes the use of models as the key assets in
the development, and hence all sorts of model modifications are needed. In this
way, model transformations become one of the basic building blocks of MDE.

Even though MDE is being successfully applied in many scenarios, it still
needs appropriate mechanisms to handle the development of complex, large-scale
systems. One such mechanism is a facility to make transformations reusable, so
that we can apply them to different contexts (i.e. with different meta-models).
This would enable the creation of transformation patterns and idioms [3], as
well as libraries of transformations addressing recurrent transformation prob-
lems. Some examples of manipulations commonly needed in different contexts
are calculating the transitive closure of a relation, moving and merging nodes
through a relation (like pulling up a method or an attribute), and cycle de-
tection. Unfortunately, the definition of model transformations is normally a
type-centric activity, in the sense that transformations are defined using types
of specific meta-models, thus making their reuse for other meta-models difficult.

In this work, we bring into model transformation elements from generic pro-
gramming in order to make model transformations reusable. In particular, we
propose defining model transformation templates over concepts [6, 10, 17]. In
generic programming, a concept expresses the requirements for a type param-
eter of a template. In our case, a concept is a meta-model that defines the set
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of requirements that a specific meta-model must fulfill to be used in a transfor-
mation. Thus, when then concept is bound to a specific meta-model satisfying
the concept requirements, the transformation becomes applicable to this meta-
model.

In [6] we proposed concepts as a mechanism to add genericity to models,
meta-models and in-place transformations. However, we only allowed a restricted
kind of binding between the concepts and the meta-models consisting in an exact
embedding of the former in the latter (i.e. no structural heterogeneity was al-
lowed). In this paper we apply concepts to model-to-model transformations, and
propose a more powerful notion of binding that permits replication of elements
in the concept, as well as adaptations from the structure in the concept to the
structure of the meta-model. Both types of variability induce modifications in
the transformation template when instantiation takes place.

As a proof of concept, we report on an implementation on top of ATL [11]
where the adaptation of the transformation templates is realized by a higher-
order transformation (HOT). Nonetheless, our approach is general and therefore
applicable to other transformation languages.
Paper Organization. Section 2 reviews the main elements of generic program-
ming, and outlines our approach. Section 3 introduces transformation templates,
concepts and bindings. Next, Section 4 adds flexibility to our approach by provid-
ing multiple cardinality for our concepts and adapters for the bindings. Section 5
outlines our exemplary implementation on top of ATL and Section 6 presents a
case study. Section 7 compares with related work and Section 8 concludes.

2 Genericity in model transformation

Genericity is a programming paradigm found in many languages like C++,
Haskell, Eiffel or Java [8]. Its goal is to express algorithms and data structures in
a broadly adaptable, interoperable form that allows their direct reuse in software
construction. It involves expressing algorithms with minimal assumptions about
data abstractions, as well as generalizing concrete algorithms without losing ef-
ficiency. It promotes a paradigm shift from types to algorithms’ requirements,
so that even unrelated types may fulfil those requirements, hence making algo-
rithms more general and reusable [10, 17].

Genericity is realized through function or class templates in many program-
ming languages, like C++ or Java. Templates declare a number of type param-
eters for a given code fragment, which later can be instantiated with concrete
types. Templates can also define requirements on the type parameters, so that
only those concrete types fulfilling the requirements are considered valid. A unit
expressing a set of requirements is called a concept [10], and usually declares the
signature of the operations a given type needs to support in order to be accept-
able in a template. Hence, templates rely on concepts to declare the requirements
of their type parameters.

Based on these ideas, we have defined the approach for generic model trans-
formations that is outlined in Fig. 1. Similar to programming templates, we build
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generic model transformation templates. These are transformations in which the
source or the target domain (or both) is not tied to a specific meta-model, but
contains variable types. The requirements for the variables types (needed prop-
erties, associations, etc.) are specified through a concept. A concept has the form
of a meta-model as well, but its enclosing elements are interpreted as variables
that need to be bound to elements of some concrete meta-model.

Source
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Generic

M2M transf.
(template)

from to

Concrete

source MM

binding

Instantiated
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instantiation1

Source

model

conforms
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execution

Definition
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Execution

Concrete

target MM

binding1

Target
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Fig. 1. Working scheme of our approach. In this case both the source and target do-
mains are concept meta-models.

Once bindings between concepts and concrete meta-models are established
(step 1 in Fig. 1), our approach automatically instantiates a concrete transfor-
mation from the template (step 2), which can be executed on regular instance
models of the bound meta-models. This approach yields reusable transforma-
tions because we can bind a concept to several meta-models, so that the generic
transformation is applicable to all of them. Finally, although the figure assumes
a generic transformation with both domains being concepts, either the source
domain or the target domain could be a concrete meta-model.

A crucial issue to increase the reuse opportunities of a transformation tem-
plate is to have a flexible binding mechanism allowing concepts to be mapped
to a large number of meta-models. We propose two such mechanisms: multiple
cardinality (or variability of concept elements) and adaptation. As we will see,
the more sophisticated the binding is, the more complex the instantiation of the
transformation becomes. In this paper, the instantiation mechanism for template
transformations is implemented by a HOT over ATL transformations.

3 Concepts, bindings and templates

A meta-model concept is a specification of the minimal requirements that a meta-
model should fulfil to qualify for the source or target domain of a generic model-
to-model transformation (or in general, of a generic model management opera-
tion [6]). From a practical point of view, a concept is just a meta-model and can
be used as the source or target domain of a generic transformation template.
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As an example, the upper part of Fig. 2 shows the definition of a generic
transformation that populates a Java model from any object-oriented (OO) sys-
tem. In this case, the domain from is specified by a concept, whereas the domain
to is a concrete meta-model (a simplification of the Java meta-model). The trans-
formation template, shown to the right with ATL syntax, generates a Java class
from each OO class, and a Java field from each attribute.

rule class2jclass {

from class : OO!Class

to jclass : Java!JavaClass 

( name <- class.name,

extends <- class.superclasses.first() )

}

rule attribute2field {

from att : OO!Attribute

to field : Java!Field

( name <- att.name,

owner <- att.owner,

isPublic <- att.isPublic )

}

JavaClass

name : String
extends

Domain to: meta-model

owner

*

name : String

isPublic : boolean

Field

Class

name : String
superclasses

*

Domain from: concept

owner

*

name : String

isPublic : boolean

Attribute

Binding of concept:

generic transformation (template)

Class Component

Class.name Component.name

Class.superclasses Component.parents

Attribute Property

Attribute.name Property.name

Attribute.isPublic Property.public

Attribute.owner Property.cprop

Component

parents *

cprop

*

public : boolean

readonly: boolean

Property Port
in : boolean

out: boolean

*

the transformation can be applied

to instances of the Components meta-model

Domain from: meta-model Components

name : String

NamedElement

cport

Fig. 2. Transformation template from a concept for OO systems into a fixed Java
meta-model, and binding of the concept to a particular meta-model for components.

In order to execute a generic transformation we have to map or bind the
concepts involved in the template to specific meta-models. If one represents
algebraically concepts and meta-models as attributed type graphs with inher-
itance [5], then, in the simplest scenario, the binding is a morphism (a func-
tion) that takes into consideration the semantics of inheritance (so-called clan-
morphisms in [5]). In the following we just provide an intuition of this binding
function and purposely refrain from a formalization.

In the simplest case, the binding establishes a 1-to-1 correspondence from
each class in the concept to a class in the bound meta-model, from each attribute
in the concept to an attribute in the meta-model, and from each association in
the concept to an association in the meta-model. The binding also imposes some
additional conditions to ensure the compatibility of the mapped associations and
attributes, so that the operations performed in the concept can be performed in
the bound meta-model types. In particular:
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– the source and target classes of an association must be mapped to the source
and target classes of the bound association (or to some of their subclasses).

– Attributes must be mapped to other attributes of the same type, or of a
subtype. Moreover, the container classes of two mapped attributes must also
be bound. There is an exception though: it is allowed to map an attribute to
an inherited attribute (i.e. an attribute defined in a superclass). For instance,
in Fig. 2, attribute name of Class is bound to attribute name of NamedElement,
although Class is not mapped to NamedElement. Nonetheless this is allowed
because Class is bound to Component, of which NamedElement is a superclass.

– if a concept represents the target of a transformation, meaning that its in-
stances (or more precisely the instances of the bound meta-models) are being
populated by the transformation, then it is not possible to map an associa-
tion in the concept with an association with a lower upper bound or higher
lower bound.

The binding should be a function from the set of classes, associations and
attributes. Hence, we cannot map one element in the concept to two elements in
the meta-model. Nonetheless, it is possible to map several elements in the con-
cept to the same element in the meta-model (i.e. having non-injective bindings)
whenever this do not lead to conflicting rules. In addition, not all elements in
the meta-model need to receive a binding from the concept (i.e. non-surjective
binding).

As an example, Fig. 2 shows a valid binding from a concept modelling the
requirements of the source domain of a transformation (an OO system), to a
particular meta-model for defining components. The binding maps classes Class

and Attribute in the concept to classes Component and Property in the meta-model,
associations superclasses and owner to parents and cprop, attribute name of Class to
the inherited attribute name in the component, and attributes name and isPublic

in class Attribute to attributes name and public in class Property. Once the binding
is established, the transformation can be applied to instances of the bound meta-
model, creating a Java class for each component in the meta-model instance.

From the point of view of the model transformation engine builder, there are
two ways to apply a transformation template to the bound meta-model(s). The
first possibility is to encode a HOT that takes as input the template, the bound
meta-model(s) and the binding(s), and produces a transformation that is directly
applicable to the bound meta-model(s). The HOT replaces in the template each
class, association and attribute declared in the concept by elements in the con-
crete meta-model, as specified by the binding. For instance, the transformation
generated from our example would use components and properties, but no OO
classes anymore. In this way, the resulting transformation can be executed by a
regular transformation engine. This is the approach we have taken in this paper.
The second possibility is leaving the transformation unmodified, and including
a level of indirection managed by the transformation engine. In this case, when
a generic transformation is executed for a given binding and the engine finds an
element defined by a concept, then it has to go through the binding to obtain
the bound type. This approach is followed by tools such as [6].



6

4 Adding flexibility to concepts and bindings

The presented binding mechanism enables a certain degree of reuse, but it lacks
flexibility as the meta-model must embed the concept, that is, the concept and
the bound part of the meta-model must be structurally equal.

For example, in Fig. 2 we may also want to treat Ports as Attributes to generate
Java fields for them. However, we defined the binding as a function and, therefore,
an element in the concept cannot be bound to several meta-model elements.
In Section 4.1 we will show how to extend a concept with an interval for the
cardinality of its elements so that they can be replicated and subsequently bound
to more than one element in the meta-models.

Once we can bind Attribute to Port (in addition to Property), we should map
attribute isPublic to some attribute in Port. However, Port does not define any
meaningful attribute modelling visibility. In Section 4.2 we will show how to
use binding adapters to overcome this problem. An adapter is an expression
evaluated in the context of the bound meta-model, which returns a suitable
element as the target of a binding. In this way, an adapter could provide a binding
of isPublic to the value true. In general, adapters resolve structural heterogeneities
between concepts and meta-models, in the style of [19].

4.1 Cardinality of concept elements

Our previous binding definition requires each element in the concept to be
mapped to exactly one element in the bound meta-model (1-to-1 binding). How-
ever, in practice, we sometimes find that a class in a concept is modelled by
several classes in the meta-model. If all these classes have a common parent,
then the binding can be performed as usual by mapping the parent. The prob-
lem arises when the classes in the meta-model do not share a common parent,
or when there is a common parent but it has more children than those we would
like to bind, so that mapping the parent is not a suitable solution.

In order to solve this problem, we assign a cardinality to classes and associa-
tions in concepts. In this way, those elements in the concept that are allowed to
be bound to one or more elements in the meta-model must define a cardinality
interval “1..*” (1-to-n binding). It is also possible to specify a cardinality inter-
val “0..1” or “0..*” if the concept element can remain unbound (i.e. it can be
mapped to no meta-model element). In general, the cardinality of an element is
transformation-specific, that is, the generic transformation developer must an-
notate a concept explicitly to enable its usage. In ATL-like languages and in our
current implementation, the cardinality is restricted to be exactly 1 for classes
of target concepts and for associations of source concepts.

Intuitively, a concept containing elements with cardinality annotations is
equivalent to a (possibly infinite) set of “flat” concepts where the cardinality of
all elements is 1. Similar to [4], the set of flat concepts is calculated by performing
all possible expansions in the cardinality interval of every element in the concept.
If the cardinality interval includes 0, then one of the possible expansions implies
deleting such element. Fig. 3 illustrates this technique. To the left, class Attribute
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in the concept has been annotated with its cardinality, whereas elements without
annotations have a cardinality 1. Thus, we can replicate class Attribute, together
with the associations in which it participates an unbounded number of times. To
the right, the figure shows the unfolded concepts without cardinality intervals in
case we replicate Attribute once or twice. The concrete number of replicas must be
indicated when binding a particular meta-model to the concept. For instance, in
order to map Attribute to both Property and Port in the components meta-model
shown in Fig. 2, we must select two replicas. Then, one can perform a 1-to-1
binding from the corresponding expanded concept to the meta-model.

Class

name : String
super

classes

*

owner

*

name : String

isPublic : boolean

Attribute
[1..*]

Class

name : String
super

classes

*

owner

*

name : String

isPublic : boolean

Attribute

Class

name : String
super

classes

*

owner

*

name : String

isPublic : boolean

Attribute[0]

name : String

isPublic : boolean

Attribute[1]

*

owner, , …

Fig. 3. Annotating a concept with cardinality (left). Set of its expansions (right).

Choosing a cardinality different from 1 for a concept element induces an
adaptation of the associated transformation template. If a class in the concept
is mapped to more than one element, then the rules defined for this class should
be replicated for each mapping. In our example, rule attribute2field would be
replicated twice: one with class Port in the from domain, and another one with
class Property. If the cardinality is defined for an association, then the instruc-
tions assigning a value to the association should be replicated for each specified
binding. For instance, if the target domain in Fig. 2 were a concept and we
map relation owner to two associations, then the second line in the body of rule
attribute2field would be duplicated.

4.2 Binding adapters

A concept expresses requirements for a transformation. However, it also reflects a
design decision which could be realized differently. For instance, the inheritance
relation superclasses in the concept of Fig. 2 could be implemented with an inter-
mediate class, as in the case of the UML meta-model [14], whereas the isPublic

attribute could also be an enumerate, or a boolean with the opposite meaning
(e.g. isPrivate). Since we do not want to define different concepts and templates
for each design possibility, and in order to provide more reuse opportunities for
a given template, a mechanism to overcome such heterogeneities is desirable.

A first solution is resorting to subtyping relations between concepts [16].
In this case, the commonalities of the different solution concepts are extracted
to a supertype concept, which can be extended in order to provide alternative
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solutions for specific fragments. This can be seen as a 1-to-1 binding from the
general concept to its extensions. Fig. 4 shows our example expressed in this
way. The parent concept C only includes the class and its name, and children
concepts C1 and C2 provide two alternatives to express the inheritance. This
solution implies a fragmentation of the transformation template as well, and
relies on a composition/extension mechanism in the transformation language. In
the figure, both concepts C1 and C2 extend the template defined in C. Hence,
this way of reuse has the drawback that the developer has to foresee all possible
extensions, and the template has to be built in such a way that can be extended,
which sometimes can be difficult or undesired. Moreover, not all transformation
languages support rule extension.

rule class2jclass {

from class : OO!Class

to jclass : Java!JavaClass 

( name <- class.name )

}

rule class2jclassSuper extends class2jclass{

from class : OO! Class

to jclass : Java!JavaClass 

( extends <- class.superclasses.first() )

}

rule class2jclassSuper extends class2jclass {

from class : OO!Class

to jclass : Java!JavaClass

( extends <- class.generalizations->

collect(g | g.reference).first())

}

Class

name : String

C

Class

name : String

Generalization

generalizations
reference

*

C1

Class

name : String

superclasses

*

C2

Fig. 4. Binding concepts to concepts, seen as a subtyping relation between concepts.

For this reason, we have devised a more flexible mechanism that does not
impose restrictions on the way concepts and templates are built. In this case, one
of the possible concepts is chosen, and only one template is defined accordingly.
When the template is instantiated for a particular meta-model, if the structure
of the concept and the meta-model differ, it is possible to build an adapter to
fix the heterogeneity. An adapter is an expression evaluated in the context of a
bound meta-model type, returning a value (a primitive type or a reference type)
that is assigned as binding for some attribute or association in the concept.

Fig. 5 illustrates this solution. It shows the binding of our concept to a
UML meta-model where inheritance is represented by an intermediate class. To
solve this heterogeneity, the binding of the superclasses association is given by an
OCL expression that returns a suitable value. In this way, the adapter induces a
modification in the transformation template so that each reference to superclasses

is replaced by the adapter expression. Note how this solution is non-intrusive as
it does not require modifying the bound concrete meta-models, which in some
cases may not be possible.

A side benefit of adopting adapters to solve heterogeneities is that, as many
adaptations are recurrent, we can build libraries of reusable common adapters.
These can be implemented using genericity as well, defining them atop generic
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UMLClass

id : String

Generalization

generals
reference

*

UML

Class

name : String
superclasses

*

Binding:
Class UMLClass

Class.name UMLClass.id

superclasses generals->collect

(g | g.reference)

rule class2jclass {

from class : UML!UMLClass

to jclass : Java!JavaClass 

( name <- class.id

extends <- class.generals->collect

(g| g.reference).first() )

}

generated

adapted rule

adapter

Domain from: concept 
rule class2jclass {

from class : OO!Class

to jclass : Java!JavaClass 

( name <- class.name

extends <- class.superclasses.first() )

}

Fig. 5. A binding adapter (left). Semantics of adapter as template modification (right).

types that are bound to the concept and meta-model of the binding that needs
to be adapted. We are currently creating a categorization of adapters to resolve
commonly occurring heterogeneities. For instance, one generic adapter we have
identified in this categorization is called association to intermediate class asso-

ciation, which permits mapping directly superclasses to Generalization in Fig. 5.

5 Implementing genericity over ATL

We have implemented a prototype, available at [9], to support our approach to
generic model transformations. It currently targets ATL.

In our tool, a concept is defined as an Ecore meta-model, and its elements can
be annotated with the allowed cardinality. A binding between a concept and a
meta-model is represented as a model. We have created a textual concrete syntax
to describe such bindings, and use OCL to define adapters. As an example,
Listing 1 shows the binding presented in Fig. 2 expressed with our concrete
syntax. Class is mapped to Component (line 2), and Attribute is mapped to both
Property and Port (line 3). The superclasses property is naturally mapped to parents

(line 5). However, mapping the Attribute.isPublic and Attribute.owner properties
requires specifying a context, as Attribute is bound to two classes. In the listing,
the property is mapped to public in the case of Property (line 6), and to an OCL
expression (i.e. an adapter) in the case of Port (line 7). Our tool also allows
some mappings to be implicit. For instance, it is not needed to map Class.name

to Component.name. Finally, the None keyword allows a concept element to be
unbound whenever its minimum cardinality is 0.

1 binding Components for OO {
2 class Class to Component
3 class Attribute to Property, Port
4

5 feature Class . superclasses is parents
6 feature Attribute [Property ]. isPublic is public
7 feature Attribute [Port ]. isPublic = true
8 feature Attribute [Property ]. owner is cprop
9 feature Attribute [Port ]. owner is cport
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10 }

Listing 1. Binding a concept to a meta-model.

Templates are written in ATL. Given a template and a binding from the
participating concepts to some meta-models, a HOT is in charge of instantiating
the template, replacing generic types by those in the meta-models. So far we
support the declarative part of ATL. The modifications to the original template
depend on whether the concept is for the source or target domains, and on the
chosen cardinality for each particular concept element. The following rules are
applied in the case of binding elements of a source concept:

– Class with cardinality 1. Each usage of the concept class is renamed to its
bound class.

– Class with a binding cardinality >1. We have identified several cases where
it is possible to safely instantiate the original template. Each ATL construct
requires a different strategy:
• Matched rule. Currently, it is restricted to rules with one from element.
A new copy of the rule is created for each bound class, where the name
of the latter replaces the one of the original concept class.

• Helper. A new copy is created for each bound class. The context is re-
placed accordingly to the bound class.

• Lazy rule. A new copy is created for each bound class. Explicit calls to
the original lazy rule are replaced with an OCL expression that checks
the type of the source element in order to call one of the new lazy rules.
For instance, the expression thisModule.myLazyRule(obj) is replaced by the
expression in Listing 2, if the type of obj has been mapped twice.

1 if obj .oclIsKindOf(ConcreteMetaclass1) then

2 thisModule.myLazyRule for ConcreteMetaclass1(obj)
3 else

4 if obj .oclIsKindOf(ConcreteMetaclass2) then

5 thisModule.myLazyRule for ConcreteMetaclass2(obj)
6 endif

7 endif

Listing 2. OCL expression that replaces an invocation to a lazy rule.

• allInstances.Each occurrence of ConceptMetaclass.allInstances is replaced by
ConcreteMetaclass1.allInstances.union(ConcreteMetaClass2.allInstances).union(...).

• oclIsKindOf. Each occurrence of obj.oclIsKindOf(ConceptMetaclass) is re-
placed by obj.oclIsKindOf(ConcreteMetaclass1) or

obj.oclIsKindOf(ConcreteMetaclass2). The same applies to oclIsTypeOf.
– Class with cardinality 0. If a class is mapped to none, the following rewritings

are applied:
• Matched rule. It is restricted to rules with one from element. The rule is

safely deleted, because ATL does not fail with unresolved bindings.
• Helper. Every helper for that class is deleted.
• Lazy rule. It is deleted. Every call to the rule is replaced by OclUndefined.
• allInstances. Each occurrence of ConceptMetaclass.allInstances is replaced

by an empty collection.
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• oclIsKindOf. Each occurrence of obj.oclIsKindOf(ConceptMetaclass) is re-
placed by false.

– Feature and binding adapter. Each usage of a concept feature is renamed
to the bound feature, or in case a binding adapter is used, replaced by the
adapter’s OCL expression. Since this requires typing information that is not
provided by the ATL compiler, we rely on ATL/OCL attribute helpers. Thus,
for each concept feature, a new attribute helper with its name is attached
to the bound class. If several bindings are specified for a class, then several
helpers are created. The helper’s body is either the name of the concrete
feature or the OCL expression of the adapter. In this way, the rules in the
instantiated template use the name of concept features, and the ATL engine
selects the appropriate attribute helper dynamically.

For target concepts, we apply the following rewriting rules to the templates:

– Class. Each usage of the concept class is renamed to the bound class. The
cardinality of target classes must be always 1.

– Feature with cardinality 1. The feature in the left part of an ATL binding is
renamed to the bound feature.

– Feature with cardinality >1. The ATL binding is replicated as many times
as the cardinality indicates, and then the features are renamed as before.

– Feature with cardinality 0. The ATL binding is removed.

Please note that binding adapters are only possible for source concepts.

6 Case Study

This section illustrates the applicability of our approach in a non-trivial sce-
nario, namely a generic transformation to compute the flow graph for a family of
languages with imperative constructs. Flow graphs are widely used in program
analysis to describe the control flow of imperative programs. Given the flow
graph of a procedure, several analysis and further transformations are possible,
such as visualizing the structure of the algorithm implemented by the procedure,
detecting unreachable code or invalid “configurations” (e.g. jumping within a
loop), computing the cyclomatic complexity of a procedure, or performing some
program profile analysis [2].

A naive approach to tackle this scenario would be to build specific trans-
formations from each particular procedural language into flow graphs. Instead,
since all these languages share common features that can be included in a con-
cept, we choose to build just a unique transformation template defined over
such a concept. In this way, the template will be applicable to every procedural
language once we bind their meta-model to the concept.

Fig. 6 shows to the left the concept used by our generic transformation as
source domain. It includes standard control statements commonly found in many
imperative languages. The class procedure is used to model both functions and
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procedures, and hence it has been labelled with “1..*” cardinality to accommo-
date the specific modularity notions of different languages. A procedure is made
of a sequence of statements. Statements may be annotated with a label, and are
refined into typical control instructions: if, while and goto. No further statements
are needed, as the flow graph transformation only deals with control statements.

Fig. 6. Concept for imperative languages (left). Meta-model for control flows (right).

Our transformation template implements a variation of the algorithm pro-
posed in [1], based on partitioning a piece of code into basic blocks. A basic

block is “a sequence of consecutive statements where the execution flow can only

enter the basic block through the first instruction in the block and leave the block

without halting or branching”. We omit the details of the implementation for
space limitations, but it is worth noting that this is not a straightforward ATL
transformation, comprising 7 rules and 13 helpers.

The right side of Fig. 6 shows the flow graph meta-model used by the trans-
formation template as target domain. It represents a directed graph, where the
nodes are basic blocks and the edges are jumps to other basic blocks.

We have instantiated our template to transform programs written in NQC
(Not Quite C), a C-like language used to program Lego Mindstorms. We have
used a meta-model defined by a third party [18] in order to assess to what extent
our approach is flexible enough to adapt meta-models not foreseen by the generic
transformation developer. Fig. 7 shows an excerpt of the NQC meta-model.

There are several mismatches between the source concept and the NQC meta-
model. Listing 3 shows the binding that solves these mismatches, namely:

– Renamings. For instance, Goto is mapped to GoToStatement (line 2), and the
target reference of Goto is mapped to JumpLabel of GoToStatement (line 5).

– Class with binding cardinality >1. This is the case of Procedure that is bound
to both Function and Subroutine (line 3).

– Association to intermediate class association. Statement in the concept and
the meta-model can be mapped naturally, except when the statement is a
BlockStatement, which from the partitioning algorithm point of view behaves
as an association represented with an intermediate class. We use a binding
adapter to tackle this issue (lines 9-11).
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Fig. 7. Excerpt of the meta-model for NQC.

– Monovalued association to multivalued association. The IfStatement concept
class has two multivalued associations, ifStms and elseStms, while the coun-
terparts in the concrete class are monovalued (Consequence and Alternative).
Moreover, the else clause is optional. In order to solve this heterogeneity,
we define a binding adapter for each association (lines 13 and 15-17). These
adapters make use of helpers factoring common code, which are also specified
with our concrete syntax (flattened helpers in lines 19-20).

1 binding nqc {
2 class Goto to GoToStatement
3 class Procedure to Function, Subroutine
4

5 feature Goto.target is JumpLabel
6

7 feature Procedure.name is Name
8

9 feature Procedure.statements = self .Statements−>collect(s |
10 if s .oclIsKindOf(BlockStatement) then s.Statements
11 else s endif )−>flatten();
12

13 feature IfStatement . ifStms = self .Consequence.flattened ;
14

15 feature IfStatement .elseStms =
16 if self . Alternative . oclIsUndefined () then Sequence { }
17 else self . Alternative . flattened endif ;
18

19 helper Statement. flattened : Sequence(Statement) = Sequence { self };
20 helper BlockStatement.flattened : Sequence(Statement) = self.Statements;
21 ...
22 }

Listing 3. Binding between the source concept and the NQC meta-model.

Altogether this case study shows the feasibility of our approach, but two is-
sues are worth noting. First, computing the flow graph of an imperative program
is a non-trivial transformation, and therefore we do not want to implement it for
each possible procedural language. Here we were able to follow the motto “write

once, reuse everywhere” by designing a suitable concept and defining the trans-
formation over the concept. Second, our binding proved to be flexible enough to
adapt the concept to an unforeseen third-party meta-model.



14

7 Related work

Meta-model concepts were first proposed in [6], with an application to the defi-
nition of generic in-place transformations using EOL [13]. The architecture in [6]
uses an interpreted approach for the instantiation of templates which does not
generate new transformations, but it uses the binding to resolve the concrete
types at run-time. In the present paper, we use a compiled approach on top of
ATL, where a HOT creates a specific transformation according to the binding.
Moreover, the binding function in [6] is 1-to-1, whereas here we propose two
mechanisms to enhance flexibility: adapters and replication of concept elements.

The term transformation template has also been used in previous works,
although with a different purpose. For instance, in [12] the authors build trans-
formation templates for a family of languages defined by a unique meta-model.
Variations in this meta-model induce modifications in the template. However, it
is not possible to apply a template to unrelated meta-models as we do here.

Other approaches to reusability are not based on concepts. For instance,
in [15], reuse is achieved by adapting the meta-models to which an existing
transformation is to be applied. The aim of adapting the meta-model is to make
it a subtype of the expected input meta-model of the transformation [16], so
that the transformation can be applied without changing it. In contrast, our
approach is less intrusive because we do not need to modify the meta-models
which sometimes can be unfeasible. Moreover, once a template is instantiated,
we can extend the generated transformation with rules using concrete types.
Nonetheless, our binding is similar to the notion of model subtyping [16], as
one can see a concept as a supertype of the bound meta-model. However, our
cardinality and adapters makes this relation more flexible than pure subtyping.

Another approach to reuse are the mapping operators (MOps) [19]. These are
similar to our adapters, but oriented to the declarative construction of transfor-
mations by composing transformation primitives. Reusable transformations must
be completely developed using MOPs, while we permit using a regular transfor-
mation language. The same authors present in [20] a categorization of common
heterogeneities, which we solve through adapters and cardinality in concepts.

8 Conclusions and future work

In this paper we have brought elements of generic programming to model-to-
model transformations in order to promote reusability. In our approach, it is
possible to define transformation templates that use generic types defined on a
concept. Concepts can be bound to a range of specific meta-models satisfying
the concept requirements. In this way, transformation templates can be instan-
tiated for different meta-models and applied to the meta-model instances. We
have proposed two mechanisms to provide flexibility to the binding function and
resolve heterogeneities between concepts and meta-models: cardinality annota-
tions and binding adapters. We have implemented this approach atop ATL, and
illustrated its use through a non-trivial example. The tool is available at [9].
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In the future, we plan to extend our categorization of binding adapters, and to
implement libraries of reusable adapters and reusable transformation templates.
We would also like to apply our approach to other transformation languages.
Acknowledgements.Work funded by the Spanish Ministry of Science (projects
TIN2008-02081 and TIN2009-11555), and the R&D programme of the Madrid
Region (project S2009 /TIC-1650).
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