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Abstract. Refinement is a central notion in computer science, meaning
that some artefact S can be safely replaced by a refinement R, which
preserves S’s properties. Having available techniques and tools to check
transformation refinement would enable (a) the reasoning on whether
a transformation correctly implements some requirements, (b) whether
a transformation implementation can be safely replaced by another one
(e.g. when migrating from QVT-R to ATL), and (c) bring techniques
from stepwise refinement for the engineering of model transformations.
In this paper, we propose an automated methodology and tool sup-
port to check transformation refinement. Our procedure admits hetero-
geneous specification (e.g. PaMoMo, Tracts, OCL) and implementation
languages (e.g. ATL, QVT), relying on their translation to OCL as a
common representation formalism and on the use of model finding tools.

1 Introduction

The raising complexity of languages, models and their associated transformations
makes evident the need for engineering methods to develop model transforma-
tions [12]. Model transformations are software artefacts and, as such, should
be developed using sound engineering principles. However, in current practice,
transformations are normally directly encoded in some transformation language,
with no explicit account for their requirements. These are of utmost importance,
as they express what the transformation has to do, and can be used as a basis
to assert correctness of transformation implementations. While many proposals
for requirements gathering, representation and reasoning techniques have been
proposed for general software engineering [15, 23], their use is still the exception
when developing model transformations.

Specifications play an important role in software engineering, and can be
used in the development of model transformations in several ways. First, they
make explicit what the transformation should do, and can be used as a basis for
implementation. Specifications do not necessarily need to be complete, but can
document the main requirements and properties expected of a transformation.
Then, they can be used as oracle functions for testing implementations [11].
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Fig. 1. Refinement scenarios.

In this setting, it is useful to know
when a transformation T refines a spec-
ification S. Intuitively, this means that T
can be used in place of S without break-
ing any assumption of the users of S. Some
other times, we need to know whether a
transformation T refines another transfor-
mation T ′ and can replace it. Fig. 1 gath-
ers several scenarios where checking transformation refinement is useful. In (a),
an implementation refines a requirements specification, hence ensuring correct-
ness of the implementation with respect to the specification. In (b), a transfor-
mation implementation (e.g. in QVT) is refined by another one (e.g. in ATL)
which can replace the former safely. This is especially useful if we want to migrate
transformations, ensuring correctness of the migrated transformation. Finally, in
(c), a specification refines another specification, which enables the application of
stepwise refinement methodologies for transformation development.

In this paper, we tackle the previous scenarios by proposing an automated
methodology to check transformation refinements. Our proposal relies on OCL
as a common denominator for both specification languages (e.g. PaMoMo [13],
Tracts [25] and OCL [18]) and transformation languages (e.g. QVT-R [21], triple
graph grammars [22] and ATL [16]). For this purpose, we profit from previous
works translating these languages into OCL [6, 7, 13, 25]. Hence, transformation
specifications and implementations are transformed into transformation mod-
els [4] and we use SAT/model finding [6] techniques to automatically find coun-
terexamples that satisfy properties assumed by the specification, but are incor-
rectly implemented. While refinement has been previously tackled in [25], our
work is novel in that it proposes an automated procedure for performing this
checking, and is able to tackle heterogeneous specification and transformation
languages by using OCL as the underlying language for reasoning.

Paper organization Section 2 motivates the need for transformation refinement
using an example. Section 3 introduces model transformation refinement. Sec-
tion 4 details our methodology to check refinements. Section 5 provides more
examples, Section 6 compares with related work and Section 7 concludes.

2 A Motivating Example

Assume we have gathered the requirements for the Class2Relational transforma-
tion, and want to use them as a blueprint to check whether an implementation
correctly addresses them. Fig. 2 shows part of a specification of the require-
ments using the PaMoMo specification language [13], though we could choose
any other transformation specification language instead (like Tracts or OCL).

PaMoMo is a formal, pattern-based, declarative, bidirectional specification
language that can be used to describe correctness requirements of transforma-
tions and of their input and output models in an implementation-independent
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Fig. 2. A specification for the Class2Relational transformation.

way. These requirements may correspond to pre-/postconditions that input/out-
put models should fulfill, as well as transformation invariants (i.e. requirements
that the output model resulting from a particular input model should satisfy).

Preconditions, postconditions, and invariants are represented as graph pat-
terns, which can be positive to specify expected model fragments, or negative
to specify forbidden ones. They can have attached a logical formula stating ex-
tra conditions, typically (but not solely) constraining the attribute values in the
graph pattern. Optionally, patterns can define one enabling condition and any
number of disabling conditions, to reduce the scope of the pattern to the loca-
tions where the enabling condition is met, and the disabling conditions are not.
The interested reader can find the formalization of these concepts in [13, 14].

Fig. 2 shows to the left three invariants that our Class2Relational transforma-
tion should fulfill. This specification is very general, in the sense that it gathers
only the minimal requirements that any implementation of the Class2Relational
should satisfy, leaving room for different transformation strategies. In particu-
lar, the specification only requires the transformation of at least one class in
every class hierarchy, allowing freedom as to how many classes per hierarchy to
transform (being 1 the minimum). This condition is checked by invariant Some-
ClassInHierarchy2Table, which states that if a class c does not have ancestors or
children that have been transformed (disabling conditions AncestorMapped and
ChildMapped respectively), then c should be transformed into a table (invariant
SomeClassInHierarchy2Table). In the invariant, assigning the same variable to
different attributes accounts for ensuring equality of their values, like X, which
is assigned to the name of both the class c and the table t, meaning that both
objects should have the same name. Moreover, relation anc is the transitive clo-
sure of the inheritance relation. Altogether, this invariant states that at least one
class in each hierarchy should be transformed. The remaining invariants in this
specification handle the correct transformation of attributes. To its right, invari-
ant Attribute2Column states that if a class c is transformed (enabling condition
ClassMapped), then its owned attributes should be converted into columns of
the table. Below, invariant InheritedAttribute2Column states that all inherited
attributes should be transformed into columns as well. Finally, another invari-
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ant (omitted for reasons of space) states that attributes of non-mapped children
classes should also be transformed for their mapped ancestors.

Fig. 2 shows to the right some pre- and postconditions for the input/output
models. Whereas the shown invariants are positive and therefore their satisfac-
tion is demanded, the shown pre- and postconditions are negative, indicating
forbidden situations. Thus, precondition UniqueClassName forbids duplicated
class names for input models, and NoInhCycle forbids having inheritance cycles.
Three additional preconditions, not shown for space constraints, forbid duplicate
attribute names in the same class, either defined locally or inherited. Similarly,
postcondition UniqueTableName forbids duplicated table names in output mod-
els, and UniqueTableColumnName forbids two equally named columns in the
same table. Note that although this is not the case, we could also define nega-
tive invariants, as well as positive pre- and postconditions, in specifications.

Developers can use the specification in Fig. 2 as a guide to implement the
transformation in their favorite language. As an example, Listing 1 shows a
possible implementation in ATL. The strategy followed is transforming each class
and, in the generated table, creating columns coming from the attributes defined
in the class or its ancestor classes (checked in line 10). The specification would
also admit other transformation strategies, like mapping only top classes or only
leaf classes. Note that the implementation transforms packages into schemas in
lines 3–4, though the specification does not state how to handle them (there is
just a multiplicity constraint saying that classes are always in a package).

1 module AllClasses; create OUT : SimpleRelational from IN : SimpleClass;
2

3 rule P2S { from p : SimpleClass!Package
4 to s : SimpleRelational!Schema }
5

6 rule C2T { from c : SimpleClass!Class
7 to t : SimpleRelational!Table ( name <− c.name, schema <− c.package ) }
8

9 rule A2A { from ua : SimpleClass!Attribute,
10 c : SimpleClass!Class ( c = ua.owner or c.ancestors()−>includes(ua.owner) )
11 to col : SimpleRelation!Column ( name <− ua.name, owner <− ua.owner ) }

Listing 1. Transformation implementation using ATL (“AllClasses.atl”).

Then, the question arises whether the implemented transformation is a re-
finement of the specification, i.e., whether for any valid input model (satisfying
the preconditions), its transformation yields a model satisfying the invariants
and postconditions of the specification. As we will see in Section 4, the answer
to this question is no because this implementation does not guarantee the in-
variant InheritedAttributeToColumn, since the rule A2A contains a little bug
(which we will uncover in Section 4.1). While finding this bug can be done man-
ually by testing, in this paper we propose an automated procedure to detect the
postconditions and invariants of the specification that are not satisfied.

Other scenarios for checking refinement are also of practical use. For exam-
ple, if we want to migrate this transformation into QVT-R, we might want to
ensure that the target transformation is compatible with the original one. The
next section discusses the notion of transformation refinement, while Section 4
presents our approach to automatically assess the scenarios identified in Fig. 1.
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3 Model Transformation Refinement

Conceptually, a model-to-model transformation S from a source metamodel
Msrc to a target metamodel Mtar can be represented by a relation Sem(S)
between pairs of source and target models of the metamodels4.

Sem(S) = {(Msrc,Mtar) : Msrc S Mtar, where

Msrc is a model of Msrc, and Mtar is a model of Mtar}

A relation S does not need to be functional, i.e., the same source model may be
related with several target models. In this way, we support both deterministic
and non-deterministic transformations. Based on this characterization, we can
express a refinement relation of a transformation.

Def. 1 (Refinement) Given two transformation specifications S, S ′ between
a source metamodel Msrc, and a target metamodel Mtar. S ′ refines S iff the
following conditions hold:

∀Msrc,Mtar : ((Msrc,Mtar) ∈ Sem(S ′) ∧ ∃M ′
tar : (Msrc,M

′
tar) ∈ Sem(S))

⇒ (Msrc,Mtar) ∈ Sem(S)
(1)

∀Msrc,Mtar : (Msrc,Mtar) ∈ Sem(S) ⇒ (∃M ′
tar : (Msrc,M

′
tar) ∈ Sem(S ′)) (2)

The second condition specifies the executability of S ′: S ′ must accept all
inputs that S accepts. The first condition requires that S’ behaves consistent
to S on those inputs. Fig. 3 illustrates this relationship using a set notation.
The source models accepted by S are given by set Dom(S) (its domain, i.e., the
models in the source metamodel of S). The definition domain of S is the set
Ran(S) (its range, made of the models in the target metamodel of S). Models
are represented as dots, pairs of models in Sem(S) are joined by a solid arrow,
and pairs of models in Sem(S ′) are joined by dashed arrows. Fig. 3(a) shows a
valid refinement as the upper pair in Sem(S ′) is also in Sem(S). Since refinement
is not concerned with source models not considered by S, the lower source model
is allowed to be related with any target model in Sem(S ′). Fig. 3(b) is not a
refinement because the pair in Sem(S ′) is not in Sem(S), while the source model
of this pair is in Dom(S). Fig. 3(c) is not a refinement, as Sem(S ′) misses one
source model of Dom(S). Altogether, the figure illustrates that the domain of
S ′ should include the domain of S and be consistent with the elements in the
domain of S.

For the sake of simplicity, we assume that S and S ′ share the same metamod-
els. In practice, S may focus on the most important aspects of a transformation,
while a refinement S ′ may be defined in more detail and over larger source/-
target metamodels. Provided that the metamodels for S ′ are subtypes of the
metamodels of S [24], we can always silently extent the metamodels for S to
those of S ′ in Definition 1.

Some approaches, like model transformation contracts [9, 14], characterize
the semantics of a transformation S from a source to a target metamodel by

4 Notice that we are assuming source-to-target transformations.
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Fig. 3. Valid (a) and invalid (b, c) refinements.

means of three types of constraints: preconditions (PreS), invariants (InvS) and
postconditions (PostS). We capture this semantics in Def. 2. In the definition,
we represent by PreS the set of preconditions prei that the source models of S
must fulfill, and use PreS(Msrc) to indicate that the model Msrc fulfills all the
preconditions of S, i.e., pre1(Msrc) ∧ . . . ∧ pren(Msrc). We use a similar nota-
tion for invariants and postconditions as well. For this kind of transformations,
assuming that their conditions can be translated into first-order logic, we can
restate Def. 1 in terms of characterizing predicates as follows.

Def. 2 (Contract-based transformation specification) Let S be a contract-
based transformation specification from a source metamodel Msrc to a target
metamodel Mtar. The relation set Sem(S) defined by S can be characterized by
three types of predicates that represent S’s preconditions, invariants and post-
conditions (the contract of S) in the following way

Sem(S) = {(Msrc,Mtar) : (Msrc ∈ Msrc) ∧ (Mtar ∈ Mtar)∧
PreS(Msrc) ∧ InvS(Msrc,Mtar) ∧ PostS(Mtar)}

(3)

with the additional condition that ∀(Msrc ∈ Msrc)

(PreS(Msrc) ⇒ ∃(Mtar ∈ Mtar) : InvS(Msrc,Mtar) ∧ PostS(Mtar)) (4)

Prop. 1 (Refinement for contract-based transformation specifications)
Let S and S ′ be contract-based transformation specifications from a source meta-
model Msrc to a target metamodel Mtar. S ′ refines S iff the following conditions
hold

∀(Msrc ∈ Msrc,Mtar ∈ Mtar)(PreS(Msrc) ∧ InvS′(Msrc,Mtar) ∧
PostS′(Mtar)) ⇒ (InvS(Msrc,Mtar) ∧ PostS(Mtar))

(5)

∀(Msrc ∈ Msrc) (PreS(Msrc) ⇒ PreS′(Msrc)) (6)

Proof. We can show that using Def. 2, conditions (1) and (2) hold iff conditions
(5) and (6) hold. The proof is included in the extended version of this paper5.

This proposition allows checking refinement using satisfiability solving for
transformations that can be characterized by contracts, as the next section will
show.

5 http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement
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Notice that Def. 2 characterizes an ‘angelic’ choice [3] for the executability:
given a valid source model (w.r.t. PreS), there must be at least one target model
such that InvS and PostS hold. We do not require that PreS and InvS always
imply PostS , like one often expects an implementation to imply a postcondition
in program verification. In our context, InvS is part of the specification, just as
PreS and PostS .

Strong refinement. We demanded above that a refining transformation speci-
fication S ′ must accept all input models that the refined transformation S accepts
(specified by PreS), and that the output models of S ′ for those inputs are valid
w.r.t. InvS , and PostS . We did not characterize the effect of S ′ for input models
not fulfilling PreS . However, if we think of PostS as a contract that any trans-
formation execution needs to fulfill, it makes sense to define a new notion of
refinement that we call strong refinement. Thus, S ′ is a strong refinement of S
iff it is a refinement and ∀(Msrc ∈ Msrc,Mtar ∈ Mtar)

((PreS′(Msrc) ∧ InvS′(Msrc,Mtar) ∧ PostS′(Mtar)) ⇒ PostS(Mtar)) (7)

Previous works [25] have approached transformation refinement from a test-
ing perspective. Hence, given a set of (manually created) input models, devel-
opers might discover an implementation result violating some postcondition or
invariant, but cannot prove refinement. In the next section, we provide a stronger,
automated methodology based on constraint solving to perform the checking.

4 Checking Refinement Using OCL Model Finders

Our methodology for checking transformation refinement builds on the fact that
transformations in several declarative languages can be translated into a unified
representation using OCL contracts. This unified representation, called trans-
formation model [4], can be easily checked and analyzed using readily available
OCL model finders. In short, the source and target metamodels are merged,
and OCL constraints over this merged metamodel expresses the transformation
semantics.

While such contracts are not directly executable, they are well-suited for
automated checking of transformation properties as they allow expressing con-
ditions covering the source and target models of the transformation at the same
time. The checking can be done using a model finder, i.e., a satisfiability checker
for metamodels, to verify the absence of counter examples for a given property.
This way, for example, we have shown in [6] how to check if an ATL transforma-
tion can create output models that violate given constraints. Thus, we propose
to generate and combine the OCL contracts for two transformation specifications
in order to analyze the refinement relation between them following Prop. 1.

Fig. 4 shows the steps in our refinement checking methodology: (1) gener-
ation of the OCL contracts from both specifications S and S ′, (2) generation
of counter example conditions, and (3) checking unsatisfiability of the counter-
example conditions with an OCL model finder. Next, we detail these steps.
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Fig. 4. Steps in the methodology to check refinement.

(1) Generation of OCL transformation contracts. First, each of the spec-
ifications S and S ′ is translated into equivalent sets of OCL constraints, cons(S)
and cons(S ′), over the combination of the source and target metamodels, Msrc

and Mtar. Namely, cons(S) = precons(S) ∪ invcons(S) ∪ postcons(S), where
precons(S), invcons(S), and postcons(S) are OCL encodings of PreS , InvS , and
PostS , fulfilling the conditions explained in Def. 2. Thus, in this setting we have
(Msrc ,Mtar ) ∈ Sem(S) iff the evaluation of the constraints in cons(S) over Msrc

combined with Mtar is true (and analogously for S ′).
Generators of such sets of OCL constraints have been described for several

declarative, rule-based, specification/implementation transformation languages,
including PaMoMo [13], QVT-R [7], triple grammars [7] and ATL [6].

(2) Generation of counter-example conditions. In order to check the two
conditions for refinement of Prop. 1, we need that invcons(S) ∧ postcons(S)
is implied by precons(S) ∧ invcons(S ′) ∧ postcons(S ′) and that precons(S ′) is
implied by precons(S) for every instance of Msrc combined with Mtar. This
can be expressed as the following counter-example conditions that must all be
unsatisfiable:

1. For each constraint c in invcons(S) ∪ postcons(S), the set of constraints
precons(S)∪ invcons(S ′)∪postcons(S ′)∪{negated(c)} must be unsatisfiable.

2. For each constraint c in precons(S ′), the set of constraints precons(S) ∪
{negated(c)} must be unsatisfiable.

3. (For strong refinement) For each constraint c in PostS , the set of constraints
precons(S ′)∪ invcons(S ′)∪postcons(S ′)∪{negated(c)} must be unsatisfiable.

If none of the counter-example conditions in 1–2 (1–3) is satisfiable, then S ′

refines (strongly refines) S.

(3) Satisfiability checking of counter-example conditions. We use OCL
model finders to check the counter-example conditions. There are several ap-
proaches for checking the satisfiability of OCL constraints, and our methodology
is independent of them. For example, UML2Alloy [1] and the USE Validator [17]
translate the problem into relational logic and use a SAT solver to check it, while
UMLtoCSP [8] translates it into a constraint-logic program. The approach of
Queralt et al. [20] uses resolution, and Clavel et. al [10] map a subset of OCL
into a first-order logic and employ SMT solvers to check unsatisfiability. In this
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paper, we have used the USE Validator because it supports a large subset of OCL
and because the underlying SAT solver provides robust performance for a variety
of problems. This tool performs model finding within given search bounds, using
finite ranges for the number of objects, links and attribute values. Thus, when
a counter example is found, we have proven that there is no refinement; if no
counter example is found, we only know that the refinement is guaranteed up to
the search bounds. However, not finding a counterexample is a strong indication
of refinement if wide enough bounds are chosen for the search.

4.1 Running Example

In Sect. 2, we presented a specification of the Class2Relational transformation
using PaMoMo (cf. Fig. 2), as well as a possible implementation of the All-
Classes strategy using ATL (cf. Listing 1). Next, we illustrate our methodology
by checking whether AllClasses refines Class2Relational.

(1) Generation of OCL transformation contracts. First, we generate the
OCL contracts for Class2Relational and AllClasses. Following the compilation
and tool support presented in [14], we generate one OCL invariant from each
PaMoMo pattern. Listing 2 shows the OCL invariants for precondition Unique-
ClassName, invariant Attribute2Column and postcondition UniqueTableColumn-
Name. These constraints belong to the sets precons(Class2Relational),
invcons(Class2Relational) and postcons(Class2Relational), respectively. Notice
that we silently assume a singleton class GlobalContext which hosts all OCL in-
variants. We refer the reader to [14] for a detailed presentation of this compilation
scheme, and just highlight that the OCL expressions derived from preconditions
only constrain the source models, those from postconditions only constrain the
target models, and those from invariants constrain both.

1 context GlobalContext inv Pamomo Pre UniqueClassName:
2 not Class.allInstances()−>exists(c1 | Class.allInstances()−>exists(c2 | c2<>c1 and c1.name=c2.name))
3

4 context GlobalContext inv Pamomo Inv Attribute2Column:
5 Class.allInstances()−>forAll(c |
6 Attribute.allInstances()−>forAll(a | c.atts−>includes(a) implies
7 Table.allInstances()−>forAll(t | c.name=t.name implies
8 Column.allInstances()−>exists(co | t.cols−>includes(co) and a.name=co.name))))
9

10 context GlobalContext inv Pamomo Pos UniqueTableColumnName:
11 not Table.allInstances()−>exists(t |
12 Column.allInstances()−>exists(c1 | t.cols−>includes(c1) and
13 Column.allInstances()−>exists(c2 | c2 <> c1 and t.cols−>includes(c2) and c1.name=c2.name)))

Listing 2. Some OCL invariants generated from the PaMoMo specification.

Then, we derive an OCL contract for the ATL implementation, follow-
ing the rules and tool described in [6]. In this case, precons(AllClasses) and
postcons(AllClasses) only contain the source and target metamodel integrity
constraints, like multiplicity constraints. Listing 3 shows some OCL constraints
in invcons(AllClasses). They control the matching of source objects, the creation
of target objects and the bindings of properties in the target objects (see [6] for
details).
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1 context Attribute inv ATL MATCH A2A:
2 Attribute.allInstances()−>forAll(l ua |
3 Class.allInstances()−>forAll(l c | (l c.ancestors()−>includes(l ua.owner)) implies
4 A2A.allInstances()−>one(l A2A | l A2A.ua = l ua and l A2A.c = l c)))
5

6 context A2A inv ATL MATCH A2A COND: self.c.ancestors()−>includes(self.ua.owner)
7

8 context C2T inv ATL BIND C2T t name: self.t.name=self.c.name
9 context A2A inv ATL BIND A2A col name: self.col.name=self.ua.name

10 context A2A inv ATL BIND A2A col owner: self.col.owner=self.c.c2t.t
11

12 context Column inv ATL CREATE Column: self.a2a−>size()=1

Listing 3. OCL invariants generated from the ATL rule A2A.

Notice that the mapping used for ATL [6] imposes a limitation for
invcons(AllClasses): The OCL constraints use additional trace classes connect-
ing the source and target objects in the transformation model. This means that
we can use these constraints only in their positive form in the counter-example
conditions, because for the negation we would need to express “there is no valid
instance of the trace classes such that. . . ”, which is not available in OCL. In
practice, this means that, using this OCL compilation, we can check whether an
ATL specification refines any other transformation specification, but not the op-
posite. The compilations for PaMoMo and QVT-R do not have this limitation.

(2) Generation of counter-example conditions. From the full version of
Class2Relational (Fig. 2 only shows an excerpt), we obtain 7 OCL invariants in
precons (5 coming from PaMoMo preconditions and 2 from multiplicity con-
straints), 4 invariants in postcons (2 and 2), and 4 invariants in invcons. From the
ATL version of AllClasses, we obtain 2 invariants in each precons and postcons
for the multiplicity constraints, and 10 invariants in invcons characterizing the
ATL rules. This gives 4 counter-example conditions to check for the first condi-
tion in Prop. 1, as explained on page 8, plus 2 cases for the second. If we want
to check for strong refinement, we have 4 more counter-example conditions.

(3) Satisfiability checking of counter-example conditions. Checking the
10 counter-example conditions, for example with the USE Validator, yields
the counter example shown in Fig. 5(a). The counter example satisfies all
invariants that characterize AllClasses (hence it is a model of a valid ATL
execution), but the OCL expression derived from the PaMoMo invariant
InheritedAttribute2Column is violated (hence this pair of models is not in
Sem(Class2Relational)). In particular, the problem is that the attribute in-
herited by class1 is not attached to table1, but it is incorrectly attached to
table2. Consequently, the instance is a counter example for postcondition Uni-
queTableColumnName as well.

If we examine the rule A2A in Listing 1 based on this counter example, we
discover that the binding owner<-ua.owner is incorrect and should be changed
to owner<-c. Fixing this error and checking the updated counter-example con-
ditions again yields no counter example. Thus, the fixed version of AllClasses is
a refinement of Class2Relational.
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(a) AllClasses (ATL) (b) BottomClasses (checkonly)

Fig. 5. Refinement counter examples, checking against Class2Relational.

The ATL transformation is not a strong refinement of the PaMoMo specifi-
cation though, since without demanding unique names in the source, ATL does
not establish uniqueness of names in the target.

4.2 Tool support

For the first step in Fig. 4, the generation of transformation models, we have
automated generators available for PaMoMo and ATL. So far, the generation
from QVT-R is performed manually. For the second step, we have created a pro-
totype to automate the construction of the counter-example conditions. For the
third step, we call the USE Validator [17] to find refinement counter examples.

5 Further Examples

In this section, we discuss some more results for the case study. We have con-
sidered a ‘zoo’ of various specifications of Class2Relational using different lan-
guages (PaMoMo, ATL and QVT-R) and following three strategies (mapping
all classes, only top classes, or only bottom classes). We have applied our method-
ology to check refinement for each pair of specifications (110 counter-example
conditions in total). Fig. 6 shows the results. The absence of an arrow indicates
no refinement (except for ATL, which can only be checked on the implementa-
tion side of the refinement relation). The details for all strategies are online6,
here we just highlight some interesting points.

We have considered two PaMoMo specifications: Class2Relational (the run-
ning example), and a refinement of this called TopOrAll which demands a ‘uni-
form’ mapping either of all classes in the source model, or only of the top ones.

The ATL implementation of the TopClasses strategy does not refine the
Class2Relational specification. This strategy translates each top class into a
table, and the attributes of the top class and its subclasses into columns of
the table. However, if two subclasses of a top class have an attribute with the
same name (which is not excluded by the preconditions of Class2Relational)

6 http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement
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(QVT−R; check−only)

(QVT−R; enforce)
BottomClasses

TopClasses amended
(QVT−R; checkonly)

AllClasses (fixed)
(ATL)

(QVT−R; checkonly)
AllClasses

(QVT−R; enforce)
AllClasses

(QVT−R; enforced)
TopClasses

strongly refines
refines

(ATL)
BottomClasses

(Pamomo)
Class2Relational

(Pamomo)
TopOrAll

(QVT−R; checkonly)
TopClasses

(ATL)
TopClasses

(ATL)
AllClasses (Sect. 2)

(QVT−R; checkonly)
BottomClasses

BottomClasses amended

Fig. 6. Refinements between strategies (transitively reachable links are omitted).

then the generated table gets two columns with the same name, violating the
postcondition UniqueTableColumnName. By contrast, the ATL versions of All-
Classes (discussed in the previous section) and of BottomClasses are refinements
of Class2Relational. AllClasses even refines the stronger specification TopOrAll.

Our methodology is also applicable to QVT-R. A QVT-R transformation S
can be used in enforce mode to create a target model from scratch starting from
a source model7, or in checkonly mode to check the relation between an existing
pair of models. Hence, we distinguish the sets SEMENF (S) of source models and
target models generated by S, and SEMCHK (S) of accepted pairs of source and
target models. We will see that they are not equal.

Listing 4 shows the QVT-R implementation of the BottomClasses strategy.
Interestingly, using this implementation in enforce mode is a refinement of the
Class2Relational specification, but using it in checkonly mode is not. This is
because the checkonly mode checks for the elements that should be created
by the enforce mode, but the target model can contain more elements. The
problem is that these extra elements can violate invariants or postconditions
from the requirements specification. For example, Fig. 5(b) shows a refinement
counter example violating the postcondition UniqueClassName, while satisfying
the QVT-R transformation in checkonly mode.

1 transformation BottomClasses (source : SimpleClass, target : SimpleRelational) {
2 key SimpleRelational::Table {name};
3 key SimpleRelational::Column {owner, name};
4

5 top relation PackageToSchema {
6 checkonly domain source p : SimpleClass::Package {};
7 enforce domain target s : SimpleRelational::Schema {}; }
8

9 top relation ClassToTable {
10 cn : String;
11 checkonly domain source c : SimpleClass::Class {
12 package = p : SimpleClass::Package {}, name = cn };
13 enforce domain target t : SimpleRelational::Table {
14 schema = s : SimpleRelational::Schema {}, name = cn };
15 when { c.children−>size()=0 and PackageToSchema(p, s); }
16 where { AttributeToColumn(c, t); SuperAttributeToColumn(c, t); } }
17

18 relation AttributeToColumn {
19 an : String;
20 checkonly domain source c : SimpleClass::Class {
21 atts = a : SimpleClass::Attribute { name = an } };
22 enforce domain target t : SimpleRelational::Table {
23 cols = cl : SimpleRelational::Column { name = an } }; }

7 QVT-R also supports the incremental scenario, but we leave it out here.
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24

25 relation SuperAttributeToColumn {
26 checkonly domain source c : SimpleClass::Class {
27 package = p : SimpleClass::Package { classes = sc : SimpleClass::Class {} } };
28 enforce domain target t : SimpleRelational::Table {};
29 when { c.ancestors()−>includes(sc); }
30 where { AttributeToColumn(sc, t); } }
31 }

Listing 4. QVT-R implementation of the BottomClasses strategy.

In order to make the checkonly transformation a refinement of Class2Relational,
we need to include a top-level relation stating that non-bottom classes do not
have an associated table. This extra relation is non-constructive and is not con-
cerned with the creation of target elements, but with their absence. As ATL can
only be used in enforce mode, this constraint is built-in into ATL.

Finally, the ‘check-before-enforce’ semantics of QVT-R prevents the creation
of new objects if equivalent ones exist in the target. The equivalence criteria for
objects are given through keys. By setting an appropriate key for columns (see
line 3 in Listing 4) we avoid having repeated columns in tables. This is why the
enforce mode of the QVT-R transformation for the TopClasses strategy correctly
refines the ClassToRelational specification (whereas the ATL implementation
does not, as explained above).

Regarding performance, for the examples considered so far, solving times
using the USE Validator have not been an issue (within a few seconds for a
default search bound of 0..5 objects per class). It remains as future work to
evaluate the scalability on larger examples.

6 Related Work

To our knowledge, the only work addressing transformation refinement is [25]. Its
authors use Tracts to build transformation contracts. Tracts are OCL invariants
that can be used to specify preconditions, postconditions and transformation
invariants. The authors introduce the following notion of refinement: a Tract S ′

refines another one S if S ′ has weaker preconditions, but stronger invariants and
postconditions ((PreS ⇒ PreS′) ∧ (InvS′ ⇒ InvS) ∧ (PostS′ ⇒ PostS)). This
is a safe approximation to replaceability as in Def. 1, while our Prop. 1 exactly
characterizes this notion. Moreover, we also distinguish strong refinement.

Regarding refinement checking, in [25], refinement is checked by building a
suitable set of input test models and testing S′ against S’s pre/postconditions
and invariants. This approach has two drawbacks. First, it is based on testing
and on the manual creation of input test models. Secondly, it assumes that S′

is an executable implementation which can be used for testing. As we have seen
in this paper, S′ might be a non-executable specification.

Our checking procedure ensures correctness criteria for the refining transfor-
mation. In this respect, the work in [19] provides a means to verify a transforma-
tion against verification properties, assuming that both are given by patterns, in
the line of PaMoMo patterns. Verification properties are restricted to be posi-
tive. The checking implies generating all minimal glueings of the transformation
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patterns, and checking them against the verification property. In such restricted
case, the verification is finitely terminating. We plan to investigate the glueing
minimality conditions to provide suitable search bounds for the solver.

The use of OCL to define transformation contracts was proposed in [9]. This
idea was extended in [4] with the aim to build transformation models as a declara-
tive means to capture the transformation semantics. Transformation models with
OCL constraints were used for transformation verification using model finders
in [2, 6, 7]. None of these works propose checking transformation refinement.

7 Conclusions and Future Work

In this paper, we have presented a methodology and tool support to check trans-
formation refinement. Refinement is useful to check whether an implementation
is correct with respect to a specification, to ensure replaceability of implementa-
tions (e.g. when migrating a transformation), and to apply step-wise refinement
techniques to transformation development.

Our methodology can be applied to check refinement between transforma-
tions in any specification or implementation language for which a translation
to an OCL transformation model exists. To our knowledge, such translations
exist for PaMoMo, QVT-R, TGGs, and for a subset of ATL without imper-
ative code blocks. One limitation of the OCL contract-based approach is that
recursive rules cannot be generally mapped into OCL contracts, since OCL has
no fix-point operator. For example, the QVT-R-to-OCL translation in [7] would,
for recursive rules, yield recursive helper operations. For bounded verification,
however, such definitions can be still statically unfolded up to a given depth.

Our methodology is actually independent of OCL. For example, it would
apply to transformations contracts specified in first order logic, too, like in [5].
That would open up further possibilities for symbolic reasoning. Our lightweight
methodology permits checking transformation correctness; however, as it relies
on bounded model finding, formally, our method can only disprove refinement.
Using wide enough bounds can provide high confidence in refinement, though.
Another possibility would be to prove implications from the invariants and post-
conditions of S′ to those of S; however, this would require the use of theorem
provers, with less automation. We will explore this path in future work. Finally,
we also plan to combine the constraints coming from the implementation and
the specification to derive models for testing, in the style of [11].
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