
Using ATL transformation services in the MDEForge
collaborative modeling platform

Juri Di Rocco1, Davide Di Ruscio1, Alfonso Pierantonio13, Jesús Sánchez Cuadrado2,
Juan de Lara2, Esther Guerra2

1 University of L’Aquila (Italy) - name.surname@univaq.it
2 Universidad Autónoma de Madrid (Spain) - name.surname@uam.es
3 Mälardalen University, Västerås (Sweden) - name.surname@mdh.se

Abstract. In the last years, the increasing complexity of Model-Driven Engi-
neering (MDE) tools and techniques has led to higher demands in terms of com-
putation, interoperability, and configuration management. Harnessing the software-
as-a-service (SaaS) paradigm and shifting applications from local, mono-core im-
plementations to cloud-based architectures is key to enhance scalability and flex-
ibility. To this end, we propose MDEForge: an extensible, collaborative modeling
platform that provides remote model management facilities and prevents the user
from focussing on time-consuming, and less creative procedures. This demo pa-
per illustrates the extensibility of MDEForge by integrating ATL services for the
remote execution, automated testing, and static analysis of ATL transformations.
The usefulness of their employment under the SaaS paradigm is demonstrated
with a case-study showing a wide range of new application possibilities.

1 Introduction
Modeling and model management tools are commonly distributed as software packages
that need to be downloaded and installed on client machines, and often on top of com-
plex development IDEs, e.g., Eclipse4. Given the non-trivial implicit and explicit inter-
dependencies of such tools, this can often be a burden, particularly for non-technical
stakeholders (e.g., domain experts) with average IT skills. Moreover, the increasing
complexity of the systems to be built and their high demands in terms of computation,
memory and storage, requires more scalable and flexible MDE techniques.

A first attempt to deal with such challenges is the Modeling as a Service (MaaS)
initiative [6], which proposed the idea of deploying and executing MDE services over
the Internet. This is aligned with the software as-a-service (SaaS) paradigm, since con-
sumers do not manage the underlying cloud infrastructure and deal mostly with end-
user systems. Even though there are different projects (e.g., the EU MONDO project5)
and approaches [1,9] related to the adoption of cloud infrastructures for MDE, the area
is still at its infancy. In [4], MDEForge was proposed as an extensible platform enabling
the adoption of model management tools as SaaS: advanced functionalities like unman-
aged clustering of large metamodel repositories [3], and automated chaining of model
transformations [5], are already part of the core services.

4 http://www.eclipse.org
5 http://www.mondo-project.org/

http://www.eclipse.org
http://www.mondo-project.org/


In this demo paper, we show how MDEForge has been extended to enable the re-
mote execution and analysis of ATL transformations, their automated testing and static
analysis. Section 2 presents an overview of MDEForge and its core services. The next
section introduces the developed extensions to support ATL transformations. Section
4 presents how to use such services in practice by exploiting both the Web access
and REST APIs. Finally, Section 5 draws conclusions and outlines future develop-
ments. Additional resources about this demo paper are available on line6.

2 MDEForge

REST API

Extensions

Core

WEB 
Access

Users

Repository

Fig. 1. Overview of the MDEForge architecture

MDEForge is an extensible online mod-
eling platform specifically conceived
to foster a community-based modeling
repository, which underpins the develop-
ment, analysis and reuse of modeling ar-
tifacts. The MDEForge platform consists
of a number of services that can be used by means of both Web-based and program-
matic interfaces (APIs) that enable their adoption as SaaS (see Fig. 1). Core services
are provided to manage users and modeling artifacts, e.g., models, and metamodels.
Resembling functionalities of desktop IDEs, like Eclipse, registered users have the pos-
sibility to create modeling artifacts and organize them in projects that are, in turn, con-
tained in workspaces. Projects and artifacts can be shared with users of the same system
installation. Next, we describe the most relevant MDEForge services, shown in Fig. 2.
CRUDArtifactService. It permits to create, update, query, and delete artifacts in the
repository. An abstract implementation of the service is provided in order to have a
default and common behavior, which can be parametrized by exploiting Java generics
to handle specific kinds of artifacts (e.g., models, metamodels, and transformations).
CRUDRelationService. This service permits representing in a megamodel all the arti-
facts stored in the repository together with the relations among them. For instance,
for each stored model in the repository, a conformance relation element exists in the
megamodel to refer the corresponding metamodel. Similarly to CRUDArtifactService, a
generic implementation of CRUDRelationService is given, which is then specialized to
manage specific relations such as conformance (between models and metamodels) and
domain conformance (between model transformations and corresponding metamodels).
UserService. This service provides authentication and authorization functionalities and
underpins the management of workspaces, projects, and shared artifacts.
WorkspaceService. It provides CRUD operations to manage user workspaces, which are
used to organize projects and artifacts.
ProjectService. It provides CRUD operations to manage projects with different kinds of
artifacts. Differently to workspaces, projects can be shared between several users.
GridFileMediaService. In MDEForge we have defined a common layer to handle phys-
ical files. GridFileMediaService provides a set of functions that take as input artifacts
and retrieve physical paths, input/output streams, etc.

6 http://www.di.univaq.it/diruscio/ICMT2016-MDEForge-tool-demo-accompanying.pdf

http://www.di.univaq.it/diruscio/ICMT2016-MDEForge-tool-demo-accompanying.pdf


Fig. 2. MDEForge core services

ClusterService. In order to mitigate the difficulties related to manual categorization of
artifacts, MDEForge provides a clustering technique to group together mutually similar
artifacts depending on a proximity measure (implemented by SimilarityService), whose
definition can be given according to specific search and browsing requirements [3].
MetricProvider. In order to assess the quality of the stored modelig artifacts, for each
kind of artifact it is possible to define (by implementing the method calculateMetrics)
the corresponding metrics to be calculated [7,8].
SearchProvider. MDEForge provides common methods to search artifacts. By imple-
menting the createIndex method it is possible to customize the search.

3 MDEForge extensions for ATL
MDEForge has been extended with support for ATL transformations, including reuse,
sharing, execution, analysis and testing. In Sec. 3.1 we identify the functional require-
ments that have been considered to implement the extensions, presented in Sec. 3.2.

3.1 Functional requirements
The functionalities provided by the MDEForge extensions presented in the next sections
have been developed with the aim of fulfilling the requirements described below.
RQ1 - Create, read, update and delete ATL transformations: like any kind of artifacts
handled by MDEForge, the extension has to permit CRUD operations on ATL transfor-
mations. Moreover, the system should manage transformations in .xmi and .atl formats.
When transformations are uploaded the system should take care of compiling them and
informing the user in case of errors.



RQ2 - Share ATL transformations: in order to promote reuse of existing transforma-
tions, the system has to provide sharing facilities similar to those of public storage ser-
vices like Dropbox and Google Drive. Thus, when users upload transformations, they
can decide if they have to be private, public or shared with other users.
RQ3 - Manage megamodeling relations: when new ATL transformations are uploaded,
it is necessary to update the megamodel representing all the artifacts stored in the repos-
itory. Thus, specific domainConformsTo and coDomainConformsTo relations have to be
introduced in order to relate the transformations being uploaded with the corresponding
source and target metamodels, respectively.
RQ4 - Search ATL transformations: the default MDEForge search methods have to be
extended in order to enable the specification of advanced queries, e.g., search all ATL
transformations that produce models conforming to a specific metamodel.
RQ5 - Execution of ATL transformations: in line with the MaaS initiative, MDEForge
has to enable the remote execution of ATL transformations. To this end, once an already
stored transformation has been selected, it is necessary to upload the source models and
validate them with respect to the source metamodels (RQ5a), execute the transformation
(RQ5b), store and return back the result (RQ5c).
RQ6 - Analysis of ATL transformations: the system should enable the remote analysis of
ATL transformations. According to [11], the evaluation of specific metrics can give rel-
evant insights and support quality assessment transformations tasks. In particular, static
analysis can efficiently reveal problems with no need for transformation execution [10].
Additionally, testing mechanisms able to generate large sets of test input models can
play a key role for exercising transformations and detecting faults [2]. Thus, the MDE-
Forge extensions required to analyse ATL transformations have to enable the calculation
of metrics (RQ6a), and support their static analysis (RQ6b) and testing (RQ6c).
RQ7 - Remote access to the ATL transformation services: all the previously presented
functionalities have to be implemented as services in order to enable their adoption by
means of both specific APIs and the MDEForge Web interface.

3.2 ATL services in MDEForge

In order to fulfil the abovementioned requirements, MDEForge has been extended as
depicted in Fig. 3. In particular, the added interface ATLTransformationService

extends the core CRUDArtifactService in order to define ATL specific services
i.e., executing and analysing transformations. The implementation of the added in-
terface is given in the new ATLTransformationServiceImpl class, which extends
the core CRUDArtifactServiceImpl class and implements also the core interfaces
SearchProvider and MetricProvider. The static analysis and the testing services
are also defined in ATLTransformationServiceImpl by implementing the new in-
terfaces AnATLyzerService and ATLTransformationTesterService.

The analysis service uses anATLyzer [10], a static analyser for ATL able to detect
over 40 types of errors statically (e.g., rule conflicts, unresolved bindings, uninitialized
features). The testing service uses random testing, producing input models via con-
straint solving and checking for runtime errors and non-conforming target models.

In order to enable the use of ATL services in the MDEForge Web client, the core
classes ArtifactPublicWebController and ArtifactPrivateWebController



Fig. 3. MDEForge extensions for ATL

have been extended by new controllers. Similarly, the core REST controllers have been
extended to enable the programmatic use of ATL services.

4 Use of ATL services
Next, we show how the added ATL services can be used. Fig. 4 shows the MDEForge
Web page showing details about the Families2Persons7 transformation stored in the
repository. On the top of the page, general data of the transformation are shown i.e., the
user who has imported it, when it was added to the repository, and the date of the last
change. Moreover, the users the transformation has been shared with are also shown.

The outcome of the analysis services is shown in the sections anATLyzer Transfor-
mations errors and Test service report. In the specific example, the former shows an
error that might occur at run-time because of the access to the lastName feature that
can be undefined. This error has been confirmed by the test service, which has generated
three test models that have raised the error at run-time. Test models can be downloaded
and explored in order to figure out how to improve the transformations that raised the
errors. Model transformations can be remotely executed from the Execute the Transfor-
mation section. From this section, users can select input models already available in the
repository or can upload new ones. Once the input models are selected, the transforma-
tion can be executed, and the link to download the generated target model is given back
to the user. On the bottom of the page, the system shows metrics calculated over the
considered transformation, which can be used for quality assessment.

The ATL services can also be used in a programmatic way by means of a Java client,
which makes use of specifically designed REST APIs. The execution of a given ATL
transformation can be done as shown in line 23 by exploiting the ATLTransformation-
Service, which has been initialized in lines 2-3. The input model to the transformation

7 http://www.eclipse.org/atl/atlTransformations/#Families2Persons

http://www.eclipse.org/atl/atlTransformations/#Families2Persons


Fig. 4. ATL transformation details page

is retrieved in lines 9-11. To this end, the EcoreMetamodelService initialized in lines
4-5 is exploited. The analysis services can be applied on the loaded transformation as
done in lines 18-20. It is important to remark that the execution of the analysis services
can be time consuming, thus if the results are already available (because of previous
executions) then they are given back immediately, otherwise the service executions are
scheduled and the user is informed as soon as the results are available.

Listing 1.1. Use of ATL services in a programmatic way
1//Init client services
2ATLTransformationService atlClientService =
3 new ATLTransformationService("<server_url>", "<User", "<pw>");
4EcoreMetamodelService ecoreClientService =
5 new EcoreMetamodelService("<server_url>", "<User", "<pw>");
6EcoreMetamodel families= ecoreClientService.getEcoreMetamodelByName("Families");
7



8//Create model to be transformed
9Model simpleFamilyModel = new Model();

10simpleFamilyModel.setName("simpleFamilies_Demo");
11simpleFamilyModel.setFile(ModelService.setGridFileMedia("sample-Families.xmi"));
12[...]
13//Load Transformation
14ArtifactList models = new ArtifactList();
15ATLTransformation t=atlClientService.getATLTransformationByName("Families_Demo");
16
17//Analyze transformation
18List<ATLTransformationError> anATLyzerError = atlClientService.anATLyze(atl);
19List<ATLTransformationTestServiceError> testServiceError =
20 atlClientService.testerService(t);
21
22//Execute transformation
23models.add(simpleFamilyModel);
24List<Model> result = atlClientService.executeATLTransformation(t, models);

5 Conclusions and future work
In this paper, we have shown how MDEForge has been extended to add support for ex-
ecuting and analysing ATL transformations according to the SaaS paradigm. In the fu-
ture, we intend to implement further extensions for instance to support advanced queries
on the repository and to support collaborative modeling activities. As future work we
intend also to investigate issues that are typical in Cloud computing, e.g., scalability of
the platform, and workload management.
Acknowledgements. Work supported by the Spanish MINECO (TIN2014-52129-R),
the Madrid Region (S2013/ICE-3006), and the EU commission (#611125)

References

1. Acretoaie, V., Störrle, H.: Hypersonic-model analysis as a service. In: PSRC@ MoDELs. pp.
1–5 (2014)

2. Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.L.: Towards an
automation of the mutation analysis dedicated to model transformation. Software Testing,
Verification and Reliability 25(5-7), 653–683 (2015)

3. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated clustering
of metamodel repositories. In: CAiSE (2016), to appear

4. Basciani, F., Rocco, J.D., Ruscio, D.D., Salle, A.D., Iovino, L., Pierantonio, A.: Mdeforge:
an extensible web-based modeling platform. In: CloudMDE@MoDELS. pp. 66–75 (2014)

5. Basciani, F., Ruscio, D.D., Iovino, L., Pierantonio, A.: Automated chaining of model trans-
formations with incompatible metamodels. In: MODELS. pp. 602–618 (2014)

6. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and Cloud Com-
puting. In: MDA4ServiceCloud@ECMFA. Paris, France (Jun 2010)

7. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining metrics for understanding
metamodel characteristics. In: MiSE@ICSE (2014)

8. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining correlations of atl model
transformation and metamodel metrics. In: MiSE@ICSE (2015)

9. Manzanares, C.C., Cuadrado, J.S., de Lara, J.: Building mde cloud services with distil. In:
CloudMDE@MoDELS (2015)

10. Sanchez Cuadrado, J., Guerra, E., De Lara, J.: Uncovering errors in atl model transformations
using static analysis and constraint solving. In: ISSRE. pp. 34–44. IEEE (2014)

11. Van Amstel, M.F., Van Den Brand, M.G.: Model transformation analysis: Staying ahead of
the maintenance nightmare. In: ICMT, pp. 108–122. Springer (2011)


	Using ATL transformation services in the MDEForge collaborative modeling platform

