
Towards a Mechanism for Controlling Meta-model Extensibility

Santiago P. Jácome-Guerrero1 and Juan de Lara2
1Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE,

Av. General Rumiñahui S/N y Paseo Escénico Santa Clara, 1715231B, Sangolquí, Ecuador
2Escuela Politécnica Superior, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain

Keywords: Model-Driven Engineering, Meta-modelling, Meta-model Extension.

Abstract: Model-Driven Engineering (MDE) considers the systematic use of models in software development. A
model must be specified through a well-defined modeling language with precise syntax and semantics. In
MDE, this syntax is defined by a meta-model. There are several scenarios that require the extension or adap-
tation of existing meta-models. For example, OMG standards such as KDM or DD are based on the exten-
sion of base meta-models, according to certain norms. However, these norms are not "operational", but are
described in natural language, and therefore not supported by tools. Although modeling is an activity regu-
lated by meta-models, there are no commonly accepted mechanisms to regulate how meta-models can be
extended. To solve this problem, we propose a mechanism that allows establishing norms of extensibility
for meta-models, as well as a tool that makes it possible to extend the meta-models according to those
norms. The tool is based on EMF, implemented as an Eclipse plugin, and has been validated to guide the ex-
tension of OMG standard meta-models such as KDM and DD.

1 INTRODUCTION

Model-Driven Engineering (MDE) is a software
development paradigm that connects more closely
the model to the application. In this way, the models
not only encapsulate the design of the application,
but are also actively used to simulate, test, verify and
generate the implementation of the system to be
built (García et al., 2013).

Although the modeling activity is regulated by
the corresponding meta-model, there are no com-
monly accepted mechanisms governing how meta-
models can be extended. This is because meta-
models often define languages, views and services
that are usually integrated in tools and are therefore
less likely to need user modification (Atkinson et al.,
2015). However, in some scenarios, it is common to
design meta-models in order to be extended by other
developersor (de Lara et al., 2014). For example,
some Object Mana-gement Group (OMG) specifica-
tions are intended to be used by extending a certain
part of the meta-model. This is the case of the meta-
model of the Knowledge Discovery Meta-Model
(KDM), and the Diagram Definition (DD). Howev-
er, the ways in which these extension need to be
carried out are expressed using natural language.

This is error prone, more when there is no automated
mechanism to check the extensions against what is
specified in the standard, or guide the developer in
the extension.

This situation contrasts with the well-established
instantiation mechanisms of meta-models. In our
view, there should be similar mechanisms to esta-
blish norms for the correct extension of a meta-
model (e.g., classes to be subclassified, references to
be redefined), as well as the operationalization of
such norms by means of tools.

To improve this situation, the present article pro-
poses a mechanism for the specification of rules for
the extension and adaptation of meta-models, as well
as a tool that allows their extension according to the
defined norms. The tool has been built as an Eclipse
plugin, on top of the Eclipse Modeling Framework
(EMF), the de facto meta-modeling standard nowa-
days (Steinberg et al., 2009). The tool has been vali-
dated in different scenarios, including the definition
of extensibility for the KDM (2011) and DD (2015)
standards.

The rest of the article is organized as follows.
Section 2 describes our mechanism for defining
extensibility and adaptability in meta-models. Sec-
tion 3 presents the tool support and a case study.

382
Jácome-Guerrero, S. and Lara, J.
Towards a Mechanism for Controlling Meta-model Extensibility.
DOI: 10.5220/0006462603820387
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 382-387
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Section 4 compares with related work and section 5
ends with conclusions and lines of future work.

2 EXTENSION MECHANISM

There are situations in which meta-models are de-
signed for the purpose of being extended. Hence,
similar to object-oriented application frameworks
(Fayad and Schmidt, 1997), these are base meta-
models, from which more complex systems are
derived by subclassification and redefinition. How-
ever, there is currently a lack of mechanisms to
specify the way in which they can be extended.

Taking into account the need to have mechanisms
that regulate how meta-models can be extended or
adapted (mechanisms also referred to as "customiza-
tion"), this section describes the approach that al-
lows establishing norms of extensibility and adapta-
tion of meta-models. As shown in Figure 1, this
approach considers two phases.

Figure 1: Definition and use of extension rules.

First, the extension rules of the base meta-model
are defined. These are specified as a model, con-
forming to a customization meta-model (Figure 2),
which annotates the elements of the base meta-
model. In the second phase, the base meta-model
can be extended according to the established rules.

We consider four types of rules (see Table 1)
which permit extending, deleting, updating or crea-
ting new classes, and control reference redefinition.

It is important to note that it is common that de-
fining the extension rules and the proper meta-model
extension will be performed by different developers
and will be supported by tools. This will provide
guidance to the developer to extend the meta-model,
as well as confidence that the extension made obeys
the extension rules. Section 3 gives an overview of
the developed tool.

Table 1: Supported extension rules.

Rule Applies to Description
Extend Class The tagged class is consi-

dered extensible: it is possi-
ble to add subclasses

Delete Class Permits tagging optional
classes

Update Class Tags a class as “open”: it
can be added new attributes
and references

New Meta-
model

Tags a meta-model as
“open”: it can be added new
classes

Redefine Reference Governs how/if references
can be redefined

In the scenario of extension of meta-models that
we handle, only the extension and redefinition rules
are relevant. These rules are created by instantiating
the Extend and Redefine classes.

Extension rules allow extending the class (crea-
ting subclasses) of the base meta-model selected by
the custom_extend reference. The extensionKind
attribute declares whether the subclass must be abs-
tract, concrete, or left to the engineer discretion. It is
also possible to specify the number of subclasses
allowed, using the min..max interval (where -1 for
max indicates unlimited). For example, it is possible
to specify whether a class must be extended exactly
once (interval 1..1), optionally at most once (interval
0..1), mandatorily one or more times (interval 1..- 1),
or zero or more times (interval 0..-1). It should be
noted that if a class of the base meta-model does not
have an associated extension rule, then it cannot be
extended.

It is possible to define rules that govern the re-
definition of references by instantiating the Redefine
class. Thus, given a class C that defines a reference
ref to a class D, we can indicate how many times ref
can be redefined each time C is extended (through
the min..max interval). In any case, the destination of
the ref redefinitions must be compatible with class
D. In addition, we can specify whether or not the
redefinitions should be composition, or any (compo-
sitionKind attribute). Finally, using the redefKind
attribute, we control the cardinality that can be as-
signed to each redefinition, with three possibilities:

1) Default. The cardinality of the redefinitions must
be that of the reference ref.

2) Restrictive. The cardinality of the redefinitions
must be an interval contained in ref. For example, if
the cardinality of ref is 0..2, then the redefinitions
can declare the intervals: 0..1, 0..2 and 1..2.

3) Anything. The cardinality of the redefinitions can
be any.

Towards a Mechanism for Controlling Meta-model Extensibility

383

Figure 2: Customization meta-model.

When a reference ref is redefined by a series of
references ref1, ..., refn, reference ref is seen as a
derived reference, resulting from the union of
ref1, ..., refn. In terms of UML, ref1 ... refn would
have a subsets relation with ref.

We consider three options for storing the exten-
ded meta-model:
1) newMM: makes a copy of the original meta-
model in another file for the modifications to be
made on the original meta-model.
2) theSame: modifications are made on the original
meta-model.
3) newPackage: the extensions are stored in a packa-
ge referencing the base one.

3 TOOL SUPPORT AND CASE
STUDY

This section describes tool support and we use KDM
as a case study.

3.1 Tool Support

In order to make the extension approach of meta-
models possible, we have designed an architecture
made of a pair of complementary tools that work
together. The customization architecture (Figure 3)
uses the meta-model "custom.ecore" (label 1, shown
in Figure 2), which specifies the operations that can
be performed on the meta-model to be customized.

Then, the customization meta-model is instantia-
ted, creating an extension and adaptation model (file
with extension *.custom). This model contains the

extensibility rules for the meta-model. To specify
this model, the developer can use either the default
EMF tree-based editor, or a textual editor that we
have created with Xtext (label 2). The meta-model to
be extended is loaded from a repository (label 3).

Figure 3: Customization architecture.

Once the extension rules are defined, the base
meta-model can be extended according to them. For
this purpose, we have created an intuitive graphical
user interface (GUI), which allows executing the
operations of the extension model (label 4). The cus-
tom meta-model is stored in a repository (label 5).

ICSOFT 2017 - 12th International Conference on Software Technologies

384

3.2 Case Study

In order to verify the feasibility of the proposed
approach, we have defined extensibility rules on
several meta-models, including standard meta-
models such as DD and KDM. This section de-
scribes the extension process for KDM v1.3. The
objective of this study is to define the rules of exten-
sion of the Core package (see Figure 4), and to use
them to create one of the packages of the standard
(Code package).

Figure 4: KDM Core package (excerpt).

KDM is a modeling standard in the area of soft-
ware modernization. According to the standard, the
KDM meta-model can be extended to represent
elements and specific relations of the language,
application or implementation. Its purpose is to
model the various artifacts of legacy applications,
such as source code or configuration files. Once the
legacy system is represented in the form of models,
these can be analyzed, optimized or can serve as a
basis for the modernization of the application with
more recent technologies.

According to the standard, extensions to this
package must be made using a uniform pattern. The
problem is that the KDM standard specifies these
extension rules in natural language, which are error
prone. That is, they are conventions that the deve-
loper can misinterpret, not understand or simply
ignore. In addition, de facto modeling standards,
such as EMF, do not support the redefinition of
relationships (which are necessary in this case).

Figure 5 shows some of the extension rules de-
fined with our textual language. The first line in
Figure 5 specifies that the rules are for the core
package, and that the extensions are to be saved in a
different package.

Figure 5: Some extension rules using the textual DSL.

Then the first rule (an Extend rule) specifies that
the class KDMModel should be extended mandatori-
ly (with cardinality [1..1]) by a concrete class, which
in its turn cannot be further extended. The second
rule (a Redefines rule) specifies that reference
ownedElement should be redefined mandatorily
(whenever KDMModel is extended) as a contain-
ment reference with same cardinality.

Once the extensibility rules are specified, they
can be used through the GUI of our tool (Figure 6).
This is organized into two sections, the first column
of the left section shows all the elements of the base
meta-model (classes, attributes and references),
which can be modified according to the extension
rules defined in the extension model and shown in
the columns on the right, next to each element of the
base meta-model. The [Ext]end|Type|IsExtend co-
lumn specifies that the KDMModel class (among
others) must be extended with a specific concrete
Type and cannot be further extended (IsExtend=
false).

The [Red]efine|Type|Containment column speci-
fies that the reference ownedElement must be rede-
fined exactly once, with default cardinality (i.e., the
redefinition cardinality should be the same as the
redefined cardinality). It is also specified that the
reference is of the container type. It should be noted
that a reference can be redefined only when the
classes involved have been extended. This way,
reference ownedElement is redefined by the code-
Element reference between the CodeModel (which
extends KDMModel) and AbstractCodeElement
(which extends KDMEntity). The target of the refe-
rence (AbstractCodeElement) is compatible with the
target of the reference ownedElement (KDMEntity).

The right section of the interface (panel labelled
“OPTIONS”) shows the operations in the form of
buttons that are activated or deactivated depending
on the extension rules specified for each element of
the meta-model and which are previously defined in
the extension model.

Towards a Mechanism for Controlling Meta-model Extensibility

385

Figure 6: Extension GUI being used to define the Code package, according to the defined extension rules.

Figure 7 shows the resulting Code package, built
with the extension GUI. Altogether, the use of our
approach ensures that any package extending the
Core package is defined as expected by the KDM
designers.

Figure 7: Resulting Code package.

4 RELATED WORK

The objective of the present work has been to pro-
pose an approach that allows controlling the exten-
sion and adaptation of meta-models. Next we com-
pare with some related efforts in this direction.

In (Bruneliere et al., 2015) it is proposed the a-
daptation of meta-models through a textual DSL that
allows the definition of extensions of the meta-
model. Extensions are created as meta-model anno-
tations by modeling experts, and can be created at
the time of development of the meta-model. Unlike
our approach, these mechanisms are concrete exten-

sions to a meta-model. Our approach defines rules
that must be fulfilled by any extension, and can
therefore be seen as complementary to this work.

In (Braun, 2015b) it is pointed out that UML pro-
files provide a valuable means for adapting existing
meta-models to specific platforms. The UML pro-
files constitute a lightweight extension mechanism
where it is possible to extend the meta-model with-
out overwriting the original elements. In (Langer et
al., 2012) the philosophy of profile extension to the
EMF-Ecore environment is adopted. Again, profiles
can be viewed as concrete extensions to a meta-
model, but not as rules that regulate their extension.

In (Braun, 2015a) a classification of extension
mechanisms is provided and the concept of hook is
considered, in order to leave open parts of a program
that can be specified later in classes, interfaces or
methods (Birsan, 2005), while other parts of the
software remain fixed.

In (Braun and Esswein, 2015) the authors con-
sider several MOF meta-model extension mecha-
nisms, based on an analogy with the extension prin-
ciples of the software engineering field, such as
hooks, aspects, plug-ins and add-ons. An approach
like ours would permit specifying the allowed exten-
sions.

En (Atkinson et al., 2015) analyses three exten-
sion mechanisms (built-in, meta-model custo-
mization and model annotation), identifying
strengths and weaknesses. The authors propose an
alternative mechanism through multi-level mode-
ling, which would remove the weaknesses of the
previously mentioned mechanisms.

In summary, we can see a large number of works
that analyze mechanisms for the extension of lan-
guages or DSLs, but there is a lack of mechanisms to

ICSOFT 2017 - 12th International Conference on Software Technologies

386

define extension rules governing how meta-models
can be extended, an aspect in which our work is
novel and complements these existing works.

5 CONCLUSIONS

In this article we have proposed a mechanism, archi-
tecture, and a set of tools that allow to define exten-
sion rules for meta-models, as well as to make spe-
cific extensions according to the defined rules. The
rules are defined by an extension model, typically
constructed by the designer of the meta-model to be
extended. Subsequently other engineers can use the
extension rules to extend the base meta-model. Our
tools guide in this extension ensuring that they obey
the defined rules.

The proposed approach has the advantage that it
is non-intrusive, and generic, that is, extension rules
can be linked to any meta-model. On the other hand,
an explicit definition of extension rules avoids the
introduction of accidental errors due to the use of
natural language.

We are currently improving the tool, and the ex-
pressiveness of the extension rules. Although the
current rules allow expressing the extensions des-
cribed in standards like KDM or DD, we will ana-
lyze other systems, to check if improvements are
necessary. We will improve the tool with an assis-
tant helping in the creation of suitable meta-model
extensions. Finally, we will extend the tool to handle
multi-level modeling and adaptation of DSLs.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish
MINECO (project TIN2014-52129-R), and the Gov-
ernment of Madrid (project S2013/ICE-3006). As
well as by Escuela Politécnica del Ejército ESPE-
Ecuador.

REFERENCES

2011. Knowledge Discovery Meta-Model™ (KDM).
Version 1.3 [Online]. Available: http://www.
omg.org/spec/KDM/1.3/PDF/.

2015. Diagram Definition™ (DD™) [Online]. Available:
http://www.omg.org/spec/DD/.

Atkinson, C., Gerbig, R., Fritzsche, M., 2015. A multi-
level approach to modeling language extension in the
enterprise systems domain. Information Systems, 54,
289-307.

Birsan, D. 2005., On plug-ins and extensible architectures.
Queue, 3, 40-46.

Braun, R., Behind the scenes of the bpmn extension
mechanism principles, problems and options for
improvement. Model-Driven Engineering and
Software Development (MODELSWARD), 2015 3rd
International Conference on, 2015a. IEEE, 1-8.

Braun, R., Towards the state of the art of extending
enterprise modeling languages. Model-Driven
Engineering and Software Development
(MODELSWARD), 2015 3rd International Conference
on, 2015b. IEEE, 1-9.

Braun, R., Esswein, W., 2015. Extending the mof for the
adaptation of hooks, aspects, plug-ins and add-ons.
Model and Data Engineering. Springer.

Bruneliere, H., Garcia, J., Desfray, P., Khelladi, D. E.,
Hebig, R., Bendraou, R., Cabot, J., On Lightweight
Metamodel Extension to Support Modeling Tools
Agility. European Conference on Modelling Founda-
tions and Applications, 2015. Springer, 62-74.

de Lara, J., Guerra, E., Cuadrado, J. S., 2014. When and
how to use multilevel modelling. ACM Transactions
on Software Engineering and Methodology (TOSEM),
24, 12.

Fayad, M., Schmidt, D. C., 1997. Object-oriented
application frameworks. Communications of the ACM,
40, 32-38.

García, J., García, F., Pelechano, V., Vallecillo, A., Vara,
J., Vicente-Chicote, C., 2013. Desarrollo de Software
Dirigido por Modelos: Conceptos, Métodos y
Herramientas.

Langer, P., Wieland, K., Wimmer, M., Cabot, J., 2012.
EMF Profiles: A Lightweight Extension Approach for
EMF Models. Journal of Object Technology, 11, 1-29.

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.,
2009. EMF: eclipse modeling framework.

Towards a Mechanism for Controlling Meta-model Extensibility

387

