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Abstract. The intensive use of models in Model-Driven Engineering
(MDE) raises the need to develop meta-models with different aims, like
the construction of textual and visual modelling languages and the spec-
ification of source and target ends of model-to-model transformations.
While domain experts have the knowledge about the concepts of the do-
main, they usually lack the skills to build meta-models. These should be
tailored according to their future usage and specific implementation plat-
form, which demands knowledge available only to engineers with great
expertise in MDE platforms. These issues hinder a wider adoption of
MDE both by domain experts and software engineers.
In order to alleviate this situation we propose an interactive, iterative
approach to meta-model construction enabling the specification of model
fragments by domain experts, with the possibility of using informal draw-
ing tools like Dia. These fragments can be annotated with hints about
the intention or needs for certain elements. A meta-model is automati-
cally induced, which can be refactored in an interactive way, and then
compiled into an implementation meta-model using profiles and patterns
for different platforms and purposes.

Keywords: Meta-Modelling, Domain-Specific Modelling Languages, In-
teractive Meta-Modelling, Meta-Model Design Exploration

1 Introduction

Model-Driven Engineering (MDE) makes heavy use of models during the de-
velopment process. Models are usually defined using Domain-Specific Modelling
Languages (DSMLs) which are themselves specified through a meta-model. A
DSML should contain useful, appropriate primitives and abstractions for a par-
ticular application domain. Hence, the input from domain experts is essential to
obtain effective, useful meta-models [13].

The usual process of meta-model construction requires first building (a part
of) the meta-model which only then can be used to build models. Even though
software engineers are used to this process, it may be counter-intuitive to non-
meta-modelling experts, which may prefer drafting example models first, and
then abstract those into classes and relations in a meta-model. As Oscar Nier-
strasz put it, “... in the real world, there are only objects. Classes exist only in
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Fig. 1. Different meta-model realizations depending on its future usage

our minds” [19]. In this way, domain experts and final users of MDE tools are
used to working with models, but not with meta-models. Asking them to build
a meta-model before drafting example models is often too demanding. In gen-
eral, an early exploratory phase of model construction, to understand the main
concepts of the language, is recommended for DSML engineering [4, 13].

Another issue that makes meta-model construction cumbersome is the fact
that meta-models frequently need to be fine-tuned depending on their intended
use: designing a textual modelling language (e.g., with xText1), a graphical lan-
guage (e.g., with GMF or Eugenia [14]), or the source or target of a transforma-
tion. As illustrated in Fig. 1, the particular meta-model usage may impact on
its design, for instance to decide whether a connection should be implemented
as a reference (e.g., for simple graphical visualization), as an intermediate class
(e.g., for a more complex visualization, or to enable iterating on all connection
instances), as a bidirectional association (e.g., to allow back navigation if it is
used in a transformation), or as an intermediate class with composition (e.g., to
enable scoping). The use of a specific technological platform, like EMF [24], has
also an impact on how meta-models are actually implemented, e.g., regarding
the use of composition, the need to have available a root class, and the use of
references. As a consequence, the implementation meta-model for a particular
platform may differ from the conceptual one as elicited by domain experts. Spe-
cialized technical knowledge is required for this implementation task, hardly ever
found in domain experts, which additionally has a steep learning curve.

In order to alleviate this situation, this paper presents a novel way to define
meta-models and modelling environments. Its ultimate goal is to facilitate the
creation of DSMLs by domain experts without proficiency in meta-modelling
and MDE platforms and technologies. For this purpose, we propose an itera-
tive process for meta-model induction in which model fragments are given either
sketched by domain experts using drawing tools like Dia2, or using a compact
textual notation suitable for engineers which allows annotating the intention
of the different modelling elements. From these fragments, a meta-model is au-
tomatically induced, which can be refactored if needed. Finally, the resulting

1 http://www.eclipse.org/Xtext/
2 http://projects.gnome.org/dia/
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meta-model is compiled into a given technology (e.g., EMF or MetaDepth [8]),
optimized for a particular purpose (visual or textual language, transformation)
and a particular tool (e.g., xText or GMF).
Paper organization. Section 2 overviews the working scheme of our proposal.
Its main steps are detailed in the following sections: specification of fragments
(Section 3), meta-model induction and refactoring (Section 4), and compilation
of the induced meta-model for different purposes and platforms (Section 5).
Next, Section 6 presents tool support. Finally, Section 7 compares with related
research and Section 8 ends with the conclusions.

2 Bottom-up Meta-Modelling

Interactive development [21] promotes rapid feedback from the programming
environment to the developer. Typically, a programming language provides a
shell to write pieces of code, and the running system is updated accordingly.
This permits observing the effects of the code as it is developed, and to explore
different design options easily. This approach has also been regarded as a way
to allow non-experts to perform simple programming tasks or to be introduced
to programming, since a program is created by defining and testing small pieces
of functionality that will be composed bottom-up instead of devising a design
from the beginning.

Inspired by interactive programming, we propose a meta-modelling frame-
work to facilitate the integration of end-users into the meta-modelling process,
as well as permitting engineers with no meta-modelling expertise to build meta-
models. The design of our framework is driven by the following requirements:

– Bottom-up. Whereas meta-modelling requires abstraction capabilities, the
design of DSMLs demands, in addition, expert knowledge about the domain
in two dimensions: horizontal and vertical [1]. The former refers to technical
knowledge applicable to a range of applications (e.g., the domain of Android
mobile development) and experts are developers proficient in specific imple-
mentation technologies. The vertical dimension corresponds to a particular
application domain or industry (e.g., insurances) where experts are usually
non-technical people. Our proposal is to let these two kinds of experts build
the meta-models of DSMLs incrementally and automatically starting from
example models. Afterwards, the induced meta-model can be reviewed by a
meta-modelling expert who can refactor some parts if needed.

– Interactive. Creating a meta-model is an iterative process in which an initial
meta-model is created, then it is tested by trying to instantiate it to create
some models of interest, and whenever this is not possible, the meta-model
is changed to accommodate these models [13]. The performed changes may
require the detection of broken test models and their manual update. In our
proposal, if a new version of the meta-model breaks the conformance with
existing models, the problem is reported together with possible fixes.

– Exploratory. The design of a meta-model is refined during its construction,
and several choices are typically available for each refinement. To support the
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Fig. 2. Working scheme of bottom-up meta-modelling

exploration of design options, we should let the developer annotate his ex-
ample models with hints about his intention, which are then translated into
some meta-model design decision. If two models contain conflicting annota-
tions, this is reported to the developer who can decide among the different
design options. We also consider the possibility of rolling back a decision.

– Implementation-agnostic. The platform used to implement a meta-model
may enforce certain meta-modelling decisions (e.g., the use of compositions
vs references). This knowledge is sometimes not available to meta-modelling
experts, but only to experts of the platform. For this reason, we postpone
any decision about the target platform to a last stage. The meta-models
built interactively are neutral or implementation-agnostic, and only when
the meta-model design is complete, it is compiled for a specific platform.

Starting from the previous requirements, we have devised a process to build
meta-models that is summarised in Fig. 2. First, a domain expert creates one
or more example models using some tool with sketching facilities, such as Vi-
sio, PowerPoint or Dia. These examples are transformed into untyped model
fragments made of elements and relations (step 1). An engineer can manipulate
these fragments and define new ones, and also annotate his particular insight
of certain elements in the fragments (step 2). A meta-model is induced from
the fragments and their annotations (step 3), and it can be visualized to gather
feedback about the effect of the fragments. At this point, there are two ways
to evolve the meta-model: by adding new model fragments and updating the
meta-model accordingly, or by performing some refactorings from a catalogue
on the induced meta-model (step 4). In both cases, a checking procedure de-
tects possible conformance issues between the new meta-model and the existing
fragments, reporting potential problems and updating the fragments if possible
(step 5). Finally, in step 6, the user selects a platform and purpose of use, and
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the neutral meta-model (and the fragments) is compiled into an implementation
one, following the specific idioms of the target technical space. The compilation
rules are customizable, and new compilations can be defined.

Realizing this approach poses several challenges. First of all, both engineers
and non-technical experts need to develop model fragments. Engineers must be
provided with a comprehensive set of annotations to specify design intentions.
For non-technical experts, fragments are defined by sketches that have to be
interpreted, for instance taking advantage of spatial relationships (e.g., contain-
ment). Secondly, the induction process is not a batch operation, but it is an
interactive process that must take into account both the current version of the
meta-model and the previous and new model fragments, detecting conflicts if
they arise. Thirdly, a mechanism to let the users supervise the decisions of the
induction algorithm has to be defined, as well as a set of meta-model refactorings
to enable the resolution of conflicts. Finally, we compile meta-models for specific
platforms and uses, which requires studying the requirements of the considered
platforms. These issues are discussed in Sections 3, 4 and 5.

3 Definition of Model Fragments

In our approach, users provide model fragments –examples of concrete situations–
from which a meta-model is induced. Model fragments can be specified by a
domain expert, typically using a drawing tool, or by an engineer, using a more
concise syntax that can include annotations to guide the induction process.

As a running example, suppose we need to design a DSML to model sim-
ple factories and assist domain experts in modelling networks of machines. The
machines receive and produce parts to conveyors, which can themselves be in-
terconnected. Factories can include generators of two kinds of parts: dowels and
cylinders. The left part of Fig. 3 shows a model fragment with a particular
network as it would be sketched by a domain expert. It includes a machine con-
nected to input and output conveyors, each transporting a different type of part.
The right part of the figure shows the same fragment using the textual syntax
that the engineer would use. Actually, we have an importer from Dia drawings
that translates the sketches into textual fragments.

The textual syntax allows the engineer to enrich the fragments with domain
and design annotations to guide the meta-modelling induction process. Domain
annotations assign a meaning or feature to certain aspects of the fragment ele-
ments. For instance, the annotation @container attached to Conveyor indicates
that, conceptually, conveyors are containers of items while these are being trans-
ported (see line 2 in Fig. 3). It is not necessary to repeat the same annotation for
all objects of the same kind, but it is enough to annotate one of them. Another
example of domain annotation is @global, regarding the shareability of elements
between different models. For example, a global clock may be used to synchro-
nise all simulation models of a system. If an element is not tagged as @global,
it is assumed to be local, i.e., accessible in the scope of the current model only.
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1 fragment ”conveyorSequence” {
2 @container
3 cin: Conveyor {
4 rel asm = a;
5 }
6 cout: Conveyor {}
7 a: Assembler {
8 rel outs = cout;
9 }

10 p1: Dowel {
11 rel conv = cin;
12 }
13 p2: Cylinder {
14 @general
15 rel conv = cout;
16 }
17 }

Fig. 3. Model fragment definition: Graphical concrete syntax used by the domain ex-
pert (left), and compact textual syntax used by the engineer (right)

These annotations may be translated later into meta-modelling design decisions
or used to guide the meta-model compilation process.

On their side, design annotations refer to meta-modelling decisions that
should be reflected in the meta-model generated from the fragments. These de-
cisions can also be given later by refactoring the induced meta-model, but the
engineer is given the possibility to define them in advance using annotations. For
instance, the @general annotation specifies that a certain reference or attribute
should be kept as general as possible, i.e., it should be placed as high as possible
in the inheritance hierarchy. This may cause the creation of an abstract class in
the meta-model, as a parent of all classes owning the reference or attribute. For
example, the annotation in Fig. 3 (line 14) will cause the creation of a parent
class for dowels and cylinders, defining the common reference conv. Other exam-
ples of design annotations are @external, to indicate cross-references, or @partial,
to indicate that a class is only partially defined and should be completed with
others through merging or inheritance.

Altogether, annotations are a means to record an insight of the engineer at a
given point in the running session, and will be used at some point in the future
to guide the meta-model induction process.

4 Bottom-up Meta-Model Construction

Whenever the user enters a new fragment, the meta-model is updated accord-
ingly to consider the new information. The annotations in the fragment are
transferred to the meta-model, and this may trigger meta-model refactorings.
Any conflicting information within and across fragments, like the assignment
of non-compatible types for the same field, is reported to the user and auto-
matically fixed whenever possible. Next, we describe our meta-model induction
algorithm, how meta-model refactorings are applied, and the strategy for conflict
resolution.
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4.1 The meta-model induction algorithm

Given a fragment, our algorithm proceeds by creating a new meta-class in the
meta-model for each object with distinct type. If a meta-class already exists in
the meta-model due to the processing of previous fragments, then the meta-class
is not newly added. Then, for each slot in any object, a new attribute is created
in the object’s meta-class, if it does not exist yet. Similarly, for each relation
stemming from an object, a relation type is created in its meta-class, if it does
not exist. The minimum cardinality of relations is set to 0 by default, or to 1 if
all objects of the same kind define the reference. The maximum cardinality can
be set to 1 or unbounded. We take the convention of mapping plural reference
names to multivalued references, and singular to monovalued ones.

If two relations with the same name point to objects of different type, our
algorithm creates an abstract superclass as target of the relation type, with a
subclass for the type of each target object. This situation is illustrated to the
left of Fig. 4, where the new abstract class BC is created as parent of both B and
C. In this example, BC would not be created if the B meta-class is abstract and
the C object defines features that are compatible with those in B. The minimum
cardinality of the relation type r is set to min(a, 1) because it should accept at
least one element (the one provided in the fragment), but the previous minimum
cardinality (value a) may be zero. The maximum cardinality b of the relation is
kept. As we will explain in Section 4.3, any automatic design decision made by
the algorithm is reported to the user, so that he can change it.

As an example, Fig. 4 shows to the right the meta-model induced from the
fragment in Fig. 3. According to the heuristic, the conv and asm relations (sin-
gular) were assigned upper bound 1, while outs (plural) received upper bound *.
For the lower bound, it is 0 in asm because the fragment contains conveyors not
connected to assemblers, but it is 1 in outs because all assemblers are connected
to some conveyor in the fragment. Additionally, the @general and @container
annotations were copied from the fragment to the meta-model.

4.2 Refactoring of meta-models

The annotations transferred from the fragments to the meta-model may trigger
refactorings in it to reflect the annotated intentions. For example, the left of
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Fig. 5 shows the refactoring triggered by the @general annotation, which is simi-
lar to the pull-up refactoring [10]. It pulls up the annotated attribute or relation
as general as possible in an inheritance hierarchy. If the annotated attribute or
relation is shared by two classes that are not related through inheritance, then
an abstract, parent class is created for them so that the attribute or reference
can be pulled up (i.e., Fowler’s extract superclass refactoring [10] is applied). The
target of the pulled relation receives as lower bound the minimum of the lower
bounds, and as upper bound the maximum of the upper bounds. The situation
is similar for the source, but in this case the upper bound is generalised to * as
the pulled relation must merge those from A and B (i.e., we take * as the upper
bound instead of the sum of the upper bounds b’+d’).

The right of Fig. 5 shows the result of executing this refactoring to the
meta-model in Fig. 4, due to the @general annotation in reference conv. A new
abstract class AbstractDowelCylinder is created as parent of both Dowel and
Cylinder, acting as target of the reference.

4.3 Interactivity and exploration by supervising decisions

Our induction process and the triggered refactorings are automated mechanisms.
If there are several design alternatives available, then our algorithm takes a de-
cision; therefore, some supervision on behalf of the user may be needed. Our aim
is that the environment assists the user in refining the meta-model interactively
as it is being built. To this end, our induction algorithm records the decisions
taken, and presents possible alternatives to the user in the form of “open issues”.

Each open issue presents one or more alternatives, each one of them asso-
ciated to a refactoring. Whenever an alternative is selected, the corresponding
refactoring is applied to the meta-model. This interactive approach enables non-
expert users to refine a meta-model by observing the effects of their actions and
following suggestions from the environment. The user may apply refactorings
manually, through a catalogue of refactorings provided as part of the environ-
ment, if his level of expertise allows him to decide how to change the meta-model.

On the other hand, our induction algorithm is conservative as it does not
break the conformance of previous fragments when the meta-model needs to be
changed to accommodate new fragments; if the algorithm finds a disagreement,
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then it raises a conflict. However, the resolution of an open issue by means of a
refactoring may break the conformance. According to [5], changes in meta-models
can be classified into non-breaking, breaking and resolvable, and breaking and
unresolvable. Our refactorings automatically update the fragments if a change is
non-breaking or resolvable. For unresolvable ones, the user is asked to provide
additional information or to discard the no longer conformant fragment.

We have defined three kinds of open issues: conflict, automatic and sugges-
tion, which are briefly explained next.

Conflict. The definition of new fragments may imply the update of the meta-
model. For example, the cardinality of existing relations may need to be changed,
or new classes may need to be created. If a fragment contains contradictory
information, e.g., if the same attribute is assigned incompatible types in different
objects, then a conflict arises. For instance, there is a conflict if a conveyor
defines an attribute attr id=‘‘c1’’, and another conveyor defines attr id=2.
In this case, our algorithm chooses one of the types (e.g., String) and notifies
the conflict and the alternative to the user (e.g., choosing Integer). This open
issue must be resolved at some point by the designer. Changing the type of an
attribute from Integer to String is an example of breaking and resolvable change
(e.g., the conveyor with id=2 would be automatically changed to id=‘‘2’’),
while a change from String to Integer is breaking and unresolvable, and requires
the intervention of the user. Our algorithm chooses by default an alternative
that is non-breaking or, at least, resolvable.

Automatic. These are decisions automatically taken by the induction algorithm
when several alternatives exist. For instance, the name of the superclass au-
tomatically introduced for Dowel and Cylinder is built by concatenating the
subclasses’ names prefixed by “Abstract” (i.e., AbstractDowelCylinder). The
user is notified about this design decision, and is offered the possibility of chang-
ing the superclass’ name.

Suggestion. Some meta-model improvements may be possible, like the applica-
tion of guidelines or meta-model design patterns. These are provided as sugges-
tions which, if accepted, will trigger a certain meta-model refactoring. As an
example, if a reference is multivalued but its name is singular, our engine will
suggest the user to give it a plural name. So far, we support simple suggestions,
but our aim is to define and implement a catalogue of meta-modelling good
practices that help non-expert users improve the quality of their meta-models.

5 Meta-Model Compilation for Specific Platforms

The bottom-up meta-modelling process results in a conceptual meta-model that
still needs to be implemented in a particular platform (e.g., EMF, MetaDepth),
and tweaked for a particular purpose. For example, in EMF, an extra root class
is frequently added (e.g., if the models will be edited with the default tree ed-
itor), making heavy use of composition associations. If we aim at creating a
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model-to-model transformation, then we often implement references as bidirec-
tional associations to ease the definition of navigation expressions. Therefore, we
propose to define a number of transformations from such a neutral, conceptual
meta-model into implementation ones for specific platforms and purposes.

Fig. 6 shows a feature model that gathers some compilation variants from our
neutral meta-model. We currently support two platforms: EMF andMetaDepth.
For each one of them, one can select different profiles or purposes: transforma-
tion, visual language and textual language definition. Each platform and profile
has different options, which can help to fine-tune the compilation. The imple-
mentation of the modularity mechanism for meta-models is also subject of two
variants: package merge or cross-references between meta-models.

Next, we enumerate the different compilations that we support up to now.

– EMF platform. This compilation produces an ecore meta-model. Option-
ally, by setting the Editable flag equal to true, the compilation generates a
root class and composition associations to allow any class to be reachable
from the root class via composition associations. Each reference from a class
annotated with @container to a class annotated as @containee is converted
to a composition. Finally, EMF uses references instead of full-fledged associ-
ations, and references can only have cardinalities at the target end. For this
reason, this compilation generates two opposite references for those relations
in the neutral meta-model with cardinality different from * in the source.

– MetaDepth platform. This compilation produces a MetaDepth meta-
model, which takes advantage of some special features of metaDepth, like
Edges to model bidirectional associations and associative classes. In contrast
to EMF, MetaDepth does not support composition, therefore the compila-
tion generates OCL constraints for those references between @container and
@containee objects.

– Transformation profile. In this profile, we can configure two aspects to op-
timize navigation expressions. By selecting Opposite Navigation all relations
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become bidirectional, so that writing navigation expressions will be easier in
languages making use of query expressions (like QVT). The Global Reference
Iteration option should be selected when we foresee having to iterate over
references in a global scope. In this case, an intermediate class is generated
to permit the iteration. If MetaDepth is selected as target platform, this
option generates an Edge instead.

– Textual language profile. In xText, there is the convention of using a fea-
ture called “name” to allow cross-references to objects. Thus, any class that
is target of a non-containment reference must include an attribute “name”,
otherwise it is added by the compilation. Additionally, xText offers the pos-
sibility to automatically provide import facilities for textual files as well as to
integrate a DSML with Java types. This requires adding certain classes and
attributes to the meta-model, which is automatically done by the compiler
if the variants Import Aware and Java Integration are selected. Finally, some
DSMLs may require associating the line/column information to the elements
(this is even required in tools like TCS), which is implemented making all
classes inherit from a common LocatedElement class.

– Visual language profile. In this case, we can select whether to include in
classes attributes to store the size and position of elements in the canvas.

As an example, Fig. 7 shows to the left the neutral meta-model obtained
by the induction process. This meta-model was obtained from the fragment in
Fig. 3 and two additional fragments: one specifying a Generator connected to a
Conveyor, which produced the Machine abstract class, and another one connect-
ing two Conveyors, which generated the nexts relation. The AbstractDowelCy-
linder class was renamed to Part through a renaming refactoring. Since none
of the new fragments contained Parts, the lower bound of the source of conv was
set to zero by the algorithm. Finally, an additional @containee annotation was
manually added to Part. The figure also shows the compilation of this meta-
model into EMF using the transformation profile. For the EMF platform, we
chose the generation of a root class, and the reference between the @container
and @containee was compiled into a composition. Additionally, the transfor-
mation profile makes each reference bidirectional. A wizard asks the user any
information needed to complete the compilation, like the name of the root class
and association ends. Moreover, all model fragments are compiled using the same
options, so that a set of testing models becomes available for free.

6 Tool Support

Realizing our approach requires specialized, integrated tool support that has to
go beyond the dominant style of meta-modelling nowadays: top-down and based
on a batch processing style. To this end, we have implemented a tool for Eclipse
that gives interactivity to our approach3. Next, we describe the elements of our
tool by going through an interaction example that is shown in Fig. 8.
3 Available at http://sanchezcuadrado.es/projects/interactive-metamodeling
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1. Sketching fragments. If a domain expert is involved in the meta-modelling
process, he may first sketch fragments that represent scenarios in the domain.
We have implemented an import facility that takes a diagram sketched with the
Dia tool and generates a model fragment ready to be evaluated. This facility
implements simple heuristics to determine sensible names for objects and ref-
erences, and takes advantage of the visual containment relationships between
elements to generate equivalent annotations.

A drawing tool such as Dia (and others like Visio) offers a wide variety of
symbols, organized in categories, that can be used to sketch fragments. How-
ever, we do not expect that a non-technical user respects the semantic meaning
of the symbols (in the figure, the symbol to depict a conveyor is actually a
representation of a network hub). Instead, a symbol is used if the pictogram
resembles what the user wants to convey. Nonetheless, it is important that each
meta-model element is assigned a meaningful name within the domain. For this
purpose, symbols can be attached a legend with their name.

2. Editing fragments. Engineers can create fragments by using the textual no-
tation introduced in Section 3. Actually, the sketched fragments are translated
into this second textual notation for their subsequent edition and manipulation,
e.g., to add annotations or to refine the name of the types. In the example, the
engineer has added the @container and @general annotations, as well as a new
attribute id to Conveyors. Textual fragments are edited by using a text editor
(built with xText) with syntax highlighting, error reporting, templates and au-
tocompletion. A key binding and the “Update metamodel” menu option permits
processing the current fragment.

3. Visualizing the meta-model. Processing a fragment induces a new version of
the meta-model. However, there is no editor to modify the meta-model. Instead,
the meta-model is visualized so that the user can check its state and evolve
it in three ways: processing new fragments, applying manual refactorings or
addressing open issues. Implementation-wise, the current version of our tool
uses the Zest framework to render and layout meta-models.
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Fig. 8. Example of interaction with the tool

4. Addressing open issues. The interactive and exploratory nature of our ap-
proach is realised through the open issues view. This view gives the user infor-
mation about conflicts as well as suggestions of possible refactorings. Selecting
an issue will show possible fixes that in turn will launch a refactoring. In the
figure, two issues are reported: (1) the introduction of a new superclass, and (2)
a conflict related to incompatible types for the id attribute. For the first issue,
our system proposes a rename action (if needed). Additionally, every command
and updated fragment is recorded and can be queried in the history tab. Sessions
are persistent, that is, the state of the session is stored after each evaluation so
that it can be interrupted and resumed later.

5. Applying a refactoring. Selecting a proposal from the open issues view will
raise a refactoring. The refactoring may require the user to provide some in-
formation, as is the case of the figure, where the name of the class is asked
(in this case Part is given). Afterwards, the visualization of the meta-model is
automatically updated (step 6).

These steps are performed iteratively until all concepts of the domain are
represented in the meta-model. At this point, the meta-model can be compiled
for some particular purpose, as explained in Section 5. The user then selects the
purpose (for instance, creating a textual DSML with xText), and the environ-
ment automatically selects dependent features (e.g., xText implies EMF) and
shows a wizard that asks the user for optional features. Finally, the meta-model
is generated in the selected format, for instance Ecore.
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7 Related Work

There are some works dealing with the inference of meta-models from models.
The MARS system [12] enables the recovery of meta-models from repositories
of models using grammar inference. The objective is being able to use a set
of models after migrating or losing their meta-model. Actually, the induction
process can be seen as a form of structural learning [15]. In contrast, our purpose
is enabling the interactive construction of meta-models, also by domain experts.

There are a few works using test-driven development (TDD) to build meta-
models iteratively. For instance, in [7], the authors attach test cases to the meta-
classes in a meta-model. Test cases are executable models written in PHP, and
perform some kind of transformation like code generation. If a test case shows
that a meta-model is inadequate, this must be manually modified. Similarly,
in [20], the authors combine specifications and tests to guide the construction of
Eiffel meta-models. Specifications are given as Eiffel contracts, whereas tests are
written using the acceptance test framework for Eiffel. Another example is [22],
which supports the specification of positive and negative example models from
which test models for meta-model testing are generated. In our case, the meta-
model is automatically induced from model fragments, and there is a greater level
of interactivity. Moreover, meta-models are updated through refactorings, which
simplifies their evolution and the propagation of changes to model fragments
(i.e., side effects). A catalogue of meta-model refactorings, although not directly
related to TDD of meta-models, is available in [18]. We provide support for
many of them. Finally, the idea of testing meta-models by creating test cases is
orthogonal to our approach, and could be integrated in our environment.

Techniques to build MDE artefacts “by example” have emerged in the last
years, but it is still novel for meta-models. In the position paper [4], the au-
thors identify some challenges to define DSMLs by demonstration. They discuss
the usefulness to bridge informal drawing tools with modelling environments,
as the former are the working tools of domain experts. They also recognise the
difficulty for experts to manually build meta-models, and suggest an iterative
process. Recently, the authors have realised their ideas in a framework where do-
main experts can provide model examples using a concrete syntax, from which a
meta-model describing their abstract syntax is inferred [3]. While their proposal
is similar to ours, we also stress that meta-models may be different depending on
the target platform and usage. Hence, we support the automated induction of a
neutral meta-model, its refactoring and different compilations into implementa-
tion meta-models, guided through annotations and selection of configurations.

In our approach, newly introduced fragments may raise conflicts if the frag-
ments contain contradictory information. Some application domains where the
resolution of conflicts has been extensively studied are model merging [17],
change propagation in software systems [9] and distributed development [6]. It
is up to future work to identify how the conflicts that may arise when evolving
a meta-model relate to these previous works.

Another line of related work concerns the expressiveness of model fragments.
While one could simply use object diagrams, in [16], the authors extend object
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diagrams with modalities to declare positive and negative model fragments and
invariants (i.e., fragments that should occur in every valid diagram). Their goal
is to check the consistency of a set of object diagrams, and for that purpose they
use Alloy. In our case, the goal is different as we use fragments to automatically
induce a meta-model. While we consider negative fragments, they are not yet
taken into account by the induction algorithm.

A way to simplify and make the development of meta-models systematic
is through design patterns. In [2], some design patterns for meta-models are
proposed, while in [23], the requirements for meta-models are represented as
use case diagrams and the meta-models are evolved by applying patterns. We
plan to integrate patterns in our approach to guide the induction phase and
refactor meta-models towards patterns. Integrating end-users in the meta-model
construction process has also been regarded as a means to improve the quality of
the resulting meta-model. In [11], the authors propose a collaborative approach
to meta-model construction which involves both domain and technical experts.
The approach is supported by a DSL to represent the collaborations among
stakeholders (change proposals, solution proposals or comments) while the meta-
model is being developed.

Finally, our meta-model refactorings and subsequent propagation to the model
fragments can be seen as a simplified scenario of meta-model/model evolution [5].

8 Conclusions and Future Work

In this paper, we have presented a novel approach to the development of meta-
models to make MDE more accessible to non-experts. For this purpose, we have
proposed a bottom-up approach where a meta-model is induced from model
fragments, which may be specified using informal sketching tools like Dia. A
specialized textual notation is also provided for advanced users, who can an-
notate the fragments to guide the automatic induction of the meta-model. The
process is iterative, as fragments are added incrementally, causing updates in the
meta-model, which can be refactored in the process. Finally, the meta-model can
be compiled for specific platforms and usage purposes.

Even though we allow the specification of negative fragments, these are not
currently used to induce the meta-model, which is left for future work. We would
like to perform an empirical evaluation of the approach with our industrial part-
ners. We also plan to improve the tool support. One direction is to enhance
collaboration by building a web application where domain experts can sketch
fragments that are automatically integrated in the environment for their refine-
ment by an engineer. Another goal is to automatically build a visual modelling
environment out of the sketched fragments. The integration of different imple-
mentation meta-models compiled from the same neutral meta-model, e.g., to
support different syntaxes for a DSML, is also future work.
Acknowledgements. This work was funded by the Spanish Ministry of Econ-
omy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D pro-
gramme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).
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23. C. Schäfer, T. Kuhn, and M. Trapp. A pattern-based approach to DSL develop-
ment. In DSM’11, pages 39–46, 2011.

24. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, 2008.


