
On theQuest for Flexible Modelling
Esther Guerra

Universidad Autónoma de Madrid, Spain
Juan de Lara

Universidad Autónoma de Madrid, Spain

ABSTRACT

Modelling is a fundamental activity in Software Engineering, and
central to model-based engineering approaches. It is used for dif-
ferent purposes, and so its nature can range from informal (e.g., as
a casual mechanism for problem discussion and understanding) to
fully formal (e.g., to enable the automated processing of models by
model transformations). However, existing modelling tools only
serve one of these two extreme purposes: either to create informal
drawings or diagrams, or to build models fully conformant to their
modelling language. This lack of reconciliation is hampering the
adoption of model-based techniques in practice, as they are deemed
too imprecise in the former case, and too rigid in the latter.

In this new ideas paper, we claim that modelling tools need fur-
ther flexibility covering different stages, purposes and approaches
to modelling. We detail requirements for such a new generation of
modelling tools, describe our first steps towards their realization in
the Kite meta-modelling tool, and showcase application scenarios.

CCS CONCEPTS

• Software and its engineering→ Systemmodelling languages;
Designing software; Design languages;

KEYWORDS

Model-driven engineering; Flexible modelling; Modelling process
ACM Reference Format:

Esther Guerra and Juan de Lara. 2018. On the Quest for Flexible Modelling.
In ACM/IEEE 21th International Conference on Model Driven Engineering
Languages and Systems (MODELS ’18), October 14–19, 2018, Copenhagen,
Denmark. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3239372.3239376

1 INTRODUCTION

Modelling is pervasively used in Software Engineering to document,
reason, design and understand software systems. Approaches like
Model-Driven Engineering (MDE) [44] lift models as primary arte-
facts in the software development process, relying on them to spec-
ify, test, analyse, simulate and generate code for the targeted system.
For this purpose, MDE approaches and tools require well-formed
models, strictly conforming to the norms of the modelling language
being used. However, some modelling scenarios would benefit from
relaxing the conformance relation and tolerating inconsistencies.
For example, early phases of model construction require informal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239376

discussions, which would become easier if the modelling environ-
ment is flexible with respect to conformance and inconsistency
tolerance.

Most tools used for modelling support one extreme of the spec-
trum (informal modelling) or the other (fully formal modelling),
with no assistance for a disciplined transition from informal to
formal modelling. Moreover, the modelling process and the level of
conformance required at each stage are hardly ever explicit. This
makes assessing the current state of a modelling project difficult.
We claim that this situation has hampered a wider adoption of MDE
tools, which currently are positioned on the strict side and require
models to be fully conformant to their meta-model all the time.

Moreover, the lack of flexibility of MDE frameworks adds un-
necessary complexity to solutions targeting certain scenarios, like
example-based modelling [34, 51], where models are created first,
and used to derive the meta-model; meta-model unit testing [35],
where unit tests may need to include ill-formed models; meta-
model/model coevolution [23], as correct models may become ill-
formed after their meta-model evolves, but the tool should still be
able to load them; reuse of transformations [10], which typically
can only be applied to models conforming to the meta-model the
transformation was defined for; and multi-level modelling [6], as
mainstream modelling supports two meta-levels only.

There is a growing interest in the MDE community to investi-
gate ways to make modelling more flexible [21, 22, 24, 34, 42, 46].
However, nowadays, there is a lack of understanding on what are
the requirements for flexible modelling tools, there is no systematic
analysis of the scenarios where flexible modelling tools would bring
advantages, and a unifying proposal for flexible modelling is miss-
ing. Despite some researchers proposing tools that provide certain
flexibility to specific modelling tasks [22, 24, 34, 46, 52], they tend to
implement partial solutions, lacking flexibility and customizability
in aspects related to the offered meta-modelling facilities and the
enactment of the modelling process.

To remedy this situation, in this new ideas paper, we identify sce-
narios that require flexibility in modelling and derive requirements
from them. We have used these requirements to position existing
flexible tools, and to design a proposal for a more flexible way of
modelling and meta-modelling. Our proposal is distinctive in that
we permit the customization of the conformance relation between a
model and its meta-model to tolerate inconsistencies (e.g., violation
of cardinality constraints, or objects with deferred typing). The
stages in the modelling life-cycle of a project can be made explicit,
together with heuristic quick fixes helping to transition from infor-
mal model states to more formal ones. The expressiveness of the
meta-modelling environment is adjustable as well, e.g., enabling
(or not) untyped objects, objects with multiple types, or multiple
meta-levels. Finally, we support different meta-modelling processes,
including ‘types first’ as in standard meta-modelling [47], ‘models
first’ as in bottom-up and example-based approaches [11, 34], and
co-creation of models and meta-models [22]. We show an initial

https://doi.org/10.1145/3239372.3239376
https://doi.org/10.1145/3239372.3239376
https://doi.org/10.1145/3239372.3239376

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Esther Guerra and Juan de Lara

realization in the Kite tool, and validate the approach on several
scenarios.
Paper organization. Section 2 argues on the need for flexible mod-
elling, and Section 3 elaborates on requirements and scenarios. Next,
Section 4 outlines the proposed architecture for flexible modelling,
which is described in the following two sections: Section 5 intro-
duces a meta-model for flexible modelling, and Section 6 reifies the
modelling process as a model. Section 7 describes Kite, a prototype
tool that gives support to these ideas. Section 8 exemplifies our
approach on some application scenarios. Section 9 discusses related
work and compares flexible tools based on the elicited requirements.
Finally, Section 10 draws conclusions and lines for further research.

2 MOTIVATION

MDE advocates the automated manipulation of models, which re-
quires having well-formed models compliant to the modelling lan-
guage rules. Because of this, most MDE tools are built atop meta-
modelling frameworks that make it easy to check the correctness
of models, but where building incorrect ones may be tricky or not
possible [47].

As an example, the Eclipse Modelling Framework (EMF) [47] –
the de-facto standard infrastructure for domain-specific modelling
used bymanyMDE tools – has little tolerance for inconsistencies. Ill-
typed models (e.g., arising when the meta-model evolves, or needed
in meta-model unit tests) cannot be loaded by the framework. In
addition, EMF inherits some rigidities from its implementation
language (Java), like immutable typing and two-level modelling.

However, some scenarios require building models that do not
necessarily fulfil all conformance rules, such as at the initial stages
of modelling or in meta-model unit testing [35]. Hence, we claim
that a more flexible modelling infrastructure is needed, able to
provide support for defining and enacting modelling and meta-
modelling processes and their model conformance rules.
Modelling process. While models need to be fully-conformant to
their meta-model to be tool-processable, their initial creation phases
usually deal with partial or incomplete models. Partial models may
include objects with no type (typing is deferred to a later stage), ele-
ments to support discussion but not intended to be part of themodel,
missing or extra slots and links, and may violate some cardinality
or integrity constraints. Automated mechanisms to transition from
informal models to more formal ones would be desirable. Moreover,
different projects may need to follow different modelling processes.
Meta-modelling process. Modelling languages are typically created
by defining their meta-model upfront, so that it can be instantiated
to create models. While most tools follow this approach, other possi-
bilities exist. For example, bottom-up meta-modelling [34] proposes
creating models first, and then infer a meta-model. The rationale
is that domain experts with low technical profile may find models
easier to grasp than meta-models. Hence, using example models
to drive the language development process promotes the active in-
volvement of domain experts and contributes to improve the accep-
tance of the resulting language. Other proposals like [22] combine
bottom-up and top-down approaches. A flexible meta-modelling in-
frastructure should support all these meta-modelling processes and
provide facilities (primitives, refactorings, quick fixes...) tailored to
each one of them.

3 REQUIREMENTS AND SCENARIOS

Based on the previous discussion, next we elicit requirements for a
flexible modelling framework. These are also summarized in Fig-
ure 1 in the form of a feature model [27] (labels in attached circles
refer to the requirement number addressing them). For each re-
quirement, we also identify use cases and usage scenarios.

R1: Configurable inconsistency tolerance

In order to support both formal and informal modelling, the frame-
work should allow relaxing the conformance relation and configur-
ing the conformance rules to be checked on a model at any moment.

For instance, it should be possible to enable/disable the checking
of cardinality and integrity constraints, or the correctness of feature
values. If so configured, models may contain objects with an abstract
type (e.g., to defer type concretization to a later stage), as well as
objects with a non-existing type name (e.g., to evolve the meta-
model with the missing type afterwards). Scenarios that would
benefit from inconsistency tolerance include:
• Model life cycle. Consistency checking could be adjusted to be less
strict in the initial modelling stages (e.g., for discussion) than in
later stages (e.g., for model transformation or code generation).

• Model migration, meta-model evolution. Models can turn invalid
if their meta-model changes. Still, if we relax the conformance
relation, flexible modelling environments will be able to load
them, becoming easier to fix [23].

• Meta-model testing. This scenario demands the creation of test
models to validate a meta-model and detect flaws in its model
acceptance and rejection capabilities. Some test models may focus
on a particular aspect and therefore be incomplete. Other test
models may need to be incorrect to allow assessing whether some
meta-model constraint (e.g., a cardinality constraint) has been
correctly captured and its violation issues an error [35, 43].

• Test-driven meta-model development. This scenario requires creat-
ing test models that refer to non-existing types and features, and
the meta-model should be evolved either manually or via quick
fixes to make it accept the models [34].

R2: Information extension

In standard modelling, objects are created using their classes as
templates. This assigns a fixed set of slots to the objects, which
cannot be extended later. However, enriching objects with addi-
tional information does not break type safety, but may be useful for
informal modelling or as a preliminary step to extend their meta-
model. Therefore, a flexible framework should allow configuring
whether models can be extended with information not defined by
the modelling language. This makes it possible to have objects with
no type, as well as typed objects with slots and links not defined in
the object’s type. A fine-grained customization of these extensibil-
ity options would allow enabling or disabling untyped objects, and
selecting the types whose instances can be extended.

This requirement enables the following application scenarios:
• Data injection. A typical approach to populate models from data is
building a meta-model for the data technology (e.g., XML, JSON)
and a model extractor [9]. Untyped objects may simplify this
task, as no data technology meta-model is needed beforehand.

On theQuest for Flexible Modelling MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Dimensions of
flexible modelling

Inconsistency
tolerance

rigid free

Classification

Information
extension

untyped
objects

untyped
features

Generalization

mandatory optional alternative or

Legend

modelling
process

assistancemultiple
inheritance

object-
level

configurable

generic domain-
specific

state
change

manual automatic

process
intent

bottom-up top-down blended extensible

dynamicity

static dynamic

levels

2level multilevel

#classifiers

single-c multiple-c

typing #instances cardinality constraints

Process

explicit

configurable

classification time

creation a-posteriori

#model types

single-m multiple-m
(modelling process ꓿˃ Ꞁ Inconsistency tolerance.rigid) Λ
(state change.manual ꓿˃ modelling process.explicit)

R1 R2

R3

R4 R5

R6

model refinement

Figure 1: Requirements for flexible modelling. Feature Classification taken from [14].

• Language extension and creation. Unforeseen and emergent lan-
guage features can be dynamically handled at the model level
by adding new slots to objects, or representing them as untyped
objects. This permits flexible extensions of existing languages in
unforeseen ways, while in contrast, design-time language exten-
sion is based on class subtyping and has a static nature.
Going a step further, untyped objects could trigger the creation of
new types at the meta-model level, if they are deemed useful and
general for the domain. This provides an iterative, example-based,
bottom-up way to create languages [22, 34].

• Auxiliary computation elements. Some complex model manipu-
lations require extending models with auxiliary constructs. For
instance, calculating the transitive closure typically requires cre-
ating auxiliary edges [1], while simulation transformations may
require auxiliary flags to mark the active elements [20]. With-
out proper support, developers need to extend the meta-model
for each specific operation. While some model manipulation
languages like EOL [30] are able to emulate dynamic object ex-
tension, making this feature native of the modelling framework
would allow its usage for any transformation language.

R3: Configurable classification relation

Classification permits assigning types to instances [32]. The ex-
pressiveness of this relation is fixed in most modelling frameworks,
and has the following limitations [14]: First, objects are classified
by the class used to create them, and this classification cannot be
changed afterwards (i.e., typing is static); second, objects and fea-
tures are typically restricted to have exactly one type, despite some
scenarios – like model operation reuse, see below – may be eased
by supporting multiple typing; finally, standard meta-modelling
frameworks only support two meta-levels, i.e., the classification
relation cannot be iterated to obtain multiple meta-levels but this is
emulated using workarounds like promotion transformations that
convert objects into types [17]. These limitations not only affect
the typing of objects, but also the typing of features.

Hence, to enhance flexibility, the framework should provide a
more expressive classification relation supporting dynamic typing,

OO model«Container»

*
clPackage Class

creation type

applicable to

Element
name: String

* pck

Container *
cnt

:Package
name=“org”

:Package
name=“people”

:Class
name=“Person”

Graph
MM

OO
MM defined

over

operation flatten
(Container c) =
c.cnt…

ti fl

«Container» «Leaf»

* lf
Leaf

a posteriori type

Figure 2: Model operation reuse by multiple typing.

multiple typing, multiple meta-levels, and the possibility to assign
types to objects at creation time or a posteriori. Since not every
application may require the full expressive power of the proposed
classification relation, it should be customisable. For example, a
certain scenario may require enabling/disabling more than two
meta-levels, or restrict the set of classes an object may be typed by.

Some scenarios benefitting from this extra flexibility include:
• Reuse of model operations, such as model transformations and
code generators. By allowing multiple typing, a model typed by
a meta-model can be assigned types from other meta-models and
reuse the operations defined for them. The typings assigned a
posteriori could declare their own conformance rules [14].
Figure 2 shows an example. An object-oriented model (in the
lower-left) is assigned types from a graph meta-model (the extra
types are displayed as object stereotypes). This way, the flatten
operation, which is typed over the graph meta-model, can be
applied as-is to the model.

• Joint instantiation of sets of classes and not only individual classes.
This is useful when an object can take a combination of classes as
type. The SMOF standard [39] reports this need with the Ontolog-
ical Definition Meta-model (a meta-model for OWL [50]), where
an instance can have several classifiers. For example, a property
may be functional, transitive or symmetric (among others) or any

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Esther Guerra and Juan de Lara

combinations of them. Supporting joint instantiation covers this
scenario without blowing up the meta-model size with subclasses
for every classifier combination.

• Multi-level modelling. Enabled by allowingmultiple levels [6], this
modelling paradigm is appropriate in scenarios that involve the
type-object pattern, resulting in a layered organization of models
with smaller size [8, 17]. Two domains that make pervasive use of
this pattern are software architecture (where there are component
types and instances, and port types and instances) and enterprise
modelling (to represent task types and instances) [17]. Multi-
level modelling is also useful for language extension [3] and
domain-specific meta-modelling [16].

R4: Configurable generalisation relation

Generalisation is the creation of supertypes from subtypes [32].
Most meta-modelling frameworks support generalisation between
types, which implies not only subtyping but also inheritance of the
supertype features by the subtypes. A flexible framework should
also permit generalisation between objects to enable inheritance of
slot values [15], as well as customisingwhethermultiple inheritance
is allowed. An application of this requirement is the following:
• Model libraries. A way to achieve model reuse is by enabling
inheritance at the object level. This opens the door to libraries
of predefined models from which other models can inherit the
structure [33], similar to prototype-instance languages [49].

R5: Explicit and configurable modelling process

The framework should permit defining modelling processes, their
phases, and the conformance rules to be applied in each phase. A
project should be able to configure its modelling process, or reuse
one from a repository. A typical process might start accepting un-
constrained models, with subsequent phases demanding stricter
levels of conformance. Hence, this requires the possibility to config-
ure the level of inconsistency tolerated (requirement R1). Processes
may also dictate the creation order of the model elements according
to their type. There should be mechanisms to determine the current
model state, either manually through a “conformance” slider, or
automatically based on the conformance rules the model fulfils
and on the types of the objects it contains. Supporting this require-
ment allows defining customized modelling processes that guide
the systematic construction and refinement of models.

Similarly, the process intent should be adjustable. For example,
processes targeting the creation of meta-models may be top-down
(types first), bottom-up (objects first) or blended, while other pro-
cesses like model refinement focus on the evolution of models and
the meta-model is not modified.

This requirement provides support for the following scenarios:
• Transition from informal to formal modelling.Models created in
the initial phases are informal. Later, they may be refined, likely
assisted by the environment, until obtaining full conformance.

• Modelling guidelines. Processes may serve as a guide for using
a domain-specific language (DSL). This is especially useful for
DSLs that are large or combine various diagram types (like UML
or SysUML). For example, a UML project may typically (but not
mandatorily) start by describing the classes, then focus on mod-
elling their states, and later on collective interactions. Explicit

model

model

model

meta-model
for flexible modelling

«conf. to» (linguistic)

«conf. to»
(onto.)

«conf. to»
(onto.)

modelling process
meta-model

«conf. to» (linguistic)

model

«conf. to» (ontologic)

modelling processmodel ecosystem

process supervisor

current phase

configurable
model

validator

configures

feedback

fixeschecks

check
selector

fix
selector

selects selects

«extensible»

fixfixfix
checkcheckcheck

phase
1

phase
2

phase
3

phase
4

Figure 3: Proposed architecture for flexible modelling.

processes can assist modellers in deciding the system aspect
to focus on at each moment [36], and document the modelling
practices within a project or company.

R6: Process-aware extensible assistance

Not only the level of conformance may change depending on the
modelling phase, but the offered refactorings and quick fixes should
be aware of the process: bottom-up fixes should modify the meta-
model to repair disconformities in models, while top-down fixes
should leave the meta-model untouched and modify just the mod-
els to correct detected issues. Moreover, domain-specific processes
may introduce quick fixes tailored to a specific meta-model. Hence,
the framework should be extensible with domain-specific confor-
mance checks and fixes, which would integrate seamlessly with the
predefined ones.

Scenarios benefitting from process-aware assistance include:
• Model refinement. Quick fixes in this scenario can help users
to evolve informal models to conformant ones, and (domain-
specific) refactorings can aid in obtaining higher quality models.

• Bottom-up meta-modelling. Quick fixes in bottom-up processes
would assist in extending themeta-model based on non-conforming
instance models [34].

• Live meta-model/model co-evolution. Changing a meta-model may
impact its instance models. Quick fixes for breaking and resolv-
able changes [12] could be used to evolve the instance models
upon meta-model updates.

• Recommendation systems. In line with current trends in recom-
mender systems for software engineering [41], domain-specific
processes may detect modelling idioms requiring assistance and
propose fixes automating the completion of a modelling task [18].

4 PROPOSED ARCHITECTURE

We propose the architecture of Figure 3 to meet the previous re-
quirements. It builds on two pillars: a flexible and expressive meta-
modelling language, and a reification of the modelling process.

The proposed meta-modelling language adheres to the Orthogo-
nal Classification Architecture (OCA) [7]. This distinguishes two
kinds of typing: linguistic and ontological. The first one refers to
the meta-modelling primitives used to create model elements. For

On theQuest for Flexible Modelling MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

example, Ecore plays the role of linguistic meta-model in EMF, as it
defines the primitives (EClass, EReference, etc.) to create elements in
models. This way, a class Person in EMF is created by instantiating
the linguistic type EClass. Ontological typing refers to the classifi-
cation of objects by types within a domain. For example, Person is
the ontological type of Einstein.

Our meta-modelling language defines a linguistic meta-model
that reifies the ontological typing as an association. This enables a
more flexible ontological typing that supports untyped elements,
multiple typing, re-typing, and multi-level modelling. Moreover,
our architecture permits adjusting the kind of conformance checks
to perform on a model. Section 5 will describe our meta-modelling
language for flexible modelling.

The second key element of the proposed architecture is support
for explicit modelling processes. Specifically, it is possible to define
processes and their intent, while the modelling phases may deter-
mine the conformance checks to perform. The system also provides
a library of quick fixes which are selected depending on the incon-
sistency found and the process intent. For example, if there is a
discrepancy between the type of an attribute (e.g., Integer) and its
value (e.g., String), a model refinement process would propose a
quick fix that changes the attribute value, while a process whose
goal is creating a meta-model bottom-up would suggest changing
the attribute type instead. While we propose some predefined pro-
cesses for modelling and meta-modelling, we foresee the creation
of domain- or project-specific processes, e.g., by means of extension
points. Hence, both the modelling processes and the quick fixes can
be extended by users. Section 6 will detail the handling of modelling
processes.

5 META-MODEL FOR FLEXIBLE MODELLING

This section describes the linguistic meta-model for flexible meta-
modelling. Section 5.1 presents the basic meta-modelling constructs
and Section 5.2 explains the flexible typing facilities.

5.1 Basic modelling elements

Our meta-modelling language considers three kinds of modelling
elements (see Figure 4): Models, Objects, and Features. The latter can
be either Attributes or References.

Themeta-model unifies the concepts ofmodel and (meta-∗)model
(meta-class Model), class and object (meta-class Object), attribute
and slot (meta-class Attribute), and association and link (meta-class
Reference). This provides independence on the number of meta-
levels, making it a level-agnostic meta-modelling language [5] and
contributing to requirement R3. In contrast, other approaches, like
UML [40], distinguish Classes from InstanceSpecifications (objects),
hence being limited to two levels.

In our proposal, both Models and Objects can define Features and
IntegrityConstraints. Instead, frameworks like EMF lack an explicit
notion of model, requiring an extra root class – effectively playing
the role of a model – holding global features and global constraints.

The meta-model permits defining instantiation cardinalities for
Models, Objects and Features, which is controlled by attributes lbound
and ubound inherited from TypedElement. This governs the number
of instances of an element, and it allows, e.g., defining singleton
objects (cardinality [1..1]) and abstract objects (cardinality [0..0]).

Model Object

Feature

TypedElement

Featured
Element

ValuedElement
name: String
lbound: int
ubound: int

lbound_v: int
ubound_v: int

Attribute Reference

features

*

*
objects

*
super

Target
*to

object

Integrity
Constraint

name: String
body: String

context

Figure 4: Basic elements for flexible modelling.

In addition, Features have a value cardinality which controls the
number of allowed values (attributes lbound_v and ubound_v in meta-
class ValuedElement). Modelling frameworks typically consider this
kind of cardinality for features, but not instantiation cardinality.
This way, our approach permits defining the attribute name with
instantiation cardinality [0..*] and value cardinality [1..1], and then
creating two instances (or slots) of it in an object: name with value
“Peter”, and alias with value “Ace”. As this example also shows, the
meta-model permits feature instances to use more specific names
(alias) than their type (name). This is due to our more flexible notion
of typing, which the next subsection will present.

Regarding References, they can point to several Target objects. In-
stead, most meta-modelling frameworks support this possibility at
the model level (i.e., for links) but not in meta-models (i.e., for asso-
ciations), and hence, if a reference needs to point to several classes,
a common superclass for them must be introduced. Please note that
our references are still binary relations. As our meta-model decou-
ples instantiation and value cardinality in features, references need
an additional class Target to hold the latter cardinality. This permits
a fine-grain specification of cardinalities on the compatible objects
of a reference. Another advantage of separating both cardinalities
is making the instantiation of Models, Objects and Features uniform.

Generalization is defined over Objects, and hence applicable at
every meta-level (requirement R4). While multiple-inheritance is
the default, our framework can restrict it to single inheritance, as
we will see in Section 6.

5.2 Flexible typing

In order to enable more flexible typings, our meta-model makes
the typing relation explicit (meta-class Typing and its subclasses in
Figure 5). The meta-model reifies the typing of models, objects and
features. The typing of objects and models contains the typing of
their owned features, and the typing of models contains in addition
the typing of the model objects. Each typing relation is binary
between an element playing the role of type, and another playing the
role of instance. Differently from standard approaches, we allow zero,
one or more typing relations stemming from the same instance.
Example 1. Figure 6 shows an instance of our linguistic meta-model,
the upper part in abstract syntax, and the lower part using a textual
concrete syntax that we have designed for our tool and will be
used in the remainder of the paper. The figure depicts the typing
relation between two models named Conference and MODELS. The
former model defines objects Author and Reviewer, the latter of which
must have at least one instance (lbound=1 and ubound=-1 in the

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Esther Guerra and Juan de Lara

*

otypingsModel
Typing

Object
Typing

Feature
Typing

TypedElementTyping

Featured
Typing

*ftypings

type

instance

Figure 5: Meta-model for flexible modelling: Typing.

abstract syntax, represented by /1..*/ in line 3 of concrete syntax).
For illustrative purposes, the MODELS model defines cardinality
/0..0/ to enforce that it cannot be instantiated. This model defines
two objects: amelia with two types, and lateReviews with no type.
In this example, objects in model MODELS may be classified as
Authors (e.g., if they have submitted a paper), Reviewers (e.g., if they
have reviewed papers), both of them, or none. Moreover, the model
includes information not foreseen by the Conference meta-model in
the form of untyped objects (lateReviews) and features (who).

:Object

name=“amelia”
lbound=0
ubound=0

:Object

name=“Author”
lbound=0
ubound=-1

:Model

name=“MODELS”
lbound=0
ubound=0

:Model

name=“Conference”
lbound=0
ubound=-1

:ModelTyping

:type

:instance

:objects

:objects

:ObjectTyping

:type

:instance

:otypings

:objects

:Object

name=“Reviewer”
lbound=1
ubound=-1

:objects

:ObjectTyping

:type

:instance

:otypings

:Object

name=“lateReviews”
lbound=0
ubound=0

:Target

lbound_v=0
ubound_v=-1

:to

:object

:Reference

name=“who”
lbound=0
ubound=0

:features

1 Conference {
2 Author {}
3 Reviewer /1..∗/ {}
4 }
5
6 MODELS :Conference /0..0/ {
7 amelia :Author :Reviewer {}
8 lateReviews {
9 ref who = amelia;
10 }
11 }

Figure 6: Example of flexible typing in abstract (top) and con-

crete (down) textual syntax.

Representing the typing relation explicitly provides flexibility on
the classification time, as the typing of an element can be assigned
when it is created or later (requirement R3). As Example 1 illustrates,
our approach enables elements (models, objects, features) to have
no type (requirement R2) or multiple types (requirement R3). This
type can be changed while preserving the identity of the instance.
In contrast, most frameworks (e.g., EMF) delegate the semantics of
typing to the implementation programming language (e.g., Java)
and objects can only have one type, assigned at creation time.
Example 2. Listing 1 illustrates the usefulness of features with
multiple types. Lines 1–6 declare model ArtistTypes, which contains
an object Singer with attributes name and stageName. Lines 8–16

1 ArtistTypes {
2 Singer {
3 att name : String;
4 att stageName : String;
5 }
6 }
7
8 SomeMusicians :ArtistTypes {
9 tina :Singer {
10 att name = "Anna Mae Bullock";
11 att stageName = "Tina Turner";
12 }
13 joaquin :Singer {
14 att realName (:name :stageName) = "Joaquin Pascual";
15 }
16 }

Listing 1: Example of multiple typing for features.

define a model with two instances of Singer: tina and joaquin. Object
tina assigns a value to each attribute (the typing is resolved by
equality of names). Instead, object joaquin defines just one attribute
called realName typed by both name and stageName. The effect is
that both name and stageName share the same slot and therefore the
same value, and moreover, both will be synchronized without the
need to write ad-hoc synchronization code for that purpose. Such
a multi-typing is transparent to model management operations, as
traversing a collection of Singer objects and accessing name and
stageName returns the value of realName in case of joaquin, and the
values of name and stageName in case of tina.

Our meta-model unifies types and instances. The distinction
between a class and an object lies in the role they play in the Typing
relation (cf. Figure 5). Thus, our approach supports an arbitrary
number of meta-levels, as an element playing the role of instance in
a typing relation can play the role of type in another. For example,
removing the annotation /0..0/ in line 6 of the listing in Figure 6
would allow the instantiation of model MODELS and its content.

The meta-model also contributes to requirement R1 (i.e., config-
urable inconsistency tolerance) by explicitly modelling all meta-
modelling facilities including typing, and not deferring their se-
mantics to an external mechanism which cannot be changed (like
a compilation into a programming language).

6 REIFYING THE MODELLING PROCESS

Our proposal permits making the modelling process explicit. To
this end, it provides the meta-model in Figure 7 to define the phases
of the modelling process and the transitions between them (require-
ment R5). Each phase sets the conformance checks it entails, and
implicitly performs all checks defined in previous phases starting
from the initial one. The checks may be selected among a set of
predefined ConformanceRules (e.g., checking the correctness of types
and feature values, or the satisfaction of integrity constraints) or be
custom-made OclConditions. The TransitionMode between phases can
be either manual (by the user) or automatic (when all checks in the
current phase succeed). Moreover, transitions can define additional
conditions for their completion, like the (non-)existence of certain
modelling elements, supplying guidance for the modelling task.

Violations of a conformance check can trigger Quickfixes, which
are filtered depending on the process Intent. Possible intents are:
working on a model where the meta-model is fixed (MODELREFINE-
MENT), creating a meta-model (TOPDOWN), creating a model with

On theQuest for Flexible Modelling MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

ModellingProcess

Phase
name: String

p
h

as
es

*

name: String

«enum»
Intent

BOTTOMUP
TOPDOWN
MODELREFINEMENT
FREE

intent
initial

Transition
out *

next

«enum»
TransitionMode

AUTOMATIC
MANUAL

«enum»
Expressiveness

MULTITYPING
MULTILEVEL
MULTIINHERITANCE

«enum»
Extensibility

UNTYPEDOBJECTS
UNTYPEDFEATURES

expressiveness

0..3

0..2

transition

Check

/allEntails*

conditions *

«extensible»
Quickfix

name: String
description: String
body: String

activationCheck

activationIntent

*

*

fixes
* *

name: String
description: String
body: String

OclCondition «extensible»
ConformanceRule

ModelType AttributeValue IntegrityConstraints… …

«from Flex-mm»
Object

Model

for
0..1

for 0..1

entails*

«from Flex-mm»

Figure 7: Meta-model for modelling processes.

the aim of growing a meta-model (BOTTOMUP), or free. This choice
impacts the fixes offered. As an example, suppose an object declares
a non-existing type; the quick fix for a BOTTOMUP process would
add the type to the meta-model, while the one for MODELREFINE-
MENT would change the non-existing type by an existing one with
similar name or features. In this way, we cover requirement R5.

Other configurable aspects of the modelling process are the Ex-
pressiveness of the modelling language (multiple typing, multiple
meta-levels and multiple inheritance can be allowed or not) and
whether Extensibility of models with untyped objects and features is
permitted. It is possible to define generic modelling processes and
domain-specific ones tailored to a meta-model (optional relation
for in ModellingProcess). In the latter case, we can customize the con-
formance rules for specific types (relation for in ConformanceRule).

Two extension points (marked «extensible» in the meta-model)
allow end-users to provide customized conformance rules and quick
fixes which are handled as the predefined ones (requirement R6).
Example 3. Figure 8 shows a modelling process for generic model
refinement. Its aim is providing a smooth transition from informal
draftmodels to strict ones by gradually demanding stricter levels of
conformance. The process defines five phases: draft (with no con-
formance checks), typed (the object types mentioned in the model
must exist in the meta-model), bounded (the cardinality constraints
must be satisfied), well-formed (the type of the feature values must
be correct) and strict (the meta-model integrity constraints must be
satisfied). Each phase also checks the conditions of previous phases.
This way, the phases aggregate the conformance checks to be per-
formed at each stage, and a model may be deemed conformant or
not depending on the current phase, which in this case is selected
manually. For extra flexibility, the process permits untyped objects
and features, as well as multiple typing and multiple inheritance.

Although the defined phases are sequential, the progress towards
a conformant model may not be sequential or even achieved at all.
For instance, if the intention of a model is representing the results of
an informal discussion, there is no need to reach strict conformance.

Figure 9 shows the conformance of a slight variant of the models
in Figure 6 with respect to the process of Figure 8. If the user sets
the current phase to Bounded, the checks validate the existence of
type names (set by phase Typed) and the satisfaction of the instance
and value cardinalities (set by phase Bounded). The checks in Typed
fail because Comment does not exist in meta-model Conference. The

Typed

Intent: ModelRefinement
TransitionMode: Manual
Expressiveness: MultiTyping, MultiInheritance
Extensibility: UntypedObjects, UntypedFeatures

checks: object types

Draft
checks: -

Bounded
checks: value cardinality,

instance cardinality

Well-formed
checks: type of feature values

Strict
checks: integrity constraints

Figure 8: Generic model refinement process.

1 Conference {
2 Author {}
3 Reviewer /1..∗/ {}
4 }
5
6 MODELS :Conference /0..0/ {
7 amelia :Author :Reviewer {}
8

✿✿✿✿✿✿✿✿✿
lateReviews

✿
:
✿✿✿✿✿✿✿
Comment {

9 ref who = amelia;
10 }
11 }

current

Conference {
Author {}
Reviewer /1..*/ {}

}

MODELS :Conference {
amelia :Author :Reviewer {}
lateReviews :Comment {
ref who : amelia;

}
}

1
2
3
4
5
6
7
8
9
10
11

Typed

Draft

Bounded

Well-formed

Strict

Figure 9: Conformance of a model with respect to a process.

model does not comply with phase Bounded because even if no
cardinality is violated, the checks of Bounded include those of Typed.
The checks for phases after the current one are not evaluated.

As the intent of the process is model refinement, the associated
quick fixes change the model instance and leave the model type
intact. In this example, the suggestions are either removing the type
of object lateReviews, or changing it to Author or Reviewer. Both yield
a valid model, as the process admits untyped objects (obtained by
the first quick fix) and untyped features (obtained by the second).

7 PROTOTYPE IMPLEMENTATION

We have realized the previous ideas in a prototype tool called Kite.
Kite is an Eclipse plugin based on EMF and Xtext. It supports
textual modelling using the syntax shown in the listings, and uses
the Epsilon Validation Language [31] (EVL) – a variant of OCL – as a
constraint language. We opted to base our implementation on EMF
because it facilitates its integration with many model management
languages, like those of the Epsilon family [19] or ATL [26].

Figure 10 shows the tool in action. The editor (label 1) contains
the definition of a simple goal modelling language (GoalML) and
a goal model under construction (MobileAppReqs). The language
integrity constraints to be evaluated on models are defined with
EVL (label 2). For this purpose, we have implemented a model driver
for Epsilon, able to understand the semantics of Kite.

The detected conformance errors and constraint violations are
reported in the problems view (label 3). A properties page permits
configuring the enabled conformance checks and the modelling
process (label 4). TheModelling process section of the properties page
permits choosing either no process, one of the standard processes
we provide by default (model refinement, bottom-up or top-down),
or the user can provide a domain-specific process (an instance of
the meta-model in Figure 7). A process view shows the phases and
transitions of the selected process, and permits the user to choose
the phase with the desired conformity level (label 5).

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Esther Guerra and Juan de Lara

1 2

35

6

4

Figure 10: Using Kite in its IDE.

Building requirement models involves discussions in early mod-
elling phases. This demands for flexible modelling before converg-
ing to stricter norms. Hence, the example follows amodel refinement
process. The user has manually selected phaseWell-Formed as the
current one (label 5). This and the previous phase yield errors be-
cause attribute priority has a wrong value, object ShowUserListmisses
an instance of feature explanation, and the instances of Agent lack
goals. The integrity constraints are not evaluated at this stage, but
at phase Strict. The process view shows this phase in grey (label
5) because it goes after the current phase. The model contains the
untyped object ExternalSystem, which is allowed by the process.

The quick fixes offered by Kite (label 6) depend on the modelling
process intent. In this example, the quick fix proposes converting
an attribute value to Integer instead of changing the attribute type
in the meta-model.

8 SHOWCASING SOME SCENARIOS

Next, we showcase some scenarios from Section 3, to validate the
usefulness of our proposal and illustrate its benefits. For space
limits, we focus on two of them: bottom-up modelling (Section 8.1)
and model transformation reuse (Section 8.2). Along the paper, we
also demonstrated explicit modelling processes (see Figs. 9 and 10).

8.1 Bottom-up meta-modelling

In bottom-up (or example-based) meta-modelling, meta-models are
built driven by example models. This is an iterative process where
models are constructed first, and then used to grow a meta-model
with the types and features that the model contains.

Listing 2 shows an example model in the domain of education,
inspired by [34]. The model may have been elicited in a brainstorm-
ing session with domain experts. It contains an object professor
(prof1 in lines 2–5), a course (projectCourse in lines 6–10) and two
groups (gr1 and gr2 in lines 11–12).

Feature Types
checks: feature types

Object Types

Cardinalities
checks: value cardinality,

instance cardinality

Free
checks: model types

checks: object types

Value Types
checks: type of feature values

createObjectType

createValueType
createFeatureAndValueType
createObjectAndFeatureAndValueType

createFeatureType
createObjectAndFeatureTypes

Quick fixes
createModelType Intent: BottomUp

TransitionMode: Manual
Expressiveness: MultiInheritance
Extensibility: -

updateCardinality

Figure 11: Bottom-up meta-modelling process.

1 aCourse :EduML {
2 prof1 {
3 att name = "Alan";
4 ref teaches = gr1;
5 }
6 projectCourse {
7 att name = "Sw Project";
8 ref coordinator = prof1;
9 ref groups = {gr1, gr2};
10 }
11 gr1 { att code = "2211"; }
12 gr2 { att code = "2212"; }
13
14 }

Listing 2: Example model.

1 EduML {
2 Professor {
3 att name;
4 ref teaches;
5 }
6 Course {
7 att name;
8 ref coordinator;
9 ref groups;
10 }
11 Group {
12 att code;
13 }
14 }

Listing 3: Inferred meta-model.

After collecting one or more example models, our approach can
be used to build a meta-model assisted by quick fixes. Figure 11
shows our bottom-up generic process for this scenario. Successive
phases set stricter conformance levels. At each stage, the suggested
quick fixes modify the meta-model to reach the conformance level
of the phase. This avoids committing to specific realizations of
meta-model design decisions too early in the construction process.

The initial phase, Free, demands the existence of a meta-model.
The quick fix available at this phase (createModelType) creates a meta-
model for a model that is untyped or that refers to a non-existing

On theQuest for Flexible Modelling MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

meta-model. In the former case, the quick fix asks for the name of
the new meta-model. Phase Object Types is similar but for objects.
Phase Feature Types checks for untyped features and offers quick
fixes to create a feature type, or a class together with a feature type.
Phase Value Types checks and offers fixes for the type of attribute
and reference values. Finally, phase Cardinalities checks the number
of instances of objects, features and feature values.

If we start from the example model in Listing 2, set the current
phase to Feature Types, and apply all suggested quick fixes, we end
up with the meta-model in Listing 3. As an example, applying the
quick fix createObjectAndFeatureTypes to line 11 of the example model
creates the class Group and its attribute code in the meta-model,
while line 11 in the example model gets changed to gr1 :Group to
reflect the new typing. The identification of types according to
the feature values is deferred to stage Value Types, when further
example models may have been provided. This may be useful to
clarify, e.g., whether the attribute Group.code should be String or
Integer. Note that Kite supports attributes with undefined data type,
and references with undefined reference type.

Altogether, a flexible modelling framework like Kite can support
bottom-up meta-modelling in a natural way. In contrast, standard
meta-modelling frameworks like EMF do not support this way of
meta-modelling directly. To overcome this rigidity, existing bottom-
up tools either have created their own meta-model (including the
typing relation) and offered services like our quick fixes (like in [34]),
or have created a whole meta-modelling framework from scratch
(like in [22]). Having a flexible modelling approach like ours as a
starting point would have saved considerable effort.

8.2 Multiple typing for model operation reuse

In standard modelling approaches, model management operations
(e.g., transformations) are typed according to a meta-model and can-
not be reused for a different one. A way to overcome this problem
and facilitate reuse is enabling multiple typing for objects [14].

1 GraphMM {
2 Container {
3 ref cnt : Container[0..∗];
4 ref lf : Leaf[0..∗];
5 }
6 Leaf {}
7 }
8 OOMM {
9 Element /0..0/ {
10 att name : String;
11 }
12 Package extends Element {
13 ref pck : Package[0..∗];
14 ref cl : Class[0..∗];
15 }
16 Class extends Element {}
17 }

Listing 4: Meta-models.

1 oomodel :OOMM :GraphMM {
2
3 pck1 :Package :Container {
4 att name = "org";
5 ref pck (:cnt) = pck2;
6 }
7
8 pck2 :Package :Container {
9 att name = "people";
10 ref cl (:lf) = person;
11 }
12
13 person :Class :Leaf {
14 att name = "Person";
15 }
16
17 }

Listing 5: Multi-typed model.

Listings 4 and 5 show how our approach can be used to support
the model operation reuse example shown in Figure 2. Listing 4
declares a meta-model GraphMM over which a flatten operation has
been defined elsewhere (lines 1–7), and a meta-model OOMM for
object-oriented notations (lines 8–17). Model oomodel in Listing 5
is typed by both. In practice, a user may have created the model by
instantiating OOMM, and additional types from GraphMMmay have
been added a posteriori. The system checks conformance to both

typings equally regardless of their declaration order. Both objects
and features can have multiple types. For instance, reference pck in
line 5 is typed by Package.pck and Container.cnt.

Model management operations typed over either GraphMM or
OOMM can be seamlessly applied over oomodel. For example, the
query Container.allInstances() returns Sequence{pck1, pck2}, and query
Package.allInstances() yields the same result.

New types for oomodel can be specified by hand (as we have
done in this example), or they might be automatically added by so-
called retyping specifications [14]. The latter are similar to model
transformation rules that, upon matching an object, add a new type
to it. Supporting retyping specifications in Kite is future work.

Altogether, standard modelling frameworks (like EMF) typi-
cally support single typing. Extending those frameworks for multi-
typing-based reuse may be costly, while it is native in our approach.

9 RELATEDWORK

Much research has been performed in tolerating inconsistency in
software engineering [37], where some authors believe that ‘’[...]
maintaining consistency at all times is counterproductive. In many
cases, it may be desirable to tolerate or even encourage inconsistency,
to prevent premature commitment to design decisions, and to ensure
all stakeholder views are taken into account” [38].

In contrast to this view, most standard MDE tools tend to favour
or enforce consistency at all times. Our claim is that conformance
inconsistency tolerance is needed to make MDE tools and processes
more widely accepted. Since other researchers have also worked to-
wards this vision, Table 1 reviews the position of flexible modelling
tools using the requirements elicited in Section 3. The table charac-
terizes tools as configurations of the feature model in Figure 1, and
includes EMF as baseline. We target generic modelling tools and
frameworks, i.e., we do not consider tools for specific scenarios like
co-evolution. Next, we organize the comparison by tool goal, and
also compare with related works in programming languages.

Flexible meta-modelling. A few proposals target a more flexible
conformance relation. For instance, FlexiMeta [24] relaxes confor-
mance to permit creating models and meta-models in any order. It
is implemented in JavaScript, which permits prototyping objects
with no defined class. A meta-model can be derived from the ob-
jects to enable simple checks (multiplicity violations, and missing
or spare attributes). It implements an implicit modelling process
for model refinement with three phases that can be selected manu-
ally: exploration (no meta-model), consolidation (meta-model with
inconsistency tolerance), and finalization (meta-model and full con-
formance). JSMF [46] is a meta-modelling tool that permits dealing
with incomplete and evolving requirements by enabling the (de-
)activation of the cardinality and type checks of fields. It supports
bottom-up and top-down meta-modelling as well as model refine-
ment, but with no explicit modelling process. The flexible modelling
tool FME [22] can also be used for a variety of intents (bottom-up,
top-down, model refinement), but the modelling process is not
explicit, and the conformance relation cannot be configured. In
comparison, we support a finer-grain customization of the confor-
mance rules and the expressiveness of themeta-modelling language;
we allow defining processes making explicit the intent and phases
of the modelling activity; and we provide quick fixes. Since we

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Esther Guerra and Juan de Lara

Tool

Inconsistency

tolerance (R1)

Information

extension (R2)

Classification (R3) Generalization (R4)

Process

intent (R5.a)

Modelling

process (R5.b)

Assistance (R6)

EMF [47] rigid a −
single-c, 2level, static
creation, single-m multiple inh. top-down

model refinement − −

FlexiMeta [24] rigid, free untyped objects (free)
untyped feats (free)

single-c, 2level, static
a-posteriori, single-m − model refinement generic, manual −

FlexiSketch [51] free untyped objects
untyped feats

single-c, 2level, static
a-posteriori, multiple-m −

bottom-up
model refinement − −

FME [22] free untyped objects
untyped feats

single-c, 2level, static
a-posteriori, single-m multiple inh. all − −

JSMF [46] configurable untyped feats single-c, 2level, static
creation, single-m multiple inh. all − −

Melanee [3, 4] rigid untyped objects
untyped feats

single-c, multilevel, static
creation, single-m

multiple inh.
object-level

top-down
model refinement − assistance

MetaBup [34] free untyped objects
untyped feats

single-c, 2level, static
creation, single-m multiple inh. bottom-up − extensible

MetaDepth [13, 14] rigid untyped objects
untyped feats

multiple-c, multilevel, dynamic
a-posteriori, multiple-m

multiple inh.
object-level

top-down
model refinement − −

ModelVerse [48] rigid −
single-c, 2level, static
creation, single-m multiple inh. top-down

model refinement
configurable, domain-specific

automatic −

Muddles [29] free untyped objects
untyped feats

single-c, 2level, static
a-posteriori, single-m multiple inh. bottom-up − −

Kite configurable untyped objects
untyped feats

multiple-c, multilevel, dynamic
a-posteriori, multiple-m

multiple inh.
object-level all all extensible

a Some non-conformant models cannot be loaded by the framework.

Table 1: Position of state-of-the-art tools in the flexible modelling design space with regards to the feature model in Figure 1.

model every meta-modelling facility, we are not constrained by
the implementation language (e.g., JavaScript) which might hinder
flexible features like multiple types or meta-levels.
Example-based modelling. Tools such as FlexiSketch [51], FME [22],
metaBup [34] and Muddles [29] provide flexibility by facilitating
the automatic or manual construction of a meta-model starting
from a set of untyped models. Their modelling process is implicit,
and while metaBup and Muddles only support bottom-up meta-
modelling, the other tools support other process intents as well (see
Table 1). None of these tools support explicit modelling processes,
configurable conformance relations or process-aware quick fixes.
Although metaBup provides an extension point to define domain-
specific meta-model refactorings, they are unaware of the process.
Multi-level modelling. Another aspect of flexibility is the support
for more than two meta-levels. There are a number of level-agnostic
languages that fulfil this requirement, like MetaDepth [13, 14],
Atkinson’s [5], or Melanee [3], among others. Many of them offer
control over information extensibility as well. However, they cannot
configure the conformance relation, and lack support for modelling
processes. Among these tools, only Melanee provides quick fixes,
though they are hard-coded and cannot be extended [4].
Modelling processes. Few meta-modelling frameworks permit cus-
tomising the modelling process. One of the exceptions is Model-
verse [48], a tool for multi-paradigm modelling and simulation.
It supports the explicit definition of mega-modelling processes,
essentially model transformation chains between models likely
conformant to different meta-models. In contrast, we aim at mod-
elling the process of a model creation/evolution. More similar to
our approach, Lúcio et al. [36] extend MPS with (Statechart-like)
processes to guide the user in building a model. Transitions be-
tween states are performed when the model fulfils some condition.
While we also support this scenario, our processes can tweak the
conformance relation to achieve the required flexibility.
Programming languages. In programming languages, gradual typ-
ing [45] allows selecting which parts of a program are typed-
checked statically, and which ones at run-time. The rationale is

similar to ours: run-time checks permit rapid development, and
static ones broaden error detection. In our case, an explicit process
governs how to transition from more flexible to stricter typings.

Altogether, a significant number of tools aims at making mod-
elling more flexible. However, they propose partial solutions where
the conformance relation is fixed (except JSMF), or neglect the mod-
elling process and assistance. The requirements we have elicited
may help to improve these tools, and we encourage the community
to explore this idea to increase the scope and acceptance of MDE.

10 CONCLUSIONS AND FUTUREWORK

This new ideas paper has argued on the needs for more flexibility in
modelling, the benefits that it brings, and the technical requirements
for flexible (meta-)modelling frameworks. We have proposed an
architecture supporting configurable meta-modelling options and
an explicit model of the modelling process. The architecture has
been validated by an implementation in the Kite tool, and we have
shown its benefits for flexible model refinement, example-based
modelling, and transformation reuse.

We plan to continue working in Kite to reach a more mature
state. This includes enlarging the set of quick fixes, improving
how process models are defined, and integrating further model
management languages. We are exploring ideas from meta-object
protocols [28] to extend the framework semantics in a non-intrusive
way, and allow building libraries of extensions of meta-modelling
facilities like potency [6]. While this paper focused on making the
conformance relation and the modelling process flexible, we have
left out aspects of flexibility related to the concrete syntax. Our plan
is to combine input models of multiple formats, such as textual,
graphical and sketched. Finally, it would be useful to extend existing
constraint languages and model reasoners to work with non-fully
conformant models using ideas of paraconsistent logics [2, 25].

ACKNOWLEDGMENT

Work funded by the Spanish MINECO (TIN2014-52129-R) and the
R&D programme of Madrid (S2013/ICE-3006).

On theQuest for Flexible Modelling MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES

[1] Aditya Agrawal, Attila Vizhanyo, Zsolt Kalmar, Feng Shi, Anantha Narayanan,
and Gabor Karsai. 2005. Reusable idioms and patterns in graph transformation
languages. Electr. Notes Theor. Comput. Sci. 127, 1 (2005), 181–192.

[2] Seiki Akama and Newton C. A. da Costa. 2016. Why paraconsistent logics?
In Towards Paraconsistent Engineering. Intelligent Systems Reference Library,
Vol. 110. Springer, 7–24.

[3] Colin Atkinson, Ralph Gerbig, and Mathias Fritzsche. 2015. A multi-level ap-
proach to modeling language extension in the enterprise systems domain. Inf.
Syst. 54 (2015), 289–307.

[4] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012. On-the-fly emendation
of multi-level models. In ECMFA (LNCS), Vol. 7349. Springer, 194–209.

[5] Colin Atkinson, Bastian Kennel, and Björn Goß. 2010. The level-agnostic model-
ing language. In SLE (LNCS), Vol. 6563. Springer, 266–275.

[6] Colin Atkinson and Thomas Kühne. 2001. The essence of multilevel metamodel-
ing. In UML (LNCS), Vol. 2185. Springer, 19–33.

[7] Colin Atkinson and Thomas Kühne. 2003. Model-driven development: A meta-
modeling foundation. IEEE Software 20, 5 (2003), 36–41.

[8] Colin Atkinson and Thomas Kühne. 2008. Reducing accidental complexity in
domain models. Software and System Modeling 7, 3 (2008), 345–359.

[9] Jean Bézivin. 2005. Model driven engineering: An emerging technical space. In
GTTSE Revised Papers (LNCS), Vol. 4143. Springer, 36–64.

[10] Jean-Michel Bruel, Benoit Combemale, Esther Guerra, Jean-Marc Jézéquel, Jörg
Kienzle, Juan de Lara, Gunter Mussbacher, Eugene Syriani, and Hans Vangheluwe.
2018. Model transformation reuse across metamodels: A classification and com-
parison of approaches. In ICMT (LNCS), Vol. 10888. Springer, 92–109.

[11] Hyun Cho, Jeffrey G. Gray, and Eugene Syriani. 2012. Creating visual domain-
specific modeling languages from end-user demonstration. In MiSE @ ICSE.
22–28.

[12] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
2008. Automating co-evolution in model-driven engineering. In IEEE EDOC. IEEE
Computer Society, 222–231.

[13] Juan de Lara and Esther Guerra. 2010. Deep meta-modelling with MetaDepth. In
TOOLS (LNCS), Vol. 6141. Springer, 1–20.

[14] Juan de Lara and Esther Guerra. 2017. A posteriori typing for model-driven engi-
neering: Concepts, analysis, and applications. ACM Trans. Softw. Eng. Methodol.
25, 4 (2017), 31:1–31:60.

[15] Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. 2014. Ex-
tending deep meta-modelling for practical model-driven engineering. Comput. J.
57, 1 (2014), 36–58.

[16] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2015. Model-driven en-
gineering with domain-specific meta-modelling languages. Software and Systems
Modeling 14, 1 (2015), 429–459.

[17] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and
how to use multilevel modelling. ACM Trans. Softw. Eng. Methodol. 24, 2 (2014),
12:1–12:46.

[18] Andrej Dyck, Andreas Ganser, and Horst Lichter. 2014. A framework for model
recommenders - Requirements, architecture and tool support. In MODELSWARD.
SciTePress, 282–290.

[19] Epsilon. 2012. http://www.eclipse.org/epsilon/.
[20] Claudia Ermel. 2006. Simulation and animation of visual languages based on

typed algebraic graph transformation. Ph.D. Dissertation. TU Berlin. https:
//pdfs.semanticscholar.org/0dbf/38e3b2cc79f2b122adab82ca1f21e442942e.pdf.

[21] FlexMDE series of workshops. 2018. http://www.di.univaq.it/flexmde/index.php?
pageId=previous_editions.

[22] Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guérin, and
Christophe Guychard. 2016. Using free modeling as an agile method for develop-
ing domain specific modeling languages. In MoDELS. ACM, 24–34.

[23] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. 2017. Approaches to
co-evolution of metamodels and models: A survey. IEEE Trans. Software Eng. 43,
5 (2017), 396–414.

[24] Nicolas Hili. 2016. A metamodeling framework for promoting flexibility and
creativity over strict model conformance. In FlexMDE @ MoDELS, Vol. 1694.
CEUR, 2–11.

[25] Anthony Hunter and Bashar Nuseibeh. 1998. Managing inconsistent specifica-
tions: Reasoning, analysis, and action. ACM Trans. Softw. Eng. Methodol. 7, 4
(1998), 335–367.

[26] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A
model transformation tool. Sci. Comp. Programming 72, 1 (2008), 31–39.

[27] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Software Engineering Institute.

[28] Gregor Kiczales and Jim Des Rivieres. 1991. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, USA.

[29] Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Horacio Hoyos Rodriguez,
and Richard F. Paige. 2013. Programmatic muddle management. InXM@MoDELS,
Vol. 1089. CEUR, 2–10.

[30] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon Object
Language (EOL). In ECMDA-FA’06 (LNCS), Vol. 4066. Springer, 128–142.

[31] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2009. On the evolution
of OCL for capturing structural constraints in modelling languages. In Rigorous
Methods for Software Construction and Analysis, Essays Dedicated to Egon Börger
on the Occasion of His 60th Birthday (LNCS), Vol. 5115. Springer, 204–218.

[32] Thomas Kühne. 2009. Contrasting classification with generalisation. In APCCM
(CRPIT), Vol. 96. Australian Computer Society, 71–78.

[33] Zsolt Lattmann, Tamás Kecskés, Patrik Meijer, Gabor Karsai, Péter Völgyesi, and
Ákos Lédeczi. 2016. Abstractions for modeling complex systems. In ISoLA (II)
(LNCS), Vol. 9953. 68–79.

[34] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan de
Lara. 2015. Example-driven meta-model development. Software and Systems
Modeling 14, 4 (2015), 1323–1347.

[35] Jesús J. López-Fernández, Esther Guerra, and Juan de Lara. 2016. Combining unit
and specification-based testing for meta-model validation and verification. Inf.
Syst. 62 (2016), 104–135.

[36] Levi Lúcio, Saad bin Abid, Salman Rahman, Vincent Aravantinos, Ralf Kuestner,
and Eduard Harwardt. 2017. Process-aware model-driven development envi-
ronments. In MODELS Satellite Events (CEUR Workshop Proceedings), Vol. 2019.
CEUR-WS.org, 405–411.

[37] Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo. 2000. Leveraging
inconsistency in software development. IEEE Computer 33, 4 (2000), 24–29.

[38] Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo. 2001. Making
inconsistency respectable in software development. Journal of Systems and
Software 58, 2 (2001), 171–180.

[39] OMG. 2013. SMOF 1.0. http://www.omg.org/spec/SMOF/1.0/.
[40] OMG. 2017. UML 2.5.1. https://www.omg.org/spec/UML/.
[41] Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann. 2010. Rec-

ommendation systems for software engineering. IEEE Software 27, 4 (2010),
80–86.

[42] Davide Di Ruscio, Juan de Lara, and Alfonso Pierantonio. 2017. Special issue on
Flexible Model Driven Engineering. Computer Languages, Systems & Structures
49 (2017), 174–175.

[43] Daniel A. Sadilek and Stephan Weißleder. 2008. Testing metamodels. In ECMFA
(LNCS), Vol. 5095. Springer, 294–309.

[44] Douglas C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engineer-
ing. IEEE Computer 39, 2 (2006), 25–31.

[45] Jeremy G. Siek and Walid Taha. 2007. Gradual typing for objects. In ECOOP
(LNCS), Vol. 4609. Springer, 2–27.

[46] Jean-Sébastien Sottet and Nicolas Biri. 2016. JSMF: A javascript flexible modelling
framework. In FlexMDE @ MoDELS, Vol. 1694. CEUR, 42–51.

[47] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF:
Eclipse Modeling Framework, 2nd Edition. Addison-Wesley Professional, NJ.

[48] Yentl Van Tendeloo and Hans Vangheluwe. 2017. The modelverse: A tool for
multi-paradigm modelling and simulation. In WSC. IEEE, 944–955.

[49] David M. Ungar and Randall B. Smith. 1991. SELF: The power of simplicity. Lisp
and Symbolic Computation 4, 3 (1991), 187–205.

[50] W3C. 2017. OWL Web Ontology Language. https://www.w3.org/standards/
techs/owl.

[51] Dustin Wüest, Norbert Seyff, and Martin Glinz. 2015. FLEXISKETCH TEAM:
Collaborative sketching and notation creation on the fly. In ICSE, Vol. 2. IEEE,
685–688.

[52] Athanasios Zolotas, Robert Clarisó, Nicholas Matragkas, Dimitrios S. Kolovos,
and Richard F. Paige. 2017. Constraint programming for type inference in flexible
model-driven engineering. Computer Languages, Systems & Structures 49 (2017),
216–230.

http://www.eclipse.org/epsilon/
https://pdfs.semanticscholar.org/0dbf/38e3b2cc79f2b122adab82ca1f21e442942e.pdf
https://pdfs.semanticscholar.org/0dbf/38e3b2cc79f2b122adab82ca1f21e442942e.pdf
http://www.di.univaq.it/flexmde/index.php?pageId=previous_editions
http://www.di.univaq.it/flexmde/index.php?pageId=previous_editions
http://www.omg.org/spec/SMOF/1.0/
https://www.omg.org/spec/UML/
https://www.w3.org/standards/techs/owl
https://www.w3.org/standards/techs/owl

	Abstract
	1 Introduction
	2 Motivation
	3 Requirements and scenarios
	4 Proposed architecture
	5 Meta-model for flexible modelling
	5.1 Basic modelling elements
	5.2 Flexible typing

	6 Reifying the modelling process
	7 Prototype implementation
	8 Showcasing some scenarios
	8.1 Bottom-up meta-modelling
	8.2 Multiple typing for model operation reuse

	9 Related work
	10 Conclusions and future work
	References

