
Rapid development of interactive applications
based on online social networks

Ángel Mora Segura, Juan de Lara, and Jesús Sánchez Cuadrado

Modelling and Software Engineering Group
http://www.miso.es

Department of Computer Science
Universidad Autónoma de Madrid (Spain)

{Angel.MoraS, Juan.deLara, Jesus.Sanchez.Cuadrado}@uam.es

Abstract. Online social networks, like Twitter or Google+, are widely
used for all kind of purposes, and the proliferation of smartphones enables
their use anywhere, anytime. The instant messaging capabilities of these
services are used in an ad-hoc way for social activities, like organizing
meetings or gathering preferences among a group of friends, or as a means
to contact community managers of companies or services.
Provided with automation mechanisms, posts (messages in social net-
works) can be used as a dialogue mechanism between users and computer
applications. In this paper we propose the concept of post-based applica-
tion, an application that uses short messages as a medium to obtain input
commands from users and produce outputs, describing several scenarios
where these applications are of interest. In addition, we provide an au-
tomated, Model-Driven Engineering approach (currently targeting Twit-
ter) for their rapid construction, including dedicated Domain-Specific
Languages to express the interesting parts to be detected in posts; and
query matched posts, aggregate information or synthesize posts.

Keywords: Social Networks, Post-based Application, Model-Driven En-
gineering, Domain-Specific Languages, Social Applications.

1 Introduction

Online social networks (OSNs) based on microblogging are booming nowadays,
thanks in part to the proliferation of smartphones and mobile devices. Hence,
services like Twitter or Google+1 are extremely used nowadays to connect with
friends, or to organize social activities. These services are not only used for
leisure, but most companies and brands recognise the reach and importance of
OSNs today, and use these services to keep in contact with clients [18].

In this setting, we observe a growing need to automate social activities, lever-
aging on popular OSN platforms, like Twitter. On the one hand, users of OSNs
– possibly lacking any programming skills – may wish to define simple applica-
tions involving the participation of a community of users. On the other hand,

1 http://www.twitter.com, https://plus.google.com

2

companies may like to open their information systems to OSN platforms, but
this integration effort needs to be done by hand. Related to this last issue, com-
panies frequently interact with potential customers via the online community
manager, in charge of managing and moderating the relationships with their
clients through posts (messages in OSNs). Even though this role is of crucial im-
portance nowadays, many of his tasks are performed manually, in ad-hoc ways.

Our thesis is that OSNs based on short, instant messages, are suitable as
front-ends for computer applications. We call them post-based applications, and
present many advantages in some scenarios. First, OSNs are designed to support
a high load of users and posts, serving as a robust front-end, which could be
difficult to achieve for companies or end users. Second, many people are familiar
with specific OSNs and have it already installed in their devices. Hence, they do
not need to learn a new application, or install a new one. Finally, applications
can leverage from the social network structure provided by the OSN platform.

Several scenarios benefit from post-based applications. In the first one, small,
simple, self-contained applications can be designed by unexperienced end users.
For example, for mobile learning games, or to organize votings. The second one
involves the rapid construction of applications to coordinate a large amount of
people upon unexpected events, like natural disasters or strikes in airports. Fi-
nally, specific OSNs can be used as a front-end for existing information systems.
For example, an airport may send notifications with flight information, or with
status updates via tweets (posts in the Twitter platform) to interested users.

These scenarios present several challenges. First, relevant information needs
to be extracted from posts. Posts are unstructured, and users cannot be expect
to follow a tight syntax. Hence, we need a simple way to express and detect the
interesting information. Second, a mechanism is needed to specify simple actions,
like querying the extracted information, or synthesizing posts with collected in-
formation. Finally, a quick, easy way for constructing this kind of applications is
needed, enabling their use by non-experts, but supporting also their deployment
into servers, and their integration with existing information systems.

Contributions. We introduce the concept of post-based user interface and post-
based application, proposing a Model-Driven Engineering (MDE) approach for
their automated rapid construction. The solution includes: (a) A Domain Specific
Language (DSL) for expressing patterns that is connected with WordNet [16],
a lexical database for the English language; (b) a DSL for describing actions;
and (c) an Eclipse-based prototype environment to model and deploy post-based
applications, which currently targets Twitter. This paper extends [21], a short
tool-demo paper which focussed on the tooling aspect of the solution.

Paper organization. Section 2 describes several motivating scenarios for Post-
based applications, showing their benefits. Section 3 proposes our architecture.
Section 4 describes a DSL for expressing patterns on posts. Section 5 presents
a DSL for describing simple actions. Section 6 describes tool support. Section 7
analyses related research, and Section 8 ends with conclusions and future work.

3

Traveller

Twitter

Airport

Information

System

Status of IB645 @aena

IB645 boarding at Gate

B65, Terminal 1, 20’ delay

Tweets mentioning

@aena

Required

information

1 2

4
5

3
Tweet-

Based UI

Fig. 1: A tweet-based user interface for an airport information system.

2 Motivating examples

In this section, we provide some motivating scenarios for post-based applications.
The underlying concepts are applicable to different OSNs, but for several reasons
(popularity, availability of an API, the availability of a social network structure,
possibility of both public and private messages), we currently consider Twitter.

Twitter is an OSN based on microblogging, which permits a direct commu-
nication among users via posts, short messages limited to 140 characters called
tweets. Tweets are public by default, and searchable by any person not necessar-
ily a Twitter user. There are also private messages, directed to a specific user.
Twitter users may follow a number of other users. A follower receives any tweet of
the users they follow. User names start by ‘@’. Tweets may contain user names,
and the mentioned users get notified whenever this happens. Tweets may also
contain hashtags (a word preceded by ‘#’), names agreed by community conven-
tion, which facilitate the searching of tweets. Finally, tweets may contain links
(in particular to pictures), and be geolocalized (i.e., contain information on the
position on earth where the tweet is being sent).

Next, we describe some scenarios where post-based applications are of inter-
est.

1. Tweet-based user interfaces for Enterprise Systems In this scenario
a company decides to use Twitter as a means to provide access to its in-
formation system. The advantage is that users do not need to install a new
software for interacting with the information system. They use their Twitter
accounts for the interaction, so that they can access the information systems
either from smartphones, laptops or desktop computers in a unified way.
Moreover, additional information can be obtained from users if tweets are
geolocalized. The social network structure of Twitter can also be exploited,
e.g., to broadcast messages, received by all followers.
As an example, Figure 1 shows the integration of a tweet-based user interface
with an airport information system. The purpose of such system is to inform
travellers of the status of their flights, among other services. In a first step
(label 1), a person about to travel sends a tweet requesting information
about a certain flight. Such tweet mentions the account of the airport or
the management entity, like @aena for the case of Spanish airports. In step
2, the tweet-based interface receives a mentioning tweet, and matches such
tweet accross a collection of relevant requests. In this case, the tweet request
information for a flight, which is directed to the information system (step 3).

4

Student Twitter Q1 Velázquez

Q1 Who painted

“las meninas”?

2

1

Q1

Q2

ok

wrong

wrong
Teacher

Questionnaire
…

followers

RT designs

Tweet-based application

Fig. 2: Tweet-based outdoor quizz.

The flight number is extracted and sought in the airport’s database. Then, a
private message for the particular user is automatically synthesized (label 4)
by the interface, which is received by the user via Twitter (label 5). In this
case, the initial message is public, but for privacy issues, a private message
could have been used instead.

2. Ad-hoc tweet-based collaborative applications. In some cases, groups
of end-users are interested in using Twitter as a means to collect structured
information that could be later automatically processed. However, they may
lack the technical abilities to develop such an application from scratch. These
situations include all sorts of votings, organization of sport events, educa-
tional outdoor games, and many others.
As an example, Figure 2 shows the working scheme of an outdoor educational
game, where the teacher designs a questionnaire, to be answered by groups
of students during a visit to a museum. Hence, questions are answered by
exploring the museum. Students organize in groups and can use the social
network structure of Twitter to collaborate among them (e.g., via retweets
and tweets) so that they can search for the answer in parallel. The system
provides new questions when a question is answered, and can finally provide
some statistics. In this scenario, the teacher may design the questionnaire,
not needing to be proficient in programming languages or the Twitter API.
Along the paper, we will use a simpler example in this scenario, consisting
in a simple yes/no voting system among a community of users.

3. Massively collaborative application for unexpected situations. In-
formation technologies play a crucial role for emergency response (so called
peace technologies) [9]. In particular in [15] it is reported that Twitter was
an important medium for the Japanese government to distribute informa-
tion to millions of people during the Fukushima nuclear radiation disaster.
In this type of applications, the geoposition information offered by geolo-
calized tweets can be valuable. As an additional example, we may consider
a Twitter front-end to help in reassigning flights in case of a strike. This is
useful, as the airplane company web site may not support the high peak load
if thousands of users try to access the system at a time. Hence, each passen-
ger may provide its flight, which is saved into a database. Once the flight is
reassigned (manually by some operator), the user may receive a notification,
or he may be asked to contact a service desk. Hence, in this scenario, we
profit from the high load supported by Twitter, and its popularity, so that
users do not need to install a new application.

5

3 Architecture

The working scheme of our solution for tweet-based applications is shown in
Figure 3, where the numbers illustrate a typical interaction.

end
[cond]actions: selection,

aggregation, …

Existing Information
System

Application
Designer

Domain
Specific

Language

patterns

queries

actions

… describe the application,
guided by the context assistant.

Wordnet

Post-based application

Match
Set

pattern voteY [ignore-case]={…}

concept question = {…}

query countY : count * from voteY

message thanku (“Thanks…”)

tweet results “…” when …

finish endcondition: when …

7 4

5

2

8

User
Community

Pattern
matcher

Twitter

message
synthesis

tweets
mentioning
@user

1
6

3

Fig. 3: Architecture provided by our solution.

In the first place (label 1), users send tweets or private messages via Twitter.
Then, the relevant information in tweets needs to be extracted from the appli-
cation. Our solution relies on the definition of patterns, expected to be found in
tweets. Not every tweet is sought, but only those mentioning the user associated
to the application, or private messages directed to it (label 2). The patterns
(label 3) are defined by the application designer using a dedicated DSL. A typ-
ical application may include different queries, selecting the relevant concepts in
matching tweets, or calculating different aggregation values from them (label 4).
In addition, data can be obtained or sent to existing information systems (label
5). The data extracted from queries, or provided by the information system can
be used to synthesize tweets or private messages, directed to the users (label 6).
Finally, conditions can be defined to signal the end of the execution.

In order to facilitate the construction of such system, we provide an MDE
solution, based on two domain-specific languages (DSLs). The first DSL helps
in the definition of relevant patterns, and concepts to be found in them (label
7) in the figure. The latter are sets of relevant words, or fragments, and sets of
synonyms can be automatically extracted from WordNet [16].

The second DSL (label 8), is targeted to the description of the processing
logic of post-based applications. Both languages are defined in a modular way,
permitting extensions for the peculiarities of different OSNs, but we currently
target Twitter. The DSL allows defining queries on posts matching some pattern,
using an SQL-like syntax. Queries can be used to select relevant information from
posts, or to calculate aggregated information from a set of posts. The DSL also

6

provides commands to synthesize private messages and tweets, and to signal the
end of the application execution. Finally, it is also possible to define what we
call data hooks, as a way to push extracted data into an existing information
system, or to gather data from it. Being an MDE framework, we can profit from
code generation for different technologies, like REST or SOAP web services.

The next two sections describe the two DSLs in detail.

4 A DSL for describing patterns

We have built a DSL, directed to facilitating the definition of patterns to be
identified in tweets. A small excerpt of its meta-model is shown in Figure 4. It
is made of a core set of elements (package PatternCore), which then can be spe-
cialized for different OSN platforms. In this case, we specialize it with concepts
from Twitter.

A pattern is made of concepts (class Concept), and in its simplest form, a
concept (called ExplicitConcept) is a set of words (attribute tokens). This set can
be either defined explicitly by the designer, or can be automatically taken from a
synonym set provided by WordNet. We have defined special concepts for numbers
and letters (omitted in the meta-model), with length given by an interval, and
permit defining sequences of these.

We have also included specific Twitter concepts (TwitterPatterns package),
like patterns to detect user names, URLs (specially pictures), and to define
collections of interesting hashtags. As we will discuss in the next section, the
meta-data information present in tweets, like the originator, date or geoposition
can be retrieved and does not need to be explicitly declared in patterns.

PatternModel

Element

Pattern Concept

elements*

ordered: bool
strict: bool

PhraseProperty

distinct: bool
ignoreCase: bool
ignoreAccents: bool
looseVowels: bool

PatternCore

tokens: String[]

Sequence

concept
1

ExplicitConcept

TwitterPatterns

Concept
«from PatternCore»

TwitterConcept

User

Hashtag

MediaURL

«imports»

PatternConcept

isOptional: bool

concepts *

Fig. 4: Simplifed excerpt of the meta-model to describe patterns.

The class Concept actually inherits from ResultSet (not shown in the figure),
which allows matched concepts to be sent as external data (see next section),
and referenced in queries. As can be observed, we have separated the Concept

definition from their usage within Patterns, which permits their reuse in different

7

contexts. An intermediate class PatternConcept enables the configuration of how
the concept is to be used, specifying for example whether it is optional in the
pattern. Patterns also indicate if concepts have to appear in some specific order,
or allow the interleaving of concepts with other words. It is also possible to
specify that some concept cannot occur in a pattern, and whether concepts are
to be sought ignoring upper/lower case, ignoring accents, and permitting missing
vowels, as this is a usual idiom in posts, due to their restrictive length in some
cases (especially in tweets).

The DSL has been provided with a simple textual syntax. Figure 5 shows
some example patterns and concepts for the voting application mentioned in
Section 2. The goal of the application is to detect positive or negative votings
to simple questions, and the patterns detecting it are defined in lines 1–2. They
are tagged as ordered meaning that concepts should appear in order, but are not
strict, so that other elements may occur in the tweet, possibly interleaved with
the concepts of the pattern. Only the yes and the no concepts are mandatory,
while the question concept is optative as indicated by the ? symbol. Moreover,
for all concepts in the pattern we ignore whether they are in upper/lower case
(flag ignore-case), and admit variations with missing vowels (flag loose-vowels).
The patterns make use of the concepts of lines 4–6. The words making concept
question were actually taken from WordNet synonyms, as we will see in Section 6.

1 pattern voteY [ordered loose−vowels ignore−case] = {question?, yes}
2 pattern voteN [ordered loose−vowels ignore−case] = {question?, no}
3

4 concept question = {question, inquiry, enquiry, query, interrogation}
5 concept yes = {yes, affirmative, 1, true, y}
6 concept no = {no, negative, 0, false, n}

Fig. 5: Patterns for the voting example.

Altogether, voteY matches tweets like “My vote 4 the qstn is YES!”. In this
case, the actual value of concept question is qstn while the value of yes is YES.

5 A DSL for queries and actions

Our approach considers the description of actions by means of another DSL. Its
meta-model is split in a core package which includes those elements typically
applicable to OSNs, and a package specific to Twitter. An excerpt of both pack-
ages is shown in Figure 6 (many concrete classes have been omitted, leaving only
the base abstract classes of the main hierarchies). The action DSL uses the pat-
terns DSL to perform queries on the concepts found in posts matching a certain
pattern, and in addition supports other actions, namelly:

– Querying. Queries can be issued using an SQL-like syntax. They may re-
fer to a set of matches of a pattern, as if they formed an SQL table, and

8

ActionModel

Element

Query

elements *

newest: bool

ActionCore TwitterActions

Post

«from ActionCore»

TwitterPostAction

Tweet

Message

Retweet

Favorite

AddingQuery SelectQuery

Select

select
1

SetOperator

0..1
operator

1
select

Where

where

0..1

Expression

expression
1

Post

When

when
0..1

expression

1

EndingCondition

when
1

finish

0..1

«imports»

Select

«from ActionCore»

TwitterSelect

Geo

HashTag

Date

User

ResultSet

name : String

1

from

Fig. 6: An excerpt of the actions meta-model with the Twitter extension.

1 query countY : count yes from voteY;
2 query countN : count no from voteN;
3 @newest query users voting : users from voteY union users from voteN;
4 message thanku (”Thanks for your vote.”) to users voting;
5

6 tweet presults (”Partial results: (%s) yes, (%s) no”, countY, countN) when (countY + countN) = 15;
7 tweet results (”Results: (%s) yes, (%s) no”, countY, countN) when (countY + countN) = 30;
8 finish end: when (countY + countN) = 30;

Fig. 7: Actions for the voting example.

the concepts in the pattern, as if they were SQL columns (as explained be-
fore, Concept inherits from ResultSet to this end). Three kinds of specialized
queries can be issued. Pattern queries to select some concepts from a set of
posts matching a pattern (represented as SelectQuery, which takes data from
a result set obtained in the pattern matching phase), aggregation queries
(class AddingQuery, to perform some arithmetical operation on result sets,
like counting, and metadata queries (class TwitterSelect in the case of the
Twitter package), to obtain a result set made of some tweet metadata, like
its users, geopositions, images, or hashtags. Aggregation queries can cal-
culate the maximum, minimum, average, count or add elements in a result set.
Every query inherits from ResultSet and has a name, so that its results can be
obtained from other actions. We currently support three kinds of operations
(subclasses of SetOperator) with result sets from queries: union, intersection and
substraction.
For example, Figure 7 shows two adding queries (lines 1–2) and one metadata
query (line 3). The former counts the tweets matched by the voteY or voteN

patterns. The later gathers the users that issued a tweet matching pattern,
performed by a union operator.
While queries are similar to SQL queries, the data gathered from Twitter
is dynamic. Hence, similar to data stream management systems [3] we may
query using temporal windows [11]. Currently, we support two kinds of tem-
poral windows, one considering all data, and another one with the last tweet.
The two queries in lines 1 and 2 simply consider all data from the beginning
of the execution. The users voting, being labelled with @newest, discards an

9

incoming tweet as soon as considers it has been processed by a dependent
action. Other temporal windows could be interesting as well, and we will
consider them in future work.

– Composing and Sending messages. Once data becomes available from
queries, messages can be composed and sent to a collection of users. This is
reflected by class Post and its specialization TwitterPostAction. In the case of
Twitter, messages can be public (class Tweet), or private, directed to a certain
user (class Message). In addition, received tweets can also be retweeted, and
be categorized as favorite. Public messages can be sent to a number of users
(obtained through a query), in which case the messages contain a mention to
those users. Messages may have a trigger (class When), so that the message
is sent when the trigger becomes true.

As an example, in Figure 7, line 4 sends a private message to the user that
has voted. The user is obtained from query users voting, which obtains the
user of the last positive or negative vote. Lines 6 and 7 show the construction
of two tweets. Similar to C’s printf function, the tweet is composed by insert-
ing data (countY, countN) into a string, in the places indicated using ’%s’
(independently of the variable type). Both tweets have trigger conditions, so
that they are sent when the number of votes reach 15 and 30 respectively.
In this case, they will not mention any user, but we could synthesize tweets
mentioning users, in a similar way to private messages.

– Execution end. We also provide means to signal the end of the application
execution (class EndingCondition and omitted subclasses). The condition may
depend on several factors, like the number of tweets received that match
a certain pattern, or time conditions. In Figure 7, line 8 shows a finish
condition, when the number of votes reaches 30.

In this DSL, each action has a name, so that actions can refer to the data they
produce simply by that name. The type of data does not need to be declared,
but it is inferred by simple rules: data produced in a tweet match is considered
String, and adding queries produce Integer data.

The execution model of the DSL is based on data flow, relying on data
dependencies. This is the recommended execution model for reactive, event-
driven, scalable applications [19]. In this way, an action is performed as soon as
its data becomes available, unless it contains an explicit trigger, in which case it is
executed when the data is available and the trigger becomes true. Figure 8 shows
the data dependencies obtained from the example of Figure 7. The squares refer
to the different actions (patterns, queries, messages, tweets and finish). Every
action may produce some data, as indicated by solid arrows, and may depend
on some data for their execution (shown by dashed arrows). The data produced
by queries is assigned the same name as the query. Actions may have triggers,
depicted as black circles (for simplicity we omit the actual trigger condition).
For example, the thanku message can be sent when the users voting data becomes
available, which is produced by the users voting query. Such query depends on
the user metadata produced by tweets matching patterns voteY or voteN. Hence,

10

questionvoteY

yes

questionvoteN

no

countY

countN

users_

voting

countY

countN

@user

@user

users_

voting

P

P

Q

Q

Q

no countN countN
Q

P Pattern Q Query M Message T Tweet F

data production

data dependency or
action

thanku presults results end
M T T F

Finish Trigger

legend

data

Fig. 8: Data flow execution model for the example of Figure 7.

users voting needs to be reexecuted whenever a tweet matching voteY or voteN

arrives. We forbid cycles of dependencies to avoid deadlock situations.
Our prototype does not make use of any data stream management system or

stream processing library, but as future work we plan to improve its efficiency
and scalability by compiling our DSL programs to a selected system.

Finally, in order to facilitate the connection with external information sys-
tems, the DSL permits declaring external data dependencies (expected data
from an existing information system), and also data that is pushed into the in-
formation system. The former are asynchronous events, triggered by the external
source, which provide some data to the model. Currently, we generate service in-
terfaces from those two descriptions, one for the existing information system (to
obtain the data from), and another for the tweet processing system (so that the
information system can notify our system). The former service interface needs
to be manually integrated with the existing information system.

6 Tool support

In this section, we present a prototype modelling environment, built as an Eclipse
plugin. The environment permits describing patterns (Section 4) and actions
(Section 5) using both DSLs, test the application in the environment, and then
deploy it on a server. More information about the tool, including a video of the
tool in action can be found at: http://www.miso.es/tools/twiagle.html.

The tool supports an agile development method, as during development, the
user may test the patterns against tweets received in real-time, and send testing
tweets using the tool itself. Figure 9 shows the tool being used to define some
patterns corresponding to the running example. The question concept is being
defined through the use of WordNet, and a contextual window offers the different
synonym sets (i.e., the different senses for a given concept) for the given concept.
Selecting one synonym set makes the tool copy all words into the concept.

11

Fig. 9: Defining and testing patterns against live tweets.

Fig. 10: Twiagle assistant suggesting different application kinds.

The tool is designed for its use by both software engineers and non-experts.
For this purpose, it incorporates an assistant that suggests typical examples for a
range of applications, as Figure 10 shows. Upon selection of one application kind,
a skeleton example is presented, with explanations in the form of comments.
The range of examples have been extracted from an analysis of current web
applications, details of which are available from the tool web site.

The tool can be used for testing purposes, and the left-bottom of Figure 9
shows a connection window, where the user needs to authorize the tool to access
the Twitter account associated to the application (@VotingSample in the figure).
The tool enables storing such authorization pin in the tool preferences registry,
so that it does not need to be entered for every execution. Once Twiagle is
authorized, tweets can be obtained and matched against the defined patterns, as

12

Fig. 11: Executing and tracing actions (up). Tweet-based application results shown in
the Twitter console (bottom).

shown in the “Matching” view of the main window. The reception of live tweets
can be paused, resumed, and testing tweets can be issued from the tool itself.

Figure 11 shows the tool being used to define the actions for the voting
example, and test them over live tweets, so that the results of the different
queries are visualized. In particular, the tool offers two trees, the one on the left
showing the results of the different queries, while the one to the right indicates
the actions being executed. The latter capability is very useful for debugging
purposes, and as an execution log for analysis.The bottom of the figure shows
the Twitter web console, showing the emitted tweet with the partial results (left),
and a private message confirming the vote for a user (right).

While applications can be executed in the development environment, for
integration purposes, they can also be deployed on a server. For this purpose, the
tool generates skeleton service interfaces from the external data dependencies,
which need to be completed manually. We consider both REST and SOAP web
services, but this feature is currently under development.

7 Related work

This section compares related work along several axes: (i) approaches to build
social applications over OSNs, (ii) analysis of social interactions in OSNs, (iii)

13

applications for OSNs, built manually, (iv) processing posts, and (v) approaches
to create specific kinds of social applications, e.g. for crowsourcing.

(i) Tools for creating social applications. As we have seen, a social appli-
cation uses the infrastructure of OSNs to enhance their reach and dissemina-
tion [13]. We find several approaches to build such kind of applications: OSN-
specific, multi-channel, or based on web-engineering systems.

In the first kind, in [13] the authors propose a flow metaphor to concatenate
actions to be performed on resources of an OSN, like posting a comment, or
uploading a photo. Similar to ours, that framework is amenable for non-experts,
as it abstracts from low level programming tasks based on APIs. However, we are
directed to tweet-based applications, having a dedicated DSL to detect patterns,
and we allow the connection with external sources.

Concerning multi-channel approaches, IFTTT2 is a mashup approach to con-
struct simple “recipes” to automate tasks from different channels (like Facebook
or Twitter), like “tweet my facebook status updates”. In a similar vein, in Za-
pier3 users write graphical transformation rules between different web services,
in which the input data may come from a general-purpose web service or OSN,
and the output data can be another web service. Compared to our work, we en-
able the definition of more complex tasks, involving e.g., queries, and we make
available a dedicated DSL for pattern-match and consider mechanisms for con-
nection with other sources, hence enabling the integration of existing information
systems with social applications. A more advanced way to integrate web services
is proposed by the MuleSoft commercial tool4, however it is a heavyweight so-
lution, requiring from expert knowledge in software architecture and design.

Finally, BPM4People [5] extends the BPM language for enabling to model
complex data flow, coming from a social domain. The approach is integrated
with WebRatio5. This is useful because, ever more frequently, web applications
need to be extended with features enabling their interaction with OSNs. For this
purpose, in [6] an extension of WebML is proposed, to incorporate social prim-
itives, permitting either cross-platform operations (login and search) applicable
to several social networks, and specific actions, e.g., to send a tweet.

All these tools differ from our approach in the level of expertise required from
the user, since being generic web-engineering tools, they are generally expert-
user, or IT staff, oriented. Our proposal enables non-expert - or with a really
short training - users to collect data from OSNs immediately for using in it in
a domain-specific field that they can define by themselves. This is facilitated by
our use of DSLs specific for OSN applications (for pattern definition, actions).

(ii) Analysis of social interactions in OSNs. Twitter has been used in
numerous recent academic works, studying its network structure [12, 24], or its
use as social medium for communication. As an example of the latter, in [23]
a classifier was developed to detect messages contributing to situational aware-

2 https://ifttt.com/
3 http://zapier.com/
4 http://mulesoft.com/
5 http://www.webratio.com/

14

ness, using a combination of manually annotated and automatically-extracted
linguistic features. In [15] an analysis of tweet content and retweet behaviour
during the Fukushima nuclear disaster is performed. In our case, our goal is to
detect simple patterns in text, so for now we did not use sophisticated natural
language processing (NLP) techniques. We believe frameworks similar to ours
could be very valuable as a basis to build this kind of applications.

(iii) Applications for OSNs. Some works aim at using Twitter to create new
applications, but they are normally built manually with no automated support
from frameworks like ours. This has the drawback that developers need to deal
with complicated programming concepts, directly manipulating the OSN API.
For example, in [20], tweets are used to detect earthquakes in Japan, by clas-
sifying tweets according to whether they convey the occurrence or not of an
earthquake. While this application was built ad-hoc, it could have benefited
from an automated framework, like ours, for their construction.

(iv) Processing posts. Tweets contain unstructured information, and in order
to make them computer-processable, some works [22, 8] have proposed the incor-
poration of structured information in tweets, while others use NLP techniques. In
the first group of works, in [22], a simple workflow language is proposed, which
combines SOA principles within Twitter. Therefore, SOA primitives, e.g., for
service discovery or service binding are embedded in tweets, and Twitter is used
as a means to reuse existing infrastructure. In this way, tweets may be used to in-
voke services and coordinate crowd-sourced activities that are required to fulfill a
certain task. However, tweets need to follow a strict syntax, and are not suitable
for a natural human-machine or machine-human communication. HyperTwit-
ter [8] proposes the use of Twitter for collaborative knowledge engineering. For
this purpose, it defines RDF-like syntaxes to be detected on tweets, which are
converted into RDF statements. As our goal is not knowledge engineering, but
building tweet-based applications, we support the definition of a richer syntax
for tweets, and also provide the machinery for the rapid creation of tweet-based
applications, as well as an advanced MDE-based developing environment.

Regarding the use of NLP, EquatorNLP [7] uses deep NLP and machine
learning to extract relevant facts of posts in social networks during an emer-
gency situation; and [14] proposes an hybrid technique to recognise named en-
tities. Other works, like [2] are concerned with efficient processing of streams
of tweets. We will consider in future work the possibility to integrate some of
these techniques in our framework. Tweets are limited to 140 characters, and
Twitter users tend to use slang, or abbreviations. Hence, in order to use NLP
techniques in unrestricted domains, normalization techniques, like those in [17],
are targeted to ammend words with missing vowels. In our case, the recognision
task is much simpler, because we define patterns a priori, and enable variations
of their concepts (e.g., missing vowels, or distinct letter case).

(v) Crowdsourcing applications. There are approaches to facilitate the con-
struction of crowdsourcing (or human-computation) applications [10, 4, 1] a kind
of social application, based on the distribution of tasks among a high number
of human participants. For example, we flow [10] is an approach to facilitate

15

the creation of human computation applications, based on the availability of
a coordination language, and a generator that synthesizes a collaborative web
application from such specification. Similar to our work, We Flow is directed to
empower users with the ability to create their own applications. However, we use
the OSN capabilities of Twitter, make available DSLs, and enable the connection
with existing information systems. In [4] a model-based approach to systematize
the definition of crowdsourcing applications is proposed. It is based on modelling
task types and the interaction with performers, so that the system guarantees
certain properties. For some applications, their models could be compiled to our
DSLs to obtain a Twitter-based crowdsourcing applications.

Altogether, we are witnessing an increasing interest in both, the construction
of all sorts of social applications, and in the analysis of the interactions produced
in ODNs. We believe that an MDE framework, like ours would greatly help in
these two aspects, as otherwise expert programmers are needed to deal with the
intricacies of the OSN API and pattern detection.

8 Conclusions and future work

In this paper, we have introduced the concept of post-based applications: appli-
cations whose inputs and outputs are extracted and produced from OSNs, like
Twitter. We have shown some scenarios where those applications are useful, and
demonstrated the feasibility of their construction through an MDE approach.
We have presented a prototype realization, targeting Twitter.

Even though we target short messages, we would like to increase the ex-
pressiveness of our pattern DSL, considering more advanced NLP techniques
for pattern match. We are currently improving our action language with new
primitives (e.g., for presenting outputs in maps or in charts) and taking inspi-
ration from data-stream systems for tweet querying. We are currenlty working
on improving our tool, in particular the deployment mode, and considering a
web-based version of the tool. We are integrating other OSNs, in addition to
Twitter, which would allow from inter-platform applications. Finally, we are de-
signing more specific languages for certain applications on top of our DSLs, like
for mobile learning.
Acknowledgements. Work supported by the Spanish Ministry of Economy
and Competitivity with project Go-Lite (TIN2011-24139).

References

1. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The jabberwocky programming
environment for structured social computing. In UIST, pages 53–64. ACM, 2011.

2. N. Asadi and J. Lin. Fast candidate generation for real-time tweet search with
bloom filter chains. ACM Trans. Inf. Syst., 31(3):13, 2013.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In PODS, pages 1–16. ACM, 2002.

4. A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive crowdsourcing. In Proc.
22nd Int. Conf. on World Wide Web, pages 153–164, 2013.

16

5. BPMN4People. http://www.bpm4people.org.
6. M. Brambilla and A. Mauri. Model-driven development of social network enabled

applications with webml and social primitives. In ICWE Worksh., volume 7703 of
LNCS, pages 41–55. Springer, 2012.

7. L. Döhling and U. Leser. EquatorNLP: Pattern-based information extraction for
disaster response. In Foundations, Technologies and Applications of the Geospatial
Web, pages 127–138, 2011.

8. M. Hepp. Hypertwitter: Collaborative knowledge engineering via twitter messages.
In EKAW, volume 6317 of LNCS, pages 451–461. Springer, 2010.

9. P. Hyman. ‘Peace technologies’ enable eyewitness reporting when disasters strike.
Commun. ACM, 57(1):27–29, 2014.

10. N. Kokciyan, S. M. Üsküdarli, and T. B. Dinesh. User generated human compu-
tation applications. In SocialCom/PASSAT, pages 593–598. IEEE, 2012.

11. J. Krämer and B. Seeger. Semantics and implementation of continuous sliding
window queries over data streams. ACM Trans. Database Syst., 34(1), 2009.

12. S. Kumar, F. Morstatter, and H. Liu. Twitter Data Analytics. SpringerBriefs in
Computer Science. Springer, 2014.

13. J. Laconich, F. Daniel, F. Casati, and M. Marchese. From a simple flow to social
applications. In ICWE Wsh., volume 8295 of LNCS, pages 39–50. Springer, 2013.

14. C. Li, A. Sun, J. Weng, and Q. He. Exploiting hybrid contexts for tweet segmen-
tation. In SIGIR, pages 523–532. ACM, 2013.

15. J. Li, A. Vishwanath, and H. R. Rao. Retweeting the Fukushima nuclear radiation
disaster. Commun. ACM, 57(1):78–85, Jan. 2014.

16. G. A. Miller. Wordnet: A lexical database for english. CACM, 38(11):39–41, 1995.
17. J. Porta and J.-L. Sancho. Word normalization in twitter using finite-state trans-

ducers. In Tweet-Norm@SEPLN, volume 1086 of CEUR, pages 49–53, 2013.
18. E. Qualman. Socialnomics: How Social Media Transforms the Way We Live and

Do Business, 2nd edition. Wiley, 2012.
19. Reactive manifesto. http://www.reactivemanifesto.org.
20. T. Sakaki, M. Okazaki, and Y. Matsuo. Tweet analysis for real-time event detection

and earthquake reporting system development. IEEE Trans. Knowl. Data Eng.,
25(4):919–931, 2013.

21. A. M. Segura, J. de Lara, and J. S. Cuadrado. Twiagle: a tool for engineering
applications based on instant messaging over Twitter. In ICWE’14, volume In
Press of LNCS, pages 1–4. Springer, 2014.

22. M. Treiber, D. Schall, S. Dustdar, and C. Scherling. Tweetflows: Flexible workflows
with twitter. In PESOS ’11, pages 1–7. ACM, 2011.

23. S. Verma, S. Vieweg, W. . Corvey, L. Palen, J. Martin, M. Palmer, A. Schram, and
K. Anderson. Natural language processing to the rescue? extracting ”situational
awareness” tweets during mass emergency. In ICWSM. The AAAI Press, 2011.

24. F. Zhao and A. K. H. Tung. Large scale cohesive subgraphs discovery for social
network visual analysis. PVLDB, 6(2):85–96, 2012.

