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Model-Driven Engineering (MDE) is founded on the ability to create and process models conforming to a
meta-model. In this context, classes in a meta-model are used in two ways: as templates to create objects,
and as (static) classifiers for them. These two aspects are inherently tied in most meta-modelling approaches,
which results in unnecessarily rigid systems and hinders reusability of MDE artefacts.

In this work, we discuss the benefits of decoupling object creation from typing in MDE. Thus, we rely on
standard mechanisms for object creation, and propose a-posteriori typing as a means to retype objects and
enable multiple, partial, dynamic typings. This approach enhances flexibility, permits unanticipated reuse
as model management operations defined for a meta-model can be reused with other models once they get
reclassified, and enables bidirectional model transformation by reclassification. In particular, we propose
two mechanisms to realise model retyping, and show their underlying theory and analysis methods. We
show the feasibility of the approach by an implementation atop our meta-modelling tool METADEPTH, and
present several applications of retypings (transformations, reuse and dynamicity).
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1. INTRODUCTION
Model-Driven Engineering (MDE) advocates the use of models as the principal assets
of software projects. In MDE, models are not passive documentation, but they are
actively used to specify, simulate, test, and generate code for the application to be built,
among other activities [Brambilla et al. 2012]. Frequently, models in MDE are built
with Domain-Specific Modelling Languages (DSMLs) instead of using general-purpose
ones like the UML. DSMLs are highly customized languages with powerful primitives
for a particular application domain, like mobile and web development, controllers for
embedded systems, or the description of questionnaires [Kelly and Tolvanen 2008].
The abstract syntax of DSMLs is typically described using a meta-model that defines
the relevant entities and relations within the domain.

MDE has traditionally promoted a “top-down” approach, where classes in meta-
models are used as templates to create objects in models, which then become classi-
fied by those classes. This kind of typing for model elements by meta-model elements
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Fig. 1: Different approaches to reusing model management operations in MDE

is called constructive [Atkinson et al. 2011], because classes are used both to create
and classify objects, objects can only be constructed by instantiating classes, and both
aspects (creation and classification) cannot be separated.

Constructive typing is mainstream in MDE but lacks flexibility. For example, the
MOF Support for Semantic Structures (SMOF) [OMG 2013a] standard discusses the
rigidity of MOF [OMG 2014] to model objects that need to change their type dynami-
cally without losing their identity (e.g., a conference system where a Student becomes
Professor), or to represent objects holding several classifiers (e.g., a person that is clas-
sified as both Author and Reviewer in case of having authored and reviewed articles).

The unmodifiability of the typing relation also hinders reuse. This is so as, in order
to reuse an operation (e.g., a model transformation) defined over a meta-model MMA

for another meta-model MMB , the typical solution is to transform the instance models
of MMB into instance models of MMA, as shown in Figure 1(a). However, this solution
is heavyweight, it complicates traceability with respect to the original model (MB),
and it may be necessary to transform back the operation results in terms of MMB . An-
other possibility is to (manually) rewrite the operation in terms of MMB , as depicted
in Figure 1(b). However, this alternative is costly and error-prone, and moreover, any
operation over MMA to be reused with MMB needs to be rewritten. Instead, the so-
lution in Figure 1(c) proposes retyping the instance models of MMB as if they were
instances of MMA. This solution is simpler and cleaner, but its realisation requires
a more flexible model typing concept, able to overcome the heterogeneities between
MMA and (the instances of) MMB .

Decoupling typing from instantiation is a well-known technique to promote reuse
and ease the adaptation of existing code in object-oriented programming [Canning
et al. 1989]. For example, in languages like Java, objects are created by constructors
and become classified by the classes used to create them. However, additional typ-
ing mechanisms, like interfaces, allow focussing on a subset of properties that objects
require in order to qualify for a certain operation. Hence, interfaces decouple classi-
fication from the creation type, permit several classifiers for an object, and enable
reusability. Dynamic reclassification has also been realized in some object-oriented lan-
guages [Drossopoulou et al. 2002] to allow changing the class membership of objects at
runtime, which decouples even further classification from object creation.

In contrast, most MDE approaches use static constructive typing, which results
in more restricted possibilities for modelling and reuse. Some more flexible propos-
als have emerged recently, especially in connection with reusability of MDE arte-
facts [de Lara and Guerra 2013; Sánchez Cuadrado et al. 2014; Zschaler 2014; Guy
et al. 2012; Steel and Jézéquel 2007; Salay et al. 2015]. However, they often lack
desirable features like dynamicity or multiple classifiers, while some allow reusing
just some specific kinds of MDE artefacts or technologies (e.g., ATL model transforma-
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tions [Sánchez Cuadrado et al. 2014]) and cannot be applied to other artefacts (e.g.,
code generators). Instead, we claim that a flexible notion of a-posteriori typing would
enable a more general and powerful mechanism for reusability of any kind of MDE
artefact. Our goal is to provide such a mechanism.

In this paper, our aim is to provide a more flexible typing in MDE, which then be-
comes multiple, partial, and dynamic. For this purpose, we define an a-posteriori typ-
ing that permits classifying objects by classes different from the ones used to create
the objects. A consequence of this approach is that model management operations be-
come highly reusable as, similar to Java interfaces, we can design meta-models whose
primary goal is not object creation, but to serve as a type for model management oper-
ations. Inspired by works on role-based modelling [Steimann 2000], we call them “role”
meta-models.

We provide two ways for specifying a-posteriori typings: at the type and at the in-
stance level. The former induces a static relation between two meta-models, so that
instances of one can be seen as instances of the other. This is similar to the imple-
ments relation between classes and interfaces in languages like Java, and permits for-
ward and backwards (i.e., bidirectional) retyping. The second possibility allows clas-
sifying particular objects by defining queries assigning a given type to the result of
the query. This typing is dynamic because classification may depend on the runtime
values of slots in objects, and therefore their type may change whenever such values
evolve. We show that the first kind of typing is just a special case of the second. More-
over, we present a set of techniques to analyse correctness of type- and instance-level
specifications, as well as the properties of forward/backward reclassification implied
by type-level specifications. As a proof-of-concept, we show an implementation in our
METADEPTH tool [de Lara and Guerra 2010], and discuss several applications that
show the benefits that our approach brings.

This paper completes our previous work [de Lara et al. 2015] as follows. We extend
our analysis of the typing space to consider further possibilities (see Section 2). We
include criteria for well-formedness of reclassifications, and procedures for analysing
several properties of interest. We also identify some restriction possibilities for retyp-
ing specifications which are useful in practice and mimic other existing approaches. We
have extended our implementation to support annotations for these restrictions, and to
support richer representations of multiple typings. We compare the expressivity and
efficiency of our retypings with other approaches. A repository of a-posteriori typing
specifications has also been created and is available at: http://miso.es/aposteriori/.

The rest of the paper is organized as follows. First, Section 2 identifies typing al-
ternatives in MDE, and Section 3 introduces the notation used throughout the paper,
as well as our notion of type correctness. Next, Section 4 presents a-posteriori typing
specifications at the type-level, while Section 5 introduces instance-level specifications.
Section 6 describes some analysis possibilities for typing specifications. While our for-
mulations are intentionally as general as possible, in Section 7 we provide some useful
restrictions. Section 8 describes tool support, and Section 9 shows examples and appli-
cations of a-posteriori typing, commenting on benefits and limitations. Section 10 dis-
cusses related work, including a comparison of the expressivity with other approaches.
Finally, Section 11 finishes the paper with the conclusions. An appendix provides de-
tails of the main theoretical results. A supporting Alloy [Jackson 2002] formalization
is available at http://miso.es/aposteriori/alloy.html.

2. THE TYPING SPACE FOR MODEL-DRIVEN ENGINEERING
In this section, we analyse the possibilities for different aspects of typing in MDE. The
feature model [Kang et al. 1990] in Figure 2 (split in two for readability) summarizes
the alternatives that meta-modelling approaches may adopt, which we detail next.
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Fig. 2: Alternatives for typing in MDE

— Classification time. Object classification can be determined either when the object
is created (constructive typing), or new classifiers can be added later (a-posteriori
typing). In constructive typing, classes are used as templates to create instances,
instances cannot be created in a different way, and the type of an instance is the
class used to create it. Hence, creation and classification are inseparable, and the
latter cannot change a-posteriori. This is the usual approach in MDE. Figure 3(a)
shows an example of constructive typing where class Task is used as a template to
create object review, becoming its only classifier1. In this and the following figures,
we show the constructive type for objects in standard UML object notation, and the
a-posteriori typing using stereotypes.
Instead, in a-posteriori typing, object creation and classification are separated, and
objects may have other type(s) besides their constructive type. A-posteriori types
do not need to be assigned statically when the creation class is defined, as is the
case with interfaces in programming languages like Java, but they can be added on
demand. Figure 3(b) shows an example, where the previously created object review
is assigned the types Schedulable and Measurable (shown as stereotypes) from two dif-
ferent meta-models. In this way, the model has a constructive typing with respect to
the Planning meta-model, and two a-posteriori typings with respect to the Scheduling
and Measuring meta-models. A-posteriori typings are proper typings; therefore, any
model management operation defined over Scheduling or Measuring becomes applica-
ble on the retyped model.
Note that a-posteriori typing may also be possible without constructive typing, just
like in classless or prototype-based programming approaches [Noble et al. 1999;
Ungar and Smith 1987]. As an example, in Figure 3(c), the review object has been
created without the use of a template class, nonetheless, this untyped object receives
two a-posteriori typings with respect to the Scheduling and Measuring meta-models.

— Dynamicity. The type of an object may be unmodifiable (feature static in Figure 2),
or it may change over time as the object evolves (feature dynamic). In the latter case,
the retyping might be caused by an explicit operation call (feature operation-based)

1In the rest of the paper, we use type/classifier and retyping/reclassification interchangeably.
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Fig. 3: Examples depicting classification time alternatives for typing

or due to the fulfilment of some conditions over properties of the object (feature
declarative). Both approaches are not exclusive but can be mixed (i.e., some types
may change due to operations, while others because of conditions). While operation-
based dynamicity is typical of programming languages [Drossopoulou et al. 2002;
Tamai et al. 2005], declarative dynamicity might be more appropriate for MDE.
In particular, declarative specifications of type changes are useful to classify ob-
jects according to their properties, but keeping the specifications independent of
any model management operation. The retyping conditions would be given in terms
of the creation type, and the model management operations would be defined over
the a-posteriori types.
While constructive typing is inherently static, a-posteriori typing can be dynamic.
As an example, the bottom-left model in Figure 4 has the Planning meta-model as con-
structive type, and is typed a-posteriori with respect to the upper right meta-model
for conference reviewer assignment. The a-posteriori typing classifies each Person
object as Author if he owns some article resource, or as Reviewer if he is assigned a
task with name “rev”. When the model evolves (bottom-right), the new review task
t2 is assigned to person p2, and hence p2 gets the additional type Reviewer.

— Number of classifiers. Some type systems allow several classifiers, none subtype of
the others, to share common instances. Hence, some objects may receive multiple
classifiers from the same meta-model. For example, in the bottom-right model of
Figure 4, p2 is typed a-posteriori as Author and Reviewer. Constructive typing does
not support multiple classifiers, but a-posteriori typing may enable this feature.
Some systems like SMOF permit declaring the set of potential classifiers that in-
stances of a given type can adopt. The UML [OMG 2013b] also supports overlapping
instances through the overlapping annotation on generalization sets. Hence, the type
systems of both SMOF and UML have the feature bounded selected in the feature
model in Figure 2.
While some indication of allowed overlappings between classes is useful in practice,
this option lies between two extremes. On the more constrained side, MOF does
not allow distinct classes to share instances (unless one class is a subtype of the
other). On the more flexible side, one could permit any class to share instances with
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any other. In Figure 4, neither Reviewer nor Author have an indication of disallowed
overlappings, and hence, p2 can be typed by both.

— Number of model types. Besides the constructive type, a model can be typed a-
posteriori by 0 or more meta-models. For example, the model in Figure 3(b) is typed
a-posteriori by meta-models Scheduling and Measuring. Each one of these a-posteriori
typings is a real typing, and hence, the operations defined over meta-models Schedul-
ing and Measuring can be applied on the retyped model.

— Totality. Standard constructive typing is total as objects always receive a type
from the instantiated meta-model (the class used for their creation). In contrast, a-
posteriori typing can be partial if it is allowed to have model elements (objects, links
or slots) without an a-posteriori type. For example, Task instances t1 and t2 in Fig-
ure 4 lack an a-posteriori type. Similarly, the model in Figure 3(b) is partially typed
with respect to the Scheduling meta-model because slots duration and name are not
typed by this meta-model. Thus, viewing this model through the typing to Schedul-
ing ignores the untyped slots.

— Levels of typing. Standard frameworks – like the EMF [Steinberg et al. 2008] – only
manage two meta-levels at a time (meta-models and models). We call them two-
level approaches. In contrast, multi-level approaches [Atkinson and Kühne 2003;
de Lara et al. 2014] permit working with models at any number of meta-levels si-
multaneously, and the types defined in a meta-level can influence the instances
several meta-levels below, instead of just the ones created at the next meta-level.

— Orthogonal typing. Some meta-modelling approaches distinguish between linguistic
and ontological typings [Atkinson and Kühne 2003]. The linguistic typing refers to
the meta-modelling primitive used to create an element. For example, if we assume
we are using the UML for creating the meta-model and model in Figure 3(a), we
have that the linguistic type of Task is UML Class, and the one of review is UML
Object. Instead, ontological typing refers to instantiations within a domain. Both
constructive and a-posteriori typings are ontological. In this way, in Figure 3(a), the
ontological type of review is Task.
The availability of orthogonal typing permits having elements without ontological
type (as the ontological typing may be partial) but only linguistic type. Elements
with no ontological type are called linguistic extensions [de Lara and Guerra 2010].
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The distinction between ontological and linguistic typings has a prominent role in
multi-level modelling approaches, where it is also known as the Orthogonal Classi-
fication Architecture (OCA) [Atkinson and Kühne 2003].

— Type equivalence. This feature is related to the mechanism by which a type is
assigned to an element [Pierce 2002]. In nominal typing, two elements have the
same type if their declarations name the same classifier. In constructive typing ap-
proaches (e.g., MOF), this means that two objects have equal type if their creation
class is the same, whereas they have compatible type if their creation classes are
different but share a common ancestor. Instead, in structural typing, type confor-
mance is checked by looking at the structure of elements. Hence, two elements have
the same type if they have the same structure.

We can classify existing meta-modelling approaches based on the previous features.
For example, the typing in MOF and EMF is constructive, static, total, two-level, nom-
inal, and it allows a single classifier for objects, and a single meta-model to type a
model. SMOF is more flexible, as it supports a-posteriori, dynamic, total typings, as
well as assigning (bounded) multiple classifiers to objects, and typing models by a sin-
gle meta-model. As we will see later, our modelling tool METADEPTH supports multi-
level modelling and enables a-posteriori, dynamic, partial typings, while objects can
have multiple a-posteriori types, and models can be typed by several meta-models.
Moreover, object creation does not necessarily need to rely on existing classes, but un-
typed objects as the one in Figure 3(c) are allowed through linguistic extensions.

3. PRELIMINARIES: NOTATION AND TYPING
In this section, we introduce the basic notation and definitions necessary for building
a-posteriori typings, which will be presented later in Sections 4 and 5. In particular, in
the rest of the paper, we use the following notation:

— Meta-models. We use MMC to refer to the “creation” meta-model containing con-
structive types, and MMR to refer to the “role” meta-model containing a-posteriori
types.

— Classes. We use capital letters A,B,C, ... and write A ∈ MMC for a class A belong-
ing to the creation meta-model MMC . Predicate abs(A) indicates that class A is ab-
stract. We use names A,B,C, ... for classes in MMC , and quoted names A′, B′, C ′, ...
for classes in the role meta-model MMR.

— Features. We use lower-case letters a, b, c, ... for features (attributes or references).
A.a means that a is a feature defined in A or a superclass. We sometimes refer to
features by a (without a prefix class name). We use atts(A) and refs(A) for the sets
of attributes and references of A, both owned and inherited, and write a ∈ MMC to
denote a feature a in any class of MMC (and similar for MMR). We define feats(A) =
atts(A) ∪ refs(A), and for an attribute a, predicate default(a) indicates that a has a
default value.

— Feature cardinality. Given a feature a, functions min(a) and max(a) yield its mini-
mum and maximum cardinality, respectively. Function min yields a positive number
or zero, while max returns an element of N∪ {∞}. For this set, we extend the usual
order relations on the natural numbers (≤N, ≥N) to consider ∞. Hence, we define

a ≤ b ,


true, if b = ∞
false, if a = ∞∧ b ∈ N
a ≤N b, if {a, b} ⊆ N

and similar for ≥. Predicate mand(a) , min(a) > 0 holds if feature a is mandatory.
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— References. Given a reference A.r, tar(A.r) is the class r points to. Predicate
comp(A.r) holds if r is a composition.

— Inheritance. The set sub(A) contains the direct and indirect subclasses of A, and
sub∗(A) , {A} ∪ sub(A). Conversely, anc(A) is the set of direct and indirect super-
classes of A, while anc∗(A) , {A} ∪ anc(A). We admit multiple inheritance, but
assume cycle-free inheritance hierarchies.

— Feature owners. owner(a) is the class that defines feature a, while owner∗(a) ,
sub∗(owner(a)) is the set of classes that define or inherit a.

— Objects. Given a model M , we use o ∈ M to mean that object o belongs to model M .
Given an object o, we use links(o) for the set of links defined in o, and slots(o) for
the set of links and attribute values defined in o, with links(o) ⊆ slots(o).

— Typing. type(s) and type(o) return the type of a slot s and an object o respectively.
As in general we admit multiple classifiers for objects, type(o) actually returns the
set of valid classifiers for o. Given an object o, type∗(o) ,

∪
A∈type(o) anc

∗(A) is the
set of its compatible classifiers.

As we will see in the following sections, an a-posteriori typing specification induces
a retyping of models so that they can be seen as instances of the meta-model that
defines the a-posteriori types. In order to be able to ascertain whether such a retyping
is correct, first we need to introduce the notion of type correctness, where we admit
untyped objects as well as multiple types for objects.

A model M is well-typed with respect to a meta-model MM via a typing type iff:

— Object typing correctness. Objects must be well-typed, i.e., their types must belong
to the meta-model.

∀o ∈ M • type(o) ⊆ MM (1)

If we need in addition to constrain objects to have at least one type (∀o ∈
M • type(o) ̸= ∅), then the typing becomes total on objects.

— Subclassing implies instance subsetting. The set of instances whose type is compati-
ble with a class A must be a superset of the set of instances whose type is compatible
with every subclass of A.

∀A,B ∈ MM •B ∈ sub(A) =⇒ {o ∈ M |B ∈ type∗(o)} ⊆ {o ∈ M |A ∈ type∗(o)} (2)

— Abstract classes do not have instances. Please note that Equation (3) uses type, as
instances may still have a type compatible with an abstract one (i.e., using type∗).

∀A ∈ MM • abs(A) =⇒ @o ∈ M • A ∈ type(o) (3)

— Slot correctness. If a slot is typed, so must be the owner object. Moreover, the type
of the slot must be a feature of some of the types of the object.

∀o ∈ M • A.a ∈ type(o.s) =⇒ A ∈ type∗(o) (4)

— Slot completeness. Objects must have a slot for every mandatory feature defined by
each of their types. Alternatively, the mandatory feature may have a default value.

∀o ∈ M, ∀A ∈ MM •A ∈ type(o) =⇒
∀a ∈ feats(A) •mand(a) =⇒
default(a) ∨ ∃s ∈ slots(o) •A.a ∈ type(o.s)

(5)

— Link correctness. The target object of a typed link cannot be untyped. Moreover, as
the target object of a link may have multiple types, at least one such type should be
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compatible with the target class of each type of the link.
∀o ∈ M, ∀l ∈ links(o),∀A ∈ MM, ∀r ∈ refs(A) •

A.r ∈ type(o.l) =⇒ type(tar(o.l)) ∩ sub∗(tar(A.r)) ̸= ∅ (6)

— Composition correctness. An object cannot be pointed to by two links whose type is a
composition (Equation (7)). Moreover, there cannot be cycles of links whose type is a
composition (Equation (8)). As links may have several types, Equation (7) requires
that if an object is pointed to by several links, then at most one of the types of
those links can be a composition. Equation (8) uses operation closureComp(o) for
the transitive closure of any composition stemming from o. This is the bag of objects
that can be reached from o using links with type any composition, where no link is
traversed twice.

∀oi, oj ∈ M,∀l ∈ links(oi), ∀r ∈ type(oi.l) • tar(oi.l) = oj ∧ comp(r)

=⇒ ∀ok ∈ M, ∀lk ∈ links(ok) • l ̸= lk ∧ tar(ok.lk) = oj

=⇒ r′ ∈ type(ok.lk) =⇒ ¬comp(r′)

(7)

∀o ∈ M • o /∈ closureComp(o) (8)

— Cardinality correctness. In every object, the number of slots with type a is within
the cardinality interval of a, or feature a has default value and is not instantiated
in the object. Given a set S, we write |S| to denote its cardinality.

∀o ∈ M, ∀a ∈ MM • min(a) ≤ |{o.si | a ∈ type(o.si)}| ≤ max(a) ∨
(default(a) ∧ {o.si | a ∈ type(o.si)} = ∅) (9)

Once the notion of type correctness is defined, the next two sections examine two
ways to specify a-posteriori typings: at the type level and at the instance level. The
former is a particular case of the latter, but it facilitates analysis, permits forward and
backward reclassification, and is more concise. The latter enables dynamic typing as
well as the possibility of having objects without a constructive type.

4. SPECIFYING A-POSTERIORI TYPING AT THE TYPE-LEVEL
An a-posteriori typing specification at the type-level is given by a (static) relation be-
tween two meta-models: a “creation” meta-model MMC containing the constructive
types, and a “role” meta-model MMR containing the a-posteriori types. This relation
maps classes, attributes and references from MMC to those of MMR. This approach is
similar to the binding specification of [Sánchez Cuadrado et al. 2014], the model sub-
typing relation of [Guy et al. 2012], and the I-reflective morphisms of [Hermann et al.
2009]. However, it is more flexible and expressive, as it allows overlapping classes (i.e.,
objects with multiple types) and derived features. Moreover, in [Sánchez Cuadrado
et al. 2014], the binding is defined from the concept (similar to our role meta-model) to
the creation meta-model, while in this work it goes the other way round, which is more
natural to express retypings.

Figure 5 shows a type-level specification example. It maps class Task to Schedulable,
attribute start to date, and it conceptually defines a derived attribute months (which is
defined in the specification itself) that gets bound to span. This way, Schedulable, date
and span become a-posteriori types for Task instances and their slots.

In the remainder of this section, we describe the features of this specification mode.
When several alternatives are possible (e.g., allowing a single or multiple a-posteriori
classifiers for instances), we opt for the most general one, though this could be con-
strained in particular implementations. We provide a collection of useful restrictions
and their implications in Section 7.
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«instance of» 
(a-posteriori) 

Fig. 5: Specification of a-posteriori typing at the type-level

4.1. Type-level specifications and well-formedness rules
Our type-level specifications are collections of partial functions TS = {tsi}i∈I from
elements of MMC (classes, attributes, references) to elements of MMR. We use par-
tial functions because not every element of MMC needs to be mapped to an element
of MMR. It is a collection to permit elements in MMC to be mapped to several ele-
ments in MMR, thus enabling multiple simultaneous classifiers. The functions in the
collection do not need to be jointly surjective, because some elements of MMR might
be unmapped (just like a class in a meta-model may lack instances).

Next, we enumerate the laws that a type-level a-posteriori typing specification
TS = {tsi}i∈I must obey, in order to ensure well-formed retypings. We provide ex-
amples after each rule to enhance understanding. For the moment, we state the con-
ditions assuming that the model, once retyped, is read-only. Section 7.2 will introduce
additional constraints in case the retyped model is to be modified.

— Non-abstract mappings. Classes of MMC cannot be mapped to abstract classes of
MMR:

∀A ∈ MMC , ∀A′ ∈ MMR • tsi(A) = A′ =⇒ ¬abs(A′) (10)

Example. Figure 6 shows two reasons for this rule. Part (a) shows that, should
we allow mapping A to A’, we would break the assumption that abstract classes do
not have instances. Hence, the bottom OCL query, defined over MMR, would yield
an unexpected result when evaluated on the retyped model MC . Part (b) shows a
situation where an abstract class A (with a concrete subclass B) is mapped to A’.
In this case, a similar problem arises, as object b with type B would be reclassified
as A’. Equation (10) is sufficient to obtain correctness in this sense, but it is not a
necessary condition. We might still obtain correct retypings if any concrete class
A ∈ MMC that is mapped (directly or indirectly as in Figure 6(b)) to an abstract
class A′ ∈ MMR, is also mapped to a concrete subclass of A′; however, in such a
case, the semantics without the mapping to A′ would be the same. We do allow
mapping abstract to concrete classes, as for now we assume that retyped models
are read-only.
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Fig. 6: Incorrect specifications: (a) concrete to abstract class, (b) abstract to abstract class

    (a)                                                (b)                                                  (c)  
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a’ 
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MMR 

MMC ts0 
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A’ 

Fig. 7: Correct and incorrect feature mappings for type-level specifications.

— Correct context for feature mappings. The features of any class A ∈ MMC can only
be mapped to features of the class A is mapped to:

∀A ∈ MMC ,∀a ∈ feats(A), ∀a′ ∈ MMR •
tsi(A.a) = a′ =⇒ tsi(A) is defined ∧ a′ ∈ feats(tsi(A))

(11)

Example. Figure 7 shows some correct and incorrect mappings according to this
rule. We allow direct mappings like (a), but also structural ones like (b). Equa-
tion (11) permits the latter because feats(A’) returns the features of A’, both owned
and inherited. Case (c) is disallowed because a’ is not a feature of A’.

— Compatibility of feature cardinality. A feature in MMC can only be mapped to a
feature in MMR with the same or wider cardinality interval.

∀a′ ∈ MMR, ∀a ∈ MMC • tsi(a) = a′ =⇒ min(a′) ≤ min(a) ∧max(a′) ≥ max(a)
(12)

Example. The instances of feature a can only be seen as correct instances of feature
a′ if they obey the cardinality of a′. For example, the cardinality interval of feature
r’ in Figure 8(a) is wider than the one for r, and hence, any instance of MMC will
be correctly typed by MMR. As a consequence, any query over collection r’ (like
the one at the bottom of the figure) will yield a consistent result. While this is a
necessary condition, it is not sufficient, as Figure 8(b) shows. This is so as we allow
non-injective mappings, and so, some tsj mappings may relate several features of a
class in MMC to the same feature in MMR. The next rule handles this case2.

— Compatibility of feature cardinality (2). The previous rule is a particular case of a
more general rule: if several features are mapped to the same feature a′ ∈ MMR,

2Although Equation (13) subsumes Equation (12), we include both for clarity.
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Fig. 8: Type-level specification examples. (a) Correct retyping: mapping to a wider cardinality
interval. (b) Incorrect retyping: the interval in MMR is not equal or wider than the sum of
intervals in MMC .

then, the cardinality interval of a′ needs to be the same or wider than the interval
made of the sum of the intervals of the features mapped to a′.

∀a′ ∈ MMR • min(a′) ≤
∑

a∈MMC

tsi(a)=a′

min(a) ∧ max(a′) ≥
∑

a∈MMC

tsi(a)=a′

max(a)
(13)

— Compatibility of reference type. The target of a reference A.r has to be mapped to
the target class of the reference r is mapped to, or to a subclass:

∀A ∈ MMC , ∀r ∈ refs(A),∀r′ ∈ MMR • tsi(A.r) = r′ =⇒
∃ C ∈ anc∗(tar(A.r)) • tsi(C) ∈ sub∗(tar(r′))

(14)

The equation ensures that if A.r is mapped, then there is at least one mapping for
tar(A.r) (or an ancestor of it) compatible with tar(r′).
Example. Figure 9(a) illustrates this rule. We have tar(A.r) = B, tar(ts0(r)) = D’,
and as Equation (14) demands, ts0(B) = B’ ∈ sub∗(D’). Equation (11) allows mapping
a reference in MMC to an inherited one (e.g., mapping A.r to A’.r’, where A owns r and
A’ inherits r’). In Equation (14), tar(A.r) does not need to be directly mapped, but it
is enough if any of its ancestors C is mapped. Additionally, although the equation
demands the mapping i of some C ∈ anc∗(tar(A.r)) to be compatible with tar(r′),
tar(A.r) can have other mappings (e.g., ts1(tar(A.r)) = E’ in the figure).

— Compatibility of composition. A non-composition reference in MMC cannot be
mapped to a composition in MMR.

∀r′ ∈ MMR, ∀r ∈ MMC • (tsi(r) = r′ ∧ comp(r′)) =⇒ comp(r) (15)

Example. As Figure 9(b) shows, should we allow mapping a non-composition into
a composition, we may obtain ill-retyped models that do not satisfy the tree-shape
restrictions that compositions impose, like the absence of cycles. Assuming retyped
models are read-only, we do allow mapping compositions to non-compositions.

— Compatibility of composition (2). A reference in MMC cannot be mapped to two
composition references in MMR. This is so as objects cannot be pointed to (i.e., be
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Fig. 9: Type-level specification examples. (a) Correct retyping: reference to inherited reference.
(b) Incorrect retyping: non-composition to composition.
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MC 

Fig. 10: Incorrect type-level specifications. (a) Composition r is mapped twice. (b) Missing bind-
ing for mandatory feature B’.a’.

contained) by two composition references.

∀A ∈ MMC ,∀r ∈ refs(A), ∀r′, r′′ ∈ MMR, ∀i, j ∈ I •
i ̸= j ∧ tsi(A.r) = r′ ∧ tsj(A.r) = r′′ ∧ r′ ̸= r′′ =⇒

¬ comp(r′) ∨ ¬ comp(r′′)

(16)

Example. Figure 10(a) shows an example of incorrect specification, where r has
been mapped twice. This makes object b to belong to two composition references
when the model is retyped, which is not correct.

— Complete instantiations. If a class A′ ∈ MMR is mapped from a class of MMC , all
mandatory features of A′ should be mapped as well, or have a default value. This
rule is needed to emulate correct instantiations which instantiate all mandatory
features of classes. Moreover, we do not allow mapping features in MMC with a
default value to mandatory features in MMR, as default values implicitly make
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Fig. 11: Type-level specification examples. The stereotypes in each object o show type′∗(o).

mandatory features optional.

∀A ∈ MMC , ∀A′ ∈ MMR,∀a′ ∈ feats(A′) • tsi(A) = A′ ∧mand(a′) =⇒
default(a′) ∨ ∃a ∈ feats(A) • ¬default(a) ∧ tsi(A.a) = A′.a′

(17)

Example. Figure 10(b) shows an example of incomplete specification, as a binding
from some feature of B to B’.a’ is missing.

To enhance flexibility, type-level specifications are allowed to define virtual derived
features (attributes or references), to be mapped to features of MMR. This is useful
when the mapping between some aspect of MMC and MMR is not direct, but requires
adaptation. The type-level specification in Figure 5 illustrates this possibility, as it de-
fines a derived attribute months, its calculation procedure, and a mapping to attribute
Schedulable.span. A derived feature A.da is defined by an expression that gets evaluated
in the context of objects of type A or a subtype. The expression of da is typed over a
class in MMC (for derived references), or has a primitive type (for derived attributes).
We write A.da(o) to refer to the value of feature da in object o. Derived features are
mapped following the same rules as non-derived features, from a virtual meta-model
extension of MMC that incorporates all derived features defined by the a-posteriori
specification.

It is remarkable that our typing specification does not define conditions to preserve
the compatibility of inheritance hierarchies in MMC and MMR, in contrast with other
approaches to relate meta-models [Hermann et al. 2009]. This is so as we enable more
flexible typings, where a-posteriori types may have overlapping instances. For exam-
ple, in Figure 11(a), two classes A and B related by inheritance are mapped to two
independent classes A’ and B’, respectively. In this way, the instances of B will be
typed a-posteriori by both A’ (because B inherits the a-posteriori typing from A) and
B’. Hence, A’ and B’ may have common instances. Another scenario that yields overlap-
ping instances is a class A mapped to two different classes A′ and B′ (i.e., tsi(A) = A′

and tsj(A) = B′). As Figure 11(b) shows, “reversing” inheritance relations in MMC in
MMR is not problematic for our approach either. In this case, the mapping ts0(B) = B′

is redundant because it assigns to B the same a-posteriori type that B already inherits
from A (i.e., A’ and B’).

4.2. Computation of retyped model views
Given an instance model M of MMC , its retyping with respect to MMR according to a
type-level specification TS = {tsi}i∈I is performed by composing the types from MMC
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Fig. 12: (a) Retyping M with respect to MMR. (b) Example of retyping.

and each tsi function. The retyping induces a view of M , written TS(M), which is
typed by MMR by a typing type′(TS(M)) (see Figure 12(a)). The view and the typing
are calculated as follows:

(1) Each object o ∈ M is retyped to:

type′(o) = {tsk(A) | k ∈ I ∧ tsk(A) is defined ∧ A ∈ type∗(o)} (18)

(2) Any object o such that type′(o) is not empty belongs to TS(M); otherwise it does not.
(3) For each derived feature A.da, a new virtual slot o.da is added to each object o such

that A ∈ type∗(o). Slot o.da receives the value A.da(o). Then, the virtual slot is
retyped as a regular slot, as explained in the next step.

(4) Each slot o.s ∈ M is retyped to:

type′(o.s) = {tsk(A.a) | k ∈ I ∧ tsk(A.a) is defined ∧ A ∈ type∗(o) ∧ a ∈ type(s)} (19)

(5) Any slot o.s such that type′(o.s) is not empty belongs to TS(M); otherwise it does
not.

Equation (18) assigns to an object o the a-posteriori types mapped from the direct
and indirect types of o. Just like a normal typing, o is also indirectly typed by the su-
pertypes of each class in type′; hence, given an object o, type′∗(o) =

∪
A∈type′(o) anc

∗(A).
We assume that the original typing type allows multiple classifiers for an object, and it
can be the creation typing or an a-posteriori typing. In Equation (19), o.s receives the
a-posteriori types of A.a, where A is the creation type of o or one of its superclasses.

Alternatively, we can see TS as a function from elements of MMC to sets of elements
of MMR, by defining TS⊕ =

∪
i∈I tsi, so that TS⊕(A) =

∪
i∈I tsi(A) (and TS⊕(A) = ∅

if all tsi(A) are undefined). Therefore, a type-level retyping from M to MMR is calcu-
lated by composing TS⊕ ◦ type∗ (i.e., “following the arrows” of Figure 12(a))3. Derived
features are calculated and then retyped in the same way. TS(M) is then calculated
by removing the untyped objects and slots. As an example, Figure 12(b) shows the re-
typing of M with respect to MMR. Since TS(M) is a view of M , the objects and slots
in TS(M) are not created new, but they are simply views on top of M ’s elements.

The following theorem states that the procedure for type-level specifications yields
correct retypings, according to the well-formedness criteria defined in Section 3.

3While TS⊕ is more convenient for type composition, our original formulation of TS is more direct for
defining retypings as sets of mappings.
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THEOREM 4.1 (TYPE-LEVEL RETYPING CORRECTNESS).
Given meta-models MMC and MMR, a type-level specification TS and a model M

typed by MMC , then TS(M) is well-typed with respect to MMR using type′ according
to the well-typed criteria of Section 3. The typing type′(TS(M)) is total on objects.

PROOF. (Idea) By checking each of the 9 well-typing conditions in Equations (1–9):

— Equation (1) “objects are well-typed” holds by item (1) of the construction of TS(M).
— Equation (2) “subclassing implies instance subsetting” holds due to definition of

type∗.
— Equation (3) “abstract classes do not have instances” holds due to Equation (10)

“non-abstract mappings”.
— Equation (4) “slot correctness” holds due to Equation (11) “correct context for feature

mappings”.
— Equation (5) “slot completeness” holds due to Equations (12) “compatibility of feature

cardinality” and (17) “complete instantiations”.
— Equation (6) “link correctness” follows from (14) “compatibility of reference type”.
— Equations (7) and (8) “composition correctness” follow from Equations (16) and (15)

“compatibility of composition”, respectively.
— Equation (9) “cardinality correctness” follows from Equations (12) and (13) “compat-

ibility of feature cardinality”.

See proof details in appendix.

4.3. Features of type-level retyping specifications
Next, we analyse the features that type-level a-posteriori specifications yield, accord-
ing to the feature model shown in Figure 2.

— Classification time. Objects can be classified a-posteriori by a type-level retyping
specification TS.

— Dynamicity. Type-level a-posteriori typing is not dynamic as the a-posteriori types
of objects do not change when the model evolves. Although it is possible to define
other a-posteriori types, the existing ones do not change because the types assigned
by TS to every object depend statically on the source class from MMC , not on the
object properties.

— Number of classifiers. Objects may have several a-posteriori types, i.e., types in the
role meta-model can have overlapping instances. This happens if tsi, tsj map a class
A ∈ MMC to several classes in MMR, or if the classes that participate in the typing
specification are related by inheritance (see Figure 11(a)). Constraining the specifi-
cation TS to be a single function instead of a collection, and adding an extra rule
to preserve the compatibility of inheritance hierarchies in MMC and MMR, would
yield type-level specifications where a-posteriori types do not have overlapping in-
stances. An implementation may restrict the overlapping to occur only between se-
lected annotated classes of MMR, as UML and SMOF do. These restrictions will be
analysed in detail in Section 7.

— Number of model types. A model M may be typed a-posteriori with respect to several
role meta-models. It is enough to define several retyping specifications.

— Totality. The model elements (objects and slots) whose creation type and its su-
pertypes are not mapped to any element in the role meta-model, will lack an a-
posteriori type. This is possible because each tsi can be partial. Moreover, such un-
mapped model elements do not belong to the view TS(M), and are “invisible” when
using operations defined over MMR.
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Fig. 13: Specification of a-posteriori typing at the instance-level

— Levels of typing. Type-level a-posteriori typing does not introduce additional meta-
levels. However, TS⊕ has the same structure as type, and hence, it could be inter-
preted as a typing relation between MMC and MMR.

— Orthogonal typing. Type-level a-posteriori typing introduces additional typings for
a model, which are orthogonal to the creation types. However, it does not consider
linguistic typing but only ontological typing.

— Type equivalence. Type-level a-posteriori typing does not introduce native mecha-
nisms for structural typing, but can emulate it. This is so as a specification TS may
assign the same a-posteriori type to objects with different creation type but similar
structure. This can be done by mapping their classes to the same class in MMR.
However, the converse (assigning different a-posteriori types to objects with same
creation type) cannot be achieved because each tsi maps classes to classes and is
not able to select a subset of the instances of a class.

Later, we will analyse other properties that type-level specifications may have, like
bidirectionality (Section 6) or the possibility to modify retyped models using operations
typed on MMR (Section 7). Before, the next section introduces a more expressive ap-
proach to specify a-posteriori typings at the instance level, and shows how to translate
type-level specifications into them.

5. SPECIFYING A-POSTERIORI TYPING AT THE INSTANCE-LEVEL
The specification of a-posteriori typings at the instance-level consists of queries that
are evaluated over the model to be retyped, and their results are assigned types from
the role meta-model. Figure 13 shows an example of instance-level specification. The
first line assigns the a-posteriori type Schedulable to all tasks with duration less than
80, and therefore, object review receives this a-posteriori type, but object writing does not.

In this section, we first describe instance-level specifications and their well-
formedness rules (Section 5.1). Some of these rules require constructing OCL invari-
ants, and the use of constraint solving. Hence, in contrast to type-level specifications,
they are treated semi-formally only. Then, we explain how to calculate retyping views
(Section 5.2), next how to translate type-level specifications into instance-level ones
(Section 5.3), and finally, we analyse the features of instance-level specifications (Sec-
tion 5.4).

5.1. Instance-level specifications and well-formedness rules
An instance-level a-posteriori typing specification from a creation meta-model MMC to
a role meta-model MMR is (conceptually) a collection of partial functions IS = {isi}i∈I
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from instances of MMC (objects and their properties) to elements of MMR (classes,
attributes and references). The is functions are specified by means of queries. Hence,
we have functions isi(exp : A) 7→ A′, where exp is a query that returns a set of objects
of type A ∈ MMC , and each object in this set is assigned type A′ ∈ MMR.

We do not assume a particular query language in retyping expressions, but one could
use for example OCL or graph constraints [Ehrig et al. 2006]. In our implementation
and for illustration we use OCL. The only assumption about the query language is that
a query exp : A should be evaluable on a model M , written exp(M), and the resulting
objects of the query should be of type A.

A

MMC

B

A’

MMR
IS={ 

is0={ 

(B.allInstances(): A)       A’,

(A.allInstances(): B)       A’,

(A.allInstances(): A)       A’ } }

Fig. 14: Ill-typed instance-level specification

As an example, Figure 14 shows
an ill-typed instance-level specifi-
cation IS made of a function is0
with three mappings. The queries
in the mappings include the type
of the returned objects (e.g., A), but
not the cardinality (e.g., A[1..*]) or
kind (e.g., Bag(A)) of the returned
collection. The query in the first
mapping is well-typed, because the objects returned by B.allInstances() are compatible
with the declared type A. The query in the second mapping is incorrectly typed because
A.allInstances() is not compatible with a collection of B. The query in the third mapping
is well-typed. Actually, the type defined by the queries is not needed when using the
retyping specification, as the queries are just evaluated on the models; however, this
type is needed to type-check the specification for correctness, as we will see later.

Object slots can also be assigned a-posteriori types from MMR using functions
isi(A.a) 7→ A′.a′. Such functions require the existence of an object mapping isi(exp :
A) 7→ A′, meaning that the slots with type a of the objects in exp(M) are retyped to
A′.a′. Similar to type-level specifications, instance-level specifications can include the
definition of derived features to be mapped to features in MMR. Derived features are
defined by a name, an expression, a type and a cardinality (see e.g., the definition of
the derived feature months in Figure 13). Similar to the type-level case, derived features
are not defined in MMC , but directly in the specification.

Dually, one can see instance-level specifications as type-level specifications where
class mappings include a filter exp : A that selects only those A objects in exp(M).
While this may look a small change, it enhances expressivity at the cost of complicat-
ing the analysis of the well-formedness rules as, should we use analogous rules to the
type-level specification ones, we would obtain too strict conditions. This is so as some
of these rules define sufficient but not necessary conditions for instance-level specifica-
tions (in particular, the rules for compatibility of feature cardinality and composition),
while others are necessary but not sufficient (the rule for compatibility of reference
type). Our approach is to encode some correctness aspects of a specification as OCL ex-
pressions, and check the satisfiability of the expressions using a model finder [Jackson
2002; 2006; Kuhlmann and Gogolla 2012]. Model finders take as input a meta-model
and a number of OCL invariants, and produce a model conformant to the meta-model
and satisfying the invariants, if such a model exists within the search bounds.

Next, we revise the different well-formedness rules for instance-level specifications.

— Non-abstract mappings. Objects cannot be assigned an abstract type from MMR.

∀A ∈ MMC , ∀A′ ∈ MMR • isi(exp : A) = A′ =⇒ ¬abs(A′) (20)

Remark. This rule is equivalent to Equation (10) for type-level specifications.
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Fig. 15: Correct instance-level specification

— Correct context for slot mappings. The slots of any object can only be mapped to
owned or inherited features of the class the object is mapped to.

∀A ∈ MMC ,∀a ∈ feats(A), ∀a′ ∈ MMR • isi(A.a) = a′

=⇒ isi(exp : A) is defined ∧ a′ ∈ feats(isi(exp : A))
(21)

Remark. This rule is similar to Equation (11) for type-level specifications.
— Compatibility of feature cardinality. If an instance-level specification contains some

mapping for a feature a′ ∈ MMR, then, the cardinality of a′ must be the same or
wider than the sum of the cardinality intervals of the slots mapped to a′.
Remark. This rule is similar to Equations (12) and (13) for type-level specifications.
However, in this case, these equations are sufficient but not necessary conditions.
This is so as fulfilling both equations ensures the retyped model will conform to
MMR; however, there may be instance-level specifications that do not fulfil the equa-
tions but always produce correct retyped models nonetheless. To detect such cases
and widen the number of valid instance-level specifications we resort to constraint
solving.
Example. Figure 15 illustrates this situation. The first two lines in the instance-
level specification map A objects with non-empty r to A’, and their link r to r’. The
last two lines in the specification map A objects with empty r to A’ as well, and a
derived attribute rd which contains the object self to r’. This specification violates
Equation (13) as the cardinality of r’ ([0..1]) is not wider than the sum of the car-
dinalities of the two mapped links ([1..2]); however, because rd is only defined if r is
empty, this specification always yields correct retyped models, one of which is shown
in the figure (the dotted link is the derived feature rd as a result of the retyping).
Hence, to analyse more precisely the compatibility of cardinalities in this example,
we need to ensure that the invariant in Listing 1 is not satisfiable in retyped models.
The invariant checks the upper cardinality of r’, but not the lower one as it is zero.

1 A’.allInstances()→exists(a | a.r’→size() > 1)

Listing 1: Checking cardinality constraints on retyped models (in MMR)

However, this invariant needs to be analysed in the context of MMC , taking into
account the retyping specification. Hence, we translate the invariant in terms of
MMC by using the retyping specification IS. This yields the invariant in Listing 2.
The translation wraps objects into sets when necessary, to allow querying their size.

1 −− First mapping
2 A.allInstances()→select(r.notEmpty()) −− objects in this set are mapped to A’
3 →exists(a | a.r→size() > 1) −− link r is mapped to A’.r’
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4 or
5 −− Second mapping
6 A.allInstances()→select(r.isEmpty()) −− objects in this set are mapped to A’
7 →exists(a | Set{a}→size() > 1) −− derived link /rd = self is mapped to A’.r’
8 or
9 −− Overlapping instances of first and second mapping

10 A.allInstances()→select(r.notEmpty())→intersection( A.allInstances()→select(r.isEmpty()) )
11 →exists(a | (a.r→size() + Set{a}→size()) > 1)

Listing 2: Checking cardinality constraints for the specification of Figure 15 (in MMC )

The model finder does not find any instance of MMC that satisfies the invariant in
Listing 2. This means that the retyping specification preserves the cardinalities in
MMC .
Invariant construction. In general, the invariant needed to check cardinality
compatibility is built as follows. Given a feature A′.r′ in MMR; a set J = {j1, ..., jn}
of indices with isj(expj1 : A) = A′; and isj(A.r11) = A′.r′, ..., isj(A.r1m) = A′.r′; we
use the template in Listing 3 to build the invariant. We assume the general case
in which A.r11 ... A.r1m are derived features defined by OCL expressions exps11 ...
exps1m. If they are regular feature mappings, then the expressions have the form
exps11 = self.r11 ... exps1m = self.r1m. In the template, expsij [a/self ] is the expres-
sion that results from substituting self (either implicit or explicit) by a in expsij

4.
Moreover, the checks for the maximum (resp. minimum) cardinality of A′.r′ are not
needed if its upper (resp. lower) cardinality is ∗ (resp. 0).

1 expj1→exists(a | let size : Integer = exps11[a/self] →size() +...+ exps1m[a/self] →size()
2 in size > max(A’.r’) or size < min(A’.r’))
3 or ...
4 expjn→exists(a | let size : Integer = expsn1[a/self] →size() +...+ expsnm[a/self] →size()
5 in size > max(A’.r’) or size < min(A’.r’))
6 or
7 −− all twofold combinations of expressions in J with compatible type
8 expj1→intersection(expj2)→exists (a |
9 let size : Integer = exps11[a/self] →size() +...+ exps1m[a/self] →size() +

10 exps21[a/self] →size() +...+ exps2m[a/self] →size()
11 in size > max(A’.r’) or size < min(A’.r’))
12 or ... −− similar for 3−fold,..., n−fold combinations, with J = {j1, ..., jn}

Listing 3: Template to generate OCL invariants for cardinality checks

The resulting invariant checks the minimum and maximum cardinalities of the in-
dividual mappings to feature A′.r′ (lines 1–6), and then, it considers objects selected
by several mappings (lines 8–12). If this expression is satisfiable, then, there is some
model of MMC that violates the cardinality of r′ when it is retyped using IS.

— Compatibility of reference type. Checking the compatibility of the target type of ref-
erences has two parts, one static and the other one using model finding. The static
part amounts to check a similar condition to Equation (14), namely:

∀A ∈ MMC ,∀r ∈ refs(A), ∀r′ ∈ MMR • isi(A.r) = r′ =⇒
∃ C ∈ anc∗(tar(A.r)) • isi(expC : C) ∈ sub∗(tar(r′))

(22)

Remark. This equation ensures that if the feature A.r is mapped, then there is at
least one mapping from objects of type tar(A.r) that is compatible with tar(r′). Even
though this condition is sufficient for type-level specifications, it is not for instance-
level ones.

4In this and the following templates, we assume that the variable a does not occur free in the replaced
expression (expsij in this case).
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Fig. 16: Incorrect instance-level specification leading to an ill-typed model

Example. Figure 16 illustrates why Equation (22) is not sufficient. The instance-
level specification in the figure maps all A objects to A’, and their derived feature rd
containing all B objects with zero or negative value for v is mapped to r’. Moreover,
B objects with negative v are mapped to B’, and those with zero or positive v are
mapped to A’. This specification fulfils Equation (22), as rd: B[*] is mapped to A’.r’:
B’[*], and there is a mapping that retypes B objects into B’. However, object o0 in MC

is retyped as A’, and therefore, the link from o1 to o0 is incorrectly typed because r’
should only contain B’ objects.
We could strength Equation (22) as follows, to demand every mapping from objects
of type tar(A.r) and its ancestors to be compatible with tar(r′):

∀A ∈ MMC ,∀r ∈ refs(A), ∀r′ ∈ MMR • isi(A.r) = r′ =⇒
∃ C ∈ anc∗(tar(A.r)) • isi(expC : C) ∈ sub∗(tar(r′)) ∧
∀ k ∈ I, ∀ D ∈ anc∗(tar(A.r)) •
isk(expk : D) is defined =⇒ isk(expk : D) ∈ sub∗(tar(r′))

(23)

This would render the specification of Figure 16 as invalid because there is a map-
ping of B objects to A’, which is not compatible with the type of r’. However, this
equation is too strict as it can invalidate specifications which do not yield incorrect
retypings, like for instance, changing the v <= 0 condition to v < 0 in the example.
Therefore, we use model finding to analyse correctness more precisely. The idea
is to derive an OCL invariant which, if satisfiable, implies that the specification is
incorrect. Listing 4 shows such an invariant for the specification of Figure 16, which
checks if r’ can contain objects with type different from B.

1 A’.allInstances()→exists(a | −− There is an object a with type A’
2 a.r’→exists(b | −− whose link r’ contains an object b
3 B’.allInstances()→excludes(b))) −− such that the type of b is not B’

Listing 4: Checking correctness of typings to A′.r′ (in MMR)

Model IS(MC) in Figure 16 satisfies this invariant as object o0 is in r’ but its type
is not B’. Hence, the specification is incorrect. However, as in the previous rule, our
goal is to evaluate the invariant in the context of MMC to assert there is no model
of MMC satisfying it. For this purpose, we translate the previous invariant using
the specification IS, obtaining the invariant in Listing 5.

1 A.allInstances()→exists(a | −− First mapping to A’
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2 B.allInstances()→select(v<=0)→exists(b | −− mapping to A’.r’
3 B.allInstances()→select(v<0)→excludes(b))) −− b does not have type B’

Listing 5: Checking correctness of typings to A′.r′ for specification in Figure 16 (in MMC )

This invariant detects when the a-posteriori type of an object b is not valid for the
reference A’.r’, either because the type is incompatible with B’ (as is the case of object
o0 in the example), or because b is selected for its inclusion in A’.r’ but it does not
receive an a-posteriori type at all. Model MC in Figure 16 satisfies this invariant as
object o0 fulfils the condition in line 3.
Invariant construction. In the general case, the invariant is constructed as fol-
lows. Given a reference A′.r′ in MMR with tar(A′.r′) = B′; and given an instance-
level specification with isi(expA : A) = A′, isi(A.r) = A′.r′, isi1(expB1 : B1) = B′

1,
..., isin(expBn : Bn) = B′

n with B′
i ∈ sub∗(B′) and Bi ∈ anc∗(tar(A.r)), we build the

invariant of Listing 6. As in Listing 3, we consider that A.r could be derived and it
is defined by an OCL expression exps. If A.r is not derived, then exps has the form
self.r.

1 expA→exists(a |
2 exps[a/self]→exists(b |
3 expB1→...→union(expBn )→excludes(b)))

Listing 6: Template to generate OCL invariants for checking reference correctness

If there are several mappings isi1(expA1 : A1), ..., isim(expAm : Am) to some class
D′ ∈ sub∗(A′), then we build the invariant in Listing 3 for each mapping and or-
concatenate all of them (as D′ inherits r′). If the resulting invariant is satisfiable,
the typing is not safe.

— Compatibility of composition. Retyped models cannot contain cycles of containment
links, and objects cannot be pointed to by two containment links.
Remark. This can be checked with similar conditions to Equations (15) and (16)
(i.e., compositions in MMR can only be mapped by compositions, and one composi-
tion in MMC cannot be mapped to two compositions in MMR). However, instance-
level specifications make heavy use of derived references which do not indicate
whether they are considered “compositions”. Hence, we resort to constraint solving
to check the compatibility of compositions.
Invariant construction. Given a containment reference A′.r′ with tar(A′.r′) ∈
sub∗(A′), we can use the invariant in Listing 7 to detect cycles in instances of MMR.

1 A’.allInstances()→exists(a | a.r’→closure(r’)→includes(a))

Listing 7: Checking cycles of reference A′.r′ (in MMR)

We need to translate this invariant in terms of MMC to check if it is unsatisfiable
on its instances. Hence, given a reference A′.r′ with comp(A′.r′) and tar(A′.r′) ∈
sub∗(A′) (see Figure 17(a)), and an instance-level specification with isi(expA : A) =
A′, isi(A.rA) = A′.r′, isi(expB : B) = B′, isi(B.rB) = B′.r′ and B′ ∈ sub∗(A′), we
build the invariant shown in Figure 17(b). As before, we assume that A.rA and
B.rB are defined by OCL expressions exprA and exprB . To be able to perform the
transitive closure, we need to introduce a new abstract class AB ∈ MMC , parent
of both A and B. This class defines an operation r(), redefined in A and B, which
emulates the mappings to r′. If the resulting invariant is satisfiable in MMC , then
the specification may produce retyped models that contain cycles of A′.r′. Should A′

defined more compositions in addition to r′, mapped from references in A or B, then
operation r() should return the content of all of them.
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Fig. 17: Checking composition cycles. (a) Schema of specification. (b) Template to generate OCL
invariants for checking cycles of composition, and meta-model modification.
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Fig. 18: Schema of instance-level specifications considered in the compatibility of compositions.
(a) Mapping to one composition. (b) Mapping to two compositions.

In addition to acyclicity, we need to check that no object is contained in two links
whose type is a composition. We proceed in two steps: first, we check that no object
can be contained in two links with the same composition type, and second, we check
that no object is contained in two links with different composition type.
Figure 18(a) shows a schema of the instance-level specification for the first case. In
detail, for each composition reference B′.r′ ∈ MMR, we generate the invariant in
Listing 8. Line 1 checks whether some object selected by expB and mapped to B′

contains the same object duplicated in r (with r calculated by expr). Lines 3–6 check
whether some object selected by expA and mapped to A′, is included in the collection
r of two B objects. If the invariant is satisfiable for some composition reference, then
the specification may produce retypings with incorrect compositions.

1 expB→exists(b | expr [self/b]→asSet()→size() < expr [self/b]→size())
2 or
3 expA→exists(a |
4 expB→exists(b1, b2 |
5 b1 <> b2 and
6 expr [self/b1]→includes(a) and expr [self/b2]→includes(a)))

Listing 8: Template to generate OCL invariants for detecting objects contained in two links
with the same composition type (in MMC )
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Fig. 19: (a) Retyping M with respect to MMR. (b) Example of retyping.

To check that no object can be included in two different types of composition, we
use the invariant shown in Listing 9 for each pair of composition references r′1, r

′
2 ∈

MMR. This invariant is created only if there are two expressions expA1 and expA2

with compatible type (and hence overlapping instances), both mapped to two classes
A′

1, A
′
2 ∈ MMR target of different composition references (see Figure 18(b)). If some

of the created invariants are satisfiable, then the specification is incorrect.

1 expA1→intersection(expA2)→exists(a |
2 expB1→exists(b1 | expr1[self/b1]→includes(a))
3 and
4 expB2→exists(b2 | expr2[self/b2]→includes(a)))

Listing 9: Template to generate OCL invariants for detecting objects contained in two links
with different composition type (in MMC )

— Complete instantiations. If an instance-level specification contains some mapping
for a class A′ ∈ MMR, then all mandatory features of A′ should be mapped as well
or have a default value.

∀A ∈ MMC , ∀A′ ∈ MMR, ∀a′ ∈ feats(A′) • isi(exp : A) = A′ ∧mand(a′) =⇒
default(a′) ∨ ∃a ∈ feats(A) • ¬default(a) ∧ isi(A.a) = A′.a′

(24)

Remark. This rule is equivalent to Equation (17) for type-level specifications, and
can be checked statically.

5.2. Computation of retyped model views
As Figure 19(a) shows, retyping a model M conforming to MMC via an instance-level
specification IS is similar to the case of type-level specifications (see Section 4.2). The
only difference is that, in this case, given a model M and an object o ∈ M , o gets
retyped by all mappings containing queries that select o. Hence:

type′(o) = {isk(expA : A) | k ∈ I ∧ isk(expA : A) is defined ∧A ∈ type∗(o) ∧ o ∈ expA(M)}
We write IS(M) for the retyped view of M using IS. The retyping yields a typing

type′ from IS(M) to MMR. Figure 19(b) shows the retyped view IS(M) of Figure 13.
The view only contains one object, and ignores slots duration and name.

The following theorem states that instance-level specifications yield correct typings
that fulfil the well-formedness criteria defined in Section 3.

THEOREM 5.1 (INSTANCE-LEVEL RETYPING CORRECTNESS).
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Given meta-models MMC and MMR, an instance-level specification IS and a model
M typed by MMC , then IS(M) is well-typed with respect to MMR using type′ according
to the well-typed criteria of Section 3. The typing type′(IS(M)) is total on objects.

PROOF. (Idea) Similar to Theorem 4.1, we check each condition for well-typing:

— Equation (1) “objects are well-typed” holds by the construction of type′(o) in IS(M).
— Equation (2) “subclassing implies instance subsetting” holds due to the definition of

type∗.
— Equation (3) “abstract classes do not have instances” holds due to Equation (20)

“non-abstract mappings”.
— Equation (4) “slot correctness” follows from (21) “correct context for feature map-

pings”.
— Equation (5) “slot completeness” follows from (24) “complete instantiations”.
— Equation (6) “link correctness” holds if the invariant in Listing 6 is unsatisfiable.
— “Composition correctness” has two parts: Equation (7) holds if the invariants in List-

ings 8 and 9 are unsatisfiable, and Equation (8) holds if the invariant in Figure 17(b)
is unsatisfiable.

— Equation (9) “cardinality correctness” holds if the invariant in Listing 3 is unsatisfi-
able.

See details in appendix.

5.3. From type-level to instance-level specifications
Any type-level specification TS = {tsi}i∈I can be translated to an instance-level speci-
fication IS = {isi}i∈I , by building a mapping isi ∈ IS from every tsi ∈ TS as follows:

isi ={(A.allInstances() : A) 7→ A′ | tsi(A) = A′} ∪
{(A.f : A) 7→ A′.f ′ | tsi(A.f) = A′.f ′ with f ∈ feats(A)} ∪
{(A./da : T, expda) 7→ A′.f ′ | tsi(A./da : T, expda) = A′.f ′ with da a derived

feature with type T}

(25)

The construction in Equation (25) translates each type-level class mapping tsi(A) =
A′ to an instance-level mapping that maps all instances of A to A′. The translation of
feature mappings is straightforward.

A well-formed type-level specification yields a well-formed instance-level specifica-
tion, as the next theorem shows.

THEOREM 5.2 (TYPE-TO-INSTANCE TRANSLATION CORRECTNESS).
Given a type-level specification TS = {tsi}i∈I , its translation into an instance-level

specification using the construction in Equation (25) yields a correct instance-level spec-
ification IS = {isi}i∈I .

PROOF. (Idea). By checking each well-typing condition. See details in appendix.

In general, instance-level specifications cannot be translated into equivalent type-
level ones. This is so as, for example, an instance-level specification can map two dif-
ferent sets of objects of type A ∈ MMC to two different classes A′, B′ ∈ MMR. This is
not possible in type-level specifications.

5.4. Features of instance-level retyping specifications
Instance-level specifications are more expressive than type-level ones, leading to typ-
ings with the following features:
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— Classification time. Just like type-level specifications, instance-level specifications
enable a-posteriori typings.

— Dynamicity. The defined a-posteriori typing can be dynamic if the specification con-
tains mappings that select or deselect objects according to their features. For ex-
ample, in Figure 19(b), setting writing.duration to 30 makes writing Schedulable, while
setting review.duration to 80 makes review drop its Schedulable a-posteriori type.

— Number of classifiers. Objects may have several a-posteriori types from the same
role meta-model, if they are selected by several mappings to different MMR classes.

— Number of model types. As in the case of type-level specifications, a model M can be
typed a-posteriori with respect to several role meta-models.

— Totality. Objects not selected by any query lack an a-posteriori type, in which case,
they are excluded from the view IS(M). This is allowed because the defined a-
posteriori typing can be partial.

— Levels of typing. Instance-level specifications do not introduce new meta-levels.
— Orthogonal typing. As in the case of type-level specifications, instance-level specifi-

cations introduce an additional typing of ontological nature.
— Type equivalence. Similar to type-level specifications, objects with different creation

type can receive the same a-posteriori type, if they are selected by the same or differ-
ent queries and mapped to the same type in MMR. However, differently from type-
level specifications, instance-level specifications also allow mapping objects with the
same creation type to different types in MMR. This is possible if the specification
contains queries that distinguish the objects and map them to different types.

6. ANALYSIS OF A-POSTERIORI TYPING
The well-formedness rules of type-level and instance-level specifications ensure correct
retypings, but neglect the OCL integrity constraints that the involved meta-models
MMC and MMR may have. Therefore, we are interested in analysing whether given
a retyping specification from a creation meta-model MMC to a role meta-model MMR,
some/every valid instance of MMC becomes a valid instance of MMR when the retyp-
ing is performed and the integrity constraints of both meta-models are considered.

As we have seen, retyping a model MC with respect to MMR creates a virtual model
view of MC , named TS(MC) for type-level specifications and IS(MC) for instance-level
specifications. In both cases, the view discards the elements of MC which are not typed
by MMR, and includes the derived features defined by the specification. Thus, the goal
of the proposed analysis is to check whether:

(a) a valid view for some valid model MC exists (retyping executability),
(b) a valid view for every valid model MC exists (retyping totality),
(c) every instance of MMR is a view of some instance of MMC (retyping surjectivity),
(d) a retyping specification from MMC to MMR can be reversed to obtain a valid speci-

fication from MMR to MMC (retyping bidirectionality).

Executability is a basic property of specifications, which indicates that at least one
model can be correctly retyped taking into account the integrity constraints of both
meta-models. A specification is total if it can be applied to every instance of MMC ,
and yields a correct view. A surjective specification is able to produce every instance of
MMR by retyping some source model. A bidirectional specification can be used to re-
type instance models of MMC into MMR and the other way round. In a way, retypings
act as (simple) model-to-model transformations where no objects are produced in the
target model, but the target model is calculated as a view of the source.

Figure 20 illustrates the conditions for the first three retyping properties. The figure
uses sets to depict the instances of MMC and MMR, dots to represent a model or a
view, and CC and CR to represent the sets of integrity constraints in MMC and MMR
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Fig. 20: Conditions for executability,
totality and surjectivity of retypings.

respectively. Hence, a model showing executabil-
ity satisfies the constraints CC of the creation
meta-model, and its retyped view satisfies those
of the role meta-model. A model showing no to-
tality satisfies the constraints CC of the creation
meta-model, but its retyping does not satisfy the
constraints CR of the role meta-model. Finally, a
model showing no surjectivity is one that, once
retyped, satisfies the constraints of the role meta-
model, but the model itself does not satisfy the
constraints of the creation meta-model.

These properties are interesting for both type-
level and instance-level specifications, though in
this paper, we focus on their analysis for type-level ones. For instance-level specifi-
cations, we need to translate the constraints in MMR to the context of MMC using
the expressions in the specification mappings. While this is technically possible, e.g.,
rewriting the abstract syntax tree of the OCL constraints in the style of [Clarisó et al.
2016], we leave the details to future work.

In Section 6.1 we present analysis techniques for executability, totality and surjectiv-
ity that consider the general case in which MMC and MMR may have OCL integrity
constraints. The techniques rely on OCL manipulation and model finding, and hence,
they are presented semi-formally only. In Section 6.2 we introduce conditions for bi-
directionality that can be checked statically.

6.1. Executability, totality and surjectivity
Our analysis for type-level specifications is inspired by [Guerra and de Lara 2017]. The
idea is to construct an analysis meta-model MMA, merging MMC and MMR accord-
ing to the typing specification TS. MMA contains all integrity constraints of MMC and
MMR. In this way, retyping executability can be analysed by checking the instantiabil-
ity of MMA, while totality and surjectivity can be analysed by negating the constraints
of MMR or MMC in MMA respectively.

The analysis meta-model MMA contains all classes, features and inheritance rela-
tions of MMC and MMR. However, the classes of MMR are made abstract in MMA to
avoid their instantiation, as conceptually, we want to obtain instances of MMC . More-
over, each integrity constraint in MMC and MMR is encoded as an operation in the
context class of the constraint. This is convenient to be able to negate the constraints
when analysing totality and surjectivity.

Then, we extend MMA to take into account the specification TS. In particular, every
class mapping is converted into an inheritance relation (see Figure 21(a)). The ratio-
nale is that the retyping TS makes every instance of A to be seen as an instance of
A′. Every attribute mapping is encoded as a constraint demanding the same value
for the mapped attributes (see Figure 21(b)). This is a way to emulate redefinition,
but keeping both attributes to maintain the validity of any integrity constraint from
MMC and MMR in MMA. Similarly, mappings for derived features are encoded as con-
straints (see Figure 21(c)). Finally, reference mappings are also encoded as constraints
demanding equal reference values (see Figure 21(d)). We consider that two references
a and a′ have the same value if a contains all elements in a′, a′ contains all elements
in a, and the size of both collections is the same5. Moreover, if several references from
the same class in MMC are mapped to the same reference in MMR, then we consider
the union of all references in MMC when checking for equality (see Figure 21(d)).

5For simplicity, we consider references as sets, i.e., we neglect sequences and bags.
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Fig. 21: Translation of retyping specification into analysis meta-model: (a) Class mappings be-
come inheritance relations; (b) Attribute mappings become constraints; (c) Derived features be-
come constraints; (d) Reference mappings become constraints.

t:Task 

start= 30/04/15 
duration= 30 
name= ‘string0’ 
date= 30/04/15 
span= 1 

t:Task 

start= 30/04/15 
duration= -30 
name= ‘string0’ 
date= 30/04/15 
span= -1 

      (a)                                       (b)                             (c) 

Task.allInstances()->forAll(t| 

    t.CC0() and t.CR0()) 

Task.allInstances()->forAll(t| t.CC0())  

and 

Task.allInstances()->exists(t|not t.CR0()) 

Schedulable 

date: Date 
span: double 

Task 

start: Date 
duration: int 
name: String 

CR0() : boolean = self.span>0 

CC0() : boolean = self.duration<100 

C1: self.date=self.start 

C2: self.span=self.duration/30 

Fig. 22: (a) Analysis meta-model MMA. (b) Extra invariant to analyse executability, and model
showing executability. (c) Extra invariant to analyse totality, and model showing non-totality.

As an example, Figure 22(a) shows the analysis meta-model MMA for the type-level
specification in Figure 5. For illustration, we assume that class Schedulable declares the
constraint span>0, and Task declares the constraint duration<100. These constraints are
encoded as operations CR0 and CC0 respectively. The inheritance relation is created
due to the class mapping Task → Schedulable, and Schedulable is made abstract. Con-
straint C1 in Task is created due to the mapping start → date, while C2 is created due to
the mapping \months=self.duration/30 → span.

Executability is proved by finding an instance of the analysis meta-model that sat-
isfies all constraints from MMC and MMR. Thus, we have to find a model where the
invariant Task.allInstances()→forAll(t | t.CC0() and t.CR0()) holds. Technically, to achieve this,
we add this invariant to a dummy class Context in MMA, and require one instance of
this class. Then, we use a model finder to check whether such a model exists. In this
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Schedulable.allInstances()->forAll(t|t.CR0())  
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Schedulable.allInstances()->exists(t|not t.CC0()) 
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name: String 

CR0() : boolean = self.span>0 

C1: self.date=self.start 
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start= 30/04/15 
duration= 120 
name= ‘string0’ 
date= 30/04/15 
span= 4 

Fig. 23: Additional constraint for MMA showing non-surjectivity and retyped model w.r.t MMR

case, the search produces the model in Figure 22(b), where we have to remove the aux-
iliary Context object, as well as the shaded features which belong to MMR, if we want
to obtain a valid instance of MMC .

Non-totality is proved by finding an instance of MMA that satisfies all constraints
from MMC but violates some from MMR. Thus, in the example, all tasks should ful-
fil CC0, and some should violate CR0. That is, we have to find a model where the in-
variant Task.allInstances()→forAll(t | t.CC0()) and Task.allInstances()→exists(t | not t.CR0()) holds.
Figure 22(c) shows one such model, as the duration of t is smaller than 100 (i.e., CC0 is
true) but its span is negative (i.e., CR0 is false). Thus, the specification is not total.

For surjectivity, we build the analysis meta-model following the given procedure, but
changing the roles of MMC and MMR. Thus, the classes in the creation meta-model
become abstract in MMA, and the classes in the role meta-model inherit from the cre-
ation classes to which they are mapped. This is so as, in this case, we want to obtain
instances of MMR. Figure 23(a) shows the new analysis meta-model for the example.
Then, non-surjectivity is analysed by finding an instance of MMA that satisfies all con-
straints from MMR but violates some from MMC . Figure 23(b) shows the invariant to
check, as well as a model that satisfies the invariant (duration is bigger than 100, and
hence, CC0 is false). However, differently from the previous properties, finding a model
does not prove the specification is non-surjective, as there may be other instances of
MMC which also get retyped to the same model returned by the finder. In this case, we
can manually assess that this is not the case, therefore, we conclude the specification
is non-surjective.

The presented analysis relies on model finders that perform a bounded search of
models up to a certain, predefined bound. If no model is found to demonstrate a prop-
erty, one can increase the search scope and repeat the search. Choosing the right bound
is a trade-off between the verification time (shorter for smaller bounds) and confidence
(higher for bigger bounds). This choice is normally done by hand, although some recent
efforts are being spent on its automation [Clarisó et al. 2015]. Nonetheless, according
to the “small scope” hypothesis [Jackson 2006], a large proportion of errors in a system
(or meta-model) can be identified by considering only instances within a small scope.

6.2. Bidirectionality
A specification is bidirectional if it can be used backwards to reclassify models of MMR

with respect to MMC . In particular, TS is bidirectional if the specification TS−1 that
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results from reversing all mappings is well-formed, i.e., it satisfies all well-formedness
conditions of Section 4.1. Bidirectionality is an important property when retypings are
used as a mechanism to specify model transformations (see Section 9.1).

Bidirectionality can be checked statically with no need for model finding. It generally
amounts to ask for the converse of the well-formedness rules of Section 4.1, as follows:

— Non-abstract mappings. Equation (10) forbids mappings to abstract classes of MMR.
Hence, to be bidirectional, TS cannot have mappings from abstract classes of MMC .

∀A ∈ MMC ,∀A′ ∈ MMR • tsi(A) = A′ =⇒ ¬abs(A) (26)
— Correct context for feature mappings. Equation (11) demands features of a class to

be mapped to features of the mapped class. Conversely, we require that if A′.a′ is
mapped from a feature a, a class owning or inheriting a should be mapped to A′.

∀A′ ∈ MMR,∀a′ ∈ feats(A′), ∀a ∈ MMC •
tsi(a) = A′.a′ =⇒ ∃A ∈ MMC • tsi(A) = A′ ∧ a ∈ feats(A)

(27)

— Compatibility of feature cardinality. Equation (12) demands equal or wider cardi-
nality intervals for the features mapped in MMR. Hence, to be bidirectional, TS
can only map features with the same cardinality, see Equation (28). Equation (13)
handles the general case in which several features of MMC are mapped into a sin-
gle feature of MMR, demanding the interval of the latter to be equal or wider than
the sum of the intervals of the former. Hence, to be bidirectional, TS requires that
if a feature a ∈ MMC is mapped into several ones, then the aggregated cardinality
intervals of the latter features should be equal to the cardinality of a. This is only
possible if the intervals have bounds [0..*], as demanded by Equation (29).
∀a ∈ MMC ,∀a′ ∈ MMR • tsi(a) = a′ =⇒ min(a) = min(a′) ∧ max(a) = max(a′)

(28)
∀a ∈ feats(A) • tsi(a) is defined ∧ tsj(a) is defined ∧ tsi(a) ̸= tsj(a) =⇒

min(a) = 0 = min(tsi(a)) ∧max(a) = ∞ = max(tsi(a))
(29)

— Compatibility of reference type. Equation (14) demands compatibility of the target
of mapped references in MMR. For bidirectionality, Equation (29) demands compat-
ibility of the target of mapping references in MMC .

∀A′ ∈ MMR, ∀r′ ∈ refs(A′),∀r ∈ MMC • tsi(r) = A′.r′ =⇒
∃ C ∈ sub∗(tar(r)) • tsi(C) ∈ anc∗(tar(A′.r′))

(30)

— Compatibility of composition. Equation (15) forbids mapping non-compositions in
MMC to compositions in MMR. Hence, to be bidirectional, TS cannot map com-
positions in MMC to non-compositions in MMR, see Equation (31). In addition,
Equation (16) forbids mapping a composition in MMC to two compositions in MMR.
Therefore, to be bidirectional, TS cannot map two compositions in MMC to a com-
position in MMR, see Equation (32).

∀r ∈ MMC , ∀r′ ∈ MMR • (tsi(r) = r′ ∧ comp(r)) =⇒ comp(r′) (31)

∀A′ ∈ MMR,∀r′ ∈ refs(A′), ∀r1, r2 ∈ MMC , ∀i, j ∈ I •
i ̸= j ∧ tsi(r1) = A′.r′ ∧ tsj(r2) = A′.r′ ∧ r1 ̸= r2 =⇒

¬ comp(r1) ∨ ¬ comp(r2)

(32)

— Complete instantiations. Equation (17) demands all mandatory features of mapped
classes in MMR to receive a mapping or have a default value. Hence, to be bidirec-
tional, TS should map all mandatory features in MMC without a default value, if
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Fig. 24: (a) Bidirectional retyping specification. (b) Forward retyping. (c) Backward retyping.

their owner class (or a subclass) is mapped, see Equation (33).

∀A ∈ MMC , ∀A′ ∈ MMR, ∀a ∈ feats(A) • tsi(A) = A′ ∧mand(a) =⇒
default(a) ∨ ∃a′ ∈ feats(A′) • ¬default(a′) ∧ tsi(A.a) = A′.a′

(33)

— Derived features. Derived features defined in MMC to calculate the value of features
in MMR are ignored in TS−1. In practice, since there might be features in MMC

with no equivalent in MMR, TS−1 may need to be manually extended with derived
features over MMR.

THEOREM 6.1 (BIDIRECTONALITY). Given a well-formed type-level specification
TS, TS−1 is well-formed if TS satisfies Equations (26)–(33).

PROOF. (Idea) Equations (26)–(33) are the converse of the rules in Equations (10)–
(17) for well-formedness of type-level specifications, or can be deduced from them. See
details in the appendix.

Figure 24(a) shows an example retyping specification TS from a simple software pro-
cess meta-model to a meta-model for automata. The specification fulfils the conditions
for bidirectionality, as it does not map the abstract class SETask, it maps references
with the same cardinality, it does not map compositions, and all mandatory features
are either mapped (name) or have an initial value (date). Figure 24(b) uses the specifica-
tion TS for forward retyping a process model, and Figure 24(c) uses TS−1 for backward
retyping an automaton. The initial automaton in (c) is the result of the retyping in (b);
however, the process model that results from the retyping in (c) is not the one in (b),
but instead, its objects receive multiple a-posterior types (Coding and Testing). This can
be interpreted as the overlapping of all possible valid retypings for the model (4 in
total, as each object can be either Coding or Testing). Further analysis of bidirectional
properties and issues of type-level specifications, in the style of [Stevens 2010; Fos-
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Fig. 25: Structural restrictions and induced forbidden mappings.

ter et al. 2007; Fischer et al. 2015], are left for future work. More discussions on the
interpretation of multiple typings are given in Section 8.

7. RESTRICTING A-POSTERIORI TYPINGS
In this section, we analyse some useful restrictions for retyping specifications. As our
formalization was purposely made as general as possible, these restrictions help the
designer to express the expectations on possible typings, and to preserve the intent
of the reusable operations defined over the role meta-model. We distinguish between
structural restrictions which constrain the allowed mappings between the creation and
role meta-models, and behavioural restrictions derived from the expected usage of the
retyped models. While the well-formedness rules in Sections 4.1 and 5.1 assumed read-
only operations for the retyped models, we will see that update, creation and deletion
operations require specifications to fulfil further constraints.

7.1. Structural restrictions
Structural restrictions impose certain constraints on type/instance-level specifications
to ensure retypings with certain properties, like non-overlapping instances or type cov-
erage. We have kept our retyping specifications as general as possible, however, in
practice, it becomes useful to have some more control of the allowed mappings. For ex-
ample, we can use these restrictions to mark combinations of classes that are allowed
to share instances (e.g., Author and Reviewer in Figure 4), or to mark mandatory/op-
tional classes in a role meta-model. We use predicates to express restrictions either
over classes of MMC or MMR (e.g., non-overlap(A, B), mandatory(C)) or over whole meta-
models (e.g., total(MMC )). Structural restrictions are also useful to model other more
restrictive meta-model mapping approaches, like the I Graph approach in [Hermann
et al. 2009]. In that approach, restricted kinds of mappings between meta-models are
defined (injective, subtype-preserving), in order to ensure correct graph-based trans-
formation of meta-models.

Figure 25 illustrates the different structural restrictions and the forbidden specifica-
tion mappings they induce. Some restrictions for the role meta-model have a dual re-
striction for the creation meta-model. For example, restriction non-overlap(A’, B’) forbids
overlapping instances of two classes A′, B′ ∈ MMR, while conversely, restriction single-
classifier(A) constrains class A ∈ MMC to have at most one a-posteriori type. Hence,
both restrictions forbid multiple mappings from classes in MMC to classes in MMR,
as depicted in Figure 25(a).

In the following subsections, we analyse the different structural restrictions.

7.1.1. Non-overlapping instances. This restriction is used to control which classes in
MMR are allowed to share instances (see Figure 25(a)). This is useful as some model
management operations defined over MMR might not expect two classes, not related
by inheritance, to share instances. Additionally, we might want to mark classes in
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MMR whose combination makes sense (e.g., a Person can be retyped both as Author and
Reviewer in Figure 4), but discard other combinations.

Two classes A′ and B′ of MMR not related by inheritance overlap if they share
instances: {o | A′ ∈ type(o)} ∩ {o | B′ ∈ type(o)} ̸= ∅. We write non-overlap(A’, B’) to
denote that classes A′ and B′ (one not a subclass of the other) cannot overlap. This
restriction can be used to ensure that two unrelated classes in MMR will not overlap
under a retyping specification, or to constrain objects to receive at most one a-posteriori
type from MMR.

Equation (34) formulates this non-overlapping condition for type-level specifications.
It requires that every pair of classes in MMR not related through inheritance do not
share instances.

∀A′, B′ ∈ MMR • A′ /∈ sub∗(B′) ∧ non− overlap(A′, B′) =⇒
tsi(A) = A′ ∧ tsj(B) = B′ =⇒ A /∈ sub∗(B)

(34)

The condition for instance-level specifications is similar, using the typing informa-
tion associated to the mapping expressions. In this case, the condition is sufficient but
not necessary. This is so as one may permit A ∈ sub∗(B) if expA and expB select dis-
joint sets of objects. While this analysis could be done via constraint solving, we skip
the details for brevity.

Implementation-wise, one could use the converse predicate overlapping(A’, B’, ...)
(present, e.g., in the UML) to indicate the allowed overlappings by setting the default
to non-overlapping and allowing any number of parameters.

7.1.2. Injectivity. This restriction ensures that two objects that do not share a classifier
in MMC , do not share a classifier under a retyping. As we will see later, this is useful
if the retyped model view is modified by creating objects of some class C ′ in MMR.
For this to be possible, such class cannot receive mappings from two classes in MMC .
Injectivity can be stated as a predicate over individual classes of MMC (injective(A, B),
with A,B ∈ MMC) or over the meta-model (injective(MMC )). The condition for type-level
specifications is as follows (see also Figure 25(b)):

∀A,B ∈ MMC • injective(A,B) ∧ A /∈ sub∗(B) =⇒
tsi(A) /∈ sub∗(tsj(B))

(35)

The condition for instance-level specifications is similar, using the typing informa-
tion associated to the mapping expressions. Predicate injective(MMC ) is a shortcut for
injective(A, B) ∀A,B ∈ MMC . Moreover, injectivity and non-overlapping are dual con-
cepts for retyping specifications and their inverses.

7.1.3. Subtype preservation and reflection. Subtype preservation ensures that if two
classes are related through inheritance in MMC , so are their mapped classes in MMR.
This condition is called I-compatibility in [Hermann et al. 2009]. For type-level specifi-
cations, this condition is formulated as follows:

subt− preserve(MMC) =⇒ ∀A,B ∈ MMC • A ∈ sub∗(B) =⇒
tsi(A) ∈ sub∗(tsj(B))

(36)

The condition for instance-level specifications is similar, using the typing informa-
tion associated to the mapping expressions. Subtype reflection is the dual of subtype
preservation. Hence, it applies to MMR and ensures that if two classes of MMR are
related through inheritance, so are the classes in MMC from which they are mapped.

7.1.4. Type totality. Sometimes, one is interested in building total typings where every
object typed by MMC receives an a-posteriori type from MMR. For example, in case we
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retype to a meta-model to obtain model metrics, we might want to ensure that every
object of MMC is mapped. For this purpose, we first define the predicate mandatory(A),
which requires mandatorily a typing for class A ∈ MMC (see Figure 25(c)). Then, to-
tality for MMC can be expressed as total(MMC ) ≡ mandatory(A) ∀A ∈ MMC . We formulate
this condition for type-level specifications as:

∀A ∈ MMC • mandatory(A) =⇒ ∃i • tsi(B) = A′ ∧ A ∈ sub∗(B) (37)

While the totality analysis presented in Section 6.1 analysed whether some instance
of MMC could yield an ill-retyped model, this restriction ensures that all objects within
an instance of MMC will have an a-posteriori type.

For instance-level specifications, the condition is not sufficient. Analysing predicate
mandatory(A) (for A ∈ MMC) requires using constraint solving to check if there can be
objects of type A that are not selected by any mapping whose type is compatible with
A. Hence, from this predicate, we generate an invariant using the template in Listing
10, where isi(expAi : Ai) 7→ A′

i, and each Ai ∈ anc∗(A). If the invariant is satisfiable,
then the induced retyping is not total.

1 not A.allInstances()→includesAll(expA1→union(expA2 )→...→union(expAn ))

Listing 10: OCL invariant template for checking totality of instance-level specifications

7.1.5. Type coverage. This restriction is the dual of totality. In this case, we are inter-
ested in ensuring that certain classes in MMR are not “optional” for a given retyping
specification, but they should mandatorily receive a mapping. For example, the confer-
ence meta-model in Figure 4 might consider Topic as optional, while Article, Reviewer and
Author could be mandatory. This might be needed for an operation that assigns articles
to reviewers, for which it is acceptable if no article has topics, but would not make
sense to have empty sets of articles, reviewers or authors.

Using the mandatory predicate for classes of MMR, we use predicate coverage(MMR)
to denote mandatory(A’) ∀A′ ∈ MMR (see Figure 25(d)). We formulate this condition for
type-level specifications as follows:

∀A′ ∈ MMR • mandatory(A′) =⇒ ∃i • tsi(A) = A′ (38)

For instance-level specifications, we use the types of the mapping expressions.

7.2. Behavioural restrictions
Behavioural restrictions are derived from the expected use of the retyped models.
While the correctness rules studied so far assume read-only retyped models, we might
be interested in creating, deleting or modifying objects from the models. Other useful
restrictions include forbidding type dynamicity upon model changes.

7.2.1. Non-dynamicity. Type-level specifications are static, and instance-level specifica-
tions can be dynamic. Forbidding dynamicity is needed in case model management
operations defined over MMR make assumptions on object type staticness. For exam-
ple, an operation may keep a list of objects of a given type, and may not expect the type
of such objects to change.

In order to restrict instance-level specifications to be static, we use the predicate
static(MMR). Staticness can be statically enforced by demanding expressions with com-
patible type to be mapped to the same class in MMR. This ensures non-dynamicity
because, even if objects with the same type can be selected by different expressions,
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they all get mapped to the same role class.

static(MMR) =⇒
(
∀i ∈ I, ∀A ∈ MMC • isi(expA : A) = A′

=⇒ ∀B ∈ anc∗(A), ∀j ∈ I • isj(expB : B) = A′) (39)

Another possibility to enforce staticness is to permit compatible types in MMC to be
mapped to different types in the role meta-model as long as the features used in the
mapping expressions are not mapped to the role meta-model, and model updates are
only performed through the role meta-model.

7.2.2. Write feature. Our notions of retyping correctness assume read-compatibility.
Thus, when applying a retyping, all retyped elements in an instance model M of MMC

can be “read” as instances of MMR. However, after the retyping, we might want to mod-
ify TS(M) using operations defined over MMR. This writing-compatibility requires
further constraints, which we detail next. We assume the following predicates: add(r)
for references whose instances are being modified by adding objects, delete(r) for ref-
erences whose instances are being removed objects, and write(r) for references whose
instances are going to be added and removed objects (creation and deletion of objects
are handled in the next subsections). The predicates can be added manually to MMR,
or be automatically derived from the analysis of some model management operation.

If a reference r′ in MMR is to be added objects (i.e., we have add(r’)), then the upper
cardinality of r′ needs to be the same as the upper cardinality of the reference r in
MMC from which r′ is mapped. In case of removal of objects (delete(r’)), the lower car-
dinalities of r′ and r need to be the same. If we need to both add and remove objects
from r′ (write(r’)), then the cardinality intervals of r′ and r must be equal.

A 

B 

C 
r

1 

r
2 

AB’ 

C’ 

r'
 

MM
C MM

R 

write(r’)
 

Fig. 26: Forbidden type-level mapping.

Moreover, if r′ is being written either for add
or delete, then it needs to be mapped uniquely. A
reference is uniquely mapped if: (a) it is mapped
from exactly one reference from MMC ; or (b) it
is mapped from several references with different
owner classes that are not in the same inheri-
tance hierarchy. The reason for this is to be able
to distinguish in which reference to write to. Fig-
ure 26 shows a forbidden case where both r1 and
r2 are mapped to r’, and their owner classes inherit one from the other. Thus, if we try
to modify r’ over an object with creation type B, there would be an indetermination as
we would not know whether to write on r1 or r2.

Equation (40) states formally this restriction for type-level specifications.

∀r′ ∈ MMR • add(r′) ∨ delete(r′) ∨ write(r′) =⇒
∃i ∈ I, ∃r ∈ MMC • tsi(r) = r′∧
∀i, j ∈ I, ∃r1, r2 ∈ MMC • tsi(r1) = r′ = tsj(r2) =⇒
r1 = r2 ∨ owner(r2) /∈ owner∗(r1)

(40)

Compositions cannot be mapped to writable non-compositions, as writing a non-
composition has fewer constraints than writing a composition. Moreover, for simplicity,
we do not allow writing derived features. While this is technically possible, it would re-
quire inverting the computations defined for derived features.

Instance-level specifications require satisfying all abovementioned restrictions when
a feature needs to be modified. The only difference with respect to type-level spec-
ifications is how to check that a reference is uniquely mapped, as in this case, we
need to use constraint solving to check whether an object can be selected by two ex-
pressions expA1 , expA2 in the specification, and map different references to r′. Hence,
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given an instance-level specification with isi(expA1 : A1) = A′, isi(A1.r1) = A′.r′,
isj(expA2 : A2) = A′, isj(A2.r2) = A′.r′... and A1 ∈ sub∗(A2), we build the invariant
of Listing 11. If the invariant is not satisfiable, then A′.r′ is uniquely mapped.

1 expA1→exists(a | expA2→union(...)→includes(a)) or
2 expA2→exists(a | expA1→union(...)→includes(a)) or ...

Listing 11: OCL invariant template checking disjointness

7.2.3. Create object. If an operation over MMR creates objects of type A′ (denoted by
create(A’)), we need retyping specifications into MMR to fulfil additional restrictions.

For type-level specifications, exactly one class A in MMC can be mapped to a class
A′ in MMR with create restrictions. Moreover, A cannot be abstract. Having several
classes mapped to A′ does not allow distinguishing which class to create. Having no
class mapped to A′ does not allow executing the creation operation. Having an abstract
class mapped to A′ would yield an error in the creation process. Hence:

∀A′ ∈ MMR • create(A′) =⇒(
∃1A ∈ MMC , ∃1 i ∈ I • tsi(A) = A′) ∧
∀A ∈ MMC • tsi(A) = A′ =⇒ ¬abs(A)

(41)

In general, it is not mandatory to bind the features of a class A in MMC , even if A is
bound to some A′ in MMR. However, if we have create(A’), we demand mapping every
mandatory feature of A without a default value. Hence, for type-level specifications:

∀A′ ∈ MMR,∀A ∈ MMC • create(A′) ∧ tsi(A) = A′ =⇒
∀a ∈ feats(A) • mand(a) =⇒
∃i ∈ I • tsi(A.a) = A′.a′ ∨ default(A.a)

(42)

Finally, if a class A′ ∈ MMR is created, then all mandatory references owned by A′

should be marked as add.
Regarding instance-level specifications, object creation is more complex because, in

general, the type to create in MMC is not known until the object has values for its fea-
tures, as the a-posteriori type of objects depends on their feature values. To avoid this
indetermination, if we have a predicate create(A’), we require exactly one expression
isi(A.allInstances() : A) 7→ A′. While this is not a necessary condition, it implies that
objects classified as A′ cannot change their type dynamically, and newly created objects
with type A′ get classified back as A. The previous restriction concerning the obligatory
mapping of mandatory features is also required for instance-level specifications.

7.2.4. Delete object. If an operation over MMR deletes objects of type A′, then all
mandatory references of the class A from which A′ is mapped, as well as all manda-
tory references reaching A or a superclass, should be mapped to references marked
with delete. This avoids potential inconsistent reference cardinalities when A′ objects
are deleted. Equation (43) shows this condition for type-level specifications.

∀A′ ∈ MMR,∀A ∈ MMC ,∀i ∈ I •
delete(A′) ∧ tsi(A) = A′ =⇒(
∀a ∈ refs(A) • mand(a) =⇒

∃j ∈ I, ∃a′ ∈ refs(A′) • tsj(A.a) = A′.a′ ∧ delete(a′)
)
∧(

∀B ∈ MMC , ∀r ∈ refs(B) • mand(r) ∧A ∈ sub∗(tar(B.r)) =⇒
∃j ∈ I, ∃B′ ∈ MMR • tsj(B.r) = B′.r′ ∧ delete(r′)

)
(43)
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Moreover, if a class A′ ∈ MMR is deleted, then all mandatory references reaching
class A′ should be marked as delete.

Instance-level specifications require the same restrictions as type-level ones.

7.2.5. Model modification vs bidirectional retyping. The specification restrictions when a re-
typed model is being modified are similar to the conditions for a retyping specification
to be invertible. In particular, the cardinality and composition requirements to write
a reference and those required by bidirectionality are the same. However, writing a
reference requires uniqueness of mappings (see Figure 26), while for bidirectionality,
a reference in MMR can be mapped from several references of MMC , in which case,
the inverse retyping would add the objects to all of them. Object creation requires that
all mapped classes are concrete and map their mandatory features, just like bidirec-
tionality. Hence, marking all classes in MMR as create, and all features as write, makes
invertible every retyping to MMR satisfying Equations (27) and (30). This is expected,
since the changes in MR should be compatible (i.e., “translatable back” in a unique
way) with MC .

8. TOOL SUPPORT
This section describes an implementation of the presented concepts in METADEPTH
[de Lara and Guerra 2010]. This is a textual multi-level modelling tool that integrates
the Epsilon languages [Paige et al. 2009] for defining constraints, transformations and
code generators. For this work, we have extended the tool with the possibility to specify
a-posteriori typings and perform some of the described analysis.

8.1. Models and meta-models in METADEPTH

Models and meta-models are specified textually in METADEPTH. As the tool supports
multi-level modelling [de Lara et al. 2014], elements may be decorated with a potency
(written after the ’@’ symbol) stating at how many consecutive meta-levels the element
can be instantiated. In two-level modelling, meta-models have potency 1 and models
have potency 0.

Listing 12 shows the Planning meta-model, where Task is extended by a subclass Doc-
Task in line 9. Listing 13 shows a model with one instance of Task (t0) and another
instance of DocTask (t1). The name of the type is used to instantiate the model or class
(e.g., Planning someTasks in line 1, Task t0 in line 2).

1 Model Planning {
2 Node Task {
3 start : Date;
4 duration : int [0..1];
5 name : String [0..1];
6 res : Resource [∗];
7 assigned : Person [∗];
8 }
9 Node DocTask : Task {}

10 Node Resource {
11 owner : Person [1..∗];
12 }
13 Node Person {}
14 }

Listing 12: Meta-model in METADEPTH

1 Planning someTasks {
2 Task t0 {
3 start = ”30/04/2015”;
4 duration = 30;
5 name = ”coding”;
6 }
7 DocTask t1 {
8 start = ”30/05/2015”;
9 duration = 90;

10 name = ”write manual”;
11 }
12 }

Listing 13: Model in METADEPTH
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8.2. Specification of a-posteriori typings
METADEPTH permits specifying both type-level and instance-level retypings. Instance-
level specifications are given by mapping queries written in the Epsilon Object Lan-
guage (EOL, a variant of OCL) [Kolovos et al. 2006] into types. As an example, List-
ing 14 shows the specification in Figure 13. Line 2 maps the instances of Task with
duration less than 80, to type Schedulable. The keyword “with” sets the context of the
following mappings to the objects selected by the previous query. The computations of
derived attributes (like months in line 4) are also expressed in EOL. A derived attribute
starts by “/”, followed by its name, a colon, its type, and the computation expression
enclosed between ‘$’.

1 type Planning Scheduling inst {
2 $Task.allInstances()→select(x | x.duration < 80)$ > Schedulable with {
3 start > date,
4 /months : double = $self.duration/30$ > span
5 }
6 }

Listing 14: Instance-level a-posteriori typing in METADEPTH

A-posteriori typings induced by instance-level specifications are dynamic. Once the
specification is applied to model someTasks in Listing 13, evaluating the query Schedu-
lable.allInstances() over the model yields Set{t0}, but upon changing t1.duration to 3, the
query yields Set{t0, t1}. Thus, accessing instances through a-posteriori types involves
a transparent evaluation of their associated queries. To improve efficiency, we have
implemented a cache mechanism for the type of the model objects. This cache is in-
validated when the model changes. Currently, we invalidate all typings, but we could
optimize this by invalidating only the typing of objects whose mapping expressions ac-
cess the changed model elements. This could be done with incremental OCL evaluation
techniques [Cabot and Teniente 2009], but it is left for future work.

If type dynamicity is not needed, then using type-level specifications is more efficient
as there is no need to evaluate queries, and specifications are easily defined by simple
mappings. However, our current implementation is more restricted than the one pre-
sented in Section 4, as a class in MMC cannot be mapped to two classes in MMR. Our
implementation of instance-level specifications allows this feature, though.

Listing 15 shows the type-level specification in Figure 5. It only needs to define the
mapping of features, as the mapping of classes is automatically induced.

1 type Planning Scheduling {
2 Task::start > Schedulable::date,
3 Task::/months : double = $self.duration/30$ > Schedulable::span
4 }

Listing 15: Type-level specification in METADEPTH

Once an a-posteriori specification is applied, the retyping of models is automatic. The
tool permits displaying a model using the a-posteriori types using the command dump
⟨model⟩ as ⟨role-meta-model⟩. After applying the retyping of Listing 15, if we type dump
someTasks as Scheduling, the tool displays the model in Listing 16. Internally, this model
is a view of someTasks using the a-posteriori typing, and so, no objects are created.

1 Scheduling someTasks {
2 Schedulable t0 {
3 date = ”30/04/2015”;
4 span = 1.0;
5 }
6 Schedulable t1 {
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7 date = ”30/05/2015”;
8 span = 3.0;
9 }

10 }

Listing 16: Retyping in METADEPTH

The tool also permits using type-level specifications backwards, as explained in Sec-
tion 6.2. In some cases, backward retypings may produce multiple typings. For exam-
ple, Listing 17 shows a Scheduling model with one Schedulable object s0. If we use the
retyping specification in Listing 15 backwards, s0 can be reclassified as both Task and
DocTask. This can be interpreted as the retyping producing two “overlapped” models
with the same structure but different typing. Hence, METADEPTH provides two dif-
ferent a-posteriori typings for the model with respect to the Planning meta-model. The
first one, shown in lines 1–3 of Listing 18, retypes s0 as Task. The second one, shown
in lines 4–6 of Listing 18, retypes s0 as DocTask. Retyping back the someTasks model
of Listing 16 would yield four different a-posteriori typings, mapping t0 and t1 to all
possible valid combinations of Task and DocTask. Interpreting objects with multiple a-
posteriori types as overlapping models is especially useful when retypings are used as
bidirectional transformations (see Section 9.1).

1 Scheduling anExample {
2 Schedulable s0 {
3 date = ”30/04/2015”;
4 span = 1.0;
5 }
6 }

Listing 17: Scheduling model

1 Planning anExample { // First typing
2 Task s0 { start = ”30/04/2015”; }
3 }
4 Planning anExample { // Second typing
5 DocTask s0 { start = ”30/04/2015”; }
6 }

Listing 18: Backward retypings

There is another possible interpretation for objects with multiple a-posteriori types,
which is useful when an instance-level specification assigns several types to the same
object, meaning that the object may simultaneously play several roles in the role meta-
model. For example, in Figure 4, a retyping specification would assign the a-posteriori
types Author and Reviewer to any Person having authored an article and being assigned
a review task. Listings 12 and 19 show the creation and role meta-models for this
example, respectively. In this case, an object with several a-posteriori types could be
visualized either as a single object, or as a different object for each a-posteriori type
(though all would have the same identifier, and internally, there would be a single
object). As an example of the second option, Listing 20 shows a Planning model, and
Listing 21 shows its retyping, where person p gets retyped as both Author (line 2) and
Reviewer (lines 4–6). The visualization shows the appropriate features in each case
(reviews when p plays the reviewer role, and none when p is shown as an author).

8.3. Analysis of typing specifications
METADEPTH can check executability, non-totality and non-surjectivity of type-level
retypings, as explained in Section 6.1. In particular, the command refinement Planning
Scheduling tries to find a counterexample witness model that satisfies the constraints
of Planning and violates some constraint of Scheduling. Similarly, command refinement
Planning Scheduling strict checks if there is a model fulfilling all constraints in Scheduling
and violating some of Planning. For the specification in Listing 15, no witness model is
found because the retyping is total and surjective.
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1 Model Conference {
2 Node Author {}
3 Node Reviewer {
4 reviews : Article [0..3];
5 }
6 Node Article {
7 authors : Author [1..∗];
8 }
9 }

Listing 19: Role meta-model

1 Planning mc {
2 Person p {}
3 Person p2 {}
4 Task t {
5 start = ”30/04/2015”;
6 assigned = [p];
7 res = [r2];
8 }
9 Resource r {

10 owner= [p];
11 }
12 Resource r2{
13 owner= [p2];
14 }
15 }

Listing 20: Planning model

1 Conference mr {
2 Author p {}
3 Author p2 {}
4 Reviewer p {
5 reviews = [r2];
6 }
7 Article r {
8 authors= [p];
9 }

10 Article r2 {
11 authors= [p2];
12 }
13 }

Listing 21: Retyping

METADEPTH relies on the USE Validator [Kuhlmann and Gogolla 2012] to perform
the analysis. Given a UML class diagram with OCL constraints, USE finds an ob-
ject model satisfying the constraints, provided some exists within the search bounds.
METADEPTH parses back the found model, retyped to either the creation or the role
meta-model. In all our tests, USE had good searching times, finding witnesses in less
than one second.

8.4. Retyping restrictions as annotations
In METADEPTH, all elements (models, objects at any meta-level and features) can be
decorated with annotations. Annotations can have parameters, which can be of primi-
tive type or references to other objects. This way, we have implemented the restriction
predicates of Section 7 as annotations. Internally, the annotations are reified as objects
that refer to the annotated elements. This permits the retyping algorithm to access the
used annotations and check if the specification fulfils the corresponding restrictions. As
an example, Listing 22 shows the Scheduling meta-model with class Schedulable tagged
as mandatory, hence making any specification targeting Scheduling to obey the restriction
in Equation (38) (see Section 7.1.5).

1 Model Scheduling {
2 @mandatory
3 Node Schedulable {
4 date : Date;
5 }
6 }

Listing 22: Restriction predicates as annotations

9. APPLICATIONS OF A-POSTERIORI TYPING
A-posteriori typing has multiple applications in MDE. First, it is a mechanism to ob-
tain (updateable) views of models with respect to other meta-models, which enables
its use to specify simple model transformations (see Section 9.1). Second, it allows the
reuse of model management operations defined over a role meta-model for other un-
related meta-models via a type-level or instance-level specification (see Section 9.2).
Dynamic typing can be valuable in Models@run.time applications, where models evolve
and objects can be dynamically retyped (see Section 9.3). As a summary, we end this
section with a discussion of the benefits, implications and limitations of this new re-
typing approach (see Section 9.4).
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Fig. 27: Reclassifying Factory models into Petri-nets

9.1. Bidirectional model transformations by reclassification
Consider the meta-model to describe factories in Figure 27. It declares three kinds of
machines: generators introduce parts in the factory, terminators remove parts from it,
and assemblers transform parts. Machines of any kind can be connected by conveyors,
which may transport any number of parts. Parts have a boolean flag indicating whether
they passed a quality test. We will make use of this flag in Section 9.3.

Assume we want to transform Factory models into Petri nets for their analysis or
simulation [Murata 1989]. Petri nets are bipartite automata made of places and tran-
sitions. Places may hold zero or more tokens, and these must belong to exactly one
place, as required by constraint cont. Transitions may have input and output places
(relations ins and outs). A transition can fire if all its input places hold some token. If
a transition fires, a token is subtracted from every input place and added to all its
output places. The envisioned transformation translates any kind of machine into a
transition, conveyors into places, and parts into tokens.

Instead of using a transformation language, which would create a separate target
model conformant to the PetriNet meta-model, we can use a type-level a-posteriori typ-
ing specification. This way, we can reclassify Factory models as PetriNets, producing a
virtual view of the factories without the need to explicitly create a Petri net model (see
Figure 27).

Listing 23 shows the type-level specification. Conveyors are retyped as Places, Parts as
Tokens, and Generators, Assemblers and Terminators as Transitions. Note that Generators are
retyped as Transitions without inputs, and Terminators are retyped as Transitions without
outputs.

1 type Factory PetriNet {
2 Conveyor::parts > Place::tokens,
3 Generator::outps > Transition::outs, Generator::/inps : Conveyor[∗] = $Set{}$ > Transition::ins,
4 Terminator::inps > Transition::ins, Terminator::/outps : Conveyor[∗] = $Set{}$ > Transition::outs,
5 Assembler::inps > Transition::ins, Assembler::outps > Transition::outs,
6 }

Listing 23: Mapping factories to Petri nets via a type-level specification
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This specification allows retyping Factory models as PetriNet models, and vice versa.
This is so as it fulfils the bidirectionality requirements stated in Section 6.2. As an
example, Figure 28 shows a PetriNet model and its two possible a-posteriori typings:
the first one types the transition as Terminator, and the second as Assembler. The figure
shows the model both in METADEPTH syntax (left) and abstract syntax (right).

1 PetriNet example {
2 Place p {}
3 Transition t { ins = [p]; }
4 }
5 // 1st typing
6 Factory example {
7 Conveyor p {}
8 Terminator t { inps = [p]; }
9 }

10 // 2nd typing
11 Factory example {
12 Conveyor p {}
13 Assembler t { inps = [p]; }
14 }

p:Place 

t:Transition 

:ins 

p:Conveyor 

t:Terminator 

:inps 

p:Conveyor 

t:Assembler 

:inps 

1st retyping 

2nd retyping 

Fig. 28: Retyping a Petri net into a Factory. Left: METADEPTH syntax. Right: Abstract syntax.

The specification can be analysed to detect whether it is executable, total or sur-
jective. For totality, the tool finds the witness model in Figure 29, which proves the
transformation is not total because this factory model cannot be retyped as a Petri net
(i.e., the model “cannot be transformed”). The reason is that the model violates the con-
straint cont in the PetriNet meta-model, since part2 is outside any Conveyor. Moreover, the
same model proves that the backward transformation is not surjective, as this factory
model cannot be produced from any valid Petri net.

1 // Model witness with no Petri net equivalent
2 Factory noRefinementWitness {
3 Assembler assembler2 {
4 outps = [conveyor2, conveyor1];
5 }
6 Conveyor conveyor1 {
7 name = ”string1”;
8 }
9 Conveyor conveyor2 {

10 name = ”string1”;
11 }
12 Generator generator2 {
13 outps = [conveyor1];
14 }
15 Part part2 {
16 qa = true;
17 }
18 }

assembler2: 
Assembler 

conveyor1: 
Conveyor 

name=“string1” 

conveyor2: 
Conveyor 

name=“string1” 

:outps :outps 

generator2: 
Generator 

:outps 

part2:Part 

qa=true 

Fig. 29: Witness model showing no totality. Left: METADEPTH syntax. Right: Abstract syntax.

While retyping specifications are less expressive than full-fledged transformation
languages, they have some advantages. First, as we have seen, they allow analysing
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Fig. 30: Comparing the performance of a-posteriori typing and traditional transformation

properties like executability, totality or surjectivity. Second, they have the potential to
be more efficient, as there is no need to create target objects.

To assess the potential performance gain, we compared the time to perform a retyp-
ing and the time to execute an equivalent transformation. More in detail, we encoded
the retyping in Listing 23 as a transformation using the Epsilon Transformation Lan-
guage (ETL) [Kolovos et al. 2008], which is integrated within METADEPTH. Then, we
generated models ranging from 1.200 to 24.000 objects. Models were generated ran-
domly but trying to fulfil reasonable expectations of the domain, like having the double
of conveyors and assemblers than terminators and generators, conveyors with one to
five parts, and machines with one to three inputs and outputs. Finally, we executed the
retyping and the transformation 5 times for each model, taking the average time. More
precisely, we measured the time to retype and print the model to the console, compared
to the time to transform it and print the output model. We included the printing time
because the cost of retyping a model is mostly the time employed to calculate the new
types, which is performed lazily when the model is accessed, or printed.

Figure 30 shows the results of this experiment, where retyping clearly outperforms
traditional transformation, reaching a speed up of 57× for models of size 24.000. While
retyping time was dominated by printing the model (as it involves calculating the new
types for the objects), transformation time was dominated by computation (creation of
objects). Overall, retyping and printing a model with 24.000 objects took around 800
milliseconds, and only 1 millisecond was spent in processing the retyping specifica-
tion itself. Please note that, once retyped, the model can be saved in a file using the
a-posteriori typing, so that the next time it is loaded, there is no time penalty in cal-
culating the a-posteriori types. More details of the experiment, including the models
and transformation used, are available at http://miso.es/aposteriori/comparison.html.
While these results are very promising, further experimental work on comparing tra-
ditional transformation and retyping is left for future work.

Finally, another benefit is that the transformations defined through retyping are in-
cremental, as changes in the source model are reflected in the target. Actually, no prop-
agation is needed because the source and target objects are the same. For type-level
specifications, the synchronization between the source and target models is obtained
for free. If the retyped (i.e., target) model changes through operations over MMR, the
changes are reflected immediately on the source model because both models are the
same (though with different types). Finally, as this example showed, restricted kinds of
type-level specifications yield (simple) bidirectional transformations (see Section 6.2).
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To have an intuition of the applicability of retypings as model transformations, we
have analysed the zoo of ATL transformations6 to see how many of them can be spec-
ified as retypings (see http://miso.es/dsets/atlzoo). Interestingly, 19% (23/119) of the
transformations are refinements or 1-to-1 mappings that can be reformulated as re-
typings. In http://miso.es/aposteriori/ we have created a repository of transformations
expressed as a-posteriori retyping specifications.

9.2. Reuse of model management operations
Listing 24 shows an excerpt of a Petri net simulator, written in EOL. The simulator
uses the types of the PetriNet meta-model, defining operations (like enabled and fire) on
its types. Operation step (lines 14-22) is the main simulation method, which performs
one simulation step if some transition can be fired.

1 operation Transition enabled() : Boolean {
2 return self.ins.forAll(p| p.tokens.size()>0);
3 }
4 operation Transition fire() {
5 for (p in self.outs) // add a token to every output place
6 p.tokens.add(new Token);
7 }
8 for (p in self.ins) { // remove a (random) token from every input place
9 var t := p.tokens.random();

10 p.tokens.remove(t);
11 delete t; // remove the token object from the model
12 }
13 }
14 operation step() : Boolean {
15 var enabled : Set(Transition) := Transition.allInstances().select(t | t.enabled());
16 if (enabled.size()>0) { // fire one random Transition from enabled
17 var t := enabled.random();
18 t.fire();
19 return true;
20 }
21 return false;
22 }

Listing 24: Excerpt of the EOL Petri net simulator

Once the specification of the a-posteriori typing is defined, the simulator becomes
applicable “as is” to the instances of the Factory meta-model. This is possible because
METADEPTH handles a-posteriori types as if they were constructive types, hence
achieving reuse of the simulator in a straightforward way. Therefore, an expression
like Transition.allInstances() returns all instances of all classes mapped to Transition.

The simulator performs write operations on the retyped model: it creates and deletes
Token objects, and adds and deletes Token objects from reference Place.tokens. Hence, the
PetriNet meta-model in Listing 25 is annotated to reflect these restrictions. While these
annotations are currently performed manually, the process could be automated by a
static analysis of the operation to be reused (e.g., in line with [Zschaler 2014]). We leave
this for future work. Also, note that we need the annotations because the operation
modifies the model in-place. Should we reuse a model-to-model transformation, we
would not need annotations, as the source model would be read-only.

1 Model PetriNet {
2 Node Place{
3 @write
4 tokens : Token[∗];

6http://www.eclipse.org/atl/atlTransformations/
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5 }
6 Node Transition {
7 ins : Place[∗];
8 outs : Place[∗];
9 }

10 @delete
11 @create
12 Node Token {
13 cont : $Place.allInstances()→one (x | x.tokens→includes(self))$
14 }
15 }

Listing 25: Petri-net meta-model with reclassification restrictions

As discussed in Section 7.2.3, object creation in reused model management opera-
tions may result in non-deterministic behaviour, if the created object (tokens in the
case of the simulator) is mapped to several constructive types, and so this kind of map-
ping is disallowed. In this example, creating Tokens does not produce any problem, as
Token was only mapped by Part. Hence, whenever the simulator creates a Token, a Part
gets created instead, with its attributes initialized to the default values.

9.3. Dynamic typing
Now, we consider factories in which parts that do not pass a quality check are not
processed. Interestingly, this can still be done using the same simulator as in Section
9.2, if we include this condition in the a-posteriori typing of Parts. This way, Parts whose
qa slot is false are not mapped to Tokens and will not be considered by the simulator.

As in this case the typing becomes dynamic, we need an instance-level a-posteriori
typing specification. This is shown in Listing 26. Line 3 selects in collection tokens only
those parts whose attribute qa is true.

1 type Factory PetriNet inst {
2 $Conveyor.allInstances()$ > Place with {
3 /sp : Token[∗] = $self.parts→select(p | p.qa=true)$ > tokens
4 }
5 $Part.allInstances()→select(p | p.qa = true)$ > Token
6 $Terminator.allInstances()$ > Transition with { inps > ins }
7 $Generator.allInstances()$ > Transition with { outps > outs }
8 $Assembler.allInstances()$ > Transition with {
9 inps > ins,

10 outps > outs
11 }
12 }

Listing 26: Instance-level typing specification from Factory to PetriNet

Figure 31 shows two simulation steps. Method qcheck is an operation over the Fac-
tory meta-model that uses constructive types. It emulates a quality check, setting the qa
attribute of some Parts to false according to a probability distribution. In step 2, p2.qa be-
comes false, hence p2 drops the classifier Token and leaves the tokens collection. Method
step belongs to the original simulator, and it consumes one Token of the incoming Place
to Transition t.

An advantage of this approach is that it permits having a simple simulator, unaware
of possible conditions for activation or deactivation of Tokens, and permitting dynamic-
ity of Places and Transitions by means of other dynamic typings.

9.4. Discussion: strengths and limitations
9.4.1. Strengths. As Section 9.1 illustrated, a-posteriori typings can be used to define

simple model-to-model transformations, but have the potential to be more efficient
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Fig. 31: Dynamic typing for the simulation of a factory.

than transformations because the overhead of creating objects is eliminated (see Fig-
ure 30). Incrementality and synchronization of source and target models come for
free, while in contrast, traditional transformation approaches require implementing
dedicated mechanisms for that. Finally, due to its limited expressivity, type-level a-
posteriori specifications can be analysed for executability, surjectivity and bidirection-
ality.

As Section 9.2 showed, a-posteriori typing also enables flexible reuse, allowing model
management operations defined over a role meta-model to be reused without change on
a creation meta-model. As we will analyse in Section 10.2, this flexibility goes beyond
the capabilities of other existing reuse approaches. Finally, as seen in Section 9.3, a-
posteriori typings can be dynamic and multiple, which adds further flexibility to reuse.

9.4.2. Limitations. Our retyping approach enables dynamic and multiple typing. How-
ever, some model management operations may not be prepared to handle objects that
change their type dynamically or with several types. Section 9.3 illustrated how dy-
namic typing can be used to neglect some objects (e.g., Parts that are no longer typed as
Tokens). While the simulator in Listing 24 would work in this case, analysis methods,
e.g., for reachability analysis, may not work in this setting. For this reason, Section 7
introduced different retyping restrictions that allow documenting the coarse-grained
behaviour of model management operations.

Retyping can also be used to write simple transformations, even bidirectional ones.
However, it is not meant to replace full-fledged model transformation languages. In
particular, specifications cannot create new objects (just retype them), which limits
their expressivity. Moreover, their main construct is the notion of mapping, which maps
every object in a given set to a class in MMR. Instead, transformation rules may have
complex patterns as trigger. Finally, retypings lack useful transformation constructs,
like helpers or operations, which allow the reuse of recurring expressions.

Regarding the reuse approaches for model management operations shown in Fig-
ure 1, our retypings are a flexible mechanism that does not need to declare forward
and backward transformations, but a single retyping specification is enough. However,
if the operation to be reused modifies the model, then the limitations stated in Sec-
tion 7 need to be considered. Nonetheless, if a specification qualifies for writing, then
properties like synchronization and incrementality come for free.

10. COMPARISON WITH RELATED WORK
Next, we compare our approach with different proposals for model typing in MDE
(Section 10.1), existing mechanisms for reutilization of model management operations
(Section 10.2), related works on view generation (Section 10.3), bidirectional trans-
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Table I: Comparison of model typing approaches.

Approach Classific. Dynamic # #Model Totality
time classifiers Classif. types

SMOF [OMG 2013a] a-post. yes many many total
Stereotypes [Fuentes and Vallecillo 2004] a-post. no many many partial
UML [OMG 2013b] a-post. yes many one total
MOF [OMG 2014] creation no one one total
This paper a-post. yes many many partial

formation approaches (Section 10.4), and techniques proposed by the programming
languages community to achieve program reuse and dynamic typing (Section 10.5).

10.1. Typing approaches in modelling
Table I summarizes a comparison of the most prominent approaches to model typing
in MDE, using some features of the typing space presented in Figure 2.

Regarding standards, SMOF recognises the need for multiple and dynamic clas-
sification, and proposes annotating the classifiers that may have instances in com-
mon [OMG 2013a]. UML allows multiple classifiers through generalization sets [Olivé
2007]. While UML supports dynamic classification, neither UML nor SMOF provide
support for defining a-posteriori typing specifications, and hence, unanticipated reuse
of operations is difficult. MOF does not support a-posteriori typing, dynamicity or over-
lapping classes, and models have exactly one type.

The UML provides an extensibility mechanism to decorate model elements with
stereotypes [Fuentes and Vallecillo 2004]. These are defined in a so-called profile that
declares the stereotype features and which UML elements can be tagged by the stereo-
types. Stereotypes are assigned after creating the element, so the classification time
is a-posteriori. However, stereotypes are rarely dynamic, but an element may have
multiple stereotypes. Our a-posteriori typing could be a substitute for this profiling
mechanism, as UML model elements could be typed a-posteriori with respect to a role
meta-model containing the desired stereotypes.

Exploratory modelling [Atkinson et al. 2011] has been proposed as a way to provide
a type to existing instances, where types are created on-demand based on instance
features. Instead, in a-posteriori typing, types already exist, and the typing creates a
new classification relation between those types and existing instances.

Some works have analysed the compatibility of meta-models regarding acceptance of
instances [Guy et al. 2012; Kühne 2013]. Interestingly, our condition for totality of type-
level specifications is called forward compatibility in [Kühne 2013], and surjectivity is
called back compatibility.

Notably, all previous works implement a type-level style for retyping specifications,
or target operation adaptation and neglect dynamicity of typing. The work in [Diskin
et al. 2012] is closer to our instance-level specifications, proposing the use of queries
to relate (possibly derived) elements of two models. While such relations are not retyp-
ings, they might be used to encode our instance-level specifications.

The notion of role in modelling languages is also related to our proposal.
In [Steimann 2000], the authors review characteristics of roles in modelling languages.
For example, roles have their own properties, objects can play several roles simulta-
neously, objects may acquire and abandon roles dynamically, and objects of unrelated
types can play the same role. The author also analyses representation mechanisms
for roles: as named places in relationships (like in UML), as separate instances joined
to an object, and as generalization or specialization hierarchies which can be mixed
with regular classes. The latter representation is deemed problematic, as roles are
sometimes seen as generalization of classes, while others are specializations. Our a-
posteriori typing approach permits most characteristics of roles listed in [Steimann
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Table II: Comparison of transformation reuse approaches.

Approach Classif. Style Dyn. # #Model Total.
time Classif. types

Concepts [de Lara and Guerra 2013] a-post. T no many many total
Adapters [Sánchez Cuadrado et al. 2014] a-post. T/I no many many partial
Zschaler [Zschaler 2014] a-post. T no one many partial
Steel et al. [Guy et al. 2012; Steel and Jézéquel 2007] a-post. T no one many partial
This paper a-post. T/I yes many many partial

2000], but while dynamicity of roles is normally achieved explicitly (e.g., by invoking
an operation), we obtain dynamicity implicitly upon model changes. Our separation
of the creation and role meta-models, and the explicit binding mechanism, avoids the
representation problems of mixing hierarchies of classes and roles.

10.2. Reuse approaches in MDE
Table II compares the most prominent approaches to reuse of model management oper-
ations. We use the criteria of Table I, as well as the extra criterion Style, which refers
to the approach to bridge the meta-models involved (Type or Instance level).

Inspired by generic programming, in [de Lara and Guerra 2013], we proposed con-
cepts [Gregor et al. 2006] as a mechanism to express requirements for model man-
agement operations. Generic model management operations are defined over concepts,
which can be bound to concrete meta-models. This way, the operation gets adapted for
a concrete meta-model. Originally, the binding of concepts to meta-models were simple
mappings similar to type-level specifications. However, the difference is that type-level
specifications produce a retyped view of the model, while concept binding produces an
adaptation of the particular model management operation.

Adapters [Sánchez Cuadrado et al. 2014] make concept binding more flexible by al-
lowing the use of OCL expressions in mappings. Hence, this approach has a hybrid
type-level and instance-level specification style. However again, it adapts the model
management operations. In [Sánchez Cuadrado et al. 2014], we targeted ATL model
transformations, while in [de Lara and Guerra 2014], a formalization of adapters was
used to rewrite graph transformations. Adapters add flexibility to concepts, but still
target operation adaptation. Instead, a-posteriori typing enables reuse by producing
a view of the model, which permits reusing any kind of model management operation
and benefits from dynamicity.

Instead of adapting the operation, other approaches target model adaptation.
In [Guy et al. 2012; Steel and Jézéquel 2007], a matching relation defined between
two meta-models permits instances of the former to be accepted by the latter. Origi-
nally, matching classes required same name [Steel and Jézéquel 2007], but this is more
flexible in [Guy et al. 2012]. Hence, effects are similar to type-level specifications. To
achieve compatibility, derived features are frequently added to the source meta-model.
Still, dynamicity and overlapping classes are not considered.

Zschaler [Zschaler 2014] proposes constraint-based model types, a constraint-based
specification of meta-model requirements to qualify for operations. These types are au-
tomatically extracted from existing operations. Dynamicity, multiple classification or
flexible mappings (e.g., via queries as we propose in instance-level specifications) from
concrete meta-models to the constraint-based model type are not considered. While
that approach could benefit from the flexible mappings of our instance-level specifica-
tions, the derivation of a model type from a model management operation proposed
in [Zschaler 2014] could be used by our derivation of annotation restrictions.

Some works aim at defining transformation intents, and checking whether an
adapted transformation still meets them [Salay et al. 2015; Salay et al. 2016]. Our
annotations in Section 7 permit restricting retyping specifications for reusing an oper-
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ation. However, we would need a more proper way to specify intents, e.g., using OCL
and constraint solving to check their satisfaction. We leave this for future work.

In [Wende et al. 2009; Wende 2012], a technique to define reusable language compo-
nents is proposed. A language component has abstract, concrete syntax and semantics.
The abstract syntax is given by a meta-model exposing class roles to which classes in
other meta-models can be connected, hence defining the component interface. The ap-
proach includes a composition language, which in the simplest case consists of a collec-
tion of mappings, similar to our type-level specifications. However, in our case, the goal
is retyping and not the composition of the creation and role meta-models. Moreover, our
role meta-models can contain features, and mappings can define derived features. In
both cases, the semantics of the mappings is expressed through inheritance.

10.2.1. Expressivity. Next, we compare the expressivity of our approach with those in
Table II. As we have seen, instance-level specifications are more expressive than type-
level ones. Therefore, we only compare a-posteriori typing w.r.t. adapters and the bind-
ing language of [Sánchez Cuadrado et al. 2014], as this is the only approach supporting
an instance-level specification style. In [Sánchez Cuadrado et al. 2014], some typical
heterogeneities that adapters are able to bridge were presented, such as:

— Class merge. Two classes in the concept are mapped to the same meta-model class.
— Class split. A class in the concept is mapped to two classes in the meta-model.
— Flatten hierarchy. A class hierarchy in the concept is flattened in the meta-model.
— Association to class. An association in the concept is represented as an intermediate

class in the meta-model.
— Class to association. A class in the concept is represented as an association in the

meta-model.
— Association to navigation expression. A reference in the concept is represented by

other means in the meta-model.
— Subclass to enumerate. A class hierarchy in the concept is represented in the meta-

model using a single class with an attribute that has an enumerated type.
— Attribute conversion. Conversion between primitive datatypes, and from non-

primitive to primitive datatypes.

In our approach, the role meta-model (MMR) is the equivalent of the concept. While
the binding with adapters is performed from the concept to the meta-model, in our case,
it is performed from the meta-model to MMR; however, we swap the creation and role
meta-models to facilitate the comparison and keep the nomenclature. Our approach is
able to resolve all heterogeneities in [Sánchez Cuadrado et al. 2014]. Figure 32 shows
two of the most interesting cases, while the interested reader can find all cases in
http://miso.es/aposteriori/. The upper part of the figure shows the heterogeneity Class
split, which maps one class in MMC to two classes in MMR. This can be solved using
a type-level specification where Attribute is mapped to both Attr and Port7.

The figure also shows the instance-level specification that solves the heterogeneity
Association to class. It maps MClass to Class, and MClass objects with children to General-
ization. Interestingly, in [Sánchez Cuadrado et al. 2014], this discrepancy (which occurs
in the converse mapping Class to Association) is resolved by creating a virtual class in
MMC that is mapped to Generalization. Instead, we can map certain MClass objects to
Generalization in addition to Class. This is possible because the cardinality of reference
Generalization.class is 1, and hence, we can map the expression self to it. However, the
use of virtual classes is more general as it would allow handling the case where the

7As our METADEPTH implementation does not support this multiple retyping for type-level specifications,
we implemented it using an instance-level specification.
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Fig. 32: Some resolvable heterogeneities

cardinality of Generalization.class is *. This is not possible in general with a-posteriori
typing, as it would not be possible to find the suitable MClass objects to be typed as
Generalization.

Altogether, our approach has an expressive power comparable to adapters, though
adapters can define virtual classes which enhance flexibility. However, while adapters
are tied to a specific transformation language (ATL), a-posteriori typing is applicable
“as is” with any model management language, and we provide analysis mechanisms.

10.3. Views
Views are used in different technological spaces as a mechanism to extract relevant
parts of an information source (e.g., a model or a database). They present simpler,
aggregated or restructured data from an information source, or hide certain details
to users. Hence, our retyping techniques could be employed to define views of models
conformant to a creation meta-model MMC .

Views are a well-known mechanism in database systems [Date 2003], where they
are defined by means of queries. Views can be classified as materialized or snapshots
if they are physically stored in a new table, or virtual if they are not. The former
are more efficient, but they need synchronization with the source database. Our ap-
proach is virtual as the retyping does not create new objects. Another issue is related
to the update of the source database when the view is modified. This problem has
been researched since the 80’s, and techniques to characterize updatable views [Dayal
and Bernstein 1982] and computation techniques have been developed [Bancilhon and
Spyratos 1981]. Similarly, in Section 7.2, we provide restrictions characterizing retyp-
ings that permit the modification of a retyped model.

Model views are common in MDE, being heavily used in view-based modelling ap-
proaches [Atkinson et al. 2010; Burger et al. 2016; Kilov et al. 2013; Guerra et al. 2009].
Views can be projections of a (possible single) underlying model, or a synthetic means
to create a common model. Our approach can combine both, as retyped models are de-
rived (projected) but can be modified under certain conditions. Most approaches use
materialized model views, realized through model transformations expressed either
using a general-purpose transformation language [Atkinson et al. 2010; Guerra et al.
2009] or a dedicated one [Burger et al. 2016]. More similar to our approach, in [Jakob
et al. 2006], virtual model views are defined by triple graph grammars, though dy-
namic object reclassification is not considered.

Altogether, our approach could be used as a mechanism to define updatable virtual
model views, supporting advanced features like dynamic retyping.
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10.4. Bidirectional transformation approaches
In Section 6.2, we have seen that some retyping specifications can be used backwards.
Moreover, in Section 7.2, we introduced retyping restrictions that permit updating the
retyped models using types in MMR. These modifications get immediately reflected in
the source model, as the source and retyped models are indeed the same model.

Bidirectional approaches have been investigated in databases to solve the view-
update problem [Bancilhon and Spyratos 1981; Dayal and Bernstein 1982] (described
in Section 10.3); in the programming languages community with the lenses frame-
work [Foster et al. 2007]; and in the modelling community with approaches like Triple
Graph Grammars [Schürr 1994] and QVT-Relational [OMG 2016; Stevens 2010].

Several authors have proposed classifications for bidirectional synchronization ap-
proaches [Diskin et al. 2016b; Hidaka et al. 2016]. For example, in [Hidaka et al. 2016],
approaches are classified according to their technical space, the way to define corre-
spondence relations, the change propagation mechanism, and the execution semantics.
Our approach lies within the MDE technical space. Regarding correspondences, spec-
ifications are defined in a unidirectional way, but they can be applied backwards for
some type-level cases. It is not backward functional because, as we have illustrated in
Figure 28, a model can admit several retypings when the specification is used back-
wards. The different solutions can be represented in a unique model, where objects
may have multiple types. Some authors have proposed the representation of the pos-
sible solutions given by a synchronizer by means of models with uncertainty [Diskin
et al. 2016a].

Most approaches in MDE use a tracing mechanism between the source and target
models. As in our case, both models are the same, we do not need traces. Actually, our
approach can be seen as based on model complements [Bancilhon and Spyratos 1981;
Hidaka et al. 2016]. A model complement contains information from the source model,
complementary to the target model, in order to avoid information loss. While some
approaches store such complement externally [Hidaka et al. 2016], in our case, both
source, target and complement are the same model. Finally, our approach propagates
changes from target to source, from source to target, and it is incremental.

Compared to the expressivity of other languages, the bidirectional transformations
we can express are limited to mappings between source and target types. However,
these are not necessarily bijective, as we have seen in the example of Figure 28.

10.5. Reuse, genericity and dynamic typing in programming languages
Dynamic reclassification has been more studied in object-oriented languages.
In [Drossopoulou et al. 2002], objects can change their type among several state
classes, subtypes of a given root class. To ensure type-safety, state classes are not
allowed to receive references. Similar to our role meta-models, role classes [Gottlob
et al. 1996] model the different roles individual objects can acquire or drop. While in
these approaches, the change of role or classifier is done via method invocations, our
instance-level specifications express these changes declaratively, which facilitates anal-
ysis. In [Li 2004], objects can adopt or drop roles dynamically. For this purpose, classes
are annotated with possible dynamic parents and children. In [Tamai et al. 2005], the
authors present Epsilon, an object model with dynamic roles that can require inter-
faces from the objects to get bound to. In this way, objects can either implement the
interface in the standard way (i.e., belong to a class that implements the interface), or
a manual binding can be given. ObjectTeams/Java [Herrmann 2007] is an extension of
Java with roles, which can be dynamically adopted and dropped by objects upon enter-
ing a context (a container class). In this approach, role instances are explicit, and roles
should declare the allowed base class that can take the role (along with some condi-
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tion) and mappings from methods of the role to methods of the class. This means that
role definitions cannot be reused with different sets of base classes. In our approach,
decoupling the binding from the role meta-model allows reusability of the latter for
multiple creation meta-models.

Also for programming languages, pluggable type systems [Bracha 2004] allow
plugging-in additional typings for a program, which is similar to our a-posteriori
typing. There are few attempts to increase dynamic typings in MDE. One exception
is [Conrad et al. 2008], which proposes the extraction of the dynamic aspect of objects
so that it can be changed dynamically, similar to the state pattern. However, it does
not fully support dynamic classification.

Hence, our proposal improves existing works by more flexible, dynamic reclassifica-
tion, which enables multiple classifiers.

11. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a-posteriori typing as a mechanism to decouple object
creation from classification. We have shown two specification styles for a-posteriori
typing, together with correctness rules and analysis mechanisms. The feasibility of
our approach has been demonstrated by a practical implementation atop METADEPTH.
We have also presented several examples and applications which show the flexibility
and usefulness of the proposal. Altogether, our approach leads to a more flexible retyp-
ing than existing proposals permitting “as is” reuse of model management operations,
while type dynamicity enables flexible adaptation of those operations. Retyping spec-
ifications can also be used as a simple form of bidirectional transformation, enabling
their analysis, and having the potential to be more efficient than traditional transfor-
mation approaches.

Most MDE approaches, including ours, are based on nominal typing; in the future,
we could use structural typing to classify untyped objects (e.g., extracted as raw data
from documents) according to the features they exhibit, and as a heuristic for retyping
specifications. We also plan to explore more in detail the use of retyping specifications
as bidirectional model transformations. At the tool level, we are increasing the effi-
ciency of instance-level typings by smarter cache policies able to analyse the impact of
model changes.
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Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2015. A-posteriori typing for model-driven

engineering. In MODELS. IEEE, 156–165.
Zinovy Diskin, Romina Eramo, Alfonso Pierantonio, and Krzysztof Czarnecki. 2016a. Incorporating uncer-

tainty into bidirectional model transformations and their delta-lens formalization. In Bx 2016 (CEUR
Workshop Proceedings), Vol. 1571. CEUR-WS.org, 15–31.

Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki. 2016b. A three-dimensional taxon-
omy for bidirectional model synchronization. Journal of Systems and Software 111 (2016), 298–322.

Zinovy Diskin, T. Maibaum, and Krzysztof Czarnecki. 2012. Intermodeling, queries, and Kleisli categories.
In FASE (LNCS), Vol. 7212. Springer, 163–177.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani, and Paola Giannini. 2002. More dynamic
object reclassification: Fickle||. ACM ToPLaS. 24, 2 (2002), 153–191.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2006. Fundamentals of Algebraic
Graph Transformation. Springer.

Sebastian Fischer, Zhenjiang Hu, and Hugo Pacheco. 2015. The essence of bidirectional programming. SCI-
ENCE CHINA Information Sciences 58, 5 (2015), 1–21.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Trans. Program. Lang. Syst. 29, 3, Article 17 (2007), 65 pages.

Lidia Fuentes and Antonio Vallecillo. 2004. An introduction to UML profiles. UPGRADE V, 2 (2004), 6–13.
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Appendix
This appendix presents the details of some of the results of the paper. A supporting
Alloy [Jackson 2002] formalization of typings and type-level retypings is available
at http://miso.es/aposteriori/alloy.html, together with assertions helping in proving
Theorems 4.1 and 6.1.

Proof of Theorem 4.1 (Type-level retyping correctness)

PROOF. Given an arbitrary model M , we check each well-formedness criterion enun-
ciated in Section 3 for the view TS(M) w.r.t. MMR.

— Object typing correctness. Equation (1) holds because each object in TS(M) has a
type in MMR, given by item (1) of the construction of TS(M). Moreover, the typing
in TS(M) is total on objects, because there are no untyped objects in TS(M). This
is so as by item (2) in the construction of TS(M), the objects whose creation type (or
its supertypes) is not mapped to MMR are not included in TS(M).

— Subclassing implies instance subsetting. Equation (2) would fail if given two classes
A′, B′ in MMR, with B′ ∈ sub(A′), there is an object o with B′ ∈ type∗(o) and A′ /∈
type∗(o). However, this cannot occur by the very definition of type∗, with type∗(o) =
type(o)

∪
A∈type(o) anc(A).

— Abstract classes do not have instances. Equation (3) holds because, according to
Equation (10), classes of MMC cannot be mapped to abstract classes of MMR. As-
suming that type is correct, we have that @A ∈ type(o) s.t. abs(A). Hence, @A′ ∈
type′(o) s.t. abs(A′) because no class in tsi(A) can be abstract.

— Slot correctness. Equation (4) would fail for an object o owning a slot whose type
is not a feature of any class in type∗(o). However, this is not permitted by Equa-
tion (11), which demands for any mapping tsi(A.a) that tsi(A) is defined and
tsi(A.a) ∈ feats(tsi(A)).

— Slot completeness. Given an object o with type(o) = A, Equation (5) would fail if
o lacks a slot for a mandatory feature of tsi(A) or its ancestors, and the feature
has no default value. This might occur if TS allowed mapping non-mandatory to
mandatory features. However, this is disallowed by Equation (12), which demands
the cardinality interval of every feature A′.a′ to be equal or wider than the car-
dinality interval of any feature mapped to it. This means that, if min(A′.a′) > 0,
then, for any A.a with tsi(A.a) = A′.a′, we have min(A′.a′) ≤ min(A.a), and hence
mand(A′.a′) =⇒ mand(A.a). Additionally, by Equation (17), we have that if a
mandatory feature in MMR has not been mapped, but its owning class is mapped,
then the feature has a default value.

— Link correctness. Equation (6) follows from Equation (14). Equation (6) would fail
if there is a typed link o.l such that: (a) the link points to an untyped object, or (b)
the link points to an object with no type compatible with tar(type(o.l)). Possibility
(a) cannot happen because Equation (14) requires that for any reference A.r that
is mapped, tar(A.r) is mapped as well. Option (b) cannot happen either because
if a reference A.r is mapped, then the type tsi(tar(A.r)) will be compatible with
tar(tsi(A.r)), since Equation (14) requires that tsi(tar(A.r)) ∈ sub∗(tar(tsi(A.r))).
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Hence, we can conclude that a typed link does point to objects whose type is compat-
ible with the class pointed by the link type.

— Composition correctness. The property has two parts. First, Equation (7) requires
that no object is pointed by two links whose type is a composition; this is guaran-
teed by Equation (16) which forbids mapping a composition reference twice. Second,
Equation (8) requires acyclicity of containment links; this is guaranteed by Equa-
tion (15) which constrains composition references to be mapped only to compositions.
Hence, if M satisfies this property, so does TS(M).

— Cardinality correctness. Equation (9) would fail if the links stemming from an object
break the cardinality interval defined by their types. However, assuming an initially
correct type, this cannot happen because Equation (12) only allows mapping A.r
to a reference with same or wider cardinality, while Equation (13) takes care of
not breaking the cardinality interval of any reference A′.r′ that receives several
mappings. For attributes the reasoning is similar, but an attribute with default
value may not be instantiated in an object. Equation (17) does not allow mapping
default attributes to mandatory attributes with no default. This means that objects
with no instantiation for a default attribute can only be retyped to default attributes,
or to optional ones.

Proof of Theorem 5.1 (Instance-level retyping correctness)

PROOF. We follow the same strategy as with Theorem 4.1. Given an arbitrary model
M , we check each well-formedness rule in Section 3 for the view IS(M) w.r.t. MMR.

— Object typing correctness. Similar to the type-level case, Equation (1) holds because
any object in IS(M) is typed by MMR, and the typing from IS(M) is total on objects.

— Subclassing implies instance subsetting. Assume two arbitrary mappings isi(expi :
A) 7→ A′, isj(expj : B) 7→ B′ with B′ ∈ sub(A′); and let S1 = expi(M), S2 = expj(M)
be the object sets resulting from evaluating the expressions on model M . Hence,
∀o ∈ S1•A′ ∈ type′(o), and ∀o ∈ S2•B′ ∈ type′(o). Moreover, ∀o ∈ S1•{A′} ⊆ type′∗(o),
and ∀o ∈ S2 •{A′, B′} ⊆ type′∗(o). Then, S2 = {o | B′ ∈ type′∗(o)} ⊆ S1∪S2 = {o | A′ ∈
type′∗(o)}, as required by Equation (2).

— Abstract classes do not have instances. Equation (3) holds because, according to
Equation (20), objects of M cannot be mapped to abstract classes of MMR.

— Slot correctness. Equation (4) follows from Equation (21), which requires that if a
slot of an object is mapped, then the mapping is to some feature of the class the
object is mapped to.

— Slot completeness. Similar to the type-level case, Equation (5) holds due to Equa-
tion (24), which demands complete instantiations.

— Link correctness. Equation (6) holds if the invariant in Listing 6 is unsatisfiable.
This is so as the invariant ensures that every object mapped to A′ cannot contain
(through reference r′) an object that does not have any type compatible with B′. For
this purpose, the invariant takes all expressions expBi which yield types B′

1,..., B′
n

compatible with B′, and checks whether there is an object mapped to A′ that may
include in its mapping to r′ an object b that does not belong to the union of those ex-
pressions. In such a case, the invariant would be satisfiable and Equation (6) would
not hold, as ∀T ∈ type(b) •T /∈ sub∗(tar(A.r)), and hence, type(b)∩ sub∗(tar(A.r)) = ∅,
contradicting Equation (6). Similarly, if there is an object mapped to A′ which may
contain in its mapping to r′ an object b without a-posteriori types, the invariant
would be satisfied and Equation (6) would fail as well. This is so as type(b) = ∅, and
hence, type(b) ∩ sub∗(tar(A.r)) = ∅. Conversely, if the invariant of Listing 6 is not
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satisfiable, then the expressions mapped to A′.r′ do not select objects which are not
compatible with B′, hence making Equation (6) hold.

— Composition correctness. The property has two parts. First, Equation (8) requires
acyclicity of compositions. This is checked by the invariant template in Figure 17(b).
If this invariant is satisfiable, then there is an object o ∈ M selected by (say) ex-
pression expB such that exprB has a cycle. This would imply that IS(M) contains
a cycle of A′.r′ links, and therefore, Equation (8) would not hold. If the invariant is
not satisfiable, then there is no object in expB (resp. expA) s.t. exprB (resp. exprA)
has a cycle, and therefore, Equation (8) holds.
Second, Equation (7) requires no object is contained in two links with composition
type. This is checked by the invariant templates in Listings 8 and 9. If the invariant
in Listing 8 is satisfiable, it is because either the expression in line 1 or the expres-
sion in lines 3–6 is true. In the former case, there is a b object (with B′ ∈ type′(b))
which contains a duplicate object in its link mapped to B′.r′, with comp(B′.r′). This
makes Equation (7) fail because, setting oi = b = ok, we have that there are l, lk
both pointing to the same object, with type(l) = type(lk) = A′.r′ and comp(A′.r′).
Similarly, if the expression in lines 3–6 is true, then there is an object a contained
in two links of objects b1 and b2, where the links are typed by the composition A′.r′.
This makes Equation (7) fail because, setting oi = b1 and ok = b2, we have that
there are l, lk both pointing to the same object, with type(l) = type(lk) = A′.r′ and
comp(A′.r′). Finally, if the invariant in Listing 9 is satisfiable, then there is an object
a contained in two links of objects b1 and b2 whose type is a composition. A similar
reasoning to the previous cases makes Equation (7) fail.
Conversely, if the invariants in Listings 8 and 9 are not satisfiable, then no object
typed by A′ is contained in two links whose type are compositions, and hence, Equa-
tion (7) holds.

— Cardinality correctness. If the invariant in Listing 3 is satisfiable, then some of the
expressions in lines 1–2, 4–5, or 8–11 (or expressions for some other n-fold combi-
nation) are true. If the expressions in lines 1–2 or 4–5 are true, then there is some
object o selected by (say) expj1 and making A′ ∈ type′(o), such that the sum of the
size of the object sets selected by mappings isj(A.r11) = A′.r′,..., isj(A.r1m) = A′.r′

violates the cardinality of A′.r′. This makes Equation (9) false. If the expression in
lines 8–11 is true, then there is some object o selected by two expressions expj1 and
expj2, such that the sum of the object sets selected by mappings isj(A.r11) = A′.r′,...,
isj(A.r1m) = A′.r′, isj(A.r21) = A′.r′,..., isj(A.r2m) = A′.r′ violates the cardinality
of A′.r′, making Equation (9) false. This reasoning is applicable to arbitrary n-fold
combinations of expressions. Conversely, if the invariant in Listing 3 is not satisfi-
able, then there is no object o such that A′ ∈ type′(o) and the links of o typed by
A′.r′ violate the cardinality of A′.r′. Therefore, in this case, Equation (9) holds. Sim-
ilar to the type-level case, Equation (24) does not allow mapping default attributes
to mandatory attributes with no default. Hence, objects with no instantiation for a
default attribute can only be retyped to default attributes, or to optional ones.

Proof of Theorem 5.2 (Type-to-instance translation correctness)

PROOF. It is easy to see that the instance-level specification IS resulting from TS
satisfies all well-formedness rules for instance-level specifications:

— Non-abstract mappings. By Equation (10), in every class mapping tsi(A) = A′ ∈ TS,
A′ is concrete. Hence, for every object mapping isi(A.allInstances() : A) = A′ ∈ IS,
we have that A′ is concrete.

57



— Correct context for slot mappings. By Equation (11), for every feature mapping
tsi(A.a) = a′, we have that tsi(A) is defined and a′ ∈ feats(tsi(A)). Since every
slot mapping in IS has the form isi(A.a) = tsi(A.a), then isi(A.allInstances() : A) is
defined because tsi(A) is defined, and a′ ∈ feats(isi(A.allInstances() : A)) because
a′ ∈ feats(tsi(A)).

— Compatibility of feature cardinality. By Equation (13), the cardinality interval of
any feature a′ of MMR is wider than the sum of the cardinality intervals of all
features mapped to a′ by TS. Therefore, the cardinality checkings in Listing 3 will
be always false, making the invariant unsatisfiable, as required for correctness.

— Compatibility of reference type. By Equation (14), for every reference mapping
tsi(A.r) = r′ ∈ TS, we have that tsi(tar(A.r)) ∈ sub∗(tar(r′)). Since every link map-
ping in IS has the form isi(A.r) = r′, then there is a mapping isi(B.allInstances() :
B) = B′ with B = tar(A.r) and B′ ∈ sub∗(tar(r′)), as required by Equation (22).
Moreover, the produced instance-level mappings make the invariant template in
Listing 6 unsatisfiable. This is so, as we would have invariants of the form:

1 A.allInstances()→exists(a |
2 a.r →exists(b |
3 B1.allInstances()→...→union(Bn.allInstances())→excludes(b)))

where tsi1(B1),..., tsin(Bn) ∈ sub∗(tar(r′)). According to Equation (14), there is a
mapping tsi(tar(A.r)) ∈ sub∗(tar(r′)), and hence, one such Bi = tar(A.r). As a con-
sequence, the invariant cannot be satisfiable because all elements in collection r of
every a s.t. type∗(a) = A will be in the set Bi.allInstances().

— Compatibility of composition. By Equation (15), TS cannot map non-compositions
in MMC to compositions in MMR, i.e., only compositions can be mapped to composi-
tions. Since there cannot be cycles of compositions, the invariant in Figure 17(b) can-
not be satisfiable (expressions exprA, exprB will have the form self.r with comp(r)).
Because TS forbids mapping non-compositions to compositions, Listings 8 and 9
cannot be satisfiable. This is so as all expr have the form self.r with comp(r), but no
object can be included in two composition links.

— Complete instantiations. By Equation (17), for every class mapping tsi(A) = A′ ∈
TS, we have that every mandatory feature of A′ is mapped from some feature
of A, or it has a default value. Hence, for the produced instance-level mappings
isi(A.allInstances() : A) = A′, we also have mappings isi(A.a) for every mandatory
feature of A′ that has no default value, making Equation (24) hold.

Proof of Theorem 6.1 (Bidirectionality)

PROOF. We check that Equations (26) to (33) are the converse or follow from the
converse of Equations (10) to (17) for well-formedness of type-level specifications. For
this purpose, we build TS−1 – the inverse of TS – from MMR to MMC by using the
backward mappings ts−1

i . Since the mappings tsi ∈ TS may map several classes (resp.
features) of MMC to a same class (resp. feature) of MMR, in order to build TS−1, we
require a normalized specification TSN with at most one class mapping in each tsi and
non-injective feature mappings. The normalized TSN is built by placing each mapping
from a class in MMC , together with the mapping of its features, in a different tsi. If
there are two mappings from features f1 and f2 of a class A to the same feature in
MMR, then two functions tsi, tsj are created with one of these mappings each, and
being equal in the rest of elements.

Then, we check the well-formedness conditions on TS−1, and compare with the con-
ditions required for bidirectionality, which are expressed over TS:
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— Equation (10) forbids mappings to abstract classes. Applied to TS−1, it yields: ∀A′ ∈
MMR, ∀A ∈ MMC • ts−1

i (A′) = A =⇒ ¬abs(A). But ts−1
i (A′) = A ⇐⇒ tsi(A) = A′,

which is precisely what Equation (26) requires.
— Equation (11) demands features of a class to be mapped to features of the mapped

class. Applied to TS−1, it yields:

∀A′ ∈ MMR,∀a′ ∈ feats(A′), ∀a ∈ MMC •
ts−1

i (A′.a′) = a =⇒ ts−1
i (A′) is defined ∧ a ∈ feats(ts−1

i (A′))

But we have that ts−1
i (A′.a′) = a ⇐⇒ tsi(a) = A′.a′, and ts−1

i (A′) is defined ∧ a ∈
feats(ts−1

i (A′)) ⇐⇒ ∃A ∈ MMC • tsi(A) = A′ ∧ a ∈ feats(A), which is required by
Equation (27).

— Equation (12) demands features in MMC mapped to a features in MMR to have the
same or wider cardinality interval. Applied to TS−1, it yields:

∀a ∈ MMC , ∀a′ ∈ MMR • ts−1
i (a′) = a =⇒ min(a) ≤ min(a′) ∧max(a) ≥ max(a′)

We know that ts−1
i (a′) = a ⇐⇒ tsi(a) = a′. By Equation (12), we have min(a′) ≤

min(a) ∧ max(a′) ≥ max(a). Then, it follows that min(a) = min(a′) ∧ max(a) =
max(a′), as Equation (28) demands.

— Equation (13) handles the general case for cardinality. Applied to TS−1, it yields:

∀a ∈ MMC • min(a) ≤
∑

a′∈MMR

ts−1
i (a′)=a

min(a′) ∧ max(a) ≥
∑

a′∈MMR

ts−1
i (a′)=a

max(a′)
(44)

Equation (28) requires min(a) = min(a′) when tsi(a) = a′. Hence, Equation (44) can
only hold for features a ∈ MMC mapped to several a′1, ..., a′n ∈ MMR if min(a) =
min(a′1) = ... = min(a′n) = 0. A similar reasoning requires max(a) = ∞ if a is
mapped to several a′1, ..., a′n ∈ MMR. Equation (29) demands these conditions.

— Equation (14) demands compatibility of reference type. Applied to TS−1, it yields:

∀A′ ∈ MMR, ∀r′ ∈ refs(A′),∀r ∈ MMC • ts−1
i (A′.r′) = r =⇒

∃ C ′ ∈ anc∗(tar(A′.r′)) • ts−1
i (C ′) ∈ sub∗(tar(r))

We have ts−1
i (A′.r′) = r ⇐⇒ ts(r) = A′.r′. Let be C = ts−1(C ′), with C ′ ∈

anc∗(tar(A′.r′)), and so, C ′ = tsi(C). Then, we can reformulate the condition as
∃ C ∈ sub∗(tar(r)) • tsi(C) ∈ anc∗(tar(A′.r′)), as demanded by Equation (30).

— Equation (15) forbids a non-composition reference in MMC to be mapped to a compo-
sition. Applied to TS−1 yields Equation (31), where we have used ts−1

i (r′) = r ⇐⇒
tsi(r) = r′.

— Equation (16) forbids mapping a reference in MMC to two composition references
in MMR. Applied to TS−1 yields Equation (32), where we have used ts−1

i (A′.r′) =
r1 ⇐⇒ tsi(r1) = A′.r′ and similarly for r2.

— Equation (17) demands that, if a class A′ is mapped, all its mandatory features
should be mapped or have a default value. Applied to TS−1, it yields Equation (33),
where we have used ts−1

i (A′) = A ⇐⇒ tsi(A) = A′, and ts−1
i (A′.a′) = A.a ⇐⇒

tsi(A.a) = A′.a′.
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