
Inter-Modelling: from Theory to Practice

Esther Guerra1, Juan de Lara2, Dimitrios S. Kolovos3, and Richard F. Paige3

1 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es
2 Universidad Autónoma de Madrid (Spain), Juan.deLara@uam.es

3 The University of York (UK), {dkolovos, paige}@cs.york.ac.uk

Abstract. We define inter-modelling as the activity of building models
that describe how modelling languages should be related. This includes
many common activities in Model Driven Engineering, like the specifica-
tion of model-to-model transformations, the definition of model match-
ing and model traceability constraints, the development of inter-model
consistency maintainers and exogenous model management operators.
Recently, we proposed a formal approach to specify the allowed and
forbidden relations between two modelling languages by means of bidi-
rectional declarative patterns. Such specifications were used to generate
graph rewriting rules able to enforce the relations in (forward and back-
ward) model-to-model transformation scenarios. In this paper we extend
the usage of patterns for two further inter-modelling scenarios – model
matching and model traceability – and report on an EMF-based tool im-
plementing them. The tool allows a high-level analysis of specifications
based on the theory developed so far, as well as manipulation of traces
by compilation of patterns into the Epsilon Object Language.

1 Introduction

Model Driven Engineering (MDE) attacks the accidental complexity in the soft-
ware development process by increasing the abstraction level at which engineers
work. Models (rather than code) are the core assets, and are used to gener-
ate code, validation and verification. Models are seldom oblivious of each other,
and hence many activities in MDE involve building relations between two or
more models either manually or (semi-)automatically. The development of sys-
tematic, well-founded techniques and tools for the creation and maintenance of
inter-model relations is therefore at the core of MDE, and is especially critical
in large-scale projects involving vast amounts of inter-related models [11].

The specifications of inter-model relations can be used in many ways. For
instance, a model-to-model (M2M) transformation specification expresses how
models of a language should be related with models of another one, and it is
actually used to transform source models into target ones (or vice-versa). We call
inter-modelling to the activity of specifying how two or more modelling languages
have to be related. Further examples of inter-modelling include specifications for
model matching and traceability, inter-model consistency, and synchronization.

Frequently, the specifications of different inter-modelling activities (e.g. M2M
transformation and model matching) are built separately from each other – even

2

if they relate the same modelling languages – and are written using different
notations and tools. This produces scattered specifications that are prone to
desynchronization and increase the maintenance effort. Moreover, all specifica-
tions that handle instances of the same meta-models need to be kept consistent,
which is difficult to ensure if they lack formal semantics. Hence, a unified, formal
notation able to specify different inter-modelling tasks would be very valuable.

Recently [6] we proposed a visual, declarative, bidirectional, formal language
to describe M2M transformations. The language permits specifying allowed and
forbidden relations between models of two modelling languages by means of pat-
terns. Patterns have a formal semantics enabling checking whether two models
are synchronized according to a pattern, and permitting static analysis. A syn-
thesis procedure was developed in [6] to generate graph grammar rules solving
two scenarios: source-to-target and target-to-source batch transformations.

In this paper we demonstrate that, in addition to transformation, our lan-
guage can solve two further inter-modelling scenarios: model matching and model
traceability. Hence, the same specification can solve different MDE tasks (trans-
formation, matching and traceability) reducing the burden of developers. We also
report on Pamomo, an Eclipse tool that allows the definition of inter-modelling
specifications, their analysis, and their operational use by compiling them into
the Epsilon Object Language (EOL) [8]. The tool solves the following scenarios,
for both model matching and model traceability:

1. Given two models M1 and M2, generate a trace model T relating both.
2. Given two models M1 and M2, and an existing trace model T ,

(a) verify whether T is valid (i.e. it has no missing or incorrect traces).
(b) update T so that it becomes a valid trace model for M1 and M2.

• pattern-pattern conflicts

• pattern-mm conflicts

• metamodel coverage
Triple

Patterns

Static analysis

High-level

declarative

specification

��
• M2M transf.

• analysis

• conflicts

Graph

rules

• model matching

• model traceab.

EOL

…

Operational scenarios

• conformance

• incorrect traces

• missing traces

OCL

Check-only
scenarios

compilation

act on… check for…

set of related models

�� ��The figure to the right shows the work-
ing scheme of our approach. The inter-
modelling specification consists of a set of
declarative triple patterns. This specifica-
tion can be statically analysed (label 1) to
check for conflicts between patterns, be-
tween patterns and the meta-models, and
to assess meta-model coverage (i.e. check
if all types are used by some pattern).
Patterns can also be used operationally
through their compilation into lower-level languages (label 2). In this paper,
we compile them into EOL for model matching and model traceability, obtain-
ing interoperability with EMF-based tools and an efficient implementation. Fi-
nally, patterns can be used for check-only scenarios (label 3) in order to find
out whether two models are correctly traced and to detect incorrect or missing
traces.
Paper organization. §2 presents our patterns for inter-modelling, which we use
in §3 for model matching and traceability. §4 shows how to compile the patterns
into OCL/EOL for these scenarios. §5 and §6 present tool support and a case
study. We discuss related work in §7, and conclude in §8.

3

2 Our Pattern-based Inter-Modelling Language

In this section we briefly introduce our pattern-based language for inter-modelling.
For technical details, the reader can consult [6].
Triple graphs. Our patterns are based on triple graphs [12], which are struc-
tures made of two graphs called source and target (S and T) related through a
correspondence graph (C). Models can be represented as graphs with attributes
in nodes and edges and with a type [4]. The correspondence graph is a graph in
its own right, but we distinguish a special set of nodes M , called mappings. M
is a subset of the set of nodes of the correspondence graph, M ⊆ V C , and we
define two functions cs : M → V S and ct : M → V T from M to the sets of nodes
in the source and target graphs. These are called the correspondence functions,
and are used to relate source and target nodes. Thus, we say that x ∈ V S is
related to y ∈ V T iff ∃m ∈ M s.t. cs(m) = x and ct(m) = y. Altogether, a triple
graph is a tuple TrG = 〈S,C, T, M, cs, ct〉.

We can relate two triple graphs through triple morphisms, e.g. when a triple
graph represents a pattern that has to be found inside a bigger triple graph.
A triple morphism n : TrG1 → TrG2 is made of a triple of graph morphisms
n = 〈nX : X1 → X2〉X∈{S,C,T} relating the source, target and correspondence
graphs of TrG1 and TrG2. In addition, the mappings of TrG1 must be related to
mappings of TrG2, and the elements in TrG1 that are not mappings cannot be
identified to mappings of TrG2 (i.e. nC(M1) ⊆ M2 and nC(V C

1 \M1) ⊆ V C
2 \M2).

Triple constraints. In order to interpret triple graphs as constraints, we substi-
tute the set of data values in triple graphs by a finite set ν of sorted variables [6].
In this way, instead of concrete values, attributes point to variables of a given
sort and their value can be constrained by a formula α. Altogether, a triple
constraint is a tuple CTrG = 〈TrG, ν, α〉. It is important to note that a triple
graph (i.e. two models related through a correspondence model) can be repre-
sented as a ground triple constraint where the formula α restricts the attributes
to take exactly one value. Hence, we only need to consider triple constraints and
not triple graphs anymore. As an example, the left of Fig. 1 shows a ground
triple constraint taken from the class-to-relational example. The terms of the
formula α are shown below, where the and connectives are omitted. Note that
“=” denotes equality, not assignment.

Triple constraints can be related through CTrG-morphisms. A CTrG-morphism
a : CTrG1 → CTrG2 is made of a triple graph morphism with the following con-
ditions: the formula α2 of CTrG2 must imply the formula α1 of CTrG1, and
the same implication is demanded for the source and target restrictions of the
formulae (α2|S ⇒ α1|S and α2|T ⇒ α1|T). Roughly, the source α|S (resp. target
α|T) restriction of a formula α is the same formula but considering the variables
of the source (resp. target) graph only [6]. In our current implementation, α can
be any valid OCL expression given with EOL syntax.
Triple patterns. We use triple constraints as building blocks for triple patterns.
A triple pattern describes in a declarative way a relation between two models. If
the relation is allowed then we say the pattern is positive (P-pattern), whereas
if the relation is forbidden then we say the pattern is negative (N-pattern). P-

4

c0: Class

name=X

persistent=P1

t: Table

name=Z

m:CT

c1: Class

name=Y

persistent=P2

parent

a: Attribute

name=A

type=T

fe
a
tu

re

n:CT

P1=true
P2=true

X=‘person’
Y=‘worker’

A=‘age’ T=‘int’

Z=‘Tperson’

c: Class

name=X

persistent=P

t: Table

name=Y

m:CT

Y=‘T’+XP=true
c: Class

p: Class
parent

ClassTableN(parent)

t: Tablem:CT

feature

co: Column

name=Y

type=T2

col

n:AC

AttributeColumn

Y=‘C’+X
(Collection{‘int’,’long’,’float’,’double’}.exists(z | z=T and T2=‘NUMBER’)

or (T=‘string’ and T2=‘TEXT’))

«param»«param»

a: Attribute

name=X

type=T

c: Class
«param»

Fig. 1. Two related models as a ground triple constraint (left). Some P-patterns (right).

patterns are made of a constraint Q declaring the allowed relation, an optional
positive pre-condition (or parameter) C with CTrG-morphism q : C → Q, and
a set NPre = {Q ci→ Ci}i∈Pre of negative pre-conditions (which may be empty).
N-patterns consist of just one constraint Q forbidden to occur.

The right of Fig. 1 shows two P-patterns. The upper one has a negative pre-
condition (N(parent)) and demands persistent, top-level classes to be related
with tables. Its formula constrains the names of the related class and table. The
lower P-pattern has as parameter all elements tagged with <<param>>, which
are shown together with the main constraint Q. It states that attributes and
columns should be related, but only if their owning class and table are related.

3 Model Matching and Model Traceability

Patterns are interpreted differently depending on the scenario. The M2M trans-
formation scenario looks at patterns either source-to-target or target-to-source,
checking whether patterns are source- or target-enabled [6]. For instance, in for-
ward transformation, pattern ClassTable in Fig. 1 is to be interpreted as “given
a class without parents, there must be a table”. Instead, model matching and
model traceability consider the source and target of patterns at the same time.
Thus, in these cases, the same pattern is interpreted as “given a class with-
out parents and a table with suitable name, there should be a trace relating
them”. Hence, given a pattern, we define a suitable directed pre-condition for
the scenario at hand, which in model matching and traceability is called trace
pre-condition. Next, we define the notion of pattern enabledness, which consists
on finding an occurrence of the directed pre-condition that does not violate any
negative pre-condition of the pattern. Finally, we build the notion of satisfaction
for the particular scenario (here for model matching and traceability)4.
Trace pre-condition. The trace pre-condition of a P-pattern is the constraint
made of the source and target parts of the main constraint Q, together with the
4 The formalization can be found at: http://astreo.ii.uam.es/∼jlara/PAMOMO.pdf

5

parameter C and the formula. For example, the trace pre-condition of pattern
ClassTable is made of objects c, t and the complete formula, while for pattern
AttributeColumn it is made of objects c, t, a, co, m and the formula.
Trace enabledness. A P-pattern is trace-enabled if we find an occurrence of its
trace pre-condition and none of its negative pre-conditions. In Fig. 1, ClassTable
is enabled in the left constraint at objects {c0, t}, but not at objects {c1, t} as
the latter belongs to an occurrence of the negative pre-condition (i.e. c1 has a
parent). AttributeColumn is not trace-enabled because the table has no column.
Matched models. Two models are matched according to a specification, if each
trace-enabled occurrence of every P-pattern in the specification belongs to an
occurrence of the pattern’s main constraint. This demands all suitable combi-
nations of source and target elements to be traced. For N-patterns, we simply
forbid their occurrence. The models to the left of Fig. 1 are correctly matched
as the trace-enabled occurrence {c0, t} of pattern ClassTable is included in an
occurrence of the main constraint (i.e. a mapping CT exists).
Traced models. Two models are traced according to a specification if, for each
trace-enabled occurrence of every P-pattern in the specification, the source part
is traced with some (in contrast to all) suitable occurrence of the target, or the
other way round. Thus, model traceability does not require all combinations of
source and target elements to be traced. Here, the rationale for the trace model is
that it could have been generated from a forward or a backward transformation,
hence we also demand a “uniform” distribution of traces. This means that it is
not allowed to have one occurrence of the source to be traced twice, whereas
another occurrence that could have been related with the same target elements
as the first one is not traced at all (and similarly for the target). As an example,
the models in Fig. 1 are correctly traced.

Fig. 2 illustrates the difference between model matching and model traceabil-
ity, through an example of two models having two classes and two tables, equally
named. Model matching gives a unique minimal solution (left), whereas trace-
ability gives two minimal solutions (right). Connecting the two classes to the
same table is not a valid traceability solution, as there would be an unconnected
table, but enough classes in the source to be connected with. Whereas the model
matching solution cannot be generated by forward or backward transformation
(it contains redundant traces), any of the traceability solutions can. In fact, the
matching solution is the union of all traceability solutions. While two matched
models are always correctly traced, the converse is not true in general.

4 Compilation of Patterns into OCL/EOL

We compile patterns into OCL/EOL to cover check-only and operational sce-
narios for model matching and traceability. In particular, we use OCL to check
whether two models are correctly matched or traced, and EOL [8] to solve oper-
ational scenarios (i.e. to create a trace model from scratch so that two unrelated
models become correctly matched or traced, and to recover the consistency of
existing trace models by deleting incorrect traces and creating missing ones).

6

c0: Class

name=X

persistent=P1

t0: Table

name=Z

1:CT

P1=P2=true X=Y=‘person’

c1: Class

name=Y

persistent=P2

t1: Table

name=U4:CT

Z=U=‘Tperson’

2:CT

3:CT

Matching (one solution)

c0: Class

name=X

persistent=P1

t0: Table

name=Z

1:CT

c1: Class

name=Y

persistent=P2

t1: Table

name=U4:CT

Traceability (two solutions)

c0: Class

name=X

persistent=P1

t0: Table

name=Z

c1: Class

name=Y

persistent=P2

t1: Table

name=U

2:CT

3:CT

P1=P2=true X=Y=‘person’ Z=U=‘Tperson’ P1=P2=true X=Y=‘person’ Z=U=‘Tperson’

Fig. 2. Model matching vs. model traceability.

4.1 Check-only scenario: Satisfaction of patterns by models

Here the aim is, given two models and their traces, to identify whether the mod-
els are matched or traced according to a pattern specification. Thus, the OCL
code synthesized from the specification has to verify that each occurrence of the
trace-precondition of every P-pattern actually satisfies the pattern, and that the
models do not contain occurrences of the N-patterns. In this scenario, the only
difference between matching and traceability is that the former demands univer-
sal existence of traces (i.e. for all combinations of source and target elements)
whereas traceability demands them existentially (i.e. for at least one of them if
they involve the same source or target elements).

Thus, for each P-pattern p, we generate an operation sat p that (a) seeks
all trace-enabled occurrences of p and (b) checks if they are related by traces
as specified by p. For (a), the operation iterates on the nodes of the trace pre-
condition and checks if: (i) all node’s edges in the trace pre-condition can be
mapped to links in the models; (ii) all mappings in the trace pre-condition can
be mapped to traces in the models; (iii) the attribute conditions evaluate to
true when symbols are replaced by concrete attribute values from the models;
and (iv) there are no occurrences of the negative pre-conditions in the models.
For (b), we try to extend each occurrence of the trace pre-condition found in
(a) to the full main constraint. Next we show the compilation of a P-pattern
for model matching using the OCL-like syntax of EOL, which e.g. uses keyword
operation instead of query:
operation sat p.name() : Boolean {
return
-- (a) for each occurrence of the trace-enabling conditions...
patt matching forall〈n1〉 implies . . .
patt matching forall〈ni〉

}
∀ni ∈ nodesp

pre

checkatt p.name(n1, . . . , ni)
-- ... that does not violate any negative pre-condition,

and not patt matching exists〈mi1〉 and . . .
patt matching exists〈mik〉

checkatt Ci.name(n1, . . . , ni, mi1, . . . , mik)




∀Ci ∈ Np

pre,
∀mik ∈ nodesp

Ci

-- (b) check if it satisfies the main constraint
implies
patt matching exists〈ni+1〉 and . . .
patt matching exists〈nj〉

}
∀nj ∈ nodesp

post

7

checkatt p.name(n1, . . . , ni, ni+1, . . . , nj);
}

where p.name and Ci.name are the names of the pattern and its negative pre-
condition Ci; patt matching forall<ni> and patt matching exists<ni> are
replaced by expressions seeking all or one occurrence of node ni satisfying (i-ii)
and the ground terms in the formula assigning a concrete value to its attributes;
checkatt X are operations that evaluate the non-ground terms of the formula
in X; nodesp

pre = {ni|ni ∈ V S
Q ∪ V T

Q ∪ q(V C
C)} are the nodes in the pattern

trace pre-condition, where V X
Y contains the graph X’s nodes of Y (e.g. V S

Q

contains the nodes of the source graph S in the main constraint Q) and q(V C
C)

contains the correspondence nodes in Q which are parameter of the pattern;
nodesp

post = {nj |nj ∈ V C
Q \q(V C

C)} are the traces created by the pattern; Np
Pre =

{Q ci→ Ci} are the pattern negative pre-conditions; and nodesp
Ci

= {mik|mik ∈
(V S

Ci
∪V T

Ci
∪V C

Ci
)\ci(nodesp

pre)} are the nodes in the negative pre-condition that
are not in the trace pre-condition.

In the operation, patt matching forall<ni> collects all nodes in the model
with same type, edges and attribute values as node ni in the pattern. To improve
performance, these checkings are evaluated before entering an inner loop. Thus,
the code that replaces patt matching forall<ni> is the following:
ni.type.allInstances().forAll(ni |

ni.nav(nj) = nj and } ∀e ∈ edgesp
pre|src(e) = ni, tar(e) = nj , j ≤ i

nk.nav(ni) = ni and } ∀e ∈ edgesp
pre|src(e) = nk, tar(e) = ni, k ≤ i

ni.nav(nl) = nl and }ni ∈ V M
C , ∀nl ∈ nodesp

pre|cs(ni) = nl or ct(ni) = nl, l ≤ i
nm.nav(ni) = ni and } ∀nm ∈ V M

C |cs(nm) = ni or ct(nm) = ni, m ≤ i
ni.att = value and } ∀ condition v = value, where v stores attribute att of ni

where ni.type is replaced by ni’s type; edgesp
pre = {e|e ∈ ES

Q∪ET
Q∪ q(EC

C)} are
the edges in the trace pre-condition; and nav(nj) in the expression ni.nav(nj)
becomes the name of the association from node ni to nj . The generated pattern
matching expressions are nested in operation sat p, hence we implicitly order the
nodes ni. For efficiency we put first those nodes with higher number of links and
ground constraints for their attributes. The code for patt matching exists<ni>
is similar but using exists instead of forAll.

After collecting the nodes, operation checkatt X checks if they satisfy the
non-ground part of the formula in X. The operation is generated for the trace-
enabling condition of the pattern, its main constraint (both with same name but
different parameters), and each negative pre-condition Ci. As an example, we
show the operation generated for the trace-enabling condition:
operation checkatt p.name(n1 : n1.type, . . . , ni : ni.type) : Boolean {

var v := ni.att; } ∀ variable v storing an attribute of ni ∈ nodesp
pre

return αtrace precondition;
}

The operation sat p for model traceability is similar, except that the expres-
sion that controls condition (b) (satisfaction of main constraint Q) just checks if
the matched source elements satisfy Q with any combination of target elements,
or if the target elements satisfy Q with any combination of the source ones.

8

Finally, from each N-pattern we generate one operation which checks the
absence of occurrences of the N-pattern in the model. The operations are the
same for model matching and traceability.
Example. Below we show part of the OCL code generated from ClassTable in
Fig. 1, for the check-only model matching scenario:

operation sat_ClassTable() : Boolean {

return Class.allInstances().forAll(c | c.persistent=true implies

Table.allInstances().forAll(t | checkatt_ClassTable(c, t)

and not Class.allInstances().exists(p |

c.parent.includes(p) and checkatt_ClassTable_parent(c, p))

implies CT.allInstances().exists(m |

m.source=c and m.target=t and checkatt_ClassTable(c, t, m))));

}

operation checkatt_ClassTable(c:Class, t:Table) : Boolean {

var X:=c.name; var Y:=t.name; return Y=’T’+X;

}

4.2 First operational scenario: Creation of correct traces

In operational scenarios we are given two models which can be related or not, and
the aim is creating missing traces and deleting incorrect ones. For the former,
from each P-pattern p we generate an EOL operation rule p that (a) looks for a
trace-enabled occurrence of the pattern and (b) applies the pattern to it (i.e. it
creates the traces according to the pattern). Trace-enabledness is checked as in
the check-only scenario, but includes two additional conditions: (v) the pattern
must not have been applied to the same objects before (termination condition),
and (vi) the result of applying the pattern must not violate any N-pattern in
the specification.
Termination condition (v). In model matching we must ensure that the el-
ements in the trace-enabled occurrence of a pattern are not related as specified
by the pattern. For this purpose we generate an extra condition which is equal
to that generated in the check-only scenario to check satisfaction of the main
constraint (three last lines in the body of operation sat p.name), but preceded
by not instead of implies. This avoids enforcing a pattern twice for the same
objects. In traceability we generate two stronger conditions checking that the
source structure is not related to some occurrence of the target one, and vice-
versa.
N-patterns (vi). In order to ensure that applying a P-pattern does not create
occurrences of N-patterns, we encapsulate the creation actions into transactions
which are rolled back if their execution results in an N-pattern violation. For
efficiency reasons, after applying a P-pattern only those N-patterns which include
elements created by the P-pattern are checked.
Creation of traces. If a set of objects satisfy all trace-enabling conditions, then
they are passed as parameters to an operation apply p which creates the nodes,
traces and edges that appear in the correspondence graph of Q, but not in the
positive pre-condition.

9

operation apply p.name(n1 : n1.type, . . . , ni : ni.type) : Boolean {
-- creation of new nodes
var v.id : new v.type;

} ∀v ∈ nodesp
post

-- creation of new edges
nk.nav(nl) := nl;

} ∀e ∈ edgesp
post, with src(e) = nk, tar(e) = nl

-- creation of new correspondence functions
var nc.nav(ns) := ns;
var nc.nav(nt) := nt;

} ∀nc ∈ V M
Q ∩ nodesp

post, with ns ∈ V S
Q ,

nt ∈ V T
Q , cs(nc) = ns, ct(nc) = nt

return true;
}

where v.id is replaced by a unique identifier for node v.
Example. Part of the generated matching code for pattern ClassTable is:

operation rule_ClassTable() : Boolean {

return Class.allInstances().exists(c | c.persistent=true and

Table.allInstances().exists(t | checkatt_ClassTable(c, t)

and not Class.allInstances().exists(p |

c.parent.includes(p) and checkatt_ClassTable_parent(c, p))

and not CT.allInstances().exists(m |

m.source=c and m.target=t and checkatt_ClassTable(c, t, m))

and apply_ClassTable(c, t))); }

operation apply_ClassTable(c:Class, t:Table) : Boolean {

var m:new CT; m.source:=c; m.target:=t; return true; }

4.3 Second operational scenario: Deletion of incorrect traces

The previous operational mechanism ensures that the needed traces exist, but
does not guarantee the absence of incorrect traces. This is so because it iterates
on occurrences of the source and target nodes creating valid traces, but does not
iterate on the occurrences of traces checking their correctness. Hence, two related
models may have incorrect traces (apart from the correct ones) if somebody
manually added an incorrect trace between them, or if the models evolved so
that some traces became incorrect. Here we make a closed world assumption:
only those traces that are correct according to the specification should exist.

In order to achieve this, we generate additional EOL operations that detect
and delete incorrect traces. The operations check that, whenever there is a trace
in the correspondence model, it is because some P-pattern demands its presence
and it does not belong to an occurrence of any N-pattern.

We generate two types of operations, enforcing two levels of trace correctness.
The first operation type is called relaxed and it does not take into account the
negative pre-condition of patterns, since a pattern with negative pre-conditions
specifies what should happen if the negative pre-conditions are not found but not
if they are found. However the synthesized EOL code for trace creation does not
enforce a pattern if its negative pre-conditions are found; therefore the second
operation type checks that only those traces that our previous compilation is
able to create actually exist. This second operation type is called strict. For
space constraints we only show the compilation of the first operation.

10

operation relaxed 1 t.type (t : t.type) {
if (not patt matching exists〈n1〉 and . . .

patt matching exists〈ni〉
checkatt p.name(n1, . . . , ni) . . .)




∀p ∈ enablingt,
∀ni ∈ nodesp

pre ∪ nodesp
post \ t

{ t.type.allInstances().remove(t); -- remove correspondence object
delete t; }

}
where enablingt = {p|p is a P-pattern,∃n ∈ nodesp

post with n.type = t} is the
set of P-patterns in the specification that create traces of type t.
Example. The first type of relaxed operation generated for trace CT is:

operation relaxed_1_CT(mt:CT) {

if (not Class.allInstances().exists(c |

c.persistent=true and mt.source=c and

Table.allInstances().exists(t |

mt.target=t and checkatt_ClassTable(c, t, mt))))

{ CT.allInstances().remove(mt); delete mt; }

}

The generated EOL code for the operational scenarios works incrementally.
Thus, given source and target models connected through an arbitrary trace
model, the program invokes the deleting operations to delete the incorrect traces,
and then the creation ones to reestablish trace correctness.

5 Tool Support

We have developed an Eclipse tool, called Pamomo (http://astreo.ii.uam.es/
∼jlara/pamomo/main.htm), to build pattern specifications. It supports two modes
of execution: off-line and on-line. In the former the designer can validate a spec-
ification or generate different files with EOL code to perform model matching,
traceability, relaxed/strict deletion, or evaluate if a specification is satisfied by
models. In this execution mode the specification is compiled once and the result
can be used afterwards for any incoming models, or be integrated in other tools
and model driven tasks. In the on-line mode the designer selects the incom-
ing source, correspondence and target models and the specification is applied to
them for the chosen scenario. A ModeLink [9] file is generated showing the result
in an Eclipse three-pane window, the one in the middle containing the generated
trace model (see e.g. Fig. 6). The user can manipulate the result in order to e.g.
annotate traces with additional information.

Pamomo also supports analysis of meta-model coverage, identifying which
types are included in each positive/negative pre-condition, main constraint or
N-pattern. This has different interpretations depending on the scenario. For ex-
ample, a P-pattern that defines as parameter a trace type that is not created by
any other P-pattern in the specification may be useless.

Fig. 3 shows the Pamomo meta-model used to define pattern specifications.
It shows that Specifications are made of positive and negative patterns, both sub-
classes of Pattern. Patterns have a main constraint (role constraint), an optional

11

positive pre-condition, and a set of negative pre-conditions, all modelled through
class ConstraintTripleGraph. This class is made of three graphs with roles source,
target and correspondence. The corrrespondence graph is a special kind of graph
which may contain mappings that point to source and target objects.

Specification

−name:String

−sourceMetamodel:String

−correspondenceMetamodel:String

−targetMetamodel:String

Pattern

−name:String

patterns+

1..*

NegativePattern PositivePattern

ConstraintTripleGraph

−name:String

−attributeConditions:String [*]

constraint+

positivePrecondition+

0..1

negativePreconditions+

*

CorrespondenceGraph Graph

correspondenceGraph+ targetGraph+sourceGraph+

Mapping Object

−identifier:String

−type:String

mappings+*
objects+*

Feature

−name:String
source+

target+

features+

*

Attribute

−variable:String

−value:String

Reference*refersTo+

Fig. 3. Meta-model of Pamomo.

On top of this meta-model we have built a textual concrete syntax editor
for Pamomo with XText (http://eclipse.org/Xtext). This editor takes a tex-
tual representation of a specification like the one shown to the right of Fig. 5,
and parses it to our model-based internal representation. Then, the code gener-
ators we have built synthesize EOL files for the chosen scenario, following the
algorithms of previous section.

6 Example

In the literature, model matching has been mainly used to compare instances of
the same meta-model. Here we show that it can be used for very different pur-
poses, in particular to implement a GoF design pattern [5] discovery mechanism.
On the one hand we have Ecore models where we want to identify instances of
design patterns, and on the other hand a pattern design vocabulary with the
definition of different design patterns and the roles participating in them. Fig. 4
shows part of the meta-model triple for this situation, which in the real case
contains the complete Ecore meta-model to the left, and additional role special-
izations (apart from those for classes, operations and references) to the right.
The correspondence meta-model binds roles to UML elements and groups the
bindings of each pattern instance through class Instance.

The meta-model permits annotating Ecore models with design pattern roles.
Besides, we define a Pamomo specification to automate the identification of
design patterns in the Ecore models and annotate their elements with the roles
they play in the design patterns. For instance, Fig. 5 shows the Pamomo pattern
for the Proxy design pattern. The pattern identifies occurrences of the proxy, and

12

DesignPattern

−name:String

−type:String

−intent:String

−motivation:String

−consequence:String

−applicability:String

PatternRole

−name:String participants+

1..*

ClassRole

OperationRole

Instance

ClassBind

OpBind

*

*

EClass

EOperation

Ecore Design Pattern Vocabulary

*

*
relation

eSuperTypes+*

*

EReference RefBind ReferenceRole

*

Fig. 4. Meta-model to annotate Ecore models with roles in a design pattern vocabulary.

requires that the operations in Subject, RealSubject and Proxy have the same
name, modelled with variables n1, n2 and n3, all having the same value (see
condition). The pattern may define additional conditions, e.g. that the proxy
defines one public operation for each public operation in the subject, and it
does not define further public operations apart from these. We could also define
another pattern to annotate all operations in a proxy instance, hence allowing
variability on the number of operations that the Proxy wraps.

eRefer

c1:EClass

Abstract = true

c3:EClassc2:EClass

r:EReference

Name = n2

o2:EOperation

Name = n3

o3:EOperation

n1 = n3
n1 = n2

Name = n1

o1:EOperation

t1:ClassBind

t3:ClassBind

t2:ClassBind

i:Instance
name = ’Subject’

r1:ClassRole

name =
 ’RealSubject’

r2:ClassRole

name = ’Proxy’

r3:ClassRole

name = ’Proxy’

dp:DesignPattern

eSuperTypes

eO
pe

ra
tio

ns

eO
pe

ra
tio

ns

eSuperTypes

eType

eOperations

Design Pattern Proxy

ences

Fig. 5. Specification of the Proxy design pattern.

With our approach we formalize the structure of design patterns as an inter-
modelling specification. If we apply this specification to an EMF model and a
design pattern vocabulary model (instances of the meta-models in Fig. 4), we can
identify instances of the patterns in the Ecore models, by using the mechanism
for creation of traces in model matching. Fig. 6 shows the result provided by our
tool in a simple example. The process identified one instance of the proxy in the
model to the left. By selecting the created traces in the middle we can see the
particular role assigned to each element in the EMF model. In the figure, the
first trace binds role Subject to class Graphic in a proxy instance.

13

Fig. 6. Model matching result: EMF model, trace model, design pattern vocabulary.

The mechanism for trace manipulation is incremental: if we modify the EMF
model after having identified design pattern instances, we can apply our oper-
ational mechanisms for deletion of incorrect traces (in case some instance was
destroyed), as well as to identify new instances of patterns. Moreover, we plan
to use Pamomo for Ecore model completion w.r.t. design patterns by allowing
users to manually annotate objects in the EMF model (i.e. assign them a role
in the pattern vocabulary). We could then apply a backward transformation to
create Ecore objects to obtain a correct instance of the design pattern.

7 Comparison with Related Work

Our long-term goal is providing a formal yet practical approach to integrate
inter-modelling tasks. Whereas in [11] the focus is on representing sets of related
models through macromodels (theoretically based on institutions), we provide a
declarative, bidirectional language to describe inter-model relations, as well as a
tool to enforce such relations. The goal in [2] is developing model management
operators for schema mapping and data integration, while in [13] the authors
use mega-models to distinguish between high- and low-level traceability models.

Among the existing traceability approaches, the Atlas Model Weaver (AMW)
[1] supports the creation of weaving models (similar to our correspondence meta-
model) establishing links between meta-model elements. This makes AMW us-
able only when the source and target meta-models are very similar, and just
derives straight-forward source-to-target transformations. The specification of
complex conditions enabling the creation of traces, like e.g. the one in Fig. 5,
requires in addition specifying conditions at the model level by means of patterns
of source and target instances, not supported in AMW. The work in [3] is based
on a traceability meta-model in which OCL-like consistency conditions can be
given. Note that both approaches are specific to traceability and are not for-
mally founded, and therefore cannot be analysed. Finally, QVT-Relations [10]
(QVT-R) can be used for model traceability by setting all domains as check-only.
However, even in check-only mode, specifications have a direction and relations
have to be interpreted either source-to-target or target-to-source.

Regarding model matching, existing approaches permit comparing models
expressed in the same language, typically UML [14], and the customization of
the comparisons is usually limited. However the advent of Domain Specific Lan-
guages makes evident the need for comparing heterogeneous models. In this

14

respect, ECL is a dedicated language for model comparison [7] which supports
heterogeneous models. However its rules are restricted to compare one source el-
ement with one target element, hence expressing a pattern like the one in Fig. 5
would require coding by hand the pattern-matching code that we generate auto-
matically. Moreover, to the best of our knowledge, no model matching approach
provides a formal foundation enabling the analysis of specifications. Regarding
limitations, the advantages of formality with respect to analysis capabilities come
to the price of less expressiveness than other low-level operational languages [7,
8] (e.g. we do not provide primitives for creating elements in arbitrary loops).

Although TGGs can be used for model matching [12], their compilation into
operational rules does not produce application conditions, and hence extra con-
trol mechanisms have to be designed ad-hoc. Using TGGs for check-only sce-
narios would require model parsing, and lacks an equivalent to our N-patterns.
Regarding QVT-R, its semantics is not suitable for model matching because
it is not possible to consider all domains at the same time, as our concept of
trace-enabledness does. Moreover, the lack of an explicit concept of trace makes
difficult its use for model matching.

Table 6 summarises the comparison of Pamomo with the mentioned ap-
proaches. The symbols

√
and − indicate whether they support a given feature

or not. The table shows whether the approaches can be used for traceability or
matching (columns 2 and 3), if they admit an explicit trace meta-model (column
4), have a formal foundation (column 5), have a declarative style (column 6),
admit non-constructive primitives similar to our N-patterns (column 7), whether
the traces are defined at the meta-model level or if it is possible to define addi-
tional constraints at the model level as rules or patterns (mm vs. m, column 8),
and if they permit relating heterogeneous languages (column 9). As it is appar-
ent, Pamomo is the only approach that supports both matching and traceability,
under a unified formal semantics, making it suitable for inter-modelling tasks.

Table 6. Comparison of different approaches for model traceability and matching.

Traceab. Matching Trace MM Formal Declarative Non-constructive m* Heterogeneous

Pamomo
√ √ √ √ √ √

m
√

AMW − − √ − √ − mm
√

ECL − √ − − − − m
√

UMLDiff − √ − − − − − −
QVT-R

√ − − − √ − m
√

TGGs − √ √ √ √ − m
√

8 Conclusions and Future Work

This paper has shown the use of our pattern-based approach to specify model
matching and model traceability conditions. For these scenarios, patterns can
be used in check-only mode to test satisfiability, and in operational (incremen-
tal) mode to manipulate the trace model. We have shown realizations of these

15

two activities using OCL and EOL respectively. Our patterns provide a unified,
formal approach to inter-modelling, as pattern specifications can also be used to
solve M2M transformation scenarios [6]. We have also introduced Pamomo, an
EMF-based tool that allows editing pattern-specifications, their static analysis,
and their compilation into EOL for model matching and traceability.

On the practical side, we are working on optimizing the pattern matching al-
gorithms, as well as in extending Pamomo to solve M2M transformation scenar-
ios. For this purpose we need to combine EOL with constraint solving techniques.
On the theoretical side, we are currently working on new analysis techniques and
on extending the expressivity of patterns.
Acknowledgements. Work funded by the Spanish Ministry of Science (project
TIN2008-02081 and grants JC2009-00015, PR2009-0019), the R&D programme
of the Madrid Region (project S2009/TIC-1650), the European Commission’s
7th Framework programme (grant #248864 (MADES)), and the Engineering
and Physical Sciences Research Council (EPSRC) (grant EP/E034853/1).

References

1. AMW. ATLAS Model Weaver. http://wiki.eclipse.org/AMW.
2. P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-

pings. In SIGMOD, pages 1–12. ACM, 2007.
3. N. Drivalos, D. Kolovos, R. Paige, and K. Fernandes. Engineering a DSL for

software traceability. In SLE08, volume 5452 of LNCS, pages 151–167. Springer,
2008.

4. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. Springer-Verlag, 2006.

5. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

6. E. Guerra, J. de Lara, and F. Orejas. Pattern-based model-to-model transforma-
tion: Handling attribute conditions. In ICMT’09, volume 5563 of LNCS, pages
83–99, 2009.

7. D. S. Kolovos. Establishing correspondences between models with the Epsilon
Comparison Language. In ECMDA-FA’09, volume 5562 of LNCS, pages 146–157.
Springer, 2009.

8. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL).
In ECMDA-FA’06, volume 4066 of LNCS, pages 128–142. Springer, 2006.

9. Modelink. http://www.eclipse.org/gmt/epsilon/doc/modelink/.
10. QVT. http://www.omg.org/docs/ptc/05-11-01.pdf.
11. R. Salay, J. Mylopoulos, and S. Easterbrook. Using macromodels to manage col-

lections of related models. In CAiSE’09, volume 5565 of LNCS, pages 141–155.
Springer, 2009.

12. A. Schürr. Specification of graph translators with triple graph grammars. In
WG’94, volume 903 of LNCS, pages 151–163. Springer, 1994.

13. A. Seibel, S. Neumann, and H. Giese. Dynamic hierarchical mega models: com-
prehensive traceability and its efficient maintenance. SOSYM, in press, 2010.

14. Z. Xing and E. Stroulia. UMLDiff: an algorithm for object oriented design differ-
encing. In ASE’05, pages 54–65. ACM, 2005.

