
DSL-Maps: From Requirements to Design of
Domain-Specific Languages

Ana Pescador, Juan de Lara
Computer Science Department

Modelling and Software Engineering Research Group
http://miso.es

Universidad Autónoma de Madrid (Spain)

ABSTRACT
Domain-Specific Languages (DSLs) are central to Model-
Driven Engineering, where they are used for creating models
for particular domains. However, current research and tools
for building DSLs focus on the design and implementation
aspects of the DSL, while the requirements analysis phase,
and its automated transition to design is largely neglected.

In order to alleviate this situation, we propose DSL-maps,
a notation inspired by mind-maps, to represent requirements
for DSLs. The notation is supported by a tool, which helps
in the automated transition into an initial meta-model de-
sign, using a customizable transformation and recommenda-
tions from a catalogue of meta-model design patterns.

CCS Concepts
•Softw. and its engineering→ System modeling lan-
guages; Designing software; Design languages;

Keywords
Domain Specific Languages; Model-Driven Engineering; Do-
main Analysis; Meta-Modelling Patterns

1. INTRODUCTION
Model-Driven Engineering (MDE) promotes models as the

principal assets during the development process. Models in
MDE are frequently described using DSLs containing pow-
erful primitives for particular domains [7]. Therefore, a re-
curring activity in MDE is the development of DSLs and
their modelling environments [16].

In MDE, DSLs are constructed using a meta-model de-
scribing its abstract syntax. Many meta-modelling tools and
DSL workbenches have emerged along the years [7, 8, 12,
13]. In most cases, their entry point is the description of a
meta-model. However, a meta-model is already a detailed
design of the DSL, because it contains a concrete realization
of the domain concepts. Instead, notations supporting the
requirements analysis phase, documenting needs of the do-
main, promoting discussion among stakeholders, and help-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE’16 September 3–7, 2016, Singapore
c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

ing in a disciplined transition to design, would complement
current meta-modelling tools, as they largely neglect this
phase.

In order to alleviate this situation, we propose DSL-maps,
a notation to represent requirements for DSLs, and help in
their disciplined transition into a design meta-model. The
goal of DSL-maps is twofold. On the one hand, to provide a
flexible, simple notation promoting discussion among stake-
holders. For this reason, the notation is inspired by mind-
maps [4], a popular, flexible diagrammatic notation, which
is sometimes used by agile methodologies for requirements
elicitation [9]. Second, to provide automatic support for
the transition into a meta-model design. For this purpose,
the approach relies on a catalogue of meta-model design
patterns, and a pattern recommender that suggests suit-
able patterns from a lightweight natural language analysis
of the requirements. The initial meta-model design is pro-
duced by a customizable transformation that employs the
recommended patterns. We provide tool support for DSL-
maps within Eclipse, integrated with DSL-tao, a tool for the
pattern-based development of DSLs [12]. The integrated
tools are available at http://miso.es/tools/DSLtao.html.

The rest of the paper is organized as follows. Section 2
analyses approaches to represent DSL requirements. Sec-
tion 3 describes the DSL-maps notation. Section 4 explains
how requirements are transformed into a meta-model. Sec-
tion 5 shows tool support and a preliminary evaluation and
Section 6 concludes the paper.

2. DSL REQUIREMENTS APPROACHES
How are requirements for DSLs represented? While some

notations like Feature Oriented Domain Analysis (FODA) [6]
have been proposed, the most common practice is to jump
into a meta-model skipping an explicit representation of the
requirements [10]. One cause of this situation is that build-
ing the meta-model is the starting point of most DSL con-
struction tools.

In [10] three different types of analysis methods for DSLs
are suggested: extract from code, informal and formal. In
the first case, the DSL is created by generalizing an ex-
isting legacy system. In the second (and most common
[10]) the domain is analysed informally. In the third case,
some methodology, probably adapted from software analysis
is used. The authors suggest using FODA, which requires
the construction of a feature model capturing commonalities
and variabilities of the domain. This way, commonalities are
built-in into the DSL, which needs to offer primitives to con-
figure the variabilities. While feature models can be a good

notation to design the variability, it lacks the flexibility and
simplicity to gather “user wish lists”, and DSL requirements
in the early stage. In other cases, specialized notations, like
syntax maps have been proposed [5]. This is a lightweight
meta-modelling notation for mapping concrete syntax icons
to abstract syntax classes. However, this notation is yet too
close to a design. Instead notations fostering brainstorming
and participation of domain experts would be more appro-
priate.

Looking at other sub-areas of software engineering, mind-
maps [4] are increasingly recognised as an enabler of col-
laboration in activities like requirements engineering, test
planning, to organize user wish lists, and to capture simple
design choices without resorting to more complex and heavy
notations like UML [3]. Mind maps have been proposed as a
lightweight notation for requirements representation in com-
bination with agile processes [9] to foster brainstorming and
collaboration. Fig. 1 shows a mind-map excerpt containing
some requirements for a library information system. The
mind-map has a root idea (labelled as “Library Info. Sys-
tems Reqs.”) from which other ideas representing increas-
ingly refined requirements stem in branches.

Figure 1: Simple mind-map (excerpt).

Mind-maps have also been employed in connection with
conceptual modelling. In [14], mind-maps are used to gather
requirements for software systems and then are automati-
cally transformed into a class diagram. However, the trans-
formation is fixed, generating an isomorphic class diagram
that replaces ideas by classes and hierarchical edges by com-
position associations. In [15] the technique was evaluated,
showing good results (in terms of time taken and quality
of results) with respect to producing a conceptual schema
without creating a mind-map first. The astah UML tool [2]
supports mind maps as an informal requirements represen-
tation technique. Then, the ideas in the mind map can be
manually dropped into digrams to create uses cases, or in-
dividual classes in a class diagram.

Altogether, we observe the need for notations to repre-
sent DSL requirements, which should be flexible enough to
be used by all stakeholders in early phases of the DSL devel-
opment. For this purpose, we will use mind-maps as a base
notation, due to its popularity and flexibility. While some
proposals use mind-maps as a simple software requirements
notation, the level of automation towards an initial design is
poor. This way, we will tailor mind-maps for DSL develop-
ment and provide advanced support for the transition into
a design.

3. DSL-MAPS
DSL-maps is a notation to visually gather and organize

requirements for DSLs, inspired by mind-maps [4]. The ob-
jective is to foster brainstorming among stakeholders in the
initial phases of DSL construction, and to organize hierar-
chically the different requirements along axes. It increases
mind-maps with the possibility to connect ideas in different

branches (to enhance flexibility and expressivity), and prof-
its from existing knowledge for meta-model construction to
automate the transition into a design (as it will be shown in
next section).

Figure 2: DSL-map diagram for the running example

As a running example we use a DSL inspired by one of
the industrial use cases of the MONDO EU project (http:
//mondo.org). The DSL aims at representing the embed-
ded software components of wind turbines. Fig. 2 shows
a DSL-map with some of the requirements. The nodes in
the diagram are called ideas. There is a root idea named
WindTurbines representing the DSL, and three further ideas
(Structure, Behaviour, Organization) stem from the root. Dif-
ferent branches represent the different aspects or concerns
to be considered in the DSL. Hence, in this DSL, the aim is
defining a structural part, via components; their behaviour,
via some state-based notation; and organize these elements
into subsystems. Branches are coloured differently to ease
distinction between different DSL concerns. Ideas are in-
dexed taking into account their distance to the root (Struc-
ture and Behaviour are indexed as 1.1 and 1.2, Component
is labelled 1.1.2). Ideas can have attached notes (shown as
yellow rectangles), which are useful to explain or empha-
size some aspect of the idea. In Figure 2, the root idea has
an attached label, shown as a yellow rectangle. Ideas may
have further descriptions in natural language (ommited in
the figure).

DSL-maps consider two types of edges: hierarchy edges
and references. The former connect an idea to its parent,
and can optionally be labelled. For example, the connection
between WindTurbines and Structure is a hierarchical edge.
Ideas and hierarchical edges form a tree structure. Hierar-
chy edges can be labelled. By default a hierarchy edge is
interpreted as a refinement of the parent idea by the chil-
dren ideas, to provide more details. In the figure, we have
labelled one hierarchy edge as “can be” to convey that some
subsystems may be control subsystems. Hence labelling can
be used to override the semantics of hierarchy edges, and will
be used by our mechanism to produce an initial meta-model
design.

Reference edges may connect ideas from different branches
of the DSL-map. These are directed edges and can also be
labelled. Fig. 2 shows four reference edges: “connect”stating
that Connectors connect Components, two“stored in”edges to
convey that components are stored in subsystems, and state
machines into control subsystems; and “describe behaviour
of”between State machine and Component. While hierarchy
edges refine an idea into more details, reference edges relate
ideas in different branches of the map. Ideas may have a
description and a list of features, represented as key-value

Component Port
ports

*

InPort OutPort

Connector
in

out

* *

1..*

0..* 0..*

0..*

@Component @Port

@InPort @OutPort

@Connector

@InPort[1]

Component pattern

Instantiated pattern
«conforms to»

1

2

WTComponent

sysId: String
cycle: short

Parameter WT

@Component WTComponent
@InPort Parameter

4

3

WTComponent

sysId: String
cycle: short

Parameter

WT 5

OutPort

Port

InPort

ports *

@Port

@Component

@InPort @OutPort @InPort

Connector
@Connector

@ports

in

out

*
*

@out

@in

Meta-model under
constr.

completion

«
o

cc
u

rr
en

ce
»

Resulting meta-model

*

in

out

* *
ports

*

Figure 4: Pattern application process.

Figure 3: Meta-model of DSL-maps

pairs (not shown in the figure). These are used to provide
further details or features of the container idea.

Fig. 3 shows the meta-model for DSL-maps with the men-
tioned concepts. References are modelled by the Link class,
while hierarchical edges are modelled by the composition ref-
erence contains, which ensures a tree-like structure for this
kind of edges. The optional subText attribute is the label of
the hierarchy edge connecting an idea to its parent. Please
note that we allow more than one root idea in a DSL-map.

4. TRANSITION TO DESIGN
In addition to provide a notation for DSL requirements,

we automate their transition into a design. The automation
is based on a repository of patterns for the development of
DSLs [12], and a customizable transformation into an initial
meta-model design draft. Our approach to using patterns
for designing DSLs is revised in Section 4.1, the recommen-
dation mechanism is described in Section 4.2 and the trans-
formation is explained in Section 4.3.

4.1 Patterns for the construction of DSLs
In [12] a pattern-based approach to develop DSLs was pre-

sented. The approach is based on the observation that some
concepts are recurring across different domains. For exam-
ple, it is common to use variants of state machines in differ-
ent domains to describe behaviour, possibly enriched with
domain-specific concepts. Similarly, many architectual lan-

guages share core concepts, like components, ports, and con-
nectors, while information definition languages (e.g., class
and entity relationship diagrams) share the notion of infor-
mation class, attribute or relation. Hence, domain patterns
represent reusable meta-model fragments, enriched with a
variability. Such variability encodes optional features and
variants of the pattern. Domain patterns can be embedded
in a meta-model by instantiating the variability, and select-
ing the elements in the meta-model to which the pattern
instance should be glued.

Fig. 4 illustrates the pattern instantiation and application
process. Step (1) shows a pattern for component based sys-
tems, which the modeller wants to incorporate to the DSL
meta-model. A pattern is just a meta-model where the el-
ements (classes, attributes, references) are called roles. A
role has an allowed variability, expressed as a (possibly un-
bounded) interval. In the figure, class role Component has
allowed variability 1..*. This means that a pattern instance
must contain at least one instance of the Component role.
Step (2) in the figure shows a possible pattern instantiation,
where every role has been instantiated once, except InPort,
which has been instantiated twice. Role instances are shown
preceded by a “@”. Please note that pattern instantiation is
performed just like meta-model instantiation.

Given a meta-model under construction (like the one in
Step (3) of the figure), we can bind the role instances of the
pattern instance to the meta-model elements, as shown in
Step (4). In this case, we bind role @Component to class
WTComponent and role @InPort to Parameter. Then, the
meta-model becomes enlarged with new elements, created
from the unbound role instances in the pattern instance (i.e.,
@Port, @Outport, etc). In the resulting meta-model, the ini-
tially bound elements and the created ones get annotated
with the role instances, to signal a pattern occurrence in the
meta-model.

Component
Language

Shallow Deep

Figure 5: Variants.

The cardinality of pattern
roles permits expressing fine
grained variability for the
pattern. In addition, we sup-
port another mechanism to
select among a more coarse
grained variability. This se-
lection is made through a feature model, as shown in Fig. 5.
This feature model contains just two options: shallow and
deep. While the shallow variant is the one shown in Fig. 4
(1), the deep one accounts for the need to both define and

instantiate components, and includes elements like compo-
nent types and instances, connector types and instances, and
port types and instances.

The pattern catalogue contains domain patterns for state
machines, workflows, expression languages, query languages
and information definition languages, among others. The
catalogue is extensible and users can add their own pat-
terns. In addition to domain patterns, in [12] other kinds
of patterns were identified, all with the same structure as a
domain pattern. Design patterns account for meta-model
design decisions, like different alternatives to represent a
tree. Concrete Syntax patterns describe the visualization
of meta-model elements, like in form of a graph, or a table.
Infrastructure patterns configure the functionality of the fi-
nal modelling environment, like filtering facilities, or model
fragmentation mechanisms. Infrastructure patterns are real-
ized via code generation services, which produce functional
modules for the modelling environment, and are configured
via the pattern occurrences. For example, in the case of the
filtering, the pattern occurrence contains the classes to filter.

4.2 Pattern recommendation
In order to facilitate pattern search (and to profit from a

pattern recommender), we have extended the pattern def-
initions with a lightweight concept ontology. Hence, each
pattern is related to a set of concepts, which can be con-
nected to other concepts by general/specific relations. An
small excerpt of the ontology is shown in Fig. 6. It shows
a few concepts (e.g., structure, architecture, semantics) and
some of their general/specific relations (shown by solid ar-
rows). For example structure is a more general concept than
module. In addition, the figure shows how two patterns are
related to some of these concepts. If a pattern is related to
some concept, indirectly, it is also related to all more gen-
eral concepts. This way, the component pattern is related to
module and architecture, and hence indirectly to structure.

behaviour

semantics

statechart

structure

module architecture

Component
pattern

dynamic execution

Statemachine
pattern

Legend:

pattern-concept

general

pattern

concept

…

… …

Figure 6: Ontology for recommendation (extract).

We profit from this ontology to recommend patterns to
use in the meta-model given the ideas in a DSL-map. The
purpose is that, by recommending patterns during the DSL-
map construction, we will be able to automate the transition
from the DSL-map into an initial meta-model draft. The rec-
ommendation is performed by a lightweight natural language
analysis of the idea names and associated description, and a
comparison with the concepts related (directly or indirectly)
with the patterns, as well as their role names.

Hence, given an idea we want to obtain a recommenda-
tion for, we tokenize its title and description, as well as the
names of the sub-ideas. Tokenization is made by consider-
ing camel-case, and in case of “-” separated words, we use as
tokens both the separate and compound word. Then, words
are normalized, converting them to singular using a lexi-
cal inflector. Normalized tokens are compared with: (a) the
pattern names and role names within them, and (b) with the
ontology terms associated with the patterns, where we check

both the directly associated terms (e.g., statechart) and the
more general terms. Word coincidence is checked directly,
and looking for synonyms, obtained from Wordnet [11], a
lexicon database for the English language. A score is cal-
culated for each pattern variant according to the number
of coincidences, where coincidences in pattern names score
higher than in roles or associated tags. Similarly, coinci-
dences in idea names score higher than in idea descriptions,
or sub-idea names. The score is used to produce a ranking
of suitable pattern candidates. Then, the user is in charge of
choosing the different variants of the suggested pattern(s),
or to discard the suggestions. Once a pattern is selected,
it becomes attached to the idea. In addition, ideas up and
down in the DSL-map hierarchy are inspected, so that they
may become attached to roles of the selected pattern.

As an example, Fig. 7 shows the result of the recommen-
dation, when the recommender is invoked over the Structure
idea. In this case, the recommender lists first the Com-
ponent pattern in its deep variety, followed by the shallow
variant. The reasons is that the deep variant has more co-
incidence of role names, because the pattern meta-model
has role classes to account both for types and instances (like
Component/ComponentInstance, Port/ PortInstance, etc). Se-
lecting the shallow variant, the recommender binds the Struc-
ture idea with the pattern variant, while it binds sub-ideas to
pattern roles: Connectors to Connector, Components to Com-
ponent and Ports to Port. The binding of roles to ideas is
performed by tokenizing idea names, convertion to singular,
and checking name or synonym matches.

Structure

1.1

Components

1.1.1

Connectors

1.1.2

Ports

1.1.1.1

connect

Component Port
ports

*

InPort OutPort

Connector

in out

*

*

Components pattern (shallow)

…

Figure 7: Recommendation for the DSL structural part.

4.3 Synthesizing an initial meta-model
Once a first version of the DSL-map has ben constructed,

it can be transformed into an initial meta-model draft. This
transformation takes into account the recommended pat-
terns, uses heuristics that follow accepted quality guide-
lines for conceptual schemas [1] and is configurable in sev-
eral steps (in the implementation these options are selected
through a wizard). The transformation proceeds as follows:

1. A meta-model package is created for the DSL-map.

2. A class is created for each idea, and stored into the pack-
age. By default, class names are created in singular form.

3. By default, the transformation produces composition ref-
erences between an idea and its sub-ideas. However, this
may change depending on the label of the hierarchy edge.
If the edge is tagged as “may-be”, “can-be”, or “is-a”, then
an inheritance relation is produced instead As an heuris-
tic, an idea whose children ideas are all related by “may-
be” is transformed into an abstract class (with all children

ideas inheriting from it). As an exception, the generated
class is made concrete if it only has one subclass. This is
in line with accepted conceptual schema quality issues [1].

4. If a hierarchical edge in the DSL-map is translated into a
composition reference in the meta-model, some heuristics
can be applied. First, there is the option to generate
bidirectional references between the created parent and
children classes. Regarding the cardinality of the created
compositions, by default it is set to 1..1. However, if
the DSL-map edge is labelled “can”, “may”, “may have”
or “can have”, the lower bound is set to 0. If the target
idea is a plural name, the upper bound is set to *. Plural
names are detected checking terminations and a catalogue
of irregular forms.

Organization

1.3

Subsystems

1.3.1

Control

Subsystems

1.3.1.1

Organization

subsystems 1..*

can be

Subsystem

Control
Subsystem

Figure 8: Transforming hier-
archy edges.

Fig. 8 shows an ex-
cerpt of the transfor-
mation of the running
example. Class names
are generated in singu-
lar form. The hier-
archical edge between
1.3 and 1.3.1 is trans-
formed into a compo-
sition, while an inheri-
tance is created for the
other edge. Class Subsystem has only one child, so it remains
concrete. The name of the created reference (subsystems) is
the name of the sub-idea (converted into lower-case). Its
cardinality is set to 1..* due to its plural name.

4. Relations between ideas in the DSL-map are translated
into references. The heuristics for setting the cardinalities
are the same as for hierarchy edges.

5. Key-value pairs attached to ideas are translated into class
attributes. The type of the attribute is induced from the
value of the feature. Hence, if the value is an integer,
then the type is “int”; if a floating point number, then
the type is “float”, etc. Alternatively, there is the option
to create a class for each feature.

6. Notes are transformed into meta-model annotations.

7. If some idea has a recommended pattern attached, the se-
lected variant is produced in the generated meta-model.
For this purpose, we generate classes, references and at-
tributes for those pattern roles that were not bound to
any idea. We avoid generating references in the pattern
application if they have already been produced by the
transformation of hierarchical edges or relations between
ideas. For example, in Fig. 9 only one composition is
created between Component and Port, even though both
ideas are linked, and the pattern contains a composition
as well.

In addition, some well-formedness checks and refactor-
ings are needed on the generated meta-model. First, as in-
heritance relations are produced, the transformation takes
care that no class defines and inherits two references (or
attributes) with same name. If this case is detected, it per-
forms a renaming.

Fig. 9 shows the generated meta-model from the 4 ideas
of Fig. 7. The transformation has generated the pattern
instance, while class Behaviour is linked to Component and

Component Port
ports

*

InPortOutPort

Connector

inout

*

*

Structure connectors

components
*

*

connect

*

structure

structure

0..1

0..1

Figure 9: Obtained meta-
model excerpt

Connection (through bidi-
rectional composition ref-
erences) due to the hi-
erarchical edges between
ideas. On the contrary,
Component and Port are
only linked once. Fi-
nally, a reference connect
has been created due to
the connection between
ideas Connectors and Com-
ponents. The cardinality
of the reference is set to * due to the plural name of the
Components idea.

5. TOOL SUPPORT & EVALUATION
We have built a modelling environment for DSL-maps, as

an Eclipse plugin, and integrated it with DSL-tao [12]. Both
tools are available at http://miso.es/tools/DSLtao.html.

Fig. 10 shows a screenshot of the tools. Label 1 shows the
workspace with the analysis diagram, and a generated meta-
model design. The DSL-map of the example is being shown
in the canvas labelled as 2. The editor permits creating
the hierarchy of ideas, links, and features as well as adding
notes to the ideas. Addition of elements to the diagram is
done by drag & drop from a palette. Root ideas are created
dropping the idea in the canvas, while sub-ideas are created
dropping the idea on top of the parent. The colour and the
classification indexes are automatically handled by the tool.

Ideas have a name and description, and associated fea-
tures as lists of key/value pairs, which can be edited from
the property view, in the “Features” tab (label 3). The fig-
ure shows values asynchronous, synchronous as two possible
values for property kind of Connectors. In the figure, we have
applied the pattern assistant, which has recommended the
patterns “State machine” and “Components” for some ideas
in the diagram.

Once the DSL-map is ready the wizard for generating an
initial meta-model can be invoked (label 4). This permits
configuring some aspects of the transformation, as explained
in Section 4. The generation profits from the two identified
patterns, generating a meta-model with 18 classes, 1 enu-
meration and 6 inheritance relations. Label 5 in the figure
shows a small excerpt of the generated meta-model, which
shows an enumerate type for the property kind. The view
with label 6 displays the two applied patterns. Clicking on
them highlights their occurrence in the meta-model.

We conducted a preliminary evaluation with 7 engineers,
to better understand the perceived strengths and weaknesses
of DSL-maps. Subjects ranged from novices to experienced
MDE developers, with a median experience of 3-6 years.
None had used before a specific notation for DSL require-
ments, which stresses the need for a requirements notation
like DSL-maps. Understandability of DSL-maps was valued
as high (average 4.15 out of 5). This was confirmed by 3
questions, obtaining 20 correct and 1 incorrect answer.

Then, subjects were asked to build a meta-model out of
the DSL-map in Fig. 2, and all produced a meta-model close
to the one produced by the tool without the pattern assis-
tant. However, 6 of them had at least some minor quality
issue (wrong cardinalities or missing compositions). This
shows the benefits of the automated transformation. None
of the participants was able to produce a solution with the

1

2

3

4

5

6

Figure 10: Using DSL-maps to obtain an initial meta-model draft.

level of detail provided by the pattern assistant, which was
rated as very complete (4.3 out of 5) and useful (4 out of
5). This suggests that the knowledge stored in the patterns
could be valueable for the developer. Finally, suggestions
were collected. One participant proposed using the same
colour in meta-model classes as in the DSL-map ideas, to im-
prove traceability. Another participant suggested the ability
to generate meta-model packages from some ideas (e.g., from
Structure and Behaviour).

6. CONCLUSIONS & FUTURE WORK
We have presented DSL-maps, a notation inspired by mind-

maps to represent DSL requirements. The notation empha-
sises flexibility, and promoted brainstorming among the in-
volved stakeholders. The approach supports the automated
transition into a design by profiting from a library of meta-
modelling patterns and a recommender. DSL-maps is backed
by a tool, integrated within DSL-tao.

We are considering interoperability of our tool with mind-
mapping tools. In addition to class colouring, we are working
on traceability mechanisms between the meta-model and the
DSL-map. This will avoid overwriting manual changes in
the meta-model when the DSL-map evolves.Finally, we are
improving the transformation to permit generating meta-
model packages from the ideas.

7. ACKNOWLEDGEMENTS
Work supported by the Spanish Ministry of Economy and

Competitivity with project Flexor (TIN2014-52129-R), the
EU commission with project MONDO (FP7-ICT-2013-10,
#611125) and the Madrid Region with project SICOMORO
(S2013/ICE-3006).

8. REFERENCES
[1] D. Aguilera. A method for the unified definition and

treatment of conceptual schema quality issues. PhD
thesis, Uni. Politecnica Catalunya, 2014.

[2] Astah. http://astah.net.

[3] A. Binstock. Mind maps: The poor man’s design tool.
Dr Dobbs, October, 2012.

[4] T. Buzan. The Mind Maps Book. Dutton, 1993.

[5] H. Cho, J. Gray, and E. Syriani. Syntax map: A
modeling language for capturing requirements of
graphical DSML. In APSEC, pages 705–708, 2012.

[6] K. C. K. C. Kang, S. G. Cohen, J. A. Hess, W. E.
Novak, and A. S. Peterson. Feature-oriented domain
analysis feasibility study. Technical report, CMU-SEI,
1990.

[7] S. Kelly and Tolvanen. Domain-Specific Modeling.
Enabling Full Code Generation. Wiley, 2008.

[8] D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige,
F. A. C. Polack, and G. Botterweck. Taming EMF
and GMF using model transformation. In MODELS,
volume 6394 of LNCS, pages 211–225. Springer, 2010.

[9] C. Larman. Agile and Iterative Development: A
Manager’s Guide. Ad.-Wesley Prof., 1993.

[10] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[11] G. A. Miller. Wordnet: A lexical database for english.
CACM, 38(11):39–41, 1995.

[12] A. Pescador, A. Garmendia, E. Guerra, J. S.
Cuadrado, and J. de Lara. Pattern-based development
of domain-specific modelling languages. In MoDELS,
pages 166–175, 2015.

[13] M. Voelter. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages.
dslbook.org, 2013.

[14] F. Wanderley, D. Silveira, J. Araújo, and Moreira.
Transforming creative requirements into conceptual
models. In RCIS, pages 1–10, 2013.

[15] F. Wanderley, D. Silveira, J. Araújo, A. Moreira, and
E. Guerra. Experimental evaluation of conceptual
modelling through mind maps and model driven
engineering. In ICCSA, volume 8583 of LNCS, pages
200–214, 2014.

[16] J. Whittle, J. Hutchinson, and M. Rouncefield. The
state of practice in model-driven engineering. IEEE
Software, 31(3):79–85, 2014.

