
Engineering Low-code Modelling Environments
with Dandelion

Francisco Martı́nez-Lasaca
UGROUND

Madrid, Spain
francisco.martinezl01@

estudiante.uam.es

Pablo Dı́ez
UGROUND

Madrid, Spain
pdiez@uground.com

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain
juan.delara@uam.es

Abstract—Low-code development platforms (LCDPs) are gain-
ing momentum, since they enable less technical profiles (citizen
developers) to participate in software development. LCDPs typi-
cally run on the cloud with zero-cost installation and often use
graphical languages to describe the target applications. While
building LCDPs manually is costly, the process can benefit from
the automation that model-driven technologies offer.

To this end, we propose Dandelion, a cloud-based graphical-
language workbench specifically designed to create LCDPs.
Dandelion supports the definition of the abstract and concrete
syntax of graphical languages, resulting in tailored cloud-based
modelling environments. To cater for industrial needs, the tool
can be connected with heterogeneous modelling technologies –
including proprietary formats or standards like EMF – and can
handle large models via persistence in Elasticsearch and a model
pagination mechanism. To facilitate modelling by citizen devel-
opers, it features sensemaking strategies to ease understanding
(meta-)models via interactive graphics and diagrams; and flexible
modelling support to relax the meta-model/model conformance
relation, thus tolerating inconsistencies. A video of the tool is
available at https://youtu.be/kQjdOgopGvI.

Index Terms—low-code platforms, model-driven engineering,
graphical languages, flexible modelling

I. INTRODUCTION

Low-code development platforms (LCDPs) provide mech-
anisms for automated software construction within specific
domains. They are typically cloud-based environments, en-
abling the description of applications via forms and graphical
languages. Being cloud-based, LCDPs require zero-installation
cost, and they may also host the generated application, provid-
ing run-time management facilities. This ease-of-use, the target
to specific domains, and the reliance on graphical languages
open their use to so-called citizen developers, i.e., users with
non-technical backgrounds [1].

Many companies offer LCDPs targeting business appli-
cations, including the main cloud vendors – like Google,1

Microsoft,2 and Amazon3 – and specialised companies, in-
cluding Appian,4 Mendix,5 or OutSystems.6 Many domain-
specific LCDPs have emerged for a plethora of domains,
like chatbots (e.g., Dialogflow, Amazon Lex [2]), IoT (e.g.,
Node-RED7), or machine learning (e.g., Google’s AutoML8 or

1 https://cloud.google.com/appsheet 2 https://powerapps.microsoft.com
3 https://www.honeycode.aws 4 https://appian.com
5 https://www.mendix.com 6 https://www.outsystems.com
7 https://nodered.org 8 https://cloud.google.com/automl

RapidMiner9). Additionally, many companies use custom low-
code platforms for their internal development processes, e.g.,
UGROUND10 [3]. However, building LCDPs is challenging
because it requires creating dedicated cloud-based graphical
modelling environments, integrating with diverse modelling
technologies, and handling large-scale industrial models.

To tackle these challenges, we propose Dandelion, a cloud-
based, graphical language workbench [4]. The tool uses
Model-driven Engineering to automate some steps of the
creation of industrial LCDPs. In particular, it supports the def-
inition of cloud-based environments for graphical modelling
languages, facilitates the integration of heterogeneous mod-
elling technology, and eases understanding tasks via model
sensemaking strategies (SMSs) [5]. Dandelion also supports
modelling in the large thanks to a model pagination mech-
anism and persistence atop a cloud-native database. Finally,
to facilitate citizen developers modelling and support diverse
modelling scenarios, Dandelion allows adjusting the degree of
inconsistency tolerance via flexible modelling techniques [6].

The scalability support of Dandelion and SMSs were previ-
ously presented at [4], [5]. Here we focus on the tooling aspect,
introducing novel support for flexible modelling, including
quick fixes and the definition of modelling phases.

Paper organisation. Section II examines related works, posi-
tioning Dandelion w.r.t. them. Section III outlines the tool’s
architecture, describes its most salient features, and reports
on performed evaluations. Finally, Section IV ends with the
conclusions and prospects for future work.

II. RELATED WORK

Next, we revise and position Dandelion w.r.t. works on
cloud-based graphical editors, heterogeneity support, scalabil-
ity, flexibility, and visualisation techniques in modelling.

Cloud-based editors for graphical DSLs. Graphical mod-
elling editors trace back to the 90s, motivated by the
raise of graphical modelling notations (e.g., MetaEdit [7] or
AToM3 [8]). Later, in the 2000s and 2010s, Eclipse-based
desktop tools proliferated, including GMF [9], Eugenia [10],
or Sirius [11]. Finally, advances in cloud computing in the
late 2010s promoted the development of workbenches to

9 https://rapidminer.com 10 https://www.uground.com

https://orcid.org/0000-0003-4384-170X
https://orcid.org/0000-0001-8775-4451
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362
https://youtu.be/kQjdOgopGvI
https://cloud.google.com/appsheet
https://powerapps.microsoft.com
https://www.honeycode.aws
https://appian.com
https://www.mendix.com
https://www.outsystems.com
https://nodered.org
https://cloud.google.com/automl
https://rapidminer.com
https://www.uground.com

Citizen
developer

persistence
mechanism

Database

creates and/or
explores model

creates and configures
meta-models

Language
engineer

external
services

«conforms»

meta-models models

Layout Service
(ELK)

Technology
Injector Service

Meta-modelling
assist. Service

Sensemaking
Strateg. Service

Dandelion
backend

Dandelion
frontend

message
passing

Fig. 1: Dandelion’s working schema.

develop cloud-based editors, e.g., WebGME [12] or Sirius
Web [13]. Language protocols for textual languages (LSP11)
also popularised, but their graphical counterparts (GLSP12)
are still in evolution. The need to create custom cloud-based
editors is especially relevant nowadays given the ubiquity of
LCDPs. However, current workbenches for cloud editors [12],
[13] are typically tied to a specific modelling technology, and
Dandelion tries to fill that gap.

Modelling heterogeneity. Models can be described using a
plethora of formats, hampering their interoperability. Some
tools like EXTREMO [14] propose a common data model to
represent models coming from any format. Other frameworks,
like Epsilon, propose a model access and modification in-
terface that can be implemented for any model format or
source, e.g., EMF, Simulink, CSV files, or databases [15].
Dandelion employs a level-agnostic meta-model to harmonise
different formats, and provides technology injector services to
accommodate different technical spaces.

Scalability in modelling. Models have been predominantly
persisted in files, as supported by the EMF ecosystem [16].
However, this approach has proven insufficient for large arte-
facts. Some file-based solutions include file fragmentation,
partial loading, model decomposition, indexers, and caching,
e.g., [17], [18]. Other alternatives propose database persistence
(e.g., CDO [19], Teneo [20]) and dedicated model repositories,
e.g., MDEForge [21]. Dandelion uses Elasticsearch,13 a cloud-
native database, to persist models and employs a pagination
mechanism to display them on demand.

Flexible modelling. Relaxing the level of consistency of
models can ease different modelling scenarios such as model
prototyping, evolution, or technology migration [6]. This extra
flexibility is especially relevant for LCDPs, given their wide
variety of target users. Some typically supported features
include deferring or disabling typing, cardinality, or domain-
specific checks. Moreover, checks can be combined in phases
that can be promoted manually or automatically, and arranged

11 https://microsoft.github.io/language-server-protocol/
12 https://www.eclipse.org/glsp/ 13 https://www.elastic.co/elasticsearch

GeneralizableElement

Model SemanticNode
isAbstract: bool
isEnum: bool

TypedElement

id: string
name: string

Property

lowerBound: int
upperBound: int

«enumeration»
PrimitiveType

String
Boolean
Number
EnumType
URL

ObjectProperty
isComposite: bool

DataProperty
value: any[0..1]
type: PrimitiveType

targetedBy

1

target *

supers *

properties *

elements

*

parent

0..1

types

*

Fig. 2: Dandelion’s harmonising meta-model.

to support different modelling styles, e.g., bottom-up or top-
down. To our knowledge, Dandelion is the first cloud-based
platform for graphical languages that supports configurable
modelling phases.

Visualising and comprehending large models. The field
of Visual Analytics has extensive literature on large graph
visualisation. In contrast, visualisation techniques catered to
models are scarce. Dandelion relies on the notion of graph
sensemaking (the iterative process of understanding graph-
formatted data to achieve a concrete goal) [22] to devise
visualisation tailored for (meta-)models. To enable reusability,
Dandelion’s modelling sensemaking strategies are exposed
as generic components that are instantiated via a binding
mechanism [5].

III. DANDELION

Dandelion is a cloud-based workbench for graphical lan-
guages. Its architecture comprises a frontend and a backend
components, as illustrated in Fig. 1. The frontend serves
the tool’s interface, where citizen developers and language
engineers create and/or explore models, and create and con-
figure meta-models (i.e., language definitions), respectively.
The backend features a persistence mechanism responsible for
managing (meta-)models, which are persisted in a database.
Additionally, the backend integrates with multiple internal and
external modelling services. The tool is available online.14

Next, we delve into the salient features of the tool.

A. Harmonising meta-model for heterogeneity support

Dandelion relies on models to describe application domains.
However, a plethora of formats can be used to represent them,
including EMF [16], RDF,15 or ad hoc industrial formats like
UGROUND’s ROSE [23]. In order to bridge heterogeneous
data formats, Dandelion represents every (meta-)model using
a harmonising meta-model (cf. Fig. 2).

This meta-model strikes a balance between simplicity and
expressiveness to encompass a large number of modelling
styles while achieving level-agnosticism. That is, models and
meta-models are represented uniformly. Its building pieces

14 https://miso.es/tools/Dandelion.html 15 https://www.w3.org/RDF/

https://microsoft.github.io/language-server-protocol/
https://www.eclipse.org/glsp/
https://www.elastic.co/elasticsearch
https://miso.es/tools/Dandelion.html
https://www.w3.org/RDF/

Fig. 3: A model loaded with pagination. The scability tab allows configuring how to split the model into pages.

are Model and SemanticNode: Models encode both mod-
els and meta-models, while SemanticNodes represent meta-
classes/objects and can define properties. In particular, a
Property is either an ObjectProperty, to represent associ-
ations/links between meta-classes/objects, or a DataProperty
for primitive attributes.

(Meta-)models conformant to this linguistic meta-model
are persisted in Elasticsearch, a highly scalable database,
enabling fast model retrieval. The specifics on the persistence
mechanism are detailed in [4].

B. Scalability mechanism: pagination for large models

Scalability mechanisms help users navigate large models
without overwhelming them with too much information. Dan-
delion supports pagination to split large models into pages that
can be loaded on demand. The mechanism permits configuring
page capacities (i.e., the maximum number of elements per
page) and the loading strategy, among other parameters. More-
over, referenced elements that do not fit the current page are
displayed as proxy nodes, whose location can be navigated to
upon clicking. Fig. 3 shows a UGROUND model on holdings
management loaded with pages of size 100.

C. Understanding large models with sensemaking strategies

Exploring artefacts (e.g., models) is essential in low-code
platforms, as well as in common modelling tools. However,
exploration techniques typically rely on graph-based visual
metaphors, which do not scale well with large model sizes. For
this reason, Dandelion introduces model sensemaking strate-
gies (SMSs): purposeful visualisations that exploit alternative
visual metaphors to distil insights from large models [5].
These visualisations can be instantiated by binding their “con-
text” meta-model to the desired target (meta-)model with a
structure-preserving mapping.

Fig. 4 illustrates the exploration of an industrial meta-model
guided by two sensemaking strategies aimed at understand-

TABLE I: Checks for flexible modelling.

Check name What it detects

C1 Cardinality of attributes Attributes not respecting their multiplicity.
C2 Cardinality of references References not respecting their multiplicity.
C3 Type of attribute values Attr. values that do not respect the attr.’s type.
C4 Type of reference values References pointing to objs. of the wrong type.
C5 Missing property Objs. missing a prop. defined in the meta-model.
C6 Superfluous property Objs. defining a prop. absent in the meta-model.
C7 Duplicate property Objs. defining a prop. with the same name twice.
C8 Non-existent target References pointing to non-existent objs.
C9 Instanced abstract class Objs. that are instances of abstract classes.

C10 Untyped objects Objs. that do not conform to a meta-class.
C11 Untyped properties Props. that do not conform to a property.

ing the complexity of the meta-model. SMS 1a displays a
metric: the degree of coupling between meta-classes, i.e., the
proportion of edges connecting meta-classes if compared to a
complete graph. On the other hand, SMS 1b summarises the
complexity of meta-classes attributes via a histogram of the
number of attributes per meta-class. The dashboard (1) accom-
modates multiple SMSs and integrates in the editor to enable
exploring (meta-)models in multiple ways simultaneously.

D. Flexible modelling

In order to tolerate inconsistencies between models and their
meta-models, flexible modelling allows relaxing the degree of
conformance in a controlled manner. As a contribution of this
paper, we have improved flexible modelling support twofold.

On the one hand, we have extended the catalogue of
constraint checks (cf. Table I) and introduced quick fixes.
Checks are evaluated on models and reported in the editor.
Some checks are equipped with quick fixes, which can amend
models and/or their meta-models to fix a check’s violation. In
total, Dandelion supports 11 checks and 17 quick fixes.

On the other hand, we have introduced modelling phases
to bundle checks with different severities: ignored, warning,
or error. If marked as errors, the tool also impedes checks’

1
a

b

2 3

Fig. 4: Visualising an industrial meta-model in Dandelion. (1) Sensemaking strategies to understand the meta-model; (2)
modelling canvas, where edges have been hidden for clarity; (3) selected meta-class editor.

violation in the editor. Furthermore, phases support three pro-
motion strategies: free (can promote with errors or warnings),
no errors (only warnings are tolerated), or no errors nor
warnings (the most restrictive). In Dandelion, phases are first
defined by the language engineer and then employed by citizen
developers. Early phases in a modelling process usually offer
more flexibility, tolerating inconsistencies. Then, subsequent
phases are more strict (more checks are enabled), and the user
can progress to further phases, obtaining a more precise model,
via quick fixes.

Fig. 5 illustrates the citizen developer’s perspective on
a network diagram model. Active phases determine which
checks are active and their severity, and can be promoted or
retraced according to the promotion strategy. Violations are
reported in the Problems panel, and amendable ones suggest
quick fixes. For example, in the figure, the Computer4 object is
untyped (i.e., someone forgot to link it to the Computer meta-
class), and the current phase reports ‘C10. Untyped objects’
violations as errors. The resulting error is reported, and the
application of the three quick fixes available for this check is
offered. Specifically, (i) creating a dedicated meta-class shaped
after the object and retyping the object; (ii) retyping the object
to an existing meta-class selected by the user; and (iii) relaxing
the check’s severity. Please note that quick fixes can relax
check’s severities and alter models, meta-models, or both.

E. Evaluating Dandelion

In this section, we report on evaluations performed on
Dandelion for its different contributions.

a) Handling very large models: Handling scalability
effectively is an open challenge in model-driven and low-code
applications [24]. In [4], we evaluated Dandelion’s persistence

mechanism by exploring huge models (i.e., with 1,000,000+
entities) with pagination. In particular, the benchmarks show
that large models can be loaded in pages containing up to 500
objects and 1000 edges. Pages are retrieved, layouted, and
rendered in less than 3 seconds, thus providing a reactive user
experience.

b) Supporting new technologies: Integrability is crucial
in low-code industrial settings, as data is typically drawn from
multiple heterogeneous sources. In [4], we proposed a process
to integrate new technologies into Dandelion and applied it
to support artefacts from UGROUND’s ROSE [23] modelling
platform. The process relies on a schema and data injectors,
loading meta-models and models, respectively. To ensure a
sound integration, a conformance analysis step making use
of flexible modelling is undergone in every iteration of the
process. In the future, we intend to evaluate the impact of
phases and fine-grained checks on this step with a user study.

c) Comprehending models with sensemaking strategies:
Complex (meta-)models may become unwieldy and difficult
to understand. In [5], we evaluated the feasibility of model
sensemaking strategies to understand models, language usages,
and mega-models in an industrial case study on UGROUND’s
ecosystem. The results show that SMSs are effective in
addressing complex sensemaking tasks to understand large
models, and that they are highly reusable, especially in multi-
level modelling scenarios.

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented Dandelion, a cloud-based work-
bench to define editors for graphical languages that can be
integrated within low-code development platforms. Dandelion

Fig. 5: Flexible modelling in Dandelion. Left: settings panel. Right: reported problems and suggested quick fixes.

supports heterogeneous models through a harmonising meta-
model, and provides a pagination mechanism to handle large
models. The tool especially considers the usage experience of
citizen developers by supporting flexible modelling – together
with quick fixes – and sensemaking strategies to facilitate
model exploration.

We are currently extending the tool to integrate model
management languages of the Epsilon family. This will permit
using the validation language to specify meta-model integrity
constraints, as well as to define code generators and model
manipulation operations that can then be run on the cloud.

ACKNOWLEDGEMENTS

This project is funded by the EU Horizon 2020 Research
and Innovation Programme under the Marie Skłodowska-
Curie grant agreement No 813884 and the Spanish MICINN
(PID2021-122270OB-I00, TED2021-129381B-C21).

REFERENCES

[1] D. D. Ruscio, D. S. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?” Softw. Syst. Model., vol. 21, no. 2, pp.
437–446, 2022.

[2] S. Pérez-Soler, S. Juarez-Puerta, E. Guerra, and J. de Lara, “Choosing
a chatbot development tool,” IEEE Softw., vol. 38, no. 4, pp. 94–103,
2021.

[3] A. Dı́ez, N. Nguyen, F. Dı́ez, and E. Chavarriaga, “MDE for enterprise
application systems,” in MODELSWARD. SciTePress, 2013, pp. 253–
256.

[4] F. Martı́nez-Lasaca, P. Dı́ez, E. Guerra, and J. de Lara, “Dandelion: a
scalable, cloud-based graphical language workbench for industrial low-
code development,” Journal of Comp. Langs., vol. 76, p. 101217, 2023.

[5] ——, “Model sensemaking strategies: Exploiting meta-model patterns
to understand large models,” in Proc. MoDELS, 2023, pp. 1–12.

[6] E. Guerra and J. de Lara, “On the quest for flexible modelling,” in
MoDELS. ACM, 2018, pp. 23–33.

[7] S. Kelly and J. Tolvanen, Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008.

[8] J. de Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism and
meta-modelling,” in FASE, ser. LNCS, vol. 2306. Springer, 2002, pp.
174–188.

[9] The Eclipse Foundation, “Graphical Modeling Framework (GMF),”
https://www.eclipse.org/gmf-tooling/, 2014.

[10] D. S. Kolovos et al., “Eugenia: Towards disciplined and automated
development of GMF-based graphical model editors,” SoSyM, vol. 16,
no. 1, pp. 229–255, 2017.

[11] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid development
of DSM graphical editor,” in INES, 2014, pp. 233–238.

[12] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi,
L. Jurácz, T. Levendovszky, and Á. Lédeczi, “Next generation
(meta)modeling: Web- and cloud-based collaborative tool infrastruc-
ture,” in MPM@MoDELS, vol. 1237. CEUR, 2014, pp. 41–60.

[13] The Eclipse Foundation, “Sirius Web,” https://www.eclipse.org/sirius/
sirius-web.html, 2023.

[14] A. Mora-Segura, J. de Lara, P. Neubauer, and M. Wimmer, “Automated
modelling assistance by integrating heterogeneous information sources,”
COMLAN, vol. 53, no. September, pp. 90–120, 2018.

[15] D. Kolovos, R. F. Paige, and F. A. Polack, “Eclipse development tools
for Epsilon,” in Eclipse Summit Europe, vol. 20062, 2006, p. 200.

[16] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework, 2nd edition. Pearson Education, 2008.

[17] K. Jahed et al., “On the benefits of file-level modularity for EMF
models,” Softw. Syst. Model., vol. 20, no. 1, pp. 267–286, 2021.

[18] R. Wei, D. S. Kolovos, A. Garcı́a-Domı́nguez, K. Barmpis, and R. F.
Paige, “Partial loading of XMI models,” in MoDELS. ACM, 2016, pp.
329–339.

[19] The Eclipse Foundation, “CDO. The model repository,” https://www.
eclipse.org/cdo/, 2009.

[20] ——, “Teneo,” https://wiki.eclipse.org/Teneo/, 2010.
[21] F. Basciani et al., “MDEForge: An extensible web-based modeling

platform,” in CloudMDE@MoDELS, ser. CEUR Workshop Proceedings,
vol. 1242, 2014, pp. 66–75.

[22] R. Pienta et al., “Scalable graph exploration and visualization: Sense-
making challenges and opportunities,” in BIGCOMP, 2015, pp. 271–278.

[23] A. Dı́ez, “Recursive ontology-based systems engineering,” Patent, 2015.
[Online]. Available: https://patents.google.com/patent/US9760345B2/en

[24] D. S. Kolovos, M. Tisi, J. Cabot, L. M. Rose, N. Matragkas, R. F.
Paige, E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth, and D. Varró,
“A research roadmap towards achieving scalability in model driven
engineering,” in Proceedings of the Workshop on Scalability in Model
Driven Engineering - BigMDE ’13. ACM Press, 2013, pp. 1–10.

https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/cdo/
https://www.eclipse.org/cdo/
https://wiki.eclipse.org/Teneo/
https://patents.google.com/patent/US9760345B2/en

	Introduction
	Related Work
	Dandelion
	Harmonising meta-model for heterogeneity support
	Scalability mechanism: pagination for large models
	Understanding large models with sensemaking strategies
	Flexible modelling
	Evaluating Dandelion

	Conclusions and future work
	References

