
A comparison of two-level and multi-level modelling
for cloud-based applications

Alessandro Rossini1, Juan de Lara2, Esther Guerra2, and Nikolay Nikolov1

SINTEF, Oslo, Norway {firstname.lastname}@sintef.no
Universidad Autónoma de Madrid, Spain {Juan.deLara,Esther.Guerra}@uam.es

Abstract The Cloud Modelling Framework (CloudMF) is an approach to apply
model-driven engineering principles to the specification and execution of cloud-
based applications. It comprises a domain-specific language to model the deploy-
ment topology of multi-cloud applications, along with a models@run-time envir-
onment to facilitate reasoning and adaptation of these applications at run-time.
This paper reports on some challenges encountered during the design of Cloud-
MF, related to the adoption of the two-level modelling approach and especially
the type-instance pattern. Moreover, it proposes the adoption of an alternative,
multi-level modelling approach to tackle these challenges, and provides a set of
criteria to compare both approaches.

Keywords: domain-specific languages, metamodelling, multi-level modelling, multi-
level reasoning, cloud computing, CloudMF, CloudML, MetaDepth

1 Introduction

Model-driven engineering (MDE) aims at improving the productivity, quality, and cost-
effectiveness of software development by shifting the paradigm from code to model-
centric, whereby models and modelling languages are the main artefacts of the devel-
opment process. In MDE, the abstract syntax of a modelling language is defined by its
metamodel, which describes the set of concepts, properties and relations of a domain,
as well as the rules for combining them. Based on this paradigm, a software system is
represented by a model that conforms to a metamodel. This approach, hereafter called
two-level modelling, may have limitations [15,5,21] when the metamodel includes the
type-instance pattern [5,10], which requires an explicit modelling of types and their in-
stances at the same metalevel. In this case, an alternative approach that employs more
than two levels, hereafter called multi-level modelling, yields simpler models [5,21,10].
However, while some recent studies show the potential applicability of multi-level mod-
elling [10], there are still scarce works showing its benefits for real-life projects.

Cloud computing provides a ubiquitous networked access to a shared and virtual-
ised pool of computing capabilities (e.g., network, storage, processing, and memory)
that can be provisioned with minimal management effort. MDE has been applied in the
field of cloud computing, where models and modelling languages enable developers and
reasoning engines to work at a high level of abstraction and focus on cloud concerns



rather than implementation details. One notable example in this area is the Cloud Mod-
elling Framework (CloudMF) [12,13,14], which consists of: (i) the Cloud Modelling
Language (CloudML), a domain-specific language (DSL) to model the deployment of
multi-cloud applications (i.e., applications that can be deployed across multiple private,
public, or hybrid cloud infrastructures and platforms); and (ii) a models@run-time en-
vironment to enact the deployment and adaptation of these applications. The run-time
environment provides a model-based representation of the underlying running system,
which facilitates reasoning and adaptation of multi-cloud applications.

This paper reports on some challenges encountered during the design of CloudMF,
related to the adoption of the two-level approach and especially the type-instance pat-
tern. Moreover, it proposes an alternative, multi-level approach, and provides a detailed
comparison of both approaches along six criteria, which aims to serve as a guideline for
prospective adopters of the multi-level solution.
Paper organisation. Sec. 2 outlines the current design of CloudML and its models@run-
time environment. Sec. 3 presents a case study used throughout the paper. Secs. 4 and 5
compare how to model the case study using two-level and multi-level approaches. Sec. 6
discusses the pro and contra of the two approaches. Finally, Sec. 7 compares with re-
lated work and Sec. 8 ends with conclusions and future work.

2 CloudMF

CloudMF is being developed in the context of the EU projects MODAClouds and PaaS-
age1, where several industrial partners are adopting it to specify and execute the multi-
cloud applications of their use cases. In this section, we outline its two main ingredients:
CloudML and its models@run-time environment.

2.1 CloudML

CloudML has been designed based on the following requirements, among others:

Separation of concerns (R1): CloudML should support a modular, loosely-coupled
specification of the deployment. This will facilitate the maintenance as well as the
dynamic adaptation of the deployment model.

Reusability (R2): CloudML should support the specification of types that can be
seamlessly reused to model the deployment. This will ease the evolution as well
as the rapid development of different variants of the deployment model.

Abstraction (R3): CloudML should provide an up-to-date, abstract representation of
the running system. This will facilitate the reasoning, simulation, and validation of
the adaptation actions before their actual enactments.

CloudML implements a component-based approach [14], which facilitates separa-
tion of concerns (R1) and reusability (R2). Hence, deployment models can be regarded
as assemblies of components and relations between them.

1 http://www.modaclouds.eu/, http://www.paasage.eu/

http://www.modaclouds.eu/
http://www.paasage.eu/


2.2 Models@run-time

Models@run-time [6] is an architectural pattern for dynamically adaptive systems that
leverages upon models at both design-time and run-time. In particular, models@run-
time provides an abstract representation of the underlying running system, whereby a
modification to the model is enacted on-demand in the system, and a change in the
system is automatically reflected in its model.

Reasoning engine 

Models 

@run-time 

(1) (2) 

Target 
model 

Diff (3) 

Adaptation 
engine 

(4) 

(4) 

Current 
model 

Running system 

Figure 1. CloudMF architecture

In CloudMF, the models@run-time environ-
ment provides a model causally connected to the
running cloud-based application (addressing re-
quirement R3). On the one hand, any modifica-
tion to a CloudML model is enacted on-demand
in the running application. On the other hand, any
change in the running application is automatically
reflected in its CloudML model.

Fig. 1 depicts the architecture of CloudMF.
A reasoning engine reads the current model (step
1) and produces a target model (step 2). Then,
the run-time environment computes the difference
between the current model and the target one (step
3). Finally, the adaptation engine enacts the ad-
aptation by modifying only the parts of the cloud-
based application necessary to account for the dif-
ference and the target model becomes the current
model (step 4).

3 Case study

The adoption of CloudML as the DSL for specifying models in the models@run-time
environment of CloudMF introduces some challenges in its design and implementation.
In this section, we present these challenges through a case study.

SensApp2 is an open-source, service-oriented application for storing and exploiting
large data sets collected from sensors and devices. Suppose that, at design-time, we
would like to model the deployment of SensApp on a single cloud, whereby a SensApp
cluster should be hosted on a Tomcat container cluster, which in turn should be hosted
on a Ubuntu virtual machine cluster, which in turn should be provisioned on a private
OpenStack cloud in Norway. Moreover, the SensApp cluster should be load balanced by
an HAProxy load balancer and should have from one to four instances.

Fig. 2(a) shows the deployment model specified using a graphical syntax for Cloud-
ML. The left part depicts the available reusable types, while the right part depicts in-
stances of these. The range in instances range represents that a minimum of one and
a maximum of four instances of SensApp can be executed at run-time. We assume the
range attached to sensApp1 also applies to its (indirect) hosts, i.e., tomcat1 and ubuntu1.

2 http://sensapp.org

http://sensapp.org


Typesh

OpenStackh
[location:hNO]h

OpenStackh
[location:hNO]h

Amazonh
[location:hEU]h

HAProxyh

SensApph

Tomcath

Ubuntuh

haProxy1h

sensApp1h
[instancesh
range:h1..4]h

tomcat1h

ubuntu1h

haProxy1h

sensApp1h
[instancesh
range:h1..4]h

tomcat1h

ubuntu1h

sensApp2h
[instancesh
range:h1..2]h

tomcat2h

ubuntu2h

(a)h (b)h

Figure 2. Deployment model at design-time: (a) with single cloud, (b) with multiple clouds

We could have considered the deployment of SensApp on multiple clouds, whereby
a second SensApp cluster is deployed and provisioned on a public Amazon cloud in
Europe. Fig. 2(b) shows the deployment model with multiple clouds. In the remainder
of the paper, we only consider the single-cloud scenario to keep the models simple and
retain only the details that are relevant for the discussion.

Then, suppose that, at run-time, we would like to dynamically adapt the deployment
of the application in order to meet service-level objectives (e.g., response time < 50ms)
and goals (e.g., minimise cost). A reasoning engine would first read the number of
current instances, and then enact adaptations based on these service-level objectives
and goals. Therefore, the deployment model above is insufficient, and an additional
property is needed to represent the number of current instances. Fig. 3(a) shows the
deployment model before and after the adaptation.

Finally, suppose that, also at run-time, we would like to dynamically adapt the de-
ployment of the application in order to prevent impending failures and recover from
occurred ones. A reasoning engine would first read, e.g., the CPU load of each indi-
vidual Ubuntu virtual machine, and then enact adaptations based on scalability rules.

OpenStack2
[location:2NO]2

OpenStack2
[location:2NO]2

OpenStack2
[location:2NO]2

OpenStack2
[location:2NO]2

haProxy12

sensApp12
[instances2
range:21ff462
Instances=2]2

tomcat12

ubuntu12

haProxy12

sensApp12
[instances2
range:21ff462
instances=3]2

tomcat12

ubuntu12

haProxy12

sensApp112

tomcat112

ubuntu112
[CPU2load2=299]2

sensApp122

tomcat122

ubuntu122
[CPU2load2=29)]2

haProxy12

sensApp112

tomcat112

ubuntu112
[CPU2load2=28)]2

sensApp122

tomcat122

ubuntu122
[CPU2load2=27)]2

sensApp132

tomcat132

ubuntu132
[CPU2load2=26)]2

Before2adaptation2 After2adaptation2 Before2adaptation2 After2adaptation2

9a02 9b02

Figure 3. Deployment model at run-time: (a) with number of current instances, (b) with explicit
instances and CPU loads



model 
metamodel 

CompTypeS

hostedCompTypeS
*S

typeS

CompInstS

currentInst:SIntS
minInst:SIntS
maxInst:SIntS

hostedCompInstS
*S

VMTypeS
typeS

VMInstS

cpuLoadAvg:SDoubleS

SensAppS
ontological 

typing sensApp1S

currentInstS=S2S
minInstS=S1S
maxInstS=S4S

st1S
tomcat1S

currentInstS=S2S
minInstS=S1S
maxInstS=S4S

tu1S
ubuntu1S

currentInstS=S2S
minInstS=S1S
maxInstS=S4S
cpuLoadAvgS=S94.5S

STS
TomcatS

TUS
UbuntuS

linguistic 
typing 

C1:<self.hostedCompType->forAll(t<|<
CompInst.allInstances()->exists(i<|<

i.type<=<self<and<
i.hostedCompInst->exists(ci<|<

ci.type<=<t)))<

C2:<self.currentInst<>=<self.minInst<
C3:<self.maxInst<<><-1<implies<

self.currentInst<<=<self.maxInst<
C4:<self.hostedCompInst->forAll(i<|<

self.type.hostedCompType<
->includes(i.type))<

Figure 4. Deployment model in abstract syntax at run-time, with number of current instances and
average CPU load

Therefore, the deployment in Fig. 3(a) is too high-level (or coarse-grained), and a low-
level (or fine-grained) deployment model is needed to represent each individual instance
of SensApp along with the underlying Tomcat container and Ubuntu virtual machine.
Fig. 3(b) shows the deployment with explicit instances before and after the adaptation.

The current version of CloudML is based on two-level modelling. It supports the
specification of single components within a deployment model, but it does not support
the specification of clusters of components with ranges.

In the following section, we present a proof of concept of how the current version
of CloudML could be extended to support the case study.

4 Two-level approach

CloudML implements the type-instance pattern [4]. To declare and instantiate types
(e.g., the type Ubuntu and its instance ubuntu1 in Fig. 2(a)), this pattern requires both
types and instances to be represented by classes in the metamodel. This pattern also
exploits two flavours of typing: ontological and linguistic [17]. The latter is the relation
between a model and its metamodel, while the former is the relation between elements
within a model.

Fig. 4 shows a simplified version of the CloudML metamodel along with the model
in abstract syntax corresponding to the one in graphical syntax in Fig. 3(a), where
several concepts such as the life-cycle scripts attached to the components, the ports
provided and required by components, the communications between ports, and the
cloud providers are omitted for brevity (see [14] for a detailed description of the Cloud-
ML metamodel). SensApp represents a reusable type of SensApp. It is linguistically
typed by the class CompType (short for component type). sensApp1 represents an in-
stance of SensApp. It is ontologically typed by SensApp and linguistically typed by
CompInst (short for component instance). Similarly, Fig. 5 shows the model in abstract
syntax corresponding to the one in graphical syntax in Fig. 3(b), before adaptation.



model 

metamodel 

CompType1

hostedCompType1
*1

type1 CompInst1

hostedCompInst1
*1

VMType1

/cpuLoadAvg:1Double1=1
lethloads:Seth=h

VMInst.allInstances()->select(mh|h
m.type=self)h->collect(cpuLoad)h

inhloads->sum()h/hloads->size()h

type1
VMInst1

cpuLoad:1Int1

SensApp1 sensApp121
st11

tomcat121 tu11

ubuntu121

cpuLoad1=1901

ST1
Tomcat1

TU1 Ubuntu1

/cpuLoadAvg1=194.51

C5:hself.hostedCompType->forAll(th|h
CompInst.allInstances()->exists(ih|h

i.typeh=hselfhandh
i.hostedCompInst->exists(cih|h

ci.typeh=ht)))h

C6:hself.hostedCompInst->forAll(ih|h
self.type.hostedCompTypeh
->includes(i.type))h

Figure 5. Deployment model at run-time, with two explicit instances and CPU loads

Fig.s 4 and 5 depict one possible approach for allowing CloudML to support the
specification of clusters of components with ranges. However, it implies the use of two
syntactically and semantically disjoint models: one representing the aggregated view
of each cluster (Fig. 4) and one representing each individual instance in each cluster
(Fig. 5). In order to avoid this, a naive solution could be to merge the two models by
applying the type-instance pattern twice, which would lead to a new type-template-
instance pattern. Fig. 6 shows this merged model. Unfortunately, this solution is both
ineffective and insufficient.

First, it is ineffective since applying the type-instance pattern twice leads to six
classes to represent components and their instances, and even more references between

model 
metamodel 

CompTypel

hostedCompTypel
Ul

typel

CompTempl

currentInst:lIntl
minInst:lIntl
maxInst:lIntl

hostedCompTempl
Ul

VMTypel
typel

VMTempl

/cpuLoadAvg:lDoublel=l…l

SensAppl
ontological 

typing sensApp1l

currentInstl=l2l
minInstl=l1l
maxInstl=l4l

st1l
tomcat1l

currentInstl=l2l
minInstl=l1l
maxInstl=l4l

tu1l
ubuntu1l

currentInstl=l2l
minInstl=l1l
maxInstl=l4l
/cpuLoadAvgl=l94.5l

STl
Tomcatl

TUl
Ubuntul

linguistic 
typing 

typel CompInstl

hostedCompInstl
Ul

typel
VMInstl

cpuLoad:lIntl

sensApp12l
st12l

tomcat12l
tu12l

ubuntu12l

cpuLoadl=l90l

C1

C2, C3, C4, C5 C6 

Figure 6. Proof-of-concept deployment model at run-time, with both number of current instances
as well as explicit instances and CPU loads



them in both the metamodel and the model (e.g., CompType, CompTemp, and CompInst
in the metamodel and their instances in the model). Please note that the metamodel
in Fig. 6 only contains the classes and references necessary to represent components
and virtual machines, while the model only contains the elements needed to represent a
SensApp application cluster, a Tomcat container cluster, and a Ubuntu virtual machine
cluster. The figure omits the classes and references needed to represent the life-cycle
scripts attached to the components, the ports provided and required by components,
the communication between ports, and the cloud providers. Applying the type-instance
pattern twice would lead to an explosion of elements for each of these concepts in both
the metamodel and the model. Moreover, this solution is ineffective since checking the
type-instance conformance within the model requires complex OCL constraints in the
metamodel, while applying the type-instance pattern twice requires replicating these
constraints (e.g., C1/C5 and C4/C6).

Second, this solution is insufficient, as we are not modelling the allowed number of
component instances within a host, but the restriction on instances is checked globally.
Please note that this could be naturally expressed if we were able to put cardinalities on
the references st1 and tu1.

Altogether, we need to apply the type-instance pattern twice and add complex OCL
constraints to the metamodel in order to emulate three ontological levels within a single
linguistic level. This makes the two-level approach convoluted and less usable [5].

As an alternative design strategy, we could merge the three classes CompType, Comp-
Temp, and CompInst into one class Component (and similar for VMType, VMTemp, and
VMInst). The resulting class Component would have a reference type to itself with op-
tional cardinality as well as a property level to distinguish whether an instance of Com-
ponent belongs to the type, template, or instance level. In addition, we could add OCL
constraints to ensure the correctness of the ontological typing. While this solution would
make the metamodel more compact, it would lead to a higher complexity of OCL con-
straints. Moreover, it would also lead to the misuse of model elements, as the properties
currentInst, minInst, and maxInst would be present in instances of Component, independ-
ently of their level, while they are only necessary at the template level.

In the following section, we present a proof of concept of how CloudML could be
defined and used adopting a multi-level approach.

5 Multi-level approach

Multi-level modelling extends traditional two-level modelling by enabling the use of
an arbitrary number of levels (rather than just two) in a modelling stack. In scenarios
where the type-instance pattern or one of its variants arise [10], this solution yields
simpler models, since the additional classes to specify instances become unnecessary.

Fig. 7 shows CloudML organised in four levels. The top level contains an excerpt
of the refactored CloudML metamodel, while the subsequent levels contain the defin-
ition of types (e.g., Tomcat, Ubuntu), a high-level deployment model, and a low-level
deployment model with explicit instances and CPU loads at run-time. In this solution,
it is not necessary to have classes CompType, CompTemp, and CompInst at the top level,
but a single class Component is sufficient (and similar for VirtualMachine).



@4:

@[:

@U:

@T:

Language:
definition:

Component:
types:definition:

Deployment:
model:

Deployment:
model:with:
explicit:instances
at:runtime:

Component:

ScurrentInst@[::int:=:(:self>allInstancesVM>sizeVM:(:
A:

hostedComp:

VirtualMachine:

cpuLoad::int:
ScpuLoadAvg@[::double:=:
(:self>allInstancesVM->collectVcpuLoad:M->sumVMSself>currentInst:(:

SensApp::Component:
A:

Tomcat::Component:
A:

Ubuntu::VirtualMachine:

sensAppU::
SensApp:[U>>]]:

ScurrentInst:=:[:

U>>U: tomcatU::
Tomcat:[U>>A]:

ScurrentInst:=:[:

U>>]: ubuntuU::Ubuntu:[U>>A]:

ScpuLoadAvg:=:9]>9:
ScurrentInst:=:[:

sensAppUU::sensAppU: tomcatUU::tomcatU: ubuntuUU::ubuntuU:

cpuLoad:=:99:

sensAppU[::sensAppU: tomcatU[::tomcatU: ubuntuU[::ubuntuU:

cpuLoad:=:9T:

Figure 7. Simplified multi-level model for CloudML

In this approach, elements are called clabjects (by the contraction of class+object),
as they have both a type and an instance facet. For example, Ubuntu is an instance
of VirtualMachine and the type of ubuntu1. Furthermore, clabjects can specify the fea-
tures of their instances beyond the next level. For example, VirtualMachine specifies that
three levels below, its indirect instances have a cpuLoad, while two levels below, their
instances have a cpuLoadAvg. The mechanism used for this deep characterisation of in-
stances beyond the next level is potency [4]. A potency is a natural number (or zero)
indicating at how many levels an element can be instantiated (cf. [21] for a formal dis-
cussion of different types of potency). In Fig. 7, the potency is denoted by the @ symbol.
At every lower level, the potency decreases, and when it reaches zero, the element can-
not be instantiated further. If an element does not declare a potency, it inherits it from its
container, and eventually from the enclosing model. Hence, potency is a generalisation
of the standard instantiation mechanism in the two-level approach, where types in the
metamodel have potency 1, and instances in the model have potency 0.

For the case study, we use multi-level modelling as realised in our MetaDepth
tool [9]. The tool offers textual modelling and integrates the Epsilon languages3 for
model manipulation. MetaDepth also supports derived properties, whose calculation
expression can be specified using the Epsilon Object Language (EOL, a variant of
OCL). The top model in Fig. 7 contains two derived properties: currentInst on Compon-
ent, and cpuLoadAvg on VirtualMachine. Both are calculated at level 1: the first counts the
number of instances of each deployed component at level 1, and the second computes
the average of the cpuLoad of all the instances at the bottom level. We adapted EOL for
its use in a multi-level setting [11]. For example, we allow indirect type referencing.

3 http://eclipse.org/epsilon/

http://eclipse.org/epsilon/


Because the type names at intermediate levels are unknown when specifying the top
level, we can refer to instances of instances of a type by using the type name. Hence,
at level 0, an expression like Component.allInstances() returns the set {sensApp11, sens-
App12, tomcat11, tomcat12, ubuntu11, ubuntu12}. Since clabjects with potency 1 or more
retain a type facet, it is possible to apply the operation allInstances on them.

Similar to clabjects, properties and references also have type and instance facets.
Thus, references at intermediate levels can specify cardinalities, as is the case at levels 1
and 2 in the figure. In addition, MetaDepth supports clabject cardinalities. We have used
this feature at level 1 to specify the allowed scaling for ubuntu1, tomcat1 and sensApp1.

Finally, multi-level modelling permits linguistic extensions, i.e., elements which are
typed linguistically but not ontologically [4]. The typing relation between the elements
of consecutive levels in Fig. 7 is ontological, while all the elements are typed by a
linguistic metamodel (not shown, but it contains classes like Clabject and Property). In
the case study, this feature would allow adding new clabjects and properties with no
ontological typing at levels 1 and 2.

6 Comparison

In this section, we discuss the advantages and disadvantages of each approach. We base
our comparison on a set of criteria that demonstrate the expressiveness and usability of
the examined modelling solutions.

Size of language definition. A prominent aspect that affects the choice of a model-
ling approach is the size of the language definition. We claim that a large and verbose
language definition is generally undesirable because it is harder to comprehend. This
negative effect also projects into the resulting models, since more elements need to be
used in order to represent an intended expression. As evidenced by the models in Sec.s 4
and 5, the language definition is three times larger in the two-level approach. For ex-
ample, the clabject Component in the multi-level approach needs to be unfolded into
CompType, CompTemp, and CompInst in the two-level approach. The situation is similar
with references (e.g., hostedComp gets tripled). This is so because the two-level ap-
proach requires emulating the ontological typing by adding the references type between
classes at the type, template, and instance levels, as well as the corresponding OCL
constraints. Instead, the ontological typing in the multi-level approach is native.

Complexity of OCL constraints. Both multi-level and two-level modelling take ad-
vantage of OCL constraints to ensure the well-formedness of the produced models.
However, there are significant differences related to the complexity and count of the
constraints needed to achieve the targeted outcomes. Constraints in the two-level ap-
proach tend to be more complex because they can only use the linguistic types (Comp-
Type, CompTemp, CompInst), but not the reusable types at the model level (SensApp,
Tomcat, Ubuntu). Nevertheless, there are a number of other factors contribute to this
additional complexity:



– Type-conformance constraints. The two-level approach requires defining OCL con-
straints to check, e.g., type conformance between the instances of CompTemp and
the instances of CompType, and between the instances of CompInst and CompTemp.
In the case study, these constraints check the correctness of the references hosted-
CompType and hostedCompInst (see constraints C1 and C4 in Fig. 4, and constraints
C5 and C6 in Fig. 5). The multi-level approach does not need to include such con-
straints, because the type conformance check is embedded into the paradigm.

– Access to lower levels. In the two-level approach, to obtain the instances of a class
representing a type (e.g., the instances of SensApp), we need to navigate the refer-
ence type (e.g., CompInst.allInstances()->select(ci | ci.type = SensApp)). This access is
simpler in the multi-level approach, as it is possible to obtain the direct or indirect
instances of a clabject using the operation allInstances on the clabject (e.g., sens-
App.allInstances()). In the case study, cpuLoadAvg needs to access all instances at the
bottom level to obtain the cpuLoad, and currentInst counts the number of instances
at the bottom level.

– Transparent navigation to upper levels. In the multi-level approach, the expression
o.feature looks up the value of feature in the direct type of o, or in some indirect
type in upper levels. In the two-level approach, this needs to be done explicitly by
using o.type.feature or o.type.type.feature.

– Constraints on reusable types. Suppose we need to specify a constraint on some
reusable type (e.g.Ubuntu). In the multi-level approach, the constraint would be
directly specified on the context of the clabject. For example, defining self.cpuLoad
< 80 with potency 2 on the clabject Ubuntu ensures that all its instances at level 0
have a cpuLoad lower than 80. In contrast, in the two-level approach, we should add
the following constraint to the class VMInst: self.type.type.name = ’Ubuntu’ implies
self.cpuLoad < 80. In addition, we should add a property name to VMType to be able
to identify the instance of Ubuntu. This is necessary because Ubuntu lacks a type
facet in the two-level approach, and hence, it cannot specify constraints. Moreover,
the constraint should be added to the metamodel, which may not be allowed as
metamodel changes are frequently restricted to language developers.

– Instantiability of classes. To restrict the number of instances of a certain class (e.g.,
CompInst), the two-level approach requires adding properties to the class to spe-
cify the minimum and maximum number of allowed instances, as well as OCL
constraints checking their fulfilment (e.g., properties minInst and maxInst, and con-
straints C2 and C3, in Fig. 4). Instead, the three-level approach does not require to
specify any OCL constraint, but only the clabject cardinality.

Precision. We define precision as a measure that reflects how accurately, in semantic
terms, a model can represent an intended expression. Thus, we compare how reference
cardinalities are specified. The multi-level approach supports reference cardinalities at
level 1, to gain a fine-grained control of the allowed scaling at level 0. The presented
two-level approach uses ranges for this purpose. However, it does not constrain e.g.,
how many instances of SensApp are allowed in a Tomcat, but only that a global max-
imum of four are allowed, either residing in a single Tomcat or in several ones. To enable
this feature, the two-level approach would require to emulate reference cardinalities by
adding extra classes to the metamodel (the Relation Configurator pattern in [10]).



Extensibility. We define extensibility as the ability to extend a language while min-
imising changes to its metamodel. This is because languages, like any other software
artefact, need to evolve in response to changing requirements. In this respect, the multi-
level approach allows adding new properties at levels 1 and 2, due to its support for
linguistic extensions (i.e., elements without ontological type). Thus, we could add a
property maxSensors to SensApp to configure the maximum number of sensors in Sens-
App applications. Defining this property on Component at level 3 is less appropriate, as
some component instances at level 2 may lack the property. In the two-level approach,
being able to specify new properties in models would require emulating the infrastruc-
ture for property specification/instantiation at the metamodel level.

Flexibility. We define flexibility as the degree of expressiveness of the chosen ab-
straction in terms of the model element relationships and level of encapsulation. In the
multi-level approach, clabjects at level 1 or above can specify operations. Thus, the
engineer designing the deployment model could add the following EOL operation to
Ubuntu, with a condition for scaling out:

operation Ubuntu scaleOut(): Boolean { return self.cpuLoadAvg >= 90 }
A reasoner could use this operation as a trigger for scaling out. This flexibility is

not possible in the two-level approach, because elements at model level cannot specify
operations. Instead, a workaround would be to design a dedicated DSL to express such
conditions.

Also concerning flexibility, the multi-level approach supports inheritance at any
level. For example, in Fig. 7, the model at level 2 could specify a hierarchy of ap-
plication servers. In the two-level approach, the semantics of inheritance at the model
level would need to be emulated. Nonetheless, the two-level approach allows custom-
ising the semantics of the conformance relation (e.g., to permit two ontological types
for an element) and the inheritance relation (e.g., to (dis)allow multiple inheritance),
while the semantics of these relationships is fixed in the multi-level approach.

Tooling. Lastly, we examine the tool support for each of the methodologies. The de-
facto standard in modelling frameworks in the state-of-the-art is the Eclipse Modelling
Framework (EMF)4. Whereas EMF provides a large ecosystem of tools and languages
for two-level modelling, the support for multi-level modelling is limited. MetaDepth
is compatible with the Epsilon languages but does not rely on EMF. Similarly, other
multi-level tools, like XModeler [7] or Nivel [1] do not rely on EMF. A notable excep-
tion is Melanee [2], which is built upon EMF. However, in this case model manipulation
languages would need to be adapted to work with it. Alternatively, at the implementa-
tion level one could use programming languages enhanced with multi-level concepts,
like DeepJava [18], or with strong reflection capabilities [16,8].

Table 1 summarises the studied aspects. Altogether, a multi-level approach for the
case study leads to a smaller language definition, with less OCL constraints, and less
complex. To achieve the same degree of precision, extensibility and flexibility, the two-
level approach would need to include in the metamodel many features that are native

4 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/


Table 1. Comparison criteria

Dimension Two-Level Multi-Level
Size × 3-fold replication of classes and references

√
Compact language definition: clabjects and potencies

× Explicit modelling of type relations
√

Type relations are native
OCL × Explicit type-conformance constraints

√
Constraints can use ontological types

complexity × Constraints cannot use ontological types
√

Transparent navigation across ontological levels
× Explicit navigation through type relations

Precision × Lack of cardinality constraints at model level
√

Fine-grained control by cardinality constraints at level 1
Extensibility × Dynamic properties need to be emulated

√
New properties can be added at intermediate levels

Flexibility
√

Customisable conformance/inheritance rel.s
√

Operations can be added at intermediate levels
× Lack of inheritance at model level

√
Inheritance at the model level is native

Tooling
√

Large ecosystems of tools and languages × Limited tool choice, increased integration effort

in a multi-level framework, like reference cardinalities, properties, operations, or inher-
itance. Nonetheless, as metamodelling features (like ontological typing or inheritance)
are explicitly specified, they can be customised. The case study needed no customisa-
tion though. Finally, a richer set of tools is currently available for a two-level approach.

7 Related Work

In the cloud community, frameworks such as Cloudify, Puppet or Chef5 provide DSLs
that facilitate the specification and enactment of provisioning, deployment, monitor-
ing, and adaptation of cloud-based applications, without being language-dependent.
Moreover, the Topology and Orchestration Specification for Cloud Applications (TO-
SCA) [20] is a specification developed by the OASIS consortium, which provides a
language for specifying the components comprising the topology of cloud-based ap-
plications along with the processes for their orchestration. Similar to CloudMF, the
aforementioned solutions are based on a two-level modelling approach, so an alternat-
ive, multi-level modelling approach could also be considered for these solutions.

There are scarce works comparing two-level and multi-level solutions for given
problems. In [3], some comparison criteria for multi-level approaches (e.g., powertypes
and deep modelling) are proposed. The criteria include language size and intended audi-
ence. Instead, our criteria are directed to evaluate solutions to a modelling problem. In
our previous work [10], we identified patterns that signal the need for a multi-level solu-
tion, and analysed their occurrence on a set of metamodels, including an early version
of CloudML. In [5], the authors use a simple example to discuss the benefits (regarding
size) of a potency-based multi-level approach compared to powertypes [15] and a two-
level approach. In contrast, we use a real-life example, and discuss other dimensions
beyond size. In [19], the authors detect the multi-level nature of the MARTE profile,
and use an embedding of a potency based multi-level approach using stereotypes to
refactor its definition. Instead, we use a native multi-level framework like MetaDepth
and compare with a two-level solution.

5 http://www.cloudifysource.org/, https://puppetlabs.com/, http://www.
opscode.com/chef/

http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/
http://www.opscode.com/chef/


8 Conclusions and Future Work

In this paper, we have compared two metamodelling techniques for the purpose of
providing CloudML with features that facilitate reasoning and adaptation of multi-
cloud applications at multiple levels of abstraction. The results show a smaller language
definition in the multi-level case, with some other benefits regarding extensibility, flex-
ibility, and precision.

In the future, we intend to conduct a user-based empirical study on differences
between the two-level and multi-level modelling approaches discussed in this paper.
The goal is to collect quantitative and qualitative measurements on the two alternatives
with respect to the criteria described in Sec. 6, which will allow us to verify if there
is any statistically significant difference and evaluate the viability of each. Moreover,
we plan to take advantages of the best features from the two-level and multi-level ap-
proaches. In this respect, we are building a compiler from MetaDepth to EMF, which,
given the top model in Fig. 7, would produce the metamodel in Fig. 6, including the
OCL constraints. Hence, designers would deal with a reduced language definition, and
the resulting framework would be easy to integrate with the EMF tooling.

Acknowledgements. The research leading to these results has received funding from
the European Commission’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement numbers 317715 (PaaSage), 318392 (Broker@Cloud), and 611125
(MONDO), the Spanish Ministry under project Go Lite (TIN2011-24139), and the
Madrid Region under project SICOMORO (S2013/ICE-3006).

References

1. Asikainen, T., Männistö, T.: Nivel: a metamodelling language with a formal semantics. Soft-
ware and System Modeling 8(4), 521–549 (2009)

2. Atkinson, C., Gerbig, R., Kennel, B.: Symbiotic general-purpose and domain-specific lan-
guages. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE 2012: 34th International Con-
ference on Software Engineering. pp. 1269–1272. IEEE (2012)

3. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches. In:
MULTI 2014: 1st International Workshop on Multi-Level Modelling, co-located with MOD-
ELS 2014: 17th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems. CEUR Workshop Proceedings, vol. 1286, pp. 53–61. CEUR (2014)

4. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on Mod-
eling and Computer Simulation 12(4), 290–321 (2002)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software and
Systems Modeling 7(3), 345–359 (2008)

6. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42(10), 22–27
(2009)

7. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for multi-level model-
ling. In: MULTI 2014: 1st International Workshop on Multi-Level Modelling, co-located
with MODELS 2014: 17th ACM/IEEE International Conference on Model Driven Engin-
eering Languages and Systems. CEUR Workshop Proceedings, vol. 1286, pp. 43–52. CEUR
(2014)



8. Cointe, P.: Metaclasses are First Class: the ObjVlisp Model. In: Meyrowitz, N.K. (ed.)
OOPSLA 1987: Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications. pp. 156–167. ACM (1987)

9. de Lara, J., Guerra, E.: Deep Meta-modelling with MetaDepth. In: Vitek, J. (ed.) TOOLS
2010: 48th International Conference on Objects, Models, Components, Patterns. Lecture
Notes in Computer Science, vol. 6141, pp. 1–20. Springer (2010)

10. de Lara, J., Guerra, E., Cuadrado, J.S.: When and How to Use Multi-Level Modelling. ACM
Trans. on Software Eng. and Methodology 24(2), 1–46 (2014)

11. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-specific meta-
modelling languages. Software and System Modeling 14(1), 429–459 (2015)

12. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud systems
with CloudMF. In: Solberg, A., Babar, M.A., Dumas, M., Cuesta, C.E. (eds.) NordiCloud
2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies. pp. 38–45.
ACM (2013)

13. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provision-
ing, deployment, monitoring, and adaptation of multi-cloud systems. In: O’Conner, L. (ed.)
CLOUD 2013: 6th IEEE International Conference on Cloud Computing. pp. 887–894. IEEE
Computer Society (2013)

14. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: Applying MDE to Tame
the Complexity of Managing Multi-Cloud Applications. In: Bilof, R. (ed.) UCC 2014: 7th
IEEE/ACM International Conference on Utility and Cloud Computing. pp. 269–277. IEEE
Computer Society (2014)

15. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Software and Systems Modeling 5(1), 72–90 (2006)

16. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT Press
(1991)

17. Kühne, T.: Matters of (meta-)modeling. Software and Systems Modeling 5(4), 369–385
(2006)

18. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style: multi-
level programming with deepjava. In: Gabriel, R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S.
(eds.) OOPSLA 2007: 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. pp. 229–244. ACM (2007)

19. Mallet, F., Lagarde, F., André, C., Gérard, S., Terrier, F.: An Automated Process for Imple-
menting Multilevel Domain Models. In: van den Brand, M., Gasevic, D., Gray, J. (eds.) SLE
2009: 2nd International Conference on Software Language Engineering. Lecture Notes in
Computer Science, vol. 5969, pp. 314–333. Springer (2009)

20. Palma, D., Spatzier, T.: Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA). Tech. rep., Organization for the Advancement of Structured Information
Standards (OASIS) (June 2013), http://docs.oasis-open.org/tosca/TOSCA/v1.0/
cos01/TOSCA-v1.0-cos01.pdf

21. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep metamod-
elling. Formal Aspects of Computing 26(6), 1115–1152 (2014)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

	A comparison of two-level and multi-level modelling for cloud-based applications

