
An Extensible Meta-modelling Assistant
Ángel Mora Segura, Ana Pescador, Juan de Lara
Modelling and Software Engineering Research Group

(http://miso.es)
Universidad Autónoma de Madrid (Spain)

{Angel.MoraS, Ana.Pescador, Juan.deLara}@uam.es

Manuel Wimmer
Business Informatics Group

(https://www.big.tuwien.ac.at)
TU Wien (Austria)

wimmer@big.tuwien.ac.at

Abstract—Meta-models play a pivotal role in Model-Driven
Engineering (MDE). They are used to create domain-specific
models, and to type model management operations like model
transformations or code generators. However, even though cre-
ating meta-models is a common activity, it is currently mostly a
manual activity, which does not profit from existing knowledge.

In order to facilitate the meta-modelling task, we propose an
extensible meta-modelling assistant. While primarily focussed on
helping in the creation of meta-models, it can also help in creating
models. The assistant permits the provision of heterogeneous data
description sources (like ontologies, RDF data, XML schemas,
database schemas and meta-models), and enables their uniform
querying. Different kinds of queries are supported, and improved
through synonym search. Query results are prioritized through
sense disambiguation, can be graphically visualized, and incor-
porated into the (meta-)model being built.

The assistant has been realized within Eclipse, and its architec-
ture has been designed to be independent of the meta-modelling
technology used. As a proof-of-concept, we show its integration
within DSL-tao, a pattern-based meta-modelling tool built by
our group, and two other tools developed by third-parties. The
usefulness of the system is illustrated with a running example in
the process modelling domain.

Index Terms—Modelling, Meta-modelling, (Meta-)modelling
environments, Meta-modelling assistant, Domain-specific lan-
guages, Language engineering.

I. INTRODUCTION

Model-Driven Engineering (MDE) promotes the active use
of models to automate the different phases and activities of the
systems development life-cycle. For example, models can be
used to specify, analyse, test, simulate, execute, generate code
and maintain the system to be built, among other activities [2],
[32]. Many times, those models are not built using general-
purpose modelling languages, like UML, but using Domain-
Specific Languages (DSLs) [17]. These contain primitives and
concepts specifically tailored to a particular domain, which
may lead to simpler, more intensional models. The abstract
syntax of DSLs is described through a meta-model (which is
itself a model), and hence the construction of meta-models is
a common activity in MDE.

Models with precisely defined syntax (i.e., which can be
processed automatically) play a central role in modern ap-
proaches to Enterprise Modelling, especially in the context of
Model-Driven Organizations (MDOs) [4]. In this approach,
models are integrated and automate the systems that drive
the organization, and they are the primary means by which
stakeholders interact with the organization.

High quality meta-models, which appropriately capture the
most important concepts of a domain, are pivotal for the
success of MDE projects, as well as for the MDO vision.
However, while meta-modelling is a frequent task in MDE,
it remains a mostly manual duty. Hence, unlike modern
programming IDEs, which offer different kinds of code rec-
ommenders [11], [29] (e.g., for using a given API or for
program quick fixing) and reusable libraries, the meta-model
developer normally has the burden to create the model from
scratch. However, when building a meta-model, developers
would greatly benefit from flexible access and reuse of existing
knowledge in a domain. This knowledge might be stored in a
variety of sources, such as already existing models and meta-
models, or other kinds of data description artifacts, such as
XML schemas, ontologies or RDF data.

Hence, in this paper, we propose an extensible meta-
modelling assistant called EXTREMO, able to extract infor-
mation from different sources (meta-models, ontologies, RDF
schemas). The system enables the organization of (heteroge-
neous) sources in repositories, which then can be queried and
visualized in a uniform way. The results of the queries are
prioritized and aggregated for all sources in the repositories.
Such results can then be incorporated into the model under
construction. In order to offer more powerful query mecha-
nisms, we make use of Wordnet [21], a database of the English
language, to check for synonyms and word senses. While
EXTREMO is particularly suited to help in the construction
of meta-models, and was originally designed for this task, it
can be used to help in the creation of models as well.

EXTREMO has been implemented as an Eclipse plugin and
is freely available at http://miso.es/tools/extremo.html. The
web site includes short videos, which illustrate the main
concepts explained in this paper. EXTREMO’s architecture
is extensible and modular by profiting from Eclipse exten-
sion points, and permits adding support for new informa-
tion sources and types of queries. The assistant system has
been designed to be easily integrated with external modelling
environments, also through extension points. As a proof-of-
concept, we show its integration with DSL-tao [27], a pattern-
based meta-modelling tool developed by our group. Moreover,
to demonstrate the feasibility of extending tools developed
by third-parties, we show its integration with the default
meta-modelling editor of the Eclipse Modelling Framework
(EMF) [33], and a UML modelling tool [13]. Along the paper,

we illustrate the usefulness of the approach with a running
example in the area of process modelling for e-Government.

The rest of this paper is organized as follows. Section II
provides an overview of the approach, its motivation, and
introduces a running example. Section III explains the main
ingredients of the assistant: the handling of heterogeneous
sources (Section III-A), the ability to perform queries on
them in a uniform way (Section III-B), and the possibility to
visualize sources and query results (Section III-C). Section IV
describes the extensible and modular architecture of the as-
sistant. Section V presents its integration with DSL-tao and
Section VI discusses the results of a preliminary evaluation.
Section VII compares with related work and Section VIII
concludes the paper and proposes lines for future research.

II. OVERVIEW AND RUNNING EXAMPLE

Creating a high quality meta-model is a complex task,
as it involves both deep knowledge in a particular domain,
and experience in object-oriented design and class-based
modelling. Hence, domain meta-modelling typically involves
two roles: (i) a domain expert, and (ii), a meta-modelling
expert. However, many times, the meta-modelling expert (the
developer) is left alone in the construction of a meta-model,
or needs to make decisions on tacit domain knowledge or
under-specified language requirements. In this scenario, the
developer would benefit from access to vocabularies and
knowledge in a particular domain, available in sources like
ontologies or as RDF data, which could then be easily included
in the meta-model being built.

Typically, meta-models within a domain are not completely
different from each other, but they have recurring patterns
and idioms [27]. For example, when building a language to
describe behaviour, designers may resort to accepted speci-
fication styles, including variants of languages like state ma-
chines, workflow languages, rule-based languages or data-flow
languages, enriched with domain-specific elements. Therefore,
not only for the purpose of access to domain concepts, but also
to organize the meta-model infrastructure, it would be inter-
esting to be able to inspect existing meta-models, ontologies,
or any kind of data description artefact, in a uniform way.

For this purpose, we have built a (meta-)modelling assis-
tance system, whose working scheme is shown in Fig. 1. The
approach is based on the creation of a set of repositories
(label 1 in the Figure), possibly made of heterogeneous data
descriptions (OWL ontologies, Ecore meta-models, RDF files,
XML schemas). Our system provides facilities for the uniform,
flexible (“Google-like”) query of such sources (label 2). Then,
the results of the query for each source in the repository are
aggregated and ranked according to the suitability for the
user (label 3). At any point, information sources and query
results can be visualized in a graph-based way (label 4). The
assistance system is independent of any modelling tool, but
has been designed to be easily integrated within them (label
5). This way, query results can be used easily by an external
modelling tool by drag & drop.

Repository

OWL
Ecore
RDF
… Results

Visualization

RRRRRRR llllllltttt

Query

(Meta-)modelling Tool

Meta-modelling Assistant Scheme

1 2

3

4

5

Fig. 1: Overview of the approach

This assistant architecture is useful in several scenarios.
EXTREMO was conceived as a meta-modelling assistant, and
hence its main application is to help in developing new meta-
models for particular domains. In addition is is also useful
when creating a “concept” meta-model [5]. A concept is a
minimal meta-model that gathers the core primitives within a
domain (e.g., for workflow languages). Concepts can be used
as the source meta-model of a model transformation, which
then becomes reusable, as the concept can be bound to a par-
ticular meta-model. Therefore, when creating a concept, one
needs to query and understand many different meta-models for
a particular domain, and hence the assistant becomes useful.
Finally, the assistant can also be useful when creating models
for a particular domain. In this paper, we will illustrate mainly
the first scenario (creating meta-models) through a running
example, while we show that that EXTREMO can also be
integrated with modelling tools in Section VI.

A. Running example

As a running example, we will use EXTREMO to construct
a DSL for describing administrative e-Government processes
for immigration. As an illustration of the kind of concepts
we would like to include in the DSL, Fig. 2 depicts a model
describing the (simplified) process for issuing a visa.

!"#$
%"&'()*

+(,$"--./0"*/1)

2(0(/3(4

5"*"

6"./47

8859:;;

<=>?@

88<=>?@;;

A1'-.(*(
B--./0"*/1)
88B--./0"*/1)

%210(CC;;

<)*(23/(,$
5"*(
885"*($:(.(0*/1);;

!

88%"&'()*;;

5"*"$
3"./4"*/1)
88<)*(23/(,;;

:*D4&
B--./0"*/1)
88B--./0"*/1)

%210(CC;;

885E:;;

5"*"

01)F/2'(4

<CCD(6/C"

88%210(CC;;

88GH5H;;

G(4/0".$
I#"'/)"*/1)
88B--./0"*/1)

%210(CC;;

I#"'/)"*/1)

-"CC(4

88B--./0")*;;

6/C"$/CCD(4

J&(CK

6/C"

0")0(..(4

J)1K
J<''/L2")*M
%2/12/*&N12O(2K

886/C";;

JI>K

Fig. 2: Process for issuing a visa with the example DSL

In the process, the applicant is required to fill in a standard
I-130 form and to perform the required tax payment. In the

visa application, it is necessary to set a date for an interview
with the embassy personnel. Eventually, a new application is
produced. Afterwards, two governmental organizations – the
US Department of Home Security (DHS) and the Department
of State (DOS) – perform a study of the submitted application.
If positively resolved, the DOS interviews the candidate. In
parallel, the candidate is expected to go through a medical
examination, which is also required for issuing the visa. Once
both the ordinary verifications and the medical report have
been checked, the document is dispatched. In this case, the visa
is approved and consequently issued; otherwise, the applicant
is denied the document. This process describes the application
for an E1 visa, while depending on the characteristics of the
applicant (e.g., married to a citizen, business visitor), other
types of visa should be issued, which would be described as
different processes using this DSL.

It can be observed how this DSL contains domain-specific
knowledge, related to the organizations (DOS, DHS), the
actors (immigrant, medical doctor) and the artefacts (the I-
130 form, different types of Visa, tax payment) involved. The
DSL also includes specific activities common in the domain,
like «Application Process», «Date Selection», or «Interview». In
addition, the language has more generic concepts (e.g., tasks,
processes, control flow directives, like split and join, etc.)
typically found in process modelling languages.

Therefore, as a help in the construction of this DSL, we will
gather information from well known standards from the Object
Management Group (OMG)1 (http://www.omg.org/spec/), or
meta-models repositories, like the ATL zoo (http://web.emn.
fr/x-info/atlanmod/). In these two repositories, we find de-
scriptions of both standard process modelling languages, like
BPMN [24] or BPEL [22], or process modelling languages
tailored for specific domains, in Ecore/XMI format. This is the
standard serialization format for meta-models in EMF [33], the
“de-facto” meta-modelling standard in MDE. For the domain
concepts, public repositories or open information resources
would be required. In our case, we will take the US e-
Government domain ontologies (http://oegov.org/), which are
available in OWL and RDF formats.

However, it is not enough to have individual access to those
data sources. As a help to the meta-model developer, we would
need a system able to perform flexible queries uniformly on
those heterogeneous sources, to aggregate their query results
sorting them by relevance, to visualize the sources and results,
and to facilitate the incorporation of the query results into the
meta-model being developed. The next section describes how
our meta-modelling assistant fulfills these requirements.

III. A META-MODELLING ASSISTANT

In this section, we detail the three main parts of our ap-
proach: the handling of heterogeneous sources (Section III-A),
the uniform query support (Section III-B), and the uniform
visualisation of heterogeneous sources and query results (Sec-
tion III-C).

1The OMG is the standarization body behind many modelling standards
like the UML, SysML, MOF or BPMN.

A. Handling heterogeneous sources
Our assistant requires a uniform way to access and query

heterogeneous data sources, as well as mechanisms to organize
and classify such resources. Fig. 3 shows a class diagram
depicting how we have approached both objectives.

extremo.data

)$12/*(2)*$/

)$/2-)0$/

RepositoryManager

7

IDataProperty

String getDataType()

IObjectProperty

ISemanticElement

Object getID()

String getName()​

String getDescription()

1)21$)(*$/
7

7

04"//$/
7

ISemanticClass/-1$)/
7

7/-:/

SemanticResource

assistant : String

isAlive : Boolean

isActive : Boolean

)"!+$

Repository

name : String​

uri : String​

IFormatAssistant

boolean load(SemanticResource semanticResource);

List<ISemanticClass> getAllClasses();

List<ISemanticClass> getClassesLike(String... names, boolean specific, boolean general);

List<IDataProperty> getDataProperties(ISemanticClass parent, boolean supers, boolean equivs);

List<IObjectProperty> getObjectProperties(ISemanticClass parent, boolean supers, boolean equivs);

List<ISemanticClass> getSiblings(ISemanticClass parent);

List<ISemanticClass> getRelatedClasses(ISemanticClass parent, boolean supers, boolean equivs);

List<IObjectProperty> getPath(ISemanticClass entityA, ISemanticClass entityB);

"//*/("!0$/

AssistantFactory

List<IProperty> getProperties()

List<IProperty> getAllProperties()

void setWeight(int weight)

/-:/
7

7

#"!"+$)
<

Search

searchField : String

options : Boolean[]

searchTree : Tree

7

<

/$")0=$/7

extremo.manager

Fig. 3: Class diagram showing EXTREMO’s common data
model and the repository manager

In order to enable a uniform access to heterogeneous data,
we use a common data model, shown in package extremo.data
of Fig. 3. The idea is to provide mappings for different data
sources to this common model. A SemanticResource represents
a resource (e.g., a file) containing a collection of entities.
We use a number of interfaces (ISemanticElement, IProperty,
IDataProperty, IObjectProperty and ISemanticClass) to represent
the main elements found in data description models like
meta-models and ontologies, but abstracting from particular
technological details.

This way, the data model assumes that every resource
will consist of classes (ISemanticClass) made of properties
(IProperty), which can have primitive data types (IDataProperty)
or references to other classes (IObjectProperty). Classes may
be related to super/subclasses via the supers/subs association
roles. The model requires mechanisms to access the owned
properties (method getProperties) and both to the owned and
inherited properties (method getAllProperties) of a class.

Ecore OWL RDF
SemanticClass EClass Class Resource
ObjectProperty EReference ObjectProperty Property
DataProperty EAttribute DatatypeProperty Property
SemClass.supers eSuperTypes rdfs:subClassOf

SemClass.properties eAttributes
eReferences rdfs:domain

TABLE I: Correspondence between different data modelling
technologies and the EXTREMO data model

Table I shows how several technologies (Ecore, OWL, RDF)
can be mapped to our common data model. Our design is
extensible, as it facilitates the integration of new technolo-
gies. We will elaborate on the extensibility mechanisms of
EXTREMO in Section IV.

Adding support for a new data format requires providing
a parsing facility into the common data model, as well as
some basic query mechanisms, as depicted in the interface
IFormatAssistant in Fig. 3. The parsing mechanism (method load)
is in charge of mapping the format-specific information to the
common data model. The query mechanisms will be described
in Section III-B.

The other ingredient of the assistant data handler includes
a repository manager and an assistant manager (shown in
package extremo.manager of Fig. 3). These elements take care
of controlling the different sources and resources. Resources
can be either remote or local files; either way, they get
classified by the domain in the repositories. A repository is an
abstract concept, and are not physically stored but defined only
for a classification purpose. The AssistantFactory classifies the
resources and controls which assistant will resolve the queries
against which resource. This data, coming from arbitrary
sources and representation formats, is accommodated into our
common framework.

Running Example. In the example, we provide three assis-
tants for the resolution of queries over meta-models (Ecore),
ontologies (OWL) and Linked Data resources (RDF/XML).
We have organized resources in three repositories, one for
the ATL meta-model zoo, another for the OMG standards
(both in Ecore format), and the last one for the e-Government
ontologies. The ATL zoo repository contains Ecore resources
representing different languages in the process modelling and
workflow domains. Those include BPEL, BPMN, DoDAF,
Gantt, ODP, PIF, SPEM and Workdefinitions. The OMG
repository contains Ecore files with standard meta-models, like
BMM, BPMN, CMMN, DMN, SBVR and SPEM. Finally, the
e-Government repository contains ontologies modelling dif-
ferent facets of the structure of the United States government.
These include the Government ontology, the U.S. Government
ontology, the Department of Homeland Security ontology and
Department of State ontology.

B. Querying

Often, a developer might lack a complete understanding of
a certain domain, which may complicate the construction of
a meta-model. Hence, we provide query facilities over the
uniform data model, which are then realised over the hetero-

geneous sources. Our query facilities are intended to provide
support for flexible search (i.e., “Google-like” queries) as
opposed to the queries that one would formulate in languages
like OCL or SQL. We selected this option as the purpose is
to find any possible relevant information in the repositories in
an exploratory way.

In order to be able to query heterogeneous sources in a
uniform way, we rely on parsing the heterogenous data into
a common model (see Fig. 3). Such common data model is
also needed to provide support to non-well structured formats
(e.g., plain text files) when naming and listing their entities.
Finally, the common data model also facilitates connecting
the assistant with linguistic and lexical databases that enable
performing more flexible queries on data sources.

As the IFormatAssistant interface in Fig. 3 shows, our assistant
supports queries to:

• Obtain all semantic classes in a resource.
• Obtain all classes, whose name is similar to a set of

words that the user specifies. Additionally, the user may
select whether she would like to obtain all more general
or specific classes than the ones sought.

• Get all (data and object) properties of a semantic class,
including inherited ones.

• Retrieve all classes that inherit from a common superclass
(sibling classes).

• Obtain all classes related with a given one.
• Get a path of relations between two semantic classes.
Because of EXTREMO’s common data model, these opera-

tions can be performed regardless of the format of each data
resource, as every entity and its properties are presented in a
uniform representation.

In our approach, when a semantic class is sought, the
process encompasses two main stages. First, the user provides
a list of tentative words as search terms. Then, this list is
processed using Wordnet [21], a lexical database of the English
language, with the objective of looking for relevant synonyms
of the chosen search terms. Because a word may have different
senses, some of them irrelevant for the domain of the meta-
model being built, we need a mechanism to choose synonyms
from relevant word senses. Hence, we perform a processing
step, which constructs a word tree rooted in the input concepts
and spreading to their closer synonyms and related concepts
and expressions. Finally, the query algorithm looks for the
semantic classes – extracted uniformly from the resources –
matching the input terms and their synonyms and goes over
the different semantic paths connecting all of them.

The way we explore the relations between search terms in
a given context is inspired by the Lesk algorithm [18]. Our
algorithm evaluates each word in a phrase assuming that every
word tends to share a common semantic field with its siblings.
We use Wordnet to select, among the available entities, the
most suitable candidates to match the common semantic fields
from the input term list.

For example, Fig. 4 shows an abstraction of the results found
for the search “process, activity, task”. For space reasons, we
represent the senses of each word with an “s” and the list

process, activity, task

s1 s2 s3

w11 w12 w21 w31 w32 w33

process activity

s6

w41 w42 w43 w51

1

task

s4 s5

w41 w42 w43 w51 w52

2

Fig. 4: Search terms tree definition expansion

of synonyms within each sense with a “w”. For example,
in the case of “process” (label 1), one of the senses given
by Wordnet is “a natural prolongation or projection from a
part of an organism either animal or plant”. For this sense,
both “outgrowth” and “appendage” are considered synonyms
of process. To determine if a sense has significance for the
search we make use of the definition of the sense and the list
of example phrases provided by Wordnet (depicted as colored
rectangles in label 2). This evaluation continues incrementally
until the final list of synonyms is found. The final list will be
used to search in the resources within the repository.

To obtain the list of candidates, we use a rule system based
on assigning points as the whole list of senses provided by
Wordnet is evaluated. The points are not fixed, but can be
configured in our tool. Some point strategies are predefined
by the tool, but new strategies can be added as well. The rules
for assigning those points are as follows.

• S1: If a synonym is present in the list of tentative words
(in Fig. 4, say w11 = ’activity’).

• S2: If a synonym of a sibling term is present in the senses
of the current term (w41 = w11).

• S3: If a path between a synonym of a sibling term and
one of the synonyms exists (w41 -> w11).

• S4: If a synonym of a sibling term is mentioned in the
definition of one of the senses (w41 mentioned in the
definition of s1).

• S5: If a synonym of a sibling node is mentioned in the
usages of one of the senses (w41 mentioned in the usages
of s1).

The final points for each synonym are the sum of points
provided by the previous rules (S1, ..., S5). While we normally
use a strategy that assigns more points to the words matched
rules with lower numbers (i.e., points(Si) > points(Si+1)),
other strategies are possible as well, as we will discuss in
Section IV.

It is worth mentioning that we detect and tackle compound
names. It is quite common, specially in MDE, to find entities
in meta-models or ontologies, whose name is the concatena-
tion of two or more words, most often in camel case. For
evaluating the search, we split these words. Moreover, plainly
comparing word pairs (e.g., “process”, “procedure”) might
throw unsatisfying, or too general, results. Hence, in order to
make the search more complete, we used the Porter Stemmer
Algorithm [28], which reduces the comparison of two words
to their lexical roots.

The resulting words to be sought are ordered descendingly
by their assigned points. As the search may match entities in
more than one resource, those entities are grouped together
and their group receives the maximum of all points received
by any of its members.

Running example. For the case of “process, activity, task”
search, we followed a strategy that gives more importance to
the synonyms presence and the definitions, which assigned
1000 points to the S1 rule, 80 to S2, 20 to S3, 100 to S4 and
20 to S5. The resulting list of candidate words was:

1000 task
1000 process
1000 activity
320 job
320 chore
300 summons
260 body process
260 bodily process
260 bodily function
240 procedure
200 treat
200 physical process
200 outgrowth
200 appendage
180 natural process
180 natural action
100 work on

100 work
100 unconscious process
100 swear out
100 sue
100 serve
100 march
100 litigate
100 action
0 undertaking
0 project
0 operation
0 mental process
0 labor
0 cognitive process
0 cognitive operation
0 activeness

C. Visualization

The visual exploration of the content of the resources
is another way to discover and comprehend the semantic
concepts that pertain a domain. Based on the common data
model, our assistant permits the homogeneous visualization
of heterogeneous data sources. The visualization is graph-
based, where semantic classes are represented as nodes, and
inheritance and relations as two different types of edges.
Fig. 5 shows how the different elements in the data model
are represented in a graph-based way. We will discuss the
capabilities of the supporting visualization tool in Section IV.

IV. ARCHITECTURE AND TOOL SUPPORT

In order to facilitate its integration with (meta-)modelling
tools, the assistant has been realized as a plugin for the
Eclipse platform. EXTREMO is available at http://miso.es/

IDataProperty IObjectProperty

ISemanticElement

1)21$)(*$/
7

04"//$/
7

ISemanticClass
/-1$)/

7

7

/-:/

SemanticResource

)"!+$
<

@Node

@Graph

@Edge

@InheritanceEdge

Fig. 5: Mapping the data model to a graph representation

tools/extremo.html. The web page includes videos, screenshots
and installation details.

We take advantage of the Eclipse extension point infrastruc-
ture to make it easier for the developer to add new formats to
the framework (by extending the classes shown in Fig. 3),
and for its integration with modelling and meta-modelling
tools. Moreover, we provide tool support for the classification
of repositories independently of their format, and to help
organizing the data sources as of their domain.

Assistant

manager

Repository

manager

Core

Repository

View

UI

Search and

word processing

Entities

View

Resource

Visualization

search

sorter / filter action drop

Zest

assistant

data integration

Ecore

Assistant

Ecore

…

sorter / filter

weights

Fig. 6: Architecture of the proposal

A schema of the EXTREMO architecture is shown in Fig. 6.
EXTREMO is made of a Core component, which provides sup-
port for the common data model and includes subcomponents
for searching, repository management, and assistant manage-
ment. The Core component provides two extension points to
support additional data modelling technologies. The Figure
shows an extension for the case of Ecore meta-models [33].

When a developer needs support for a new format (e.g.,
XML schemas), an implementation of the IFormatAssistant
interface shown in Fig. 3 needs to be provided. This implemen-
tation class is in charge of parsing the data from the resources
to the semantic classes. The assistant for the new format
has to extend the core components of EXTREMO, both the
assistant infrastructure and the data integration that provides
the connection with the semantic classes of our data model.

Fig. 7: Repositories (left), Entities (center) and Search Tree
(right) views

Every extension needs to define its name, so that EXTREMO
is able to distinguish them when more than one assistant per
file extension is declared. EXTREMO automatically assigns the
assistant to each resource while the repositories are imported.

The UI component in Fig. 6 provides Eclipse views for
performing the queries and listing the results (entities view),
organizing the repositories (repository view), managing the
points given to the rules described in Section III-B and visually
exploring a resource.

EXTREMO is useful in combination with data description
tools, like meta-modelling environments, but is also useful as
an assistant for modelling environments. For this integration,
EXTREMO provides two extension points (named drop and
action in Fig. 6), which allow the results of queries from the
entities view to be inserted into the modelling tool via drag &
drop and menu actions.

Fig. 7 shows a screenshot of the repository view (left), the
entities view (middle) and the tree of words used in the search
(right) that EXTREMO offers. Repositories and resources can
be set to active or inactive. In the latter case, they will not
be considered in searches. Whenever a search is triggered,
the assistant of each available format resolves the query (as
explained in Section III-B) against the resources selected in
the repository view. Once the search has been resolved, the
view shows the entities found by the list of term-synonyms
and suggests an ordered list based on the points given during
the evaluation of repositories. The tool features two extension
points to change this order (an extension point for sorting and
another one for filtering).

The middle of Fig. 7 shows the entities view, with the results
of a query. The results include two grouped results for Task
and Activity, and one result for Process. It can be seen how the
view permits navigating through the elements of a semantic
class, including its super-classes, sub-classes, references and
attributes. As we will see in next section, when integrated
with a meta-modelling tool, it will be possible to select this
information and incorporate it into the meta-model being built.

The points given by the rules of Section III-B can be
managed through a preference page, shown in Fig. 8. This
allows changing the importance to the premises used by
the rules. Points can be changed individually, or selecting
strategies defined by the weights extension point in Fig. 6.

EXTREMO also offers visualization mechanisms for the
resource contents. These mechanisms are based on Zest
(see https://www.eclipse.org/gef/zest/), a component for graph-
based visualization, which provides support for filtering and
layouts. Visualization filtering can be customized by an ex-

Fig. 8: Preference page of EXTREMO

tension point. The tool offers two views: one to explore the
inheritance relationship between ISemanticClasses and the other
to show the references IObjectProperty among them. Fig. 9
shows a screenshot of the entities contained in the BPMN
resource and its references.

Fig. 9: Visualizing BPMN resource references with EXTREMO

V. EXAMPLE: INTEGRATION WITH DSL-TAO

As a proof of concept demonstrating the extensibility and
usefulness of EXTREMO, in this section we show its inte-
gration with DSL-tao, a meta-modelling tool developed by
our group. Hence, we present the main features of DSL-
tao in Section V-A, and explain how it was integrated with
EXTREMO in Section V-B.

A. Meta-modelling in DSL-tao

DSL-tao [27] is a tool (an Eclipse plugin) for the con-
struction of DSLs using a pattern-based approach. It is freely
available at http://miso.es/tools/DSLtao.html, and the web site
includes videos and instructions for installation.

Designing a DSL involves defining its abstract syntax (the
meta-model), concrete syntax (the visualization, graphical or
textual) and semantics (the meaning of models, typically by
an interpreter or a code generator). In addition, editing DSL
models is usually performed using a dedicated environment
providing services like model persistence, conformance check-
ing, and others more advanced. DSL-tao proposes the use of
patterns to address all these aspects in order to facilitate and

speed up the construction of the meta-model and the DSL
modelling environment.

To deal with the abstract syntax, DSL-tao introduces the
notion of domain pattern [27]. A domain pattern gathers
typical requirements of similar languages within a domain,
documenting their variability. Here, there may be patterns
for workflow languages, arithmetical or logical expressions,
variants of state machines, query languages, and component-
based architectural languages, among others. A DSL may
use several domain patterns, customized for a given need,
and extended with other domain-specific concepts. Hence,
domain patterns help the developer to create a meta-model
more quickly, reusing accepted idioms within a domain.

Patterns may include services, which typically contribute
functionality to the generated environment via code genera-
tion. Such kind of patterns are called infrastructure patterns.

B. Integrating EXTREMO in DSL-tao

To integrate EXTREMO in a (meta-)modelling tool, the tool
needs to implement one of the extension points provided by
EXTREMO, as depicted in Fig. 6. One of the extension points
enables the addition of an action to the semantic elements
shown in the entity view of Fig. 7, both in the contextual
menu and in the toolbar. The other extension point enables the
drag operation from the entity view and dropping the selected
information into any graphical editor based on Graphical
Editing Framework [12]. This is the underlying framework
of Eclipse graphical editors. For DSL-tao, we opted for an
integration based on drag&drop, which enables a selection of
the position in the canvas where the element is to be created.

In addition to implement the extension point, we created
a pattern, called Recommended, to help documenting the
information introduced from an external source. Hence, the
first time a new class, attribute or reference is dropped from
EXTREMO into DSL-tao, a pattern instance is created. Then,
the rest of the elements will be added to this pattern instance.
The pattern instance gathers the resource the element was ob-
tained from, the kind of resource (meta-model, ontology, etc.),
and the rationale. While the two first fields are automatically
filled in the drop operation, the latter is used to document the
reasons to introduce the element in the meta-model.

Fig. 10 shows DSL-tao being used in combination with
EXTREMO. The canvas (label 5) holding the meta-model
being built, and the applied patterns view (label 2) belong
to DSL-tao, while labels (1, 3, 4) show views contributed
by EXTREMO. The view labelled (1) in the figure shows
the repositories being managed (OMG standard meta-models,
ATL ecore meta-models, ontologies). The view labelled (2) is
the applied patterns view which shows several applications of
the Recommended pattern, produced by the incorporation of
classes Process, SequenceEdge, MessagingEdge and Activity
from the EXTREMO results view. In this applied pattern view,
the user may add information about the provenance and
rationale of the incorporated information. Moreover, it serves
as a quick means to locate the introduced classes from external

Fig. 10: Using DSL-tao in combination with EXTREMO

sources: clicking on one of the classes in the view selects the
corresponding class of the canvas.

In the entities view (label 3), a search for “process, activity,
task” is being performed and a list of entities prioritised by
relevance is served (label 4). Dropping the entity from the view
on the model being built inserts a new class in the diagram
(label 5), and produces a new instance of the Recommended
pattern. In addition, DSL-tao was extended with the possibility
of showing contextual menus in the classes (label 5), so that
the query facilities of EXTREMO can be invoked, taking the
name of the class as search term.

VI. PRELIMINARY ASSESSMENT

In this section we provide some metrics and lessons learnt,
which provide a preliminary assessment of the extensibility
of EXTREMO, and how easy it is to integrate it with meta-
modelling tools, and its usefulness for creating (meta-)models.

DSL-tao was developed by our group. Hence, to further
assess how easy it is the integration with other tools, we
performed two more experiments. Both integrate EXTREMO
with tools developed by third-parties (and in which the code
was not available). The first one integrated EXTREMO in a
UML modelling tool2 (as shown in Fig. 11), and the second
in the standard Ecore editor. In both cases, the extension
was performed using the action extension point. A drag&drop
integration was not possible, because we would have needed
to change the source code of the editors.

Table II shows the LOC necessary for each integration. In
average, the integration amounted to 170 lines of Java code
(LOC). All the code needed was related to the transformation
from semantic entities to the classes of the modelling tool. In
the DSL-tao case, we provided an option in the contextual

2UML2-MDT, www.eclipse.org/modeling/mdt

Fig. 11: Integration of EXTREMO in UML2

menu to directly invoke EXTREMO queries. This resulted
in 17 LOC. To further take advantage of the information
gathered with EXTREMO, we implemented the Recommended
pattern, as a means to record the rationale for incorporating the
information into the meta-model. While this functionality was
not needed to integrate EXTREMO, it shows a typical usage of
the external information. This amounted to 20 LOCs.

DSL-tao EcoreEditor UML2Editor
Extension Point Used drop actions actions
Extension Point Integration 35 5 5
New Class 24 64 68
New Attribute 27 66 62
New Reference 24 66 64
Total 110 LOC 201 LOC 199 LOC

TABLE II: LOCs for integrating EXTREMO with other tools

Hence, we can conclude that the cost of integrating EX-
TREMO with a (meta-)modelling tool is very light and can be
performed with no access to the source code. However, the
integration was made by the main EXTREMO developer, and
a further validation with other developers would be needed.
EXTREMO was integrated with a UML tool, which shows that

it can also be used as a modelling assistant. However, we
realized that for its use with arbitrary modelling languages,
it would be useful to query repositories of models. For
that purpose, taking into account the meta-model (e.g., so
that queries can provide filters by type) of the models in
the respository would be highly beneficial. We leave these
extensions for future work.

Next, we look at the extensibility of EXTREMO regarding
information formats. Currently, we support OWL, Ecore mod-
els and RDF. Each of these cost less than 200 LOC. Hence, we
can also conclude that the cost of integrating new sources is
not high. However, all the format assistants were created by the
main developer of EXTREMO. To further validate the extension
facilities, we should perform more experiments, measuring the
effort spent by a different developer.

VWPCitizen

NotImmigrant

Immigrant

1..1 type

<<enum>>
UserType

1..* target

1..* source

Activity

NamedElement

name : String​

id : String

documentation : String

Edge
actors *

Agent

User Office

DOS

DHS

Medical Serv.

...

DS-160FormPayment

VISA

Tourism (B1/B2)

Studying (F1)

Exchange Programs (J1)

Temporary Workers

Religious Workers

Domestic Employees

Members of Ship

Investors (E1)

Press & Media (I)

Diplomats (A)

<<enum>>
VISAType

1..1 type

consumes * produces *

*

Task

Face-to-
FaceTask

Remote
Task

Event

InterviewDate
Selection

Resource

FinalEvent MessageEvent

Application
Process

Resource

WebApp

url : String

through 1

Process
composed

I-130Form

Artefact

...

kind: String

Activity

...

Fig. 12: Meta-model excerpt for the running example

Finally, we look at the amount of information gathered
from external sources for the running example. Fig. 12 shows
an excerpt of the resulting meta-model for the e-Government
application. Roughly 40% of the classes in our solution have
been obtained from different ontologies (shaded in yellow),
14% classes from open RDFs (in green) and the remaining
classes have been obtained by combining different representa-
tions of process management meta-models. While this suggests
that EXTREMO is useful as a help construct the meta-model,
a further user study is needed to further validate this claim.

VII. RELATED WORK

The increasing complexity of software development has
prompted the need for code recommenders for example, for
API usage, or program quick fix. However, while code rec-
ommenders are increasingly used in programming IDEs [29],
[11], there is lack of such tool for (meta-)modelling in MDE.

The closest work to our proposal is [8], [9], [10], where
a generic architecture for model recommenders is proposed.
The architecture is extensible, in the sense that different
recommender strategies can be plugged-in. In contrast, the
extensibility of our approach is in the supported data source,
while we specifically focus on the extraction of knowledge

from these sources. In addition, our approach supports out-of-
the-box visualization and query aggregation facilities.

Other approaches to model recommendation focus on
proposing suitable ways to complete a model with respect to a
meta-model [31]. Hence, using constraint solving techniques,
the system proposed ways to complete a model so that it
becomes a valid instance of a meta-model. In [36] the authors
use ontologies in combination with domain-specific modelling,
and hence can use ontology reasoners to provide reasoning
services like model validation, inconsistency explanation, and
services to help in the model construction phase. These
approaches are not applicable in our context, since our purpose
is to create a meta-model.

Some researchers have exploited ontologies for creating
DSLs [34]. For example, in [3] the authors advocate the use
of (OWL) ontologies in the domain analysis phase of DSL
construction. As they target textual DSLs, they propose a tool
for the automated generation of a textual grammar for the
DSL. In a similar vein, in [23], the authors generate meta-
model design templates from OWL ontologies, which are later
manually refined into domain meta-models. In our approach,
we assume that not all the required information to create a
meta-model is present in one ontology, but typically such
information is scattered in informational resources of different
kinds, like ontologies, RDF data, or meta-models.

Combining modeling approaches from MDE with ontolo-
gies has been studied in the last decade [15]. There are several
approaches to transform Ecore-based models to OWL and
back, e.g., cf. [35], [16]. In addition, there exist approaches
that allow for the definition of ontologies in software modeling
languages such as UML by using dedicated profiles [20].
Moreover, there are approaches which combine the benefits
of models and ontologies such as done in [26], [25] for
reasoning tasks. Not only the purely structural part of UML
is considered, but some works also target the translations of
constraints between these two technical spaces by using an
intermediate format [7]. For the data import, we may build on
these mentioned approaches, but we focus on recommendation
services exploiting the imported data from different technical
spaces to build domain-specific modeling languages.

Finally, there are some approaches directed to search rele-
vant models within a repository. Their aim is slightly different
from our goal, which is looking for relevant information within
a repository. Moogle [19] is based on textual, “Google-like”
queries, similar to ours. As they focus on EMF model-level
queries, they use the meta-model information for filtering.
We plan to add this functionality in the future. Their results
are shown in textual format, while we parse and aggregate
the results, and offer graphical visualization. EMF query is
directed to search EMF models [14], using OCL queries or
text-based search. The latter may include regular expressions,
but does not look for relevant synonyms as we do. Moreover,
our extensible approach supports technologies like Ecore,
OWL and RDF. Furthermore, there are dedicated approaches
offering search capabilities tailored for a specific modelling
domain such as [1], [6]. While these approaches also allow

to reason on behavioral similarity aspects, we aim for general
model search support irrespectively of the modelling domain
and even of the technical space.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented EXTREMO, an extensible
assistant for meta-modelling. The system is able to gather
information from different information sources (like ontolo-
gies, RDF or meta-models), by enabling uniform querying
and visualization. EXTREMO is independent of the particular
meta-modelling tool, but easily integrated with them due to
its modular architecture based on extension points. We have
shown its integration with DSL-tao and two other tools, and
used it for the construction of a DSL in the e-Government
domain. A preliminary assessment shows promising results in
terms of simplicity of integration, extensibility, and usefulness.

In the future, we plan to connect EXTREMO with meta-
model repositories, such as MDEForge [30]. We have inte-
grated EXTREMO into DSL-tao using a re-active mode, where
the assistant should be explicitly invoked. Similar to [9], we
would also like to explore pro-active modes for assistance.
To make EXTREMO useful as a modelling assistant, we plan
to enable queries at the model level. This would require
taking into account the meta-model the queried models are
conformant to (e.g., to filter the query results, and to be
able to create objects using the query results). Finally, we
plan to perform a detailed study on the effects of different
point strategies for search, and a user study to better assess
EXTREMO’s value for meta-modelling, and gather suggestions
for improvement.

ACKNOWLEDGEMENTS

This work is supported by the Ministry of Education
of Spain (FPU grant FPU13/02698), the Spanish MINECO
(TIN2014-52129-R), the R&D programme of the Madrid Re-
gion (S2013/ICE-3006), the EU commission (FP7-ICT-2013-
10, #611125), and by the Christian Doppler Forschungsge-
sellschaft and the BMWFW, Austria.

REFERENCES

[1] B. Bislimovska, A. Bozzon, M. Brambilla, and P. Fraternali. Textual and
content-based search in repositories of web application models. TWEB,
8(2):1–11, 2014.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012.

[3] I. Ceh, M. Crepinsek, T. Kosar, and M. Mernik. Ontology driven
development of domain-specific languages. Comput. Sci. Inf. Syst.,
8(2):317–342, 2011.

[4] T. Clark, V. Kulkarni, B. Barn, R. B. France, U. Frank, and D. Turk.
Towards the model driven organization. In HICSS, pages 4817–4826,
2014.

[5] J. S. Cuadrado, E. Guerra, and J. de Lara. A component model for
model transformations. IEEE TSE, 40(11):1042–1060, 2014.

[6] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, and
J. Mendling. Similarity of business process models: Metrics and
evaluation. Inf. Syst., 36(2):498–516, 2011.

[7] D. Djuric, D. Gasevic, V. Devedzic, and V. Damjanovic. A UML Profile
for OWL Ontologies. In MDAFA, pages 204–219, 2004.

[8] A. Dyck, A. Ganser, and H. Lichter. Enabling model recommenders for
command-enabled editors. In MDEBE, pages 12–21, 2013.

[9] A. Dyck, A. Ganser, and H. Lichter. A framework for model recom-
menders - requirements, architecture and tool support. In MODEL-
SWARD, pages 282–290, 2014.

[10] A. Dyck, A. Ganser, and H. Lichter. On designing recommenders for
graphical domain modeling environments. In MODELSWARD, pages
291–299, 2014.

[11] Eclipse Code Recommenders. http://www.eclipse.org/recommenders.
[12] Eclipse Graphical Editing Framework. https://eclipse.org/gef/.
[13] Eclipse UML 2 support. http://wiki.eclipse.org/MDT/UML2.
[14] EMF Query. https://projects.eclipse.org/projects/modeling.emf.query.
[15] D. Gasevic, D. Djuric, and V. Devedzic. Model Driven Engineering and

Ontology Development. Springer, 2009.
[16] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-

chitzegger, W. Schwinger, and M. Wimmer. Lifting Metamodels to
Ontologies: A Step to the Semantic Integration of Modeling Languages.
In MoDELS, pages 528–542, 2006.

[17] S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008.

[18] M. Lesk. Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In SIGDOC,
pages 24–26. ACM, 1986.

[19] D. Lucrédio, R. P. de Mattos Fortes, and J. Whittle. MOOGLE: a
metamodel-based model search engine. Software and System Modeling,
11(2):183–208, 2012.

[20] M. Milanovic, D. Gasevic, A. Giurca, G. Wagner, and V. Devedzic. To-
wards Sharing Rules Between OWL/SWRL and UML/OCL. ECEASST,
5, 2006.

[21] G. A. Miller. Wordnet: A lexical database for english. Comm. ACM,
38(11):39–41, 1995.

[22] OASIS Web Services Business Process Execution Language (WSBPEL).
https://www.oasis-open.org/committees/wsbpel/.

[23] A. Ojamaa, H. Haav, and J. Penjam. Semi-automated generation of
DSL meta models from formal domain ontologies. In MEDI, pages
3–15, 2015.

[24] OMG Business Process Model and Notation. http://www.bpmn.org/.
[25] F. S. Parreiras and S. Staab. Using ontologies with UML class-based

modeling: The TwoUse approach. DKE, 69(11):1194–1207, 2010.
[26] F. S. Parreiras, S. Staab, and A. Winter. On marrying ontological and

metamodeling technical spaces. In FSE, pages 439–448, 2007.
[27] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara.

Pattern-based development of domain-specific modelling languages. In
MoDELS, pages 166–175, 2015.

[28] M. F. Porter. An algorithm for suffix stripping. Program, 40(3):211–218,
2006.

[29] M. P. Robillard, R. J. Walker, and T. Zimmermann. Recommendation
systems for software engineering. IEEE Software, 27(4):80–86, 2010.

[30] J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Collaborative
repositories in model-driven engineering. IEEE Software, 32(3):28–34,
2015.

[31] S. Sen, B. Baudry, and H. Vangheluwe. Towards domain-specific model
editors with automatic model completion. Simulation, 86(2):109–126,
2010.

[32] T. Stahl and M. Völter. Model-driven software development - technology,
engineering, management. Pitman, 2006.

[33] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley, 2008.

[34] R. Tairas, M. Mernik, and J. Gray. Using ontologies in the domain
analysis of domain-specific languages. In TWOMDE, pages 20–31, 2008.

[35] T. Walter, F. S. Parreiras, G. Gröner, and C. Wende. OWLizing:
Transforming Software Models to Ontologies. In ODiSE, pages 7:1–
7:6, 2010.

[36] T. Walter, F. S. Parreiras, and S. Staab. An ontology-based framework
for domain-specific modeling. SoSyM, 13(1):83–108, 2014.

