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Abstract. Conversational interfaces (also called chatbots) are being increasingly
adopted in various domains such as e-commerce or customer service, as a direct
communication channel between companies and end-users. Their advantage is
that they can be embedded within social networks, and provide a natural lan-
guage (NL) interface that enables their use by non-technical users. While there
are many emerging platforms for building chatbots, their construction remains a
highly technical, challenging task.
In this paper, we propose the use of chatbots to facilitate querying domain-specific
models. This way, instead of relying on technical query languages (e.g., OCL),
models are queried using NL as this can be more suitable for non-technical users.
To avoid manual programming, our solution is based on the automatic synthesis
of the model query chatbots from a domain meta-model. These chatbots commu-
nicate with an EMF-based modelling backend using the Xatkit framework.
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1 Introduction

Instant messaging platforms have been widely adopted as one of the main technologies
to communicate and exchange information. Most of them provide built-in support for
integrating chatbot applications, which are automated conversational agents capable of
interacting with users of the platform [10]. Chatbots have proven useful in various con-
texts to automate tasks and improve the user experience, such as automated customer
services [23], education [9] and e-commerce [21]. However, despite many platforms
have recently emerged for creating chatbots (e.g., DialogFlow [6], IBM Watson [7],
Amazon Lex [1]), their construction and deployment remains a highly technical task.

Chatbots are also increasingly used to facilitate software engineering activities [5,12]
like automating deployment tasks, assigning software bugs and issues, repairing build
failures, scheduling tasks like sending reminders, integrating communication channels,
or for customer support. In this context, we explored the use of chatbots for domain



modelling in previous work [16,17]. Modelling chatbots can be embedded within so-
cial networks to support collaboration between different stakeholders in a natural way,
and enable the active participation of non-technical stakeholders in model creation.

In the present work, we extend the previous ideas to support natural language (NL)
conversational queries over the models. This is a more accessible and user-friendly way
to query models than the use of technical languages like OCL (Object Constraint Lan-
guage [15]). Moreover, we avoid the manual programming of the model query chatbots
by their automatic synthesis. For this purpose, our solution is based on (i) the availabil-
ity of a meta-model describing the structure of the models, (ii) its configuration with
NL information (class name synonyms, names for reverse associations, etc.), and (iii)
the automatic generation of a chatbot supporting queries over instances of the given
meta-model. This approach is implemented on top of the Xatkit model-based chatbot
development platform [4], which interprets the generated chatbot model and interacts
with an EMF (Eclipse Modeling Framework) backend.

The rest of the paper is structured as follows. First, Section 2 provides motivation
using a running example, and introduces background about chatbot design. Then, Sec-
tion 3 explains our approach, and Section 4 describes the prototype tool support. Finally,
Section 5 compares with related works, and Section 6 concludes.

2 Motivation and Background

In this section, we first provide a motivating example, and then introduce the main
concepts behind chatbots.

2.1 Motivation

As a motivating example, assume a city hall would like to provide open access to its
real-time traffic information system. Given the growth of the open data movement, this
is a common scenario in many cities, like Barcelona4 or Madrid5.

We assume that the data provided includes a static part made of the different dis-
tricts and their streets, with information on the speed limits. In addition, a dynamic part
updated in real-time decorates the streets and their segments with traffic intensity val-
ues and incidents (road works, street closings, accidents or bottlenecks). Fig. 1 shows a
meta-model capturing the structure of the provided information.

In this scenario, citizens would benefit from user-friendly ways to query those traffic
models. However, instead of relying on the construction of dedicated front-ends with
fixed queries, or on the use of complex model query languages like OCL, our proposal is
the use of conversational queries based on NL via chatbots. Chatbots can be used from
widely used social networks, like Telegram or Twitter, facilitating their use by citizens.
Hence, citizens would be able to issue simple queries like “give me all accidents with
more than one injury”; and also conversational queries like “what are the incidents in
Castellana Street now?”, and upon the chatbot reply, focus on a subset of the results

4 https://opendata-ajuntament.barcelona.cat/
5 https://datos.madrid.es

https://opendata-ajuntament.barcelona.cat/
https://datos.madrid.es


TimeInterval

init: DateTime
end: DateTime

BottleneckClosed
Accident

injuries: intRoadWork

Incident

description: String

TrafficIntensity

value: float
/serviceLevel: {moving, heavy, jam, closed}

Transitable

hasCyclistPath: boolean

Section

fromNumber: int
toNumber: int
maxVelocity: int

Street

name: String

District

name: String

City

name: String

causes
* 

0..1 
real

0..1 
estimated

0..1 
intensity

* 
incidents

* 
sections

* 
streets

districts
* 

Fig. 1. A meta-model for real-time traffic information.

with “select those that are accidents”. Finally, for the case of dynamic models, reactive
queries like “ping me when Castellana Street closes” would be possible.

Our proposal consists in the generation of a dedicated query chatbot given the do-
main meta-model. But, before introducing our approach, the next subsection explains
the main concepts involved in chatbot design.

2.2 Designing a chatbot

The widespread interest and demand for chatbot applications has emphasized the need
to quickly build complex chatbots supporting NL processing (NLP) [8], custom knowl-
edge base definition [18], and complex action responses including external service com-
position. However, the development of chatbots is challenging as it requires expertise
in several technical domains, ranging from NLP to a deep understanding of the API
of the targeted instant messaging platforms and third-party services to be integrated.
To alleviate this situation, many chatbot creation frameworks have emerged, like Di-
alogFlow [6], IBM Watson [7] or Amazon Lex [1].
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Fig. 2. Chatbot working scheme.

Fig. 2 shows a simplification of the typical
working scheme of chatbots. Chatbots are often
designed on the basis of intents, where each in-
tent represents some user’s aim (e.g., booking
a ticket). The chatbot waits for NL inputs from
the user (label 1 in the figure); then, it tries to
match the phrase with some intent (label 2), op-
tionally calling an external service (label 3) for
intent recognition or additional data collection;
finally, it produces a response, which is often a
NL sentence among a predefined set (label 4).

Intents are defined via training phrases. These phrases may include parameters of a
certain type (e.g., numbers, days of the week, countries). The parameter types are called
entities. Most platforms come with predefined sets of entities and permit defining new
ones. Some platforms permit structuring the conversation as an expected flow of intents.
For this purpose, a common mechanism is providing intents with a context that stores
information gathered from phrase parameters, and whose values are required to trigger
the intent. In addition, there is normally the possibility to have a fallback intent, to be
used when the bot does not understand the user input.
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Fig. 3. Scheme of our approach.

Fig. 3 shows the scheme
of our approach. First, the
chatbot designer needs to
provide a domain meta-
model (like the one in
Fig. 1) defining the struc-
ture of the models to be
queried, and complemented
with NL hints on how to re-
fer to its classes and fea-
tures (synonyms). From this information, an executable chatbot model that can be used
to query model instances is generated. The next subsections explain these two steps.

3.1 Chatbot generation: Intents and entities model

The chatbot designer has to provide a domain meta-model and optionally, a NL config-
uration model. The latter is used to optionally annotate classes, attributes and features
with synonyms, and the source of references with a name to refer to its backward navi-
gation. From this information, we generate the chatbot intents and entities.

Table(a) of Fig. 4 captures the generation of intents. We create an intent per query
type, plus an additional intent called loadModel to select the model to be queried. The
second row of the table shows the intent allInstances, which returns all objects of a
given class. The intent is populated with training phrases that contain the class name as
parameter. The possible class names are defined via an entity Class (see Table(b)). This
intent would be selected on user utterances such as “give me all cities” or “show every
incident”. The intent requires having a loaded model, which the table indicates as the
intent requiring a model as context.

In the same table, intent filteredAllInstances returns all instances that satisfy a given
condition. The intent is populated with training phrases that combine a class name and
a condition made of one or more filters joined via logical connectives. We provide an
entity Condition for the filters, explained below. This intent would be selected upon
receiving phrases like “give me all accidents with more than one injury” (please note
the singular variation w.r.t. the attribute name injuries).

In addition to intents, we create several entities based on the domain meta-model
and the NL configuration. Specifically, we create an entity named Class (Table(b)) with
an entry for each meta-model class name. These entries may have synonyms, as pro-
vided by the NL configuration, to refer to the classes in a more flexible way. Likewise,
we create an entity for each attribute name attending to their type: String (Table(c)),
Numeric (Table(d)), Boolean and Date (omitted for space constraints). For example, the
StringAttribute entity (Table(c)) has an entry for all String attributes called name. Just
like classes, these entries may have synonyms if provided in the NL configuration.

The Condition entity (Table(f)) is a composite one, i.e., its entries are made of one
or more entities. This entity permits defining filter conditions in queries, such as “name
starts with Ma” or “injuries greater than one”.
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Fig. 4. Intents and entities generated for the running example chatbot.

Regarding the complexity of the chatbot, the number of intents is fixed, and it de-
pends on the primitives of the underlying query language that the chatbot exposes.
Fig. 4 exposes two primitives of OCL: allInstances, and allInstances()→select(cond).
Other query types can be added similarly, which would require defining further intents.
The number of generated entities is also fixed, while the number of entries in each entity
depends on the meta-model size and the synonyms defined in the NL configuration.

3.2 Chatbot generation: Execution model

The generated chatbot also contains actions, required to perform the query on a mod-
elling backend, which we call the execution model. This execution model contains a set
of execution rules that bind user intentions to response actions as part of the chatbot be-
haviour definition (cf. label 4 in Fig. 2). For each intent in the Intent model, we generate
the corresponding execution rule in the execution model using an event-based language
that receives as input the recognized intent together with the set of parameter values
matched by the NL engine during the analysis and classification of the user utterance.

All the execution rules follow the same process: the matched intent and the param-
eters are used to build an OCL-like query to collect the set of objects the user wants to
retrieve. The intent determines the type of query to perform (e.g., allInstances, select,
etc.), while the parameters identify the query parameters, predicates, and their compo-
sition. The query computation is delegated to the underlying modelling platform (see
next section), and the returned model elements are processed to build a human-readable
message that is finally posted to the user by the bot engine.

As an example, Listing 1 shows the execution rule that handles an allInstances op-
eration. The class to obtain the instances of is retrieved from the context variable (avail-
able in every execution rule) and passed to our EMF Platform, which performs the query.
Next, the instances variable holding the results is processed to produce a readable string
(in this case a list of names), and the Chat Platform is called to reply to the user.



1 on intent GetAllInstances do
2 val Map<String, Object> collectionContext = context.get(”collection”)
3 val instances = EMFPlatform.GetAllInstances( collectionContext.get(”class”) as String )
4 val resultString = instances.map[name].join(”, ”)
5 ChatPlatform.Reply(”I found the following results” + resultString)

Listing 1. Execution rule example

4 Proof of Concept

As a proof of concept, we have created a prototype that produces Xatkit-based chat-
bots [4], following the two phases depicted in Fig. 3. Xatkit is a model-driven solution
to define and execute chatbots, which offers DSLs to define the bot intents, entities
and actions. The execution of such chatbots relies on the Xatkit runtime engine. At
its core, the engine is a Java library that implements all the execution logic available
in the chatbot DSLs. Besides, a connector with Google’s DialogFlow engine [6] takes
care of matching the user utterances, and a number of platform components enable the
communication between Xatkit and other external services.

In the context of this paper, we have developed a new EMF Platform that allows
Xatkit to query EMF models in response to matched intents. The first version of our
prototype platform6 provides actions to retrieve all the instances of a given class, and
filter them based on a composition of boolean predicates on the object’s attributes or ref-
erences. These predicates are retrieved from the context parameter defined in the intents
(see Section 3.1), and mapped to Java operations (e.g., the StringComparison “contains”
is translated into ((String)value).contains(otherValue). The query result is returned as a
list of EObjects, which is processed using the bot expression language to produce the
response message. Listing 1 showed an example of the use of this EMF Platform.

We have also developed a web application, where domain meta-models (in .ecore
format) can be uploaded, and then (optionally) configured with synonyms. Once the
configuration is finished, the application synthesizes a Xatkit chatbot model, which
then can be executed using the Xatkit runtime engine.

Fig. 5(a) shows the web application on the left, where the running example meta-
model (cf. Fig. 2) is being configured. Fig. 5(b) shows a moment in the execution of
the generated Xatkit chatbot, and the result returned by the bot when processing the
example utterance “show all accidents with more than one injury”.

5 Related Work

Next, we review approaches to the synthesis of chatbots for modelling or data query.
Our work relies on NL as a kind of concrete syntax for DSLs [17]. NLP has been

used within Software Engineering to derive UML diagrams/domain models from text [2,11].
However, the opposite direction (i.e., generating chatbots from domain models) is largely
unexplored. Almost no chatbot platform supports automatic chatbot generation from ex-
ternal data sources. A relevant exception is Microsoft QnA Maker [14], which generates
bots for the Azure platform from FAQs and other well-structured textual information.

6 https://github.com/xatkit-bot-platform/xatkit-emf-platform

https://github.com/xatkit-bot-platform/xatkit-emf-platform


Fig. 5. (a) Web application to configure the chatbot. (b) A query in the generated chatbot.

Closest approaches to ours are tools like ModelByVoice [13] and VoiceToModel [20],
which offer some predefined commands to create model elements for specific types of
models. In contrast, our framework targets model queries and not model creation, which
was pursued in our previous work [17]. None of those two approaches support queries.
Castaldo and collaborators [3] propose generating chatbots for data exploration in rela-
tional databases, but requiring an annotated schema as starting point, while in our case
providing synonyms is an optional step. Similarly, [19] integrates chatbots to service
systems by annotating and linking the chatbot definition to the service models. In both
cases, annotations and links must be manually created by the chatbot designer to gen-
erate the conversational elements. In contrast, our approach is fully automatic. In [22],
chatbots are generated from OpenAPI specifications but the goal of such chatbots is
helping the user in identifying the right API Endpoint, not answering user queries.

Altogether, to our knowledge there are no automatic approaches to the generation
of flexible chatbots with model query capabilities. We believe that applying classical
concepts from CRUD-like generators to the chatbot domain is a highly novel solution
to add a conversational interface to any modelling language.

6 Conclusion

Conversational interfaces are becoming increasingly popular to access all kind of ser-
vices, but their construction is challenging. To remedy this situation, we have proposed
the automatic synthesis of chatbots able to query the instances of a domain meta-model.

In the future, we aim to support more complex queries, including the conversational
and reactive ones mentioned in Section 2.1. Our approach could be used to query other
types of data sources (e.g., databases or APIs) via an initial reverse engineering step to
build their internal data model and translate the NL query into the query language of
the platform. Finally, we would like to add access control on top of the bot definition to
ensure users cannot explore parts of the model/system unless they have permission.
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20. Soares, F., Araújo, J., Wanderley, F.: VoiceToModel: an approach to generate requirements

models from speech recognition mechanisms. In: Proc. SAC. pp. 1350–1357. ACM (2015)
21. Thomas, N.: An e-business chatbot using AIML and LSA. In: Proc. ICACCI. pp. 2740–2742.

IEEE (2016)
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