
Extremo:
An Eclipse plugin for modelling and meta-modelling assistance

Ángel Mora Seguraa, Juan de Laraa

aModelling & Software Engineering Research Group
http: // miso. es

Universidad Autónoma de Madrid (Spain)

Abstract

Modelling is a core activity in software development paradigms like Model-
driven Engineering (MDE). Therefore, the quality of (meta-)models is cru-
cial for the success of software projects. However, many times, modelling
becomes a purely manual activity, which does not take advantage of in-
formation embedded in heterogeneous information sources, such as XML
documents, ontologies, or other models and meta-models.

In order to improve this situation, we present Extremo, an Eclipse
plugin aimed at gathering the information stored in heterogeneous sources
in a common data model, to facilitate the reuse of information chunks in
the model being built. The tool covers the steps needed to incorporate this
knowledge within an external modelling tool, supporting the uniform query
of the heterogeneous sources and the evaluation of constraints. Flexibility
of the main features (e.g., supported data formats, queries) is achieved by
means of extensible mechanisms. To illustrate the usefulness of Extremo,
we describe a practical case study in the financial domain and evaluate its
performance and scalability.

Keywords: Model-driven Engineering, Modelling process, Language
Engineering, Modelling assistance

1. Introduction

This paper presents Extremo, an extensible assistant for modelling and
meta-modelling. The main goal of the tool is to facilitate modelling (at any

Email addresses: Angel.MoraS@uam.es (Ángel Mora Segura), Juan.deLara@uam.es
(Juan de Lara)

Preprint submitted to Science of Computer Programming May 16, 2019

http://miso.es

meta-level) by enabling the reuse of heterogeneous information sources. For
this purpose, Extremo provides flexible features to represent heterogeneous
information in a uniform way, its querying, and its validation through con-
straint evaluation. The tool has been realized as an Eclipse plugin, and
has been designed to be easily integrable with external modelling and meta-
modelling plugins. This integration facilitates the reuse of the information
chunks returned by queries using Extremo into a (meta-)model under con-
struction.

The rest of this Original Software Publication paper is organized as fol-
lows. Section 2 motivates the need for modelling assistants like Extremo,
explores their design alternatives and positions our approach with respect
to related works based on a feature model. Section 3 gives an overview of
Extremo, including its functionalities and architecture. Section 4 details
its implementation. Section 5 provides a case study in the financial domain.
Section 6 presents experiments evaluating performance and scalability. Fi-
nally, Section 7 draws conclusions and proposes lines for future work.

2. Motivation

Modelling is a core activity in Software Engineering processes, and es-
sential in development paradigms like Model-driven Engineering (MDE) [1].
In MDE, models are actively used to automate the different phases of the de-
velopment process. They are described using a modelling language, which is
itself defined through a meta-model. Thus, modelling and meta-modelling
are recurring activities in MDE, and the quality of the (meta-)models is
crucial to ensure the success of MDE projects.

Many times, models in MDE are domain-specific, describing systems
using the vocabulary and concepts of a highly specialized knowledge area,
like logistics, finance, nuclear physics or marketing. Therefore, building
domain-specific models and meta-models often requires deep domain exper-
tise, which the engineers building the models may lack. Many times, useful
information for a domain is scattered across heterogeneous resources, like
ontologies, XML documents, CSV files or other models and meta-models.
However, modelling tasks rarely take advantage of the knowledge embedded
in these heterogeneous sources, and modelling tools often lack automated
support to master this diversity [2].

Most programming IDEs provide assistants to facilitate code completion
or search [3, 4]. However, nowadays automated assistance is not the norm
within modelling environments. In the light of the above, next we char-
acterize the design space for modelling assistants using a feature model [5],

2

Modelling
Assistants

Meta-Level

Meta Agnostic

Purpose

mandatory optional alternative or

Legend

Completion ReuseModel Quality
assurance

Generic

Style

User-
triggered

Pro-active

Query Source
types

Extensibility Integration
w/modelling

tool

Fixed
tool

Open

Open Fixed

Information
integration

Open Fixed

Other

✓

✓

✓

✓

✓ ✓
✓✓

Extremo = ⟨Agnostic, Query.Open, Information integration, Source types.Open, User-triggered, Extensibility, Integration
w/modelling tool.Open⟩

(Query.Open V Source types.Open V Integration w/modelling tool.Open) => Extensibility

Figure 1: Feature model characterizing modelling assistants.

shown in Figure 1. The Figure also shows the configuration chosen to design
Extremo (using ticks on the model features).

Firstly (feature meta-level), assistants can be directed to help creating cer-
tain types of models (e.g., state-machines), work at the meta-model level,
or be meta-level independent. The purpose of assistants can also vary. For
example, modelling assistants have been proposed to complete models with
respect to meta-models [6], to evaluate model quality and suggest improve-
ments [7], generic modelling assistant frameworks [8], or for information
reuse [2], among others. The assistant may need to be invoked by the user,
or can be pro-active (feature style), can be extensible with new capabilities,
and may be specific to a particular modelling tool, or integrable with other
modelling tools.

Regarding assistants for information reuse (feature reuse), some tools ex-
tract information from specific data representations. For example, methods
have been proposed to develop meta-models based on ontologies [9], or to
search repositories of EMF models [10]. However, in practice, being tied to
a specific technology is too restrictive, preventing modellers to access infor-
mation represented in arbitrary formats. Moreover, some of these tools just
provide search services, while developers would benefit from mechanisms to
facilitate integrating the query results into the model being built (feature
Information integration). The supported queries can be fixed, or the user may
be able to provide specific queries by means of extensible mechanisms.

Extremo fills the gap of the lack of modelling assistants directed to
information reuse [2]. It is level-agnostic, and so it can be used to create
models at any meta-level. It is based on representing heterogeneous data
using a common data model, which can be queried in a uniform way. Ex-
tremo achieves flexibility by means of extensible mechanisms, which allow

3

defining new types of queries, adding support for new data formats, and in-
tegration with external modelling tools to achieve true information reuse.

3. Software Framework

Next, we detail the main functionalities of Extremo in Section 3.1 and
describe its architecture in Section 3.2.

3.1. Software Features

In the following we describe the main functionalities of Extremo, based
on the feature model presented in Figure 1.

Handling heterogeneous information sources. Extremo relies on a
common data model, whose meta-model is shown in Figure 2. The
model organizes (possibly nested) resources into repositories. Resources
contain SemanticNodes, with both attributes (DataProperty) and references
(ObjectProperty). Our model reifies the instantiation relation (describes/de-

scriptors), which permits representing uniformly both models and meta-
models, classes and objects, and attributes and slots, leading to simplicity
and generality [11]. As the instantiation relation is not restricted to a
fixed number of meta-levels, Extremo becomes level agnostic. This way,
the data model can store information of both types and instances, which
can be reused to build models or meta-models. We refer to [2] for further
details on the data model.

RepositoryManager

*
resources

Property

DataProperty
value: String

ObjectProperty

NamedElement
name: String

properties *

*

*
resourceElements

SemanticNode

supers *

Resource
uri: String

1
range

Repository
name: String

abstract: boolean

* subs

* describes

* descriptors

lowerBound: int
upperBound: int

*
repositories

Constraint
type: String
name: String
body: String

*
constraints

«enumeration»
Type

string
int
boolean
float
double

MetaData
key: String
value: String

ResourceElement

*
metadata

0..1
inverseOf

1
type

Figure 2: Extremo’s common data model.

4

Flexible query. In order to perform queries over model elements conform-
ing to many different schemas, the query mechanism supports the flex-
ible exploration of the information gathered. Queries can be atomic or
composite (made of other atomic or composite queries). The results of
a composite query are formed by the combination of the results of the
atomic queries. Atomic queries may follow two styles: predicate-based or
custom. In the former, the iteration is driven by the engine, and the user
provides a predicate that is evaluated on each element of the data model.
In the latter, the user controls the iteration and has more flexibility on
how outputs are presented. In addition, queries can specify input param-
eters to be filled by the user (e.g., like the name of a node to be sought).
Depending on the parameter type (string, integer, etc.) the user may
select services to be used (e.g., inexact string match or synonym-based
search for string parameters), which are also extensible.

Extremo offers a pre-defined catalogue of query types, which includes
queries to search for objects or properties having a certain name, all
instances of a given NamedElement, nodes with properties having certain
values, and untyped nodes, among many others. However, as specific
domains may need from customized query types (e.g., finding all safe
Petri net models [12]), Extremo offers extension mechanisms to define
new query types and services for data types.

Extensibility. The extensibility mechanism is realized through Eclipse ex-
tension points serving abstract classes and enforcing the extensibility
mechanism through polymorphism. Extremo offers extension points to
support new data formats, types of queries, types of constraints, and for
the integration with external modelling tools, among others.

The user can add support for a new data format by specifying a map-
ping from the format-specific structure to the common data model. To
ensure correctness, Extremo provides a mechanism for the evaluation
of heterogeneous types of constraints (e.g., OCL, XML schema restric-
tions). New types of constraints, associated to specific formats, can be
added through extension points. To enable true reuse, the tool offers
mechanisms to select elements from the data model and integrate them
into models being built with external tools, as next item explains.

Integration with a modelling tool. The framework has been designed to
flexibly integrate the information stored in the common data model with
external modelling tools (typically, other Eclipse plugins). We currently
support a reactive integration mode where the assistant needs to be ex-

5

plicitly invoked. The integration mechanism can be based either on menu
commands or via drag and drop operations (for editors based on the
Graphical Editing Framework [13]). Both integration modes provide the
mapping between the common data model and the specific model repre-
sentation (e.g., EMF, UML) in the external modelling tool.

3.2. Software Architecture

Figure 3 overviews the architecture of Extremo. It is an Eclipse plugin
designed to maintain the separation of concerns between data import (con-
verting the heterogeneous data into the common data model), the model
extension, the definition of querying mechanisms, the reuse of query opera-
tions, the model persistence and the assistance during the modelling process.

draganddrop

Ontologies

Ecore

RegexDataProperty

assistant

XMLText

MetaDepth

XML
Assistant

SemanticNode
Search

Ocl
Constraint
Interpreter

…

… …

E
<<extensible>>

Extremo

DSLtao
GEFDnDContribution

Exeed

Ecore

UML2
ActionContribution

…

model
persistence

XMI

NeoEMF (MapDB)

NeoEMF
(BerkeleyDBj)

registry

shared
editing
dom

ain

search
constraint
interpreter

actions

Figure 3: Architecture of Extremo.

First, we made available an extension point so that assistants handling
specific data formats can be added. Extremo provides a framework for
their creation, which permits their conceptual organization as model-to-
model transformations (from the data format to the common data model).
Hence, we provide an abstract class with a number of methods, which need
to be overridden for the particular assistant, and act as rules in the transfor-
mation. Extremo comes with a number of predefined assistants supporting
a variety of technical spaces, including the modelling space (in particular the
Eclipse Modelling Framework (EMF) [14]), ontologies and XML [15]. The
tool provides an extensible mechanism for the flexible query of the resources
(search) and the evaluation of heterogeneous constraints (constraint interpreter).
In addition, we enable the integration with a modelling tool by the addition
of different items (actions or draganddrop) to the Eclipse IDE GUI. Finally,
we provide extensions for different model persistence options to store the data
model, including XMI and NoSQL datastores [16].

6

4. Implementation

Figure 4 shows Extremo in action. In particular, it displays the set of
extensible features applied to the example we will present in Section 5.

Figure 4: Extremo in action.

Extremo is an extensible Eclipse plugin that offers several views. The
repository view (label 1) contains the information stored in the common
data model, hence displaying the information coming from heterogeneous
data sources. In the Figure, the view shows three repositories, with the
resources they include and the assistant used for the import (Ontologies,
Ecore). The contents of each resource can be visualized in this view, or
graphically in the resource explorer (label 2). The latter view is based on
Zest1, a component for graph-based visualization.

Resources and repositories can be queried through a Search Wizard (the
dialog window with label 3). This wizard permits selecting a query type
from the catalogue, input required parameters and selecting appropriate
services. The results of the query are displayed in the results view (label
4). This view organizes the results by query types, supports browsing the
results, and incorporating chunks into the model being built. The latter

1https://www.eclipse.org/gef/zest/

7

https://www.eclipse.org/gef/zest/

action is done through a contextual menu, depicted with label 5 in the
Figure. As the three first commands on the menu show, we have integrated
Extremo with a UML model editor2, the standard Ecore editor and Exeed,
an enhanced version of the built-in EMF reflective tree-based editor3. In
the Figure the information is being reused to create a meta-model using the
Ecore tree editor (label 6). The Extremo distribution includes these three
predefined action-based integrations, and a drag-and-drop integration with
DSL-tao [17], but additional tools can be integrated using the Extremo
extension points. The contextual menu with label 5 also includes commands
to locate the query results in the repository, or to navigate to the node type,
resource type or repository of a node. Finally, the constraint evaluation
view (label 4, in background) supports checking the validity of the imported
data.

Extremo is open-source and published under the Eclipse Public Li-
cence4. More information can be found in this paper’s metadata or in the
project Wiki5.

5. Example

Next, we illustrate the main features of Extremo to create a domain-
specific language (DSL) for the financial domain. We chose this case study
for being representative of a highly specialized domain, for which a meta-
modelling expert may lack knowledge and need assistance. Hence, a tool like
Extremo would be useful in order to obtain a more complete and accurate
meta-model.

Description of the problem. The scope of the language is to cover the pro-
cess involved in a Plain Vanilla Swap, the simplest version of an Interest
Rate Swap (IR Swap) between companies. It is inspired by a well-known
case study defined by the EDM Council6. Swaps are often used if a com-
pany wants to borrow money to finance itself at one type of interest rate (for
example, fixed), but the lender prefers to offer a floating-rate loan because
it is a better deal for itself. Then, the company decides to borrow at the
floating rate and make a separate deal to obtain the fixed rate. The other

2UML2-MDT, www.eclipse.org/modeling/mdt
3Epsilon Exeed, http://www.eclipse.org/epsilon/
4https://www.eclipse.org/legal/epl-2.0/
5https://github.com/angel539/extremo/wiki
6https://edmcouncil.org/

8

www.eclipse.org/modeling/mdt
http://www.eclipse.org/epsilon/
https://www.eclipse.org/legal/epl-2.0/
https://github.com/angel539/extremo/wiki
https://edmcouncil.org/

deal is usually made with another bank, a facilitator firm or another com-
pany directly. The complete DSL also involves the execution of the swaps
on a blockchain-based ecosystem, but we omit this part for simplicity.

Expected outcome. We aim to produce a meta-model for a DSL supporting
models like the ones shown in Listing 1 for the contractual terms and List-
ing 2 for the entities involved in the process. The swap in Listing 1 defines
two parts (also called legs) involved in the swapping process. These must
specify some required information for establishing the swap, all of them
gathered within the transfer entities in lines 5 and 9. The parameters include
the accounts (identified by acc1 and acc2), the notional principal amount
(50000 and 60000), the start year (2019), the schedule for the payments and
other parameters. Listing 2 shows an excerpt of the account information
required for the parties involved.

1 swap InsuranceSwap{
2 legs = [
3 leg AustriaLeg{
4 part = ”Vienna Ins. Group”,
5 transfer(acc1, 50000, ”2019”, YEARLY, ...)
6 },
7 leg SpainLeg{
8 part = ”Allianz Seguros”,
9 transfer(acc2, 60000, ”2019”, YEARLY, ...)

10 }
11]
12 }

Listing 1: Contractual terms of a Swap.

1 customer ”Vienna Ins. Group”{
2 accounts = [
3 account acc1{
4 number = ”ABCD1234”,
5 ...
6 },...
7]
8 }
9 customer ”Allianz Seguros”{...}

Listing 2: Entities involved.

Procedure. An engineer with lack of knowledge in the financial domain may
produce a meta-model with many omissions. Hence, this is a typical scenario
where an assistant like Extremo becomes particularly helpful to comple-
ment a modelling tool. This way, we will use Extremo to build the meta-
model for the DSL and reuse information from other useful information
sources. This will be done following the steps shown in Figure 5:

1. Identify heterogeneous information sources. In a first step, we need to
identify useful resources with relevant information for the domain. For
the running example, we took: (i) resources from the Finance Domain
Task Force of the OMG7, specifically the FIBO collection, which includes

7https://www.omg.org/fdtf/projects.htm

9

https://www.omg.org/fdtf/projects.htm

Resource
Import

2
Domain

Exploration

3
Information

Reuse

4
Identify

heterogeneous
inf. sources

1
E +Modelling

Assistant
Modelling
Framework

resources

Model
under construction

(transformation)
information chunks
(transformation)

Resource Collection
Example:
Finantial Domain Ontologies; Blondie Ontology;
Standard metamodels; Ecores from Banking Domain

Description of the problem
Example: Plain Vanilla Swap explore

reuse

External Modelling Tool
Example:

Ecore Model Editor

Figure 5: Steps for using Extremo as a (meta-)modelling assistant.

information on financial entities in OWL and RDF formats; (ii) Blondie,
the Blockchain Ontology with Dynamic Extensibility8, which contains
information describing the interchange operation; (iii) Ecore files avail-
able on the OMG repository9 with standard meta-models, such as BMM,
BPEL or BPMN; and (iv) Ecore files available in repositories like gitHub
and the ATL ecore zoo10 with concepts of the banking domain.

2. Resource Import. In this step, the identified resources are imported into
Extremo’s common data model. This is automatically performed by
the assistants of the given formats (the EcoreAssistant and the OntologyAs-

sistant in this case). When a resource is imported, the assistant resolves
the mapping between the particular format and the common data model.
After the resources are imported, they are displayed in Extremo’s repos-
itory view (label 1 in Figure 4), and are ready to be explored, queried
and reused.

3. Domain Exploration. Once the resource collection has been imported,
we can explore it using the queries and features presented in Section 4.
For example, in a first step, it might be useful to obtain a high-level
view of the resource content, by using the Nodes Splitter query, which
splits the entities contained in the resources into inheritance hierarchies.
Additionally, we can use the Resource Explorer to have a perspective of the
entities contained in a resource (Figure 4, label 2). Finally, we might want

8https://hedugaro.github.io/Linked-Blockchain-Data/
9The OMG is the standarization body behind many modelling standards such as UML,

SysML, MOF or BPMN. (http://www.omg.org/spec/)
10http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore

10

https://hedugaro.github.io/Linked-Blockchain-Data/
http://www.omg.org/spec/
http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore

to look for existing entities related to e.g., Swaps using synonym-based
search. The exploration of the domain depends on the level of expertise
of the engineer but the final goal is to find useful entities to reuse in the
meta-model under construction (Figure 4, labels 3 to 6).

4. Information Reuse. Finally, if we find a set of useful entities for our do-
main, we can add them to the (meta-)model under construction (Figure 4,
label 6). Technically, when an information chunk is added to the model
under construction, the integration with the modelling tool resolves the
mapping between the common data model and the particular modelling
technology. In the case of the example, we use the Ecore tree editor.
Please note that steps 3 and 4 are iterative.

Result. Figure 6 shows an excerpt of the obtained meta-model we were able
to build by reusing information from the chosen resource collection. In
addition, a video demo showing this construction process can be found in
the website of the project11.

id: String
address : String

amount : int
date: String
comment: String
id: String
type: TradeStage
dayExecution : DaysOfTheWeek
recurrence : RecurrenceIntervalFIBO > Derivatives Blondie

Relation added by handEcores from banking domain

Legend

Transaction

InternalTransaction ExternalTransaction
otherAccount: String processor: String

externalId: String

DerivativeInstrument

Swap SwapLeg

NamedElement
name: String

2
hasLegs

number : string
description: String

DepositAccount LoanAccount

Account

... ...

EthereumAccount

ContractEthereum
Account

NormalAccount

<<enumeration>>
DaysOfTheWeek

SwappingProcess

0..*
refersTo

1
scheduleTrans

0..*
elements

0..*
configure

1
sender

Customer

0..*
accounts

1
part

Standard Ecores
for processing

Relation reused

Added by hand

Monday
Tuesday

Wednesday
…

<<enumeration>>
TradeStage

OpenTrade
CloseTrade

…
...

<<enumeration>>
RecurrenceInterv.

Weekly
Monthly

…

CompoundTask SimpleTask

Task0..*
tasks

...

Figure 6: Excerpt of the resulting Plain Vanilla Swap process meta-model.

In detail, the meta-model has elements (such as Swap or SwapLeg) reused
from the set of ontologies of the FIBO collection, elements reused from dif-
ferent Ecore meta-models from the banking domain (such as Transaction or
Account), elements from Ecore meta-models from the process modelling do-
main (CompoundTask and Task) and elements (such as EthereumAccount) from

11https://github.com/angel539/extremo/wiki/Case-Studies

11

https://github.com/angel539/extremo/wiki/Case-Studies

the Blondie ontology to enable the connection. Finally, it contains a set
of enumerations created from a list of instances of semantic nodes without
descriptions. Overall, roughly 90% of the classes in our solution have been
obtained by combining different representations and concepts. In addition,
most of the generalization relations could also be reused using the infor-
mation chunks returned by the queries, as well as some of the association
relations by the combination of semantic nodes. The rest of the elements in
the meta-model were added by hand, as it is usually required. Therefore, the
example suggests that Extremo is useful as a help in the construction of
a complex meta-model by reusing information from different heterogeneous
information sources.

6. Scalability Assessment

In this section we report on two experiments that illustrate the efficiency
and scalability of Extremo with respect to resource import and query
(steps 2 and 3 of Figure 5).

The experiments were executed on a laptop running MacOS Mojave with
an Intel Core i5 processor (1,3 GHz), 8 GB of DDR3 SDRAM (1600MHz),
and a PCIe SSD. Extremo was running on Eclipse vMars.2 with Java SE
Runtime Environment v1.8. Further details, including the models used in
the experiments, screencasts taken during the execution, and the complete
results obtained, are available at the website of the project12.

1. Resource Import. We generated two sets of models using AtlanMod’s
random instantiator13 with sizes ranging from 10 to 50,000 objects. For
each size, we generated five models, and executed each experiment three
times. For the first set we used a meta-model describing people, while
the second used a meta-model of Petri nets. We imported the resource
collection using the EcoreAssistant, which translates the elements from the
EMF technical space into our data model, and measured the time taken.

Figure 7 shows the results obtained. The tool scales well for medium size
models, but requires a time in the order of minutes to import models
with sizes bigger than around 40,000 objects. However, please note that
importing the resource collection is a one-time operation, required only

12https://github.com/angel539/extremo/wiki/Performance-Evaluation
13https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.

atlanmod.instantiator

12

https://github.com/angel539/extremo/wiki/Performance-Evaluation
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator

0 2 4 6
·104

0

50

100

objects

ti
m
e
in

se
cs

Set 1: People

Mean Median Polyn. fit

0 2 4 6
·104

0

50

100

objects

ti
m
e
in

se
cs

Set 2: Petri Nets

Mean Median Polyn. fit

Figure 7: Results for the resource import experiment in secs

when a new data set is to be gathered (i.e., it is not required every time
the tool is started). Moreover, many artefacts in the MDE technical
space have moderate size. For example meta-models tend to be in the
order of tens to hundreds of classes [18, 19].

2. Domain Exploration: Querying. Next, we executed a set of queries on the
instances of the common data model loaded in the repository. First, we
executed a predicate-based search (making the iteration internally, driven
by the engine) to force the query to traverse the whole model looking
for all objects with a concrete name. We performed this query with
and without services. As previously mentioned, services are functions
applied to certain data types that enhance the query mechanism, e.g.,
with synonym search or inexact matching for strings.

Figure 8 depicts the results obtained, showing good performance and
scalability. When the search uses a service bound to a query parame-
ter, the service increments the time consumed by the operation, because
the query delegates the resolution of the operation to the service. In
the experiment, we relied on the Inexact matching service to perform the
comparison of two strings using variations derived from their roots.

In addition, we performed similar experiments with the custom queries
presented in our previous work [2]. These queries make the iteration ex-

13

0 2 4 6
·104

0

2

4

6

8
·10−2

objects

ti
m
e
in

se
cs

W/O services

Mean Median Lin. Regr.

0 2 4 6
·104

0

5

10

objects

ti
m
e
in

se
cs

With services

Mean Median Lin. Regr.

Figure 8: Results for the predicate-based queries without services and with services

ternally (driven by the user code). They receive the repository selected
by the user and perform the operation with the possibility of aggregating
the results into groups. While predicate-based queries need to traverse the
complete resource, custom queries can interrupt the search whenever they
find an element of interest. Hence, custom queries present execution times
that can range from milliseconds to seconds depending on the query and
the structure of the data model. For example, a query locating all isolated
nodes takes about 100 seconds on the biggest People model, and less than
2 seconds for the biggest Petri nets model. More details can be found at
Extremo’s website.

6.1. Discussion and Threats to Validity

Overall, from the experiments we can conclude that Extremo has good
performance for its envisioned usage scenarios. While resource import can
take minutes, it is a one-time operation, only required when a new informa-
tion repository is to be created. Queries are fast, typically in the order of
a few seconds even for large models. While these experiments show good
results, they were performed using EMF models as data sources. We plan
to perform more extensive experiments with data from other technological
spaces (CSVs, XML documents, Ontologies). However, as all these tech-
nologies are file-based, we expect similar times.

14

The models used in the experiments were synthetic, and so experiments
using realistic models and data sources would be required to confirm these
results. We are planning to conduct a systematic experiment, but for the
example presented in Section 5, we obtained import times ranging from 15
milliseconds (for BusinessEntityModel.ecore, with a size of 3Kb) to 58.7 seconds
(for Swaps.rdf, with 5.5Mb of information). Details on the import times of
the example are available on project website14.

7. Conclusions

MDE relies on domain-specific modelling, which often requires knowl-
edge of very specialized areas. However, modelling is currently performed
mostly in a manual way. To improve this situation, we have proposed an
extensible modelling assistant, able to gather information from heteroge-
neous sources in a common data model, which then can be queried in a
uniform way. Extremo is designed to be easily integrated with existing
modelling and meta-modelling Eclipse plugins, where the query results can
be easily incorporated into the model being built. This paper has described
the main features of the tool, presented an example in the financial domain,
and reported on a performance evaluation, showing good results.

We are currently planning an empirical evaluation with users to analyse
the benefits of using Extremo in terms of modelling productivity and qual-
ity. We will also work on improving the tool, regarding efficiency of resource
import and exploring other types of assistance, for example pro-active.
Acknowledgements. We would like to thank the reviewers for their valu-
able comments. This work was partially supported by the Ministry of Edu-
cation of Spain (FPU grant FPU13/02698), the Spanish Ministry of Science
(RTI2018-095255-B-I00), and the R&D programme of the Madrid Region
(S2018/TCS-4314).

References

[1] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineer-
ing in Practice, 2nd Edition, Morgan & Claypool, 2017.

[2] Á. M. Segura, J. de Lara, P. Neubauer, M. Wimmer, Automated
modelling assistance by integrating heterogeneous information sources,
Computer Languages, Systems & Structures 53 (2018) 90–120.

14https://github.com/angel539/extremo/wiki/Case-Studies

15

https://github.com/angel539/extremo/wiki/Case-Studies

[3] Eclipse Code Recommenders, http://www.eclipse.org/

recommenders.

[4] K. Mens, A. Lozano, Source code-based recommendation systems, in:
Recommendation Systems in Software Engineering, Springer, 2014, pp.
93–130.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-oriented
domain analysis (foda) feasibility study, Tech. Rep. CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA (1990).

[6] S. Sen, B. Baudry, H. Vangheluwe, Towards domain-specific model ed-
itors with automatic model completion, Simulation 86 (2) (2010) 109–
126.

[7] J. J. López-Fernández, J. S. Cuadrado, E. Guerra, J. de Lara, Example-
driven meta-model development, Software and System Modeling 14 (4)
(2015) 1323–1347.

[8] A. Dyck, A. Ganser, H. Lichter, A framework for model recommenders
- requirements, architecture and tool support, in: MODELSWARD,
2014, pp. 282–290.

[9] I. Ceh, M. Crepinsek, T. Kosar, M. Mernik, Ontology driven develop-
ment of domain-specific languages, Comput. Sci. Inf. Syst. 8 (2) (2011)
317–342.

[10] D. Lucrédio, R. P. de Mattos Fortes, J. Whittle, MOOGLE: a
metamodel-based model search engine, Software and System Modeling
11 (2) (2012) 183–208.

[11] C. Atkinson, B. Kennel, B. Goß, The level-agnostic modeling language,
in: Software Language Engineering (SLE), Vol. 6563 of Lecture Notes
in Computer Science, Springer, 2010, pp. 266–275.

[12] T. Murata, Petri Nets: Properties, Analysis and Applications, Proc.
IEEE 77 (4) (1989) 541–580.

[13] Eclipse Graphical Editing Framework, https://eclipse.org/gef/.

[14] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse
Modeling Framework, Addison-Wesley, 2008.

16

http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
https://eclipse.org/gef/

[15] P. Neubauer, A. Bergmayr, T. Mayerhofer, J. Troya, M. Wimmer,
XMLText: From XML Schema to Xtext, in: Proceedings of SLE, 2015,
pp. 71–76.

[16] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, D. Launay, Neo4emf, A
scalable persistence layer for EMF models, in: Proc. ECMFA, Vol. 8569
of Lecture Notes in Computer Science, Springer, 2014, pp. 230–241.

[17] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, J. de Lara,
Pattern-based development of domain-specific modelling languages, in:
MoDELS, 2015, pp. 166–175.

[18] J. D. Rocco, D. D. Ruscio, L. Iovino, A. Pierantonio, Mining metrics
for understanding metamodel characteristics, in: MiSE, ACM, 2014,
pp. 55–60.

[19] J. Mengerink, A. Serebrenik, R. R. H. Schiffelers, M. G. J. van den
Brand, Automated analyses of model-driven artifacts: obtaining in-
sights into industrial application of MDE, in: IWSM-Mensura, ACM,
2017, pp. 116–121.

17

Required Metadata

Nr. (executable) Software
metadata description

S1 Current software version v1.0.0

S2 Permanent link to executables
of this version

https : //github.com/angel539/extremo/

S3 Legal Software License EPL-2.0

S4 Computing platform/Operat-
ing System

MacOSx Sierra and Windows 7 64-bit or later

S5 Installation requirements &
dependencies

Eclipse Mars2.0 (4.5.2a), EMF 2.12.0, Java 8,
NeoEMF 1.0.2

S6 If available, link to user man-
ual - if formally published in-
clude a reference to the publi-
cation in the reference list

https : //github.com/angel539/extremo/wiki

S7 Support email for questions Angel.MoraS@uam.es

Table 1: Software metadata

Nr. Code metadata descrip-
tion

C1 Current code version v1.0.0

C2 Permanent link to
code/repository used of
this code version

https : //github.com/angel539/extremo/

C3 Legal Code License EPL-2.0

C4 Code versioning system used git

C5 Software code languages,
tools, and services used

Eclipse Mars2.0 (4.5.2a), EMF 2.12.0, Java 8,
NeoEMF 1.0.2

C6 Compilation requirements,
operating environments &
dependencies

Java 8, Apache Maven 3

C7 If available Link to developer
documentation/manual

https : //github.com/angel539/extremo/wiki

C8 Support email for questions Angel.MoraS@uam.es

Table 2: Code metadata

18

https://github.com/angel539/extremo/releases/tag/v1.0.0
mailto:Angel.MoraS@uam.es
https://github.com/angel539/extremo/releases/tag/v1.0.0
mailto:Angel.MoraS@uam.es

	Introduction
	Motivation
	Software Framework
	Software Features
	Software Architecture

	Implementation
	Example
	Scalability Assessment
	Discussion and Threats to Validity

	Conclusions

