Flexible modelling using conversational agents

Sara Pérez-Soler
Computer Science Department
Universidad Autonoma de Madrid
Madrid, Spain
sara.perezs @uam.es

Abstract—The advances in natural language processing and
the wide use of social networks have boosted the proliferation of
chatbots. These are software services typically embedded within a
social network, and which can be addressed using conversation
through natural language. Many chatbots exist with different
purposes, e.g., to book all kind of services, to automate software
engineering tasks, or for customer support.

In previous work, we proposed the use of chatbots for domain-
specific modelling within social networks. In this short paper, we
report on the needs for flexible modelling required by modelling
using conversation. In particular, we propose a process of meta-
model relaxation to make modelling more flexible, followed by
correction steps to make the model conforming to its meta-
model. The paper shows how this process is integrated within our
conversational modelling framework, and illustrates the approach
with an example.

Index Terms—Flexible Modelling; Conversational Agent; Nat-
ural Language Processing; Chatbots

I. INTRODUCTION

Model-driven engineering (MDE) [1] uses models in all
phases of software development. Models are usually built
with a domain-specific language (DSL). DSLs are defined
with an abstract syntax and a concrete syntax. The abstract
syntax in MDE is defined with a meta-model, where the
concepts of the domain are specified. The concrete syntax
is usually graphical or textual. The creation of models is an
activity that is not only performed by developers, but there
are scenarios in which it is necessary to involve the end users,
e.g., requirements modelling [2], to define touristic routes [3]
or create [oT applications [4]. However, end users normally
have low technical profiles and are not familiar with modelling
tools or DSLs.

In recent years, the advances in natural language (NL)
processing has boosted chatbots or conversational agents.
These programs interact with the user in NL and are usually
integrated into social networks. They are currently used to
automate tasks such as customer support [5], shopping as-
sistance [6], queries assistance [7] or education support [8].
Moreover, as social networks incorporate communication
channels, chatbots are perfect for collaborative tasks. Due to
the increase in the use of chatbots, several tools have emerged
that facilitate their creation, e.g., Dialogflow from Googlel,

Work funded by the R&D programme of the Madrid Region (S2018/TCS-
4314) and the Spanish Ministry of Science (RT12018-095255-B-100).
Thttps://dialogflow.com/

Esther Guerra
Computer Science Department
Universidad Autonoma de Madrid
Madrid, Spain
esther.guerra@uam.es

Juan de Lara
Computer Science Department
Universidad Autéonoma de Madrid
Madrid, Spain
juan.delara@uam.es

IBM Watson?> or Amazon Lex?. These frameworks offer an
environment in the cloud, with a graphical interface that allows
the user to configure the conversation flow of the chatbot.
These frameworks work using machine learning to match
the user message with an intent. For this process, the intent
needs some training phrases and the key values or parameters
collected from the phrases. Also, it is necessary to define a
conversation flow, indicating the order of the intents.

In previous work [9], we proposed an approach to assign a
conversational syntax to a DSL and generate a conversational
agent from the DSL definition. This approach exploits the ad-
vantages of performing modelling tasks collaboratively using
NL in social networks. Using NL to build models facilitates
this activity to users unfamiliar with modelling. The use of
social networks eliminates the need to install and learn to
use a new tool for modelling. But making a conversational
agent manually from a meta-model is a time-consuming and
repetitive task that requires the design and creation of the
NL interpreter and a modelling service to take care of the
model creation. Therefore, we proposed to automate the task
of designing and creating the agent, and using a dynamic
modelling service based on a meta-model.

However, when using NL, people normally do not provide
all the information in their phrases. Moreover, we want to
let users express their ideas in a more free way, which can be
refined later. For this reason, in this work, we present a flexible
modelling approach — especially tailored to conversation-based
interaction — which allows to save incomplete or incorrect
information in a model, waiting for its later refinement.

The rest of this paper is organized as follows. Section II
overviews the approach to automate the creation of conversa-
tional agents for modelling. Section III presents our approach
to make modelling more flexible for chatbots. Section IV
shows examples of flexible modelling for NL. Section V shows
how the tool works in Telegram. Section VI compares our
approach with related research, and Section VII concludes.

II. CREATING MODELLING CHATBOTS

In [9], we developed an approach to create modelling agents
through NL in social networks, based on the DialogFlow
framework. Specifically, starting from a domain meta-model,
we automatically generate a conversational concrete syntax.

Zhttps://www.ibm.com/watson
3https://aws.amazon.com/es/lex/

Meta-model

Chatbot Designer

Telegram

> . >

S

lack [

Twitter

Users

Fig. 1. Creation and use of the modelling agent

<<without container>>
University
code: String[1] <<id>>
name: String[1]
address: String[1..*]

<<with container>>
Person
name: String[1] <«id>>
surname: String[1] <id>>
birthdate: Date[1]

professors 4

| 1.2 l

<<with container>> <<with container>> *
] Professor Student
- tutors students
department: String([1] id: int[1] <<id>>

Fig. 2. University meta-model

There is a university with code
UAM and name Universidad

Auténoma de Madrid UAM :University
name: Universidad Auténoma
de Madrid

Fig. 3. NL processing to create a University object

Figure 1 shows the creation process of a modelling agent
with our approach. First, the chatbot designer must provide
the domain meta-model (label 1). The NL syntax configurator
automatically generates a configuration model that will be
used to create the chatbot as well as the NL syntax to create
models (label 2). This configuration can be later extended
and modified by the designer, for example adding synonyms
with which the user can refer to elements of the meta-model
(classes, attributes and references). To create a model using
conversation, it is necessary to be able to differentiate the
objects; for this reason, this configuration needs to indicate
the identifier attributes of each class. It is also possible to
configure the instances of which classes can be outside of any
container object and which ones can not, that is, which objects
must be assigned to a container reference or which ones can
be directly contained in the model. The designer of the chatbot
typically reviews the configuration generated, adjusting it to
the needs of the domain.

Once refined, the configuration and the domain meta-model
are passed to an agent generator module (label 3). The agent

Sofia Garcia was born

UAM :University
on May 19, 1989

name: Universidad Auténoma
de Madrid
AN V4

Sofia égcii.Person
birthdate:/gbs(lgw

7 Ay

UAM :University

name: Universidad Auténoma
de Madrid

Fig. 4. Phrase that can not be handled due to the rigidity of the meta-model

generator generates the conversational flow, the intents, the
training phrases and the parameters automatically, saving this
job to the designer of the chatbot. Once the agent is ready,
it is automatically deployed in Dialogflow (label 4) and users
can interact with it through social networks (labels 5 and 6).

Finally, there is a modelling back-end that transforms the
user’s intent into model actions (label 7). This back-end is the
same for all the modelling agents, so it works generically and
needs the meta-model and the configuration.

Figure 2 shows a meta-model and the configuration provided
by the designer of the chatbot. The elements of configuration
are represented with stereotypes, that is, they are between
the symbols « and ». This example is a meta-model of a
University. The University class has a code, which is an
identifier (indicated with the stereotype «id»), a name and one
or more addresses. The University has also a list of professors
and students. Both Professor and Student inherit from Person,
which is abstract. Student has the attribute id as identifier,
while Professor and Person have name and surname. Student
has one or two futors with type Professor, and Professors have
a department. Finally, while objects that have a University type
do not need to be contained in any other object (stereotype
«without container»), objects of type Person, Professor and
Student must have a container (stereotype «with container»).

Using the meta-model of the University in the process
of creating a chatbot, we obtain an agent able to interpret
sentences and generate University models. Figure 3 shows an
example of a user sentence and how the agent interprets it to
generate the model. The agent, after processing the sentence
(“There is a university with code UAM and name Universidad
Auténoma de Madrid”), infers that there is an object with type
University, that the attribute code has the value "UAM" and

* Cardinality
* Abstract classes
* Objects with container

Relaxer

Meta-model S

Relaxed

Constrainer X
(M2M transformation) 1
1
1

Fix
* Add, remove features

Model * Change abstract class type
* Add container

User

Fig. 5. Steps in flexible modelling. (1) Meta-model relaxation (2) User interaction to create a valid model. (3) Model constrainer

the attribute name is "Universidad Auténoma de Madrid"

When the agent processes the subsequent phrase “Sofia
Garcia was born on May 19, 1989” (Figure 4), it infers
that there is an object of type Person with name “Sofia”
surname “Garcia” and date of birth “05/19/1989”. However,
class Person is abstract, and so there is no way to save this
partial information that the user gave to the agent.

ITII. FLEXIBLE MODELLING WITH CHATBOTS

To allow the agent to save partial or incorrect information in
the model, we propose to relax the meta-model with which the
user will work. This relaxation takes place in the modelling
back-end of Figure 1.

Figure 5 displays the steps we follow to make modelling
with chatbots more flexible. The first step is to relax the meta-
model. To do this, the tool changes the domain meta-model
and the NL configuration as follows:

o Cardinality: It sets the cardinality of the features that are
not identifiers to [0..*]. The identifiers can not change the
cardinality because they can not be ambiguous, as users
need them to refer to the objects.

o Abstract classes: The abstract classes become concrete.

+ With container class: All classes are allowed to be
outside of a container.

Then, users can build models according to the relaxed meta-
model (step 2), so that they can instantiate abstract classes,
or assign more values than permitted by the cardinality in a
feature. At any moment, the user can validate the model to
check its conformance to the original meta-model. The tool
notifies all errors found in the model to the users. This way,
users can fix the inconsistencies. The ways to resolve the
inconsistencies are:

o Cardinality: If a feature has less values than the lower
cardinality, it is necessary to add at least as many values
as indicated by the lower cardinality. If the feature has
more values than the upper cardinality, it is necessary
to remove values until the size is equal or less than the
upper cardinality.

o Abstract classes: There are several ways to retype an
object with an abstract type into a concrete type:

— The user specifies the type directly (e.g., “The Person
Sofia Garcia is a Student”™).

— The user sets a feature that only belongs to one of
the subclasses of the abstract class (e.g. “Soffa Garcia
belongs to the Computer Science Department”).

— The user adds the object to a reference whose type
is a subclass of the abstract class (e.g. “Soffa Garcia
is a UAM professor”).

+ With container class: The objects must be added in a
container reference.

The last step is a model-to-model transformation. This
transformation is necessary due to the limitation of the Eclipse
Modeling Framework (EMF) [10], the technology we use
to model. EMF treats features with cardinality greater than
one and features with cardinality one in a different way
when serializing models. This way, to permit opening the
model created with the meta-model provided by the user, it
is necessary to perform the transformation.

Figure 6 shows the relaxed meta-model from Figure 2 with
the changes made shaded. The Person abstract class has been
transformed into a concrete class, the classes configured with
«with container» are configured with «without container» and
all properties that are not class identifiers are set cardinality
[0..*]. The Student features name and surname must be overri-

<<without container>>

University
<<without container>> code: String[1] «id>>
Person name: String[*] 4

name: String[1] <<id>> address: String[*]
surname: String[1] <<id>>

birthdate: Date[*]

professors ZIF

Tl *

Professor
department: String[*]

1

<<without container>> *
Student
id: int[1] <<id>>
name: String[*] {override}
surname: String[*] {override}

N

tutors

Fig. 6. Meta-model relaxation example

UAM :University

Sofia Garcia was born
on May 19, 1989

name: [Universidad Auténoma

UAM :Universit de Madrid]

name: [Universidad Auténoma

—)

de Madrid] Sofia Garcia :Person

birthdate: [19/05/1989]

Fig. 7. Example of model creation in NL

den to increase the cardinality, since in Person and in Professor
their cardinality must be [1..1], since they are identifiers.

IV. EXAMPLE

Figure 7 shows an example of a message in NL and how
it is interpreted to generate the model according to the meta-
model of Figure 6. From the message “Sofia Garcia was born
on May 19, 1989 the agent can infer that there is a Person
with name Sofia, her surname is Garcia and her date of birth is
May 19, 1989, but it does not have information to classify her
as a Professor or as a Student. With our flexible modelling
approach the agent creates a Person object to save all the
information provided by the user, and waits for the rest.

Figure 8 displays several ways to make the object type
concrete. The most direct one is that the user says the type
explicitly (Figure 4.b) with the phrase “Soffa Garcia is a
Professor”. This results in an object retyping, which preserves

UAM :University
name: [Universidad Auténoma
de Madrid]

UAM :University

name: [Universidad Auténoma
de Madrid]

Sofia Garcia :Professor |

Sofia Garcia :Professor |
professors ["birthdate: [19/05/1989] |

birthdate: [19/05/1989] |

a) Sofia Garcia teaches at Universidad
Auténoma de Madrid

b) Sofia Garcia is a Professor

UAM :Universit
name: [Universidad Auténoma

UAM :University de Madrid)
name: [Uni 5
de Madrid] 1 :Student
- — birthdate: [19/05/1989]
Sofia Garcia :Professor name: [sofia]

birthdate: [19/05/1989] surname: [Garcia]
department: ["Computer

Science”]

| Daniel Pérez :Professor

tutors
c) Sofia Garcia belongs to Computer
Science Department

d) Sofia Garcia’s supervisor is
Daniel Pérez

Fig. 8. Four examples to type a Person object

UniversityModelBot

B i awercl iriearv) birthdate = [1/11/1999)

addres = [Cambridge. United State of America]

l Harvard .UanefSlly i Andy Jackson :Person

:professors

Jennifer Smith :Professor

birthdate = [19/05/1980]
department= [*Computer Science”]

/validate

ERROR: Andy Jackson :Person must be contained in other object.
ERROR: Andy Jackson :Person can not be an instance of an abstract
class.

Andy Jackson studies at harvard (-, -

What is the student id?

202465 7.4

Harvard :University

name = [Harvard University]
addres = [Cambridge, United State of America]

w
N
iprofessors ™\ :students

«new»
202465 :Student
name = [Andy]
surname = [Jackson]
birthdate = [1/11/1999]

Jennifer Smith :Professor

birthdate = [19/05/1980]
department= ["Computer Science"]

The supervisor of 202465 is Jennifer Smith .-+

[Harvard :University)

name = [Harvard University]
addres = Cambridge, Unite State of Amarica]
» -
/ :students

/
/’ 202465 :Student

| :professors | name = [Andyl
R son
birthdate = [1/11/1599]

/ ‘tutors

Jennifer Smith :Professor

birthdate = [15/05/1980]
department = [*Computer Science"]

fvalidate 45

Validation completed successfully

Fig. 9. Example of model creation in NL

existing attributes and links. However, there are other ways to
concretize the type. For example when the object is assigned
to the reference professors with type Professor (Figure 4.a),
when the user sets feature department, which belongs to
Professor (Figure 4.c) or tutors, which belongs to Student
(Figure 4.d). Moreover, the phrase “Soffa Garcia’s supervisor
is Daniel Pérez” creates Daniel Pérez as Professor because
only professors can be supervisors of students.

V. TOOL SUPPORT

Figure 9 displays the interaction of a user with a col-
laborative modelling agent for the University meta-model in
Telegram. Telegram is a social network based on instant
messaging. Users can communicate in chats that can be private
(only two users exchanging messages) or groups (more than
two users in the chat). Chatbots work almost the same as

the rest of the users in the chats. On top, the figure shows
a model with one University with code “Harvard”, name
“Harvard University” and address “Cambridge, Unite State
of America”. There is a Professor with name and surname
“Jennifer Smith”, birth date “19/05/1980”, and department
“Computer Science”. Finally, there is a Person with name and
surname “Andy Jackson”, with birth date “1/11/1999”. When
the user validates the model (“/validate”), the agent sends
back a list with all errors. The first error says that a Person
object must be contained in a reference. The second says that
the object “Andy Jackson :Person” cannot be Person because
Person is an abstract class. Then, the user modifies the model
using NL. The sentence “Andy Jackson studies in Harvard”
indicates that Andy Jackson is a Student but students must
have an id, so the bot asks the id to the user. From now on,
Andy Jackson is identified by this id. The next phrase, “The
supervisor of 202465 is Jennifer Smith”, links Andy Jackson
with Jennifer Smith through the reference tutors. Finally, the
last validation shows there is no error in the model.

A video showing the interactions of two users with another
modelling agent can be found at https://saraperezsoler.github.
io/ModellingBot/.

VI. RELATED WORK

There are many efforts in the field of requirements en-
gineering on creating domain models (class diagrams) from
textual requirements [11], [12]. While we also have the need
to interpret NL, our approach is based on conversation, while
the model we create is domain-specific.

Domain-specific modelling using NL or voice is a novel ap-
proach that is recently receiving a lot of attention. For example,
in [13], the authors propose an approach called ModelBy Voice,
which supports voice recognition and speech synthesis for
editing models. The tool assumes a diagrammatic concrete
syntax for models, and editing actions are generic commands.
For instance, creating any kind of object is done through the
command “create node”, after which the tool prompts the user
about the node type and its attributes. VoiceToModel [14] is
similar but for goal-oriented models, object models and feature
models. Compared to ModelByVoice, it supports a smaller set
of modelling languages, but their commands are less generic
(e.g., there is a create command for each object type) though
still rigid. Instead, our focus is to synthesize conversational
syntaxes for DSLs that become as natural as possible, by using
NL instead of commands.

We have seen that modelling using conversation benefits
from a more flexible approach to modelling, which tolerates
inconsistencies. Approaches to flexible modelling, based on
the parsing of drawings, benefit from techniques for inferring
types as well [15], just like we do. Some requirements for
flexible modelling approaches were proposed in [16]. For
example, the need for a configurable conformance relation,
and modelling processes guiding in the transition from infor-
mal to formal models. However, these requirements targeted
traditional modelling tools, while here we use modelling using
conversation.

VII. CONCLUSIONS

In this paper, we have argued that modelling using chatbots
would profit from adding some flexibility to modelling. In
particular, we have proposed a meta-model relaxation process
to give users more freedom when building models in NL, e.g.,
allowing the creation of abstract objects or the assignment of
an arbitrary number of values to features. Then, a correction
process converts the relaxed model into an instance of the orig-
inal meta-model, reporting detected errors. These ideas have
been implemented in our conversational modelling platform.

We are currently investigating further aspects which may
bring flexibility to modelling through NL. For instance, our
modelling chatbots are currently limited to error reporting,
but we plan to extend them so that they can suggest to the
user possible fixes in NL. We also foresee the possibility to
customise the modelling process depending on the domain.

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25-31, 2006.

[2] M. dos Santos Soares, J. Vrancken, and A. Verbraeck, “User require-
ments modeling and analysis of software-intensive systems,” Journal of
Systems and Software, vol. 84, no. 2, pp. 328 — 339, 2011.

[3] D. Vaquero-Melchor, J. Palomares, E. Guerra, and J. de Lara, “Active
domain-specific languages: Making every mobile user a modeller,” in
Proc. MODELS. 1EEE Comp. Soc., 2017, pp. 75-82.

[4] P. Markopoulos, J. Nichols, F. Paterno, and V. Pipek, “Editorial: End-
user development for the internet of things,” ACM Trans. Comput.-Hum.
Interact., vol. 24, no. 2, pp. 9:1-9:3, 2017.

[51 A. Xu, Z. Liu, Y. Guo, V. Sinha, and R. Akkiraju, “A new chatbot for
customer service on social media,” in Proc. CHI. ACM, 2017, pp.
3506-3510.

[6] N. Piyush, T. Choudhury, and P. Kumar, “Conversational commerce
a new era of e-business,” in 2016 International Conference System
Modeling & Advancement in Research Trends (SMART). 1EEE, 2016,
pp. 322-327.

[7] J. Singh, M. H. Joesph, and K. B. A. Jabbar, “Rule-based chabot for
student enquiries,” in Journal of Physics: Conference Series, vol. 1228,
no. 1. IOP Publishing, 2019, p. 012060.

[8] F. Clarizia, F. Colace, M. Lombardi, F. Pascale, and D. Santaniello,
“Chatbot: An education support system for student,” in International
Symposium on Cyberspace Safety and Security. Springer, 2018, pp.
291-302.

[9] S. Perez-Soler, M. Gonzalez-Jimenez, E. Guerra, and J. de Lara,
“Towards conversational syntax for domain-specific languages using
chatbots,” Journal of Object Technology (proceedings ECMFA), vol. 18,
no. 2, 2019.

[10] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF': eclipse
modeling framework. Pearson Education, 2008.

[11] F. Dalpiaz, A. Ferrari, X. Franch, and C. Palomares, “Natural language
processing for requirements engineering: The best is yet to come,” I[EEE
Software, vol. 35, no. 5, pp. 115-119, 2018.

[12] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Extracting
domain models from natural-language requirements: Approach and
industrial evaluation,” in Proc. MODELS. ACM, 2016, pp. 250-260.

[13] J. Lopes, J. Cambeiro, and V. Amaral, “Modelbyvoice - towards a
general purpose model editor for blind people,” in Proc. MODELS 2018
Workshops, ser. CEUR Workshop Proceedings, vol. 2245. CEUR-
WS.org, 2018, pp. 762-769.

[14] F. Soares, J. Aradjo, and F. Wanderley, “VoiceToModel: an approach to
generate requirements models from speech recognition mechanisms,” in
Proc. SAC. ACM, 2015, pp. 1350-1357.

[15] A. Zolotas, N. Matragkas, S. Devlin, D. S. Kolovos, and R. FE. Paige,
“Type inference in flexible model-driven engineering using classification
algorithms,” Software and System Modeling, vol. 18, no. 1, pp. 345-366,
2019.

[16] E. Guerra and J. de Lara, “On the quest for flexible modelling,” in Proc.
MODELS. ACM, 2018, pp. 23-33.

