
Towards the flexible reuse of model transformations:
A formal approach based on Graph Transformation

Juan de Laraa, Esther Guerraa

aComputer Science Department, Universidad Autónoma de Madrid (Spain)

Abstract

Model transformations are the heart and soul of Model Driven Engineering (MDE). However, in
order to increase the adoption of MDE by industry, techniques for developing model transforma-
tions in the large and raising the quality and productivity in their construction, like reusability,
are still needed.

In previous works, we developed a reutilization approach for graph transformations based
on the definition of concepts, which gather the structural requirements needed by meta-models
to qualify for the transformations. Reusable transformations are typed by concepts, becoming
transformation templates. Transformation templates are instantiated by binding the concept to a
concrete meta-model, inducing a retyping of the transformation for the given meta-model.

This paper extends the approach allowing heterogeneities between the concept and the meta-
model, thus increasing the reuse opportunities of transformation templates. Heterogeneities are
resolved by using algebraic adapters which induce both a retyping and an adaptation of the
transformation. As an alternative, the adapters can also be employed to induce an adaptation of
the meta-model, and in this work we show the conditions for equivalence of both approaches to
transformation reuse.

Keywords: Model-Driven Engineering, Graph Transformation, Meta-modelling, Genericity,
Reusability

1. Introduction

Model-Driven Engineering (MDE) [3, 38] promotes an active use of models in the different
phases of the software development. This involves the transformation of models between differ-
ent languages – ranging from general-purpose to domain-specific modelling languages (DSMLs)
– until code for the final application is generated.

MDE can be seen as a reutilization approach, where modelling languages and their associated
transformations and code generators are reused across projects to describe different applications
within a domain, but with certain variability that is configured through a model. However, it is
also true that MDE is type-centric [7], because the different supporting artefacts (transformations
and code generators) are defined over the types of a specific meta-model and cannot be reused
for other meta-models, even if they share essential structural features. This rigidity hampers the

Email addresses: Juan.deLara@uam.es (Juan de Lara), Esther.Guerra@uam.es (Esther Guerra)

Preprint submitted to Journal of Logic and Algebraic Programming July 31, 2014

adoption of MDE in industry because similar transformations have to be repeatedly developed,
even for meta-models with only slight differences.

Taking ideas from generic programming, in previous works we proposed the definition of
transformations over so-called concepts [7, 16, 17], instead of over concrete meta-models. In our
context, a concept specifies the structural requirements that meta-models need to fulfil in order
to be able to apply a certain model operation (e.g. a transformation) on their instances. Our
concepts resemble meta-models, but their elements (classes, references, fields) are variables that
need to be bound to concrete meta-model elements. In this way, similar to generic programming
templates [16], a transformation template is defined over a concept and is instantiated for a
specific meta-model via a binding.

In [6], we formalized these techniques using graph transformation (GT) [11] to express model
transformations, and restricting the binding to simple injective mappings between the concept
and the meta-model elements. In this paper, we expand the formalization by allowing a more
flexible binding by means of algebraic adapters, which are able to resolve heterogeneities be-
tween the concept and the meta-model, in the line of [29]. This approach increases the reuse
opportunities of transformation templates because their associated concepts can be bound to a
wider set of meta-models. Interestingly, the formalization of our adapters involves building a
“virtual view” that unifies the two main approaches to genericity in MDE (namely, adaptation of
the transformation [29] and meta-model adaptation [18]) and enables the study of the conditions
for their equivalence.

The rest of this paper is organized as follows. Section 2 presents an overview of our approach.
Section 3 formalizes (meta-)models and concepts. Section 4 introduces binding adapters and
Section 5 shows their use to instantiate a GT template and to build a derived model. Section 6
compares with related work and, finally, Section 7 concludes the paper and identifies lines of
future work. An appendix shows the details of the different proofs.

2. Motivation, Overview and Challenges

Assume we want to define a catalogue of refactorings for object-oriented notations [14] using
GT rules. The first step is to define a meta-model so that the rules can be typed. However, this
means that the rules will only be applicable to instances of such meta-model. This prevents
the refactorings from being reused, as they cannot be applied to other object-oriented notations
sharing common features – like UML class diagrams [37], KM3 [22] or Ecore [34] – but we need
to encode slight variations of the same refactorings for each notation.

To overcome this limitation, we propose defining the rules over a so-called concept, as il-
lustrated in Figure 1. Label 1 depicts a concept for the refactoring of object-oriented notations.
Label 2 shows one simple refactoring rule, which moves a field from a class to one of its parents.
This rule is typed over the concept. A concept has the form of a standard meta-model, but it
needs to be bound to some concrete meta-model, as shown in label 3. This binding induces an
adaptation of the rule via a high-order transformation (HOT) to make it applicable to the meta-
model instances, as shown in label 4. Hence, similar to generic programming [10], GT rules so
defined become templates that need to be instantiated for particular meta-models. This approach
promotes reusability because the same transformation can be applied to every meta-model to
which we can bind the concept. The figure shows part of the binding of the concept to a simpli-
fication of the UML2 meta-model [37] and to the Java meta-model (a slight modification of the
one proposed by the JaMoPP project [19]).

2

concept

UML2 (Simplified)

Java meta-model (JaMoPP)

…

typed on

catalogue of
generic refactorings

rule adaptation
(HOT)

ty
p

e
d

 o
n

4

2

induces

1
p

Node → Class
Field → Property
Node.isConcrete → not Class.isAbstract
Node.fields → Class.ownedAttribute
Node.parent → Class.inh.parent
…

binding

3

Node → Class
Field → Field
Node.isConcrete → Abstract
Node.fields → Class.members
Node.parent → Class.extends.target
…

binding

Figure 1: Rule template defined over a concept, and instantiation via a binding.

An additional advantage of this approach is that concepts are simpler, with less accidental
details than the meta-models they get bound to, resulting in simpler transformations. This is so
because concepts are specifically designed for a transformation while meta-models gather the
abstractions of a domain, and hence may become large. In the running example, the concept
contains the elements strictly needed to define object-oriented refactorings. The meta-models to
which we bind the concept are much more complex, as they contain elements for other aspects
which are not used by the transformation. For example, the UML2 superstructure meta-model
contains over 330 classes, while JaMoPP has over 240.

In practice, a concept reflects some design decisions, so that the structural requirements gath-
ered by it may have been implemented differently in concrete meta-models. For instance, the
meaning of a field in the concept and the corresponding field in the meta-model may differ. This
is the case of the isConcrete field that our example concept uses to represent whether a class is
abstract or concrete: the UML2 meta-model uses the field isAbstract with opposite meaning for
the same purpose, and JaMoPP uses the marker classes Abstract and Concrete instead. Some
other times, the meta-models lack fields declared in the concept, like the field isFinal which is
not defined by Class in the UML2 meta-model. Finally, there can be structural differences be-
tween the concept and the meta-models. For example, our concept represents inheritance with
the association parent, but UML2 uses the intermediate class Generalization.

Figure 2 summarizes these heterogeneities. Hence, the challenge is to formally specify these
heterogeneities, and being able to instantiate a GT template accordingly to obtain rules work-
ing on the bound meta-models. Figure 1 shows a rule template (label 2) and the desired rule
instantiation for the binding to UML2 (label 4). The instantiated rule is typed over the UML2

3

meta-model and resolves the heterogeneities expressed in the binding (heterogeneities (a) and (c)
in Figure 2).

isConcrete: boolean

Class

isAbstract: boolean

Node

parent
*

Class

Generalization
* inh

parent 1

(a) Field value adapter (b) Field to default value (c) Assoc. to intermediate class (d) Field to class

isFinal: boolean

Class

(never final)
isFinal: boolean

Class

Final

concept concept UML2

concept UML2
concept JaMoPP

UML2

Node Node
Node

Figure 2: Some heterogeneities between the concept and concrete meta-models, to be resolved.

Instead of instantiating the template rules, a different way to achieve transformation reuse is
to modify the concrete meta-model to make it “compatible” (a subtype) with the concept [18, 33].
In this second approach – meta-model adaptation – the elements that appear in the concept but
not in the meta-model are added to the meta-model as derived elements that are calculated from
queries on meta-model elements. Accordingly, the models to which we want to apply the trans-
formation need to be modified as well. As an example, Figure 3 shows to the left a model M
conformant to the UML2 meta-model, and to the right its extension Ms with the derived infor-
mation present in the concept but not in the UML2 meta-model, namely, the derived attributes
isConcrete, isFinal and parent in class NodeClass. If the modelling framework has automated
mechanisms to synchronize the derived elements with the “regular” modelling elements through
queries, then we can retype the original transformation and apply it to the instances of the adapted
meta-model (like Ms in the figure), without adapting the transformation itself.

p:Class

c:Class a:Property

name=“age”

M

g:Generalization

p:NodeClass

c:NodeClass

/parent

a:FProperty

name=“age”

MS

g:Generalization

UML2

name=“employee”

isAbstract=false

name=“person”

isAbstract=true

name=“person”

isAbstract=true

/isConcrete=false

/isFinal=false

name=“employee”

isAbstract=false

/isConcrete=true

/isFinal=false

Class

Classifier

name: String

isAbstract: boolean

Property
owned

Attribute

Typed

Element

name: String

Generalization
inh

parent

UML2, extended

with derived info.

NodeClass

Classifier

name: String

isAbstract: boolean

FProperty
owned

Attribute

Typed

Element

name: String

Generalization
inh

parent

/isConcrete: boolean = not isAbstract

/isFinal: boolean = false

/parent

typeM
typeMs

Figure 3: The UML2 meta-model and the model M are extended with derived information to
enable rule application.

Hence, the following challenges remain in order to achieve the reutilization of transforma-
tions by means of concepts. First, in order to increase the reutilization oportunities, we need a

4

flexible mechanism, which we call adapters, to resolve the heterogeneities between the concept
and the concrete meta-model. Second, we need a mechanism to use adapters both for transfor-
mation adaptation, and for meta-model adaptation, ensuring that both kinds of adaptations are
compatible.

In order to tackle these challenges, in sections 3–5 we present a unifying formalization where
we define adapters to resolve heterogeneities between concepts and meta-models. Adapters can
be used to both instantiate a GT template, and extend a meta-model and its instance models with
the derived information needed to apply a GT template. In the latter case, the synchronization of
derived and regular elements is emulated by means of rules acting on instances of the extended
meta-model. Finally, in section 5.3 we show that, instantiating a template for a concrete meta-
model preserves the behaviour of the original GT template, while being compatible with the
meta-model adaptation approach.

3. Models, Meta-Models and Concepts, Algebraically

In this section we provide the formal basis to represent models, meta-models and concepts.

3.1. Models

The underlying graph model we use is that of node-attributed, typed graphs [11]. This kind
of graphs represents data values as a special kind of nodes, and attributes as edges between graph
nodes and data nodes.

Definition 1 (Graph). An attributed graph G = ⟨V; E; A; D; srcE , tarE : E → V; srcA : A →
V; tarA : A→ D⟩, is made of a set V of vertices, a set E of edges, a set A of attributes, a set D of
data nodes, and functions that return the source and target vertices of an edge (srcE , tarE), and
the owning vertex and data value of an attribute (srcA, tarA).

Example 1. Figure 4(a) shows a graph example, where the vertices (set V) are represented as
rectangles, the data nodes (set D) are represented as rounded rectangles, the edges (set E) are
represented as continuous arrows, and the attributes (set A) are represented as dotted arrows
connecting the nodes as indicated by the srcA and tarA functions. Figure 4(b) shows the same
graph in a more compact notation, similar to the one for UML object diagrams.

n1

“person” false

name

isConcrete

n1:

name=“person”

isConcrete=false

isFinal=false

n2

“employee” true

name

isConcrete

isFinal

isFinal

parent

n2:

name=“employee”

isConcrete=true

isFinal=true

parent

n1:

name=N1

isConcrete=B1

isFinal=B2

n2:

name=N2

isConcrete=B3

isFinal=B4

parent

N1=“person”ÙB1=falseÙB2=falseÙ

N2=“employee”ÙB3=trueÙB4=true

with N1, N2 : String; B1, B2, B3, B4: bool

(a) (b) (c)

Figure 4: (a) Graph. (b) Graph in UML-like notation. (c) Model.

5

Similar to symbolic graphs [26], we enrich graphs with formulas over a signature Σ = (S ,OP)
made of a set S of sorts and a set OP of operations [31]. The elements from D are then interpreted
as variables (instead of data values) and the set D is partitioned according to the sorts in S (i.e.
we consider a S-sorted set). The formulas may use sorted variables from the set D and operations
from the set OP. We call such an enriched graph a model.

Definition 2 (Model and Grounded Model). Given a signature Σ = (S ,OP), a model M =

⟨G; DS ;α⟩ is made of a graph G = ⟨V; E; A; D; srcE , tarE; srcA; tarA⟩, a set of S-sorted variables
DS = ⟨Ds⟩s∈S such that

⊎
s∈S Ds = D , and a Σ(DS)-formula α with variables from DS .

A model M is called grounded if α is a conjunction of equalities between variables from DS

and constants.

Remark. The symbol
⊎

denotes disjoint union.

Example 2. Figure 4(c) shows a model equivalent to the graph in Figure 4(b), in the sense that
they convey the same information. Instead of having concrete values (e.g., “person” or false)
as attributes, the model contains variables (e.g., N1, B1) of some sort. The values the variables
can take are given by a formula α. Such formula, and the sort of the variables are depicted at
the bottom of the model. The signature contains sorts String and bool. The model is grounded,
because the formula consists of equalities between variables and constants.

For simplicity, we will not consider models having different signatures, but assume a global,
common signature Σ for all of them. A graph can be represented as a grounded model by taking
as its formula the conjunction of the equalities of each attribute to its value. In such cases,
we sometimes prefer using a compact notation that hides the formula and depicts the attribute
assignments in their compartments, as in Figure 4(b). In general, formulas may accept different
values for the variables they contain. This allows using models to represent patterns (e.g. in the
left- and right-hand sides of transformation rules) [26].

Next, we define model morphisms. These are useful to define relations between models, e.g.
to indicate an occurrence of the first model into the second one.

Definition 3 (Model morphism). Given a Σ-algebraA and two models M1 = ⟨G1; DS 1 ;α1⟩ and
M2 = ⟨G2; DS 2 ;α2⟩, a model morphism (short M-morphism), written m : M1 → M2, is a graph
morphism m : G1 → G2 s.t. A |= α2 ⇒ m(α1), where the induced morphism mDS : DS 1 → DS 2

preserves variable sorts.

Remark. m(α1) is the formula that results from replacing every variable X in α1 by the variable
m(X). The conditionA |= α2 ⇒ m(α1) specifies that the algebra satisfies the implication. Hence,
every valuation f : Var(α2) → |A| from the variables in α2 to the carrier set of the algebra
satisfying α2, can be extended to a valuation f′ : DS 2 → |A| satisfying m(α1).

Example 3. Figure 5 shows an M-morphism example m : M1 → M2. Model M1 has two nodes
with different values for isConcrete, as its equation X = not Y indicates. The morphism maps
nodes n2 and n3 in M1 to nodes with same names in M2, so that there is an implication α2 ⇒
m(α1), with m(X) = B2 and m(Y) = B3, because N1 = “Person′′ ∧ · · · ∧ B2 = f alse ∧ B3 =
true ∧ · · · ∧ F3 = f alse ⇒ B2 = not B3. On the contrary, there is no M-morphism if we map
the nodes n3 and n2 in M1 to nodes n2 and n1 in M2, respectively, as in this case there is no
implication from the formula in M2 to the formula in M1.

6

n2:

isConcrete=X

n3:

isConcrete=Y

parent

X=not Y

n1:

name=N1

isConcrete=B1

isFinal=F1

n2:

name=N2

isConcrete=B2

isFinal=F2

parent

n3:

name=N3

isConcrete=B3

isFinal=F3

parent

N1=“Person” Ù N2=“Employee” Ù N3=“Programmer”

B1=false Ù B2=false Ù B3=true

F1=false Ù F2=false Ù F3=false

m

M
1

M
2

Figure 5: M-morphism example.

We call Model the category made of models as objects and M-morphisms as arrows. Similar
to [26], it can be shown that Model is an adhesive high-level replacement (HLR) category. As
shown in [11, 28], these categories provide an adequate framework for several kinds of trans-
formation systems based on the algebraic approach. HLR categories are based on the existence
and compatibility of suitable pushouts and pullbacks, which are essential for the so-called van
Kampen squares. In such squares, pushouts are stable under pullbacks, and pullbacks are stable
under combined pushouts and pullbacks. In our case, the pushout of two models is calculated
as the pushout of their underlying graphs and the conjunction of their formulas. Conjunction is
the right operation in this case, because given α1 and α2 (the formulae of models M1 and M2
respectively), the resulting pushout object M12 has formula α1 ∧ α2, and therefore the needed
implications α1 ∧ α2 =⇒ α1 and α1 ∧ α2 =⇒ α2 become true. For any other model M3 s.t.
α3 =⇒ α1 and α3 =⇒ α2, we have α3 =⇒ α1 ∧ α2, the needed condition on the formulae for
the existence of a morphism from M12 to M3.

Similarly, the pullback of two models is calculated as the pullback of their underlying graphs
and the disjunction of their formulas, existentially quantified on the variables that do not belong
to the intersection (see details in [26]). In this way, pushouts are useful to merge models through
a common intersection, whereas pullbacks are helpful to calculate the intersection of two models
in a common context.

Example 4. The left of Figure 6 shows a pushout example. In particular, model M12 is the
pushout object of models M1 and M2, and is calculated by taking the pushout of the two graphs
in M1 and M2 and the conjunction of their formulas. The right of the same figure shows a
pullback example. The formula in the pullback object K is the disjunction of the formulas in M1
and M2, and an existential quantifier is introduced for the variables that are not present in the
pullback object, like in the case of variable B1.

3.2. Meta-models and concepts
Once we have seen how to represent models, we define meta-models and concepts in a unified

way, as they can be represented similarly. Meta-models declare the node types, edge types and
attribute types that can appear in models. In order to represent both meta-models and concepts,
we use type graphs with inheritance, and therefore the same definition applies to both of them.
For simplicity, we omit cardinalities and integrity constraints, which could be given as a set of
graph constraints, as in [36].

A meta-model (and a concept) is made of a model M (conforming to Definition 2) to represent
the nodes, edges and attributes types. In addition, we distinguish a set Ab of abstract nodes.

7

K

n2:

isConcrete=B1
parent

M1

n1:

n3:

isConcrete=B3
parent

B3=true ∧ B4=false

M2

n1:

isConcrete=B4

n2:

isConcrete=B1
parent

n3:

isConcrete=B3
parent

PO

M12

isConcrete=B

parent

B1=not B2

n1:

isConcrete=B2

parent

B1=not B24 ∧ B3=true ∧ B24=false

n1:

isConcrete=B24

parent

K

n2:

isConcrete=B1
parent

B1=not B2 Ù B3=false

M
1

B2=B3

M
2

n2:

isConcrete=B1
parent

B1=true Ù B2=false Ù B3=false

n1:

isConcrete=B2

isFinal=B3

n3:

parent

PB

M
12

$B1(B1=not B2 Ù B3=false)

˅ B2=B3

n1:

isConcrete=B2

isFinal=B3

n2:
parent

n1:

isConcrete=B2

isFinal=B3

n1:

isConcrete=B2

isFinal=B3

n2:
parent

Figure 6: Examples of pushout (left) and pullback (right) for models and M-morphisms.

Finally, the inheritance relation is modelled as a subset of the cartesian product of the nodes, and
we define the set clan(n) of the (direct and indirect) children of a given node n, including itself.
Similar to [21] and [5], we do not explicitly require the inheritance relation to be cycle-free, even
though in most practical cases it is.

Definition 4 (Meta-model/Concept). A meta-model (concept) MM = ⟨M; Ab; I ⊆ V×V⟩ is made
of a model M, a set Ab ⊆ V of abstract nodes and a set I of inheritance relations. V is the set of
nodes of model M.

Given n ∈ V, its clan contains its direct and indirect children, including itself: clan(n) =
{n′ ∈ V |(n′, n) ∈ I∗} with I∗ the reflexive and transitive closure of I.

Example 5. Figure 7 shows to the right an example meta-model, where we have used the stan-
dard UML notation for class diagrams (inheritance is depicted as edges with hollow arrowhead
and the name of abstract classes is in italics). The type T of each attribute is indicated by assign-
ing a variable of sort T to the attribute (see attributes name of type String and age of type int).
In the following, we will take the convention of showing the sort T next to the attribute name,
just like in UML. The formula in meta-models is typically (but not necessarily) equal to f alse,
in which case we omit it for simplicity. We could represent integrity constraints, in the style of
OCL constraints, by means of graph constraints, but we omit them here for simplicity.

The figure shows to the left the formal definition of the different meta-model elements. We
have omitted the formal definition of M, which is straightforward from the picture to its right.

Ab = { Person }

I = { (Employee,Person), (Client,Person), (Manager,Employee) }

clan(Person) = { Person, Employee, Client, Manager }

clan(Employee) = { Employee, Manager }

clan(Manager) = { Manager }

clan(Client) = { Client }

name : X

age : Y

Employee

Manager

Client
contact

boss

with X: String; Y : int

Person

Figure 7: Meta-model example in formal (left) and graphical (right) formats.

8

The typing of a model with respect to a meta-model will be represented through a special
kind of morphism, based on the notion of clan morphism, as defined in [5]. A clan morphism
from model M1 to meta-model MM2 is similar to a model morphism, but it takes into account the
semantics of inheritance of the target meta-model. In particular, for each edge e of the graph G1
(the underlying graph of M1) that is mapped to an edge e′ of G2 (the underlying graph of MM2),
we allow the source node of e to be mapped to any node in the clan of the source node of e′.
This means that e′ can be defined in an ancestor of the node to which the source of e is mapped.
Formally, fV (src1

E(e)) ∈ clan(src2
E(fE(e))), and similar for the target of edges. In addition, we

allow mapping an attribute of a node to an attribute of a supertype the node is mapped into.
Formally, fA(src1

A(a)) ∈ clan(src2
A(fA(a))).

Definition 5 (Clan morphism). Given a model M1 = ⟨G1; DS 1 ;α1⟩, a meta-model MM2 = ⟨M2 =

⟨G2; DS 2 ;α2⟩; Ab2; I2⟩, and an algebra A, a clan morphism f : M1 → MM2 is a collection of
mappings (fV : V1 → V2, fE : E1 → E2, fA : A1 → A2, fD : D1 → D2) s.t.:

1. ∀e1 ∈ E1: fV (src1
E(e1)) ∈ clan(src2

E(fE(e1))) ∧ fV (tar1
E(e1)) ∈ clan(tar2

E(fE(e1))),

2. ∀a ∈ A1: fA(src1
A(a)) ∈ clan(src2

A(fA(a))) ∧ fA(tar1
A(a)) = tar2

A(fA(a)),

and with A |= α2 ⇒ m(α1), where the induced morphism fDS : DS 1 → DS 2 preserves variable
sorts.

Remark. A clan-morphism from a model M to a meta-model MM that does not have inheritance
relations, is equivalent to an M-morphism, because in such a case, the clan of any element con-
tains only such element, and conditions 1 and 2 reduce to the standard commutativity conditions
required from graph morphisms [11]. Please note that, at this point, we are not concerned yet
with the abstractness of nodes.

Example 6. Figure 8 shows a clan-morphism between a model M and a meta-model MM. The
morphism is valid because, for example, node c is mapped to Client, and the name attribute of c
is mapped to name, defined on Person, however Client ∈ clan(Person).

Person

name: String

age: int

Employee

Manager

Client
contact

1

boss

0..1

c:Client e:Employee

name=“Vilma”

age=34

name=“Fred”

age=34

m:Manager

name=“Carol”

age=22

boss

contact

MM
M

type

(a) (b)
Figure 8: A clan-morphism.

Next, we define morphisms between meta-models, called MM-morphisms, also based on
the notion of clan morphism. Basically, an MM-morphism f : MM1 → MM2 is a clan mor-
phism M1 → MM2 from M1, the underlying model of MM1, to MM2, subject to some extra
conditions. Our MM-morphisms follow the same conditions as I-Graph morphisms in [21], but
MM-morphisms consider attributes and abstract nodes.

9

Definition 6 (MM-morphism). Given two meta-models MMi = ⟨Mi; Abi;αi⟩ (for i = 1, 2)
and an algebra A, a meta-model morphism (short MM-morphism) from MM1 to MM2, writ-
ten f : MM1 → MM2, is a clan morphism f : M1 → MM2 from the underlying model of MM1
to MM2 that preserves the inheritance hierarchy (if (u, v) ∈ IMM1 , then (f (u), f (v)) ∈ I∗MM2

), and
the abstractness of nodes (u ∈ A⇔ f (u) ∈ A′).

Example 7. Figure 9 shows an MM-morphism example. Client in MM1 is mapped to Client
in MM2, and their age attributes are mapped as well. This is possible because Client in MM2
inherits attribute age from Person, and hence, fA(src1

A(age)) = Client ∈ clan(src2
A(fA(age)) =

Person) = {Person, Employee,Client,Manager}. Similarly, Contact is mapped to Manager, and
edge contact in MM1 is mapped to contact in MM2. This can be done because fV (tar1

E(contact)) =
Manager ∈ clan(tar2

E(fE(contact)) = Employee) = {Employee,Manager}.

Person

name: String

age: int

Employee

Manager

Client
contact

boss

Client

age: int

Contact

name: String
contact

f={…,

(Client, Client),

(Contact, Manager)}

MM
1

MM
2

Figure 9: Meta-model morphism example.

Meta-models and MM-morphisms form the category MetaModel. It is interesting to note
that a model M can be represented as a meta-model F(M) = ⟨M; ∅; ∅⟩, with empty set of ab-
stract nodes and empty inheritance relation. Similarly, an M-morphism f : M1 → M2 can be
represented by an MM-morphism F(f) : ⟨M1; ∅; ∅⟩ → ⟨M2; ∅; ∅⟩. This is so as, in absence of
inheritance, clan-morphisms are equivalent to M-morphisms. Formally, this means that there is
a free functor F : Model→MetaModel from the category Model of models and M-morphisms,
to the category MetaModel of meta-models and MM-morphisms. In addition, the forgetful func-
tor U : MetaModel → Model maps meta-models to models by simply neglecting the abstract
nodes and inheritance relation. The advantage of this fact is that models and meta-models can be
treated uniformly.

Due to the existence of the free functor F, next we define the conformance relation between
a model M and a meta-model MM as an MM-morphism type : F(M)→ MM.

Definition 7 (Conformance). A model M conforms to a meta-model MM if ∃type : ⟨M; ∅; ∅⟩ →
MM.

Example 8. Figure 8 shows that M conforms to MM because there is a morphism type : ⟨M; ∅; ∅⟩ →
MM

Remark. In the following, abusing of notation and when no confusion arises, we just write
type : M → MM instead of type : ⟨M; ∅; ∅⟩ → MM.

MM-morphisms have to preserve the abstractness of nodes. Hence, the existence of a mor-
phism type : M → MM implies that no node in M can be mapped to an abstract node in MM.
MM-morphisms can be composed, and hence, we can retype a model. If we have type : M →
MM1 and f : MM1 → MM2, then we have a typing f ◦ type : M → MM2.

10

Similar to S-reflecting I-morphisms in [21], we next introduce a restricted kind of MM-
morphism (that we call SMM-morphism) that reflect the subtyping relations in the source meta-
model. This kind of morphisms are needed in order to build pushouts and pullbacks component-
wise, as demonstrated in [21].

Definition 8 (SMM-morphism). An SMM-morphism f : MM1 → MM2 is an injective MM-
morphism that reflects subtyping: ∀(c2, a2) ∈ I∗MM2

, c1 ∈ V1: c2 = f (c1) =⇒ ∃a1 ∈ V1 : f (a1) =
a2 ∧ (c1, a1) ∈ I∗MM1

, where V1 is the set of nodes of MM1.

Example 9. The MM-morphism in Figure 9 is not an SMM-morphism. This is so as we have
(Client, Person) ∈ IMM2 and f (Client) = Client. However, there is no node a1 in MM1 such
that f (a1) = Person. Similarly, (Manager, Employee) ∈ IMM2 and f (Contact) = Manager.
However, there is no node a1 in MM1 such that f (a1) = Employee. Hence, SMM-morphisms
require the inheritance relations in the co-domain meta-model to be reflected in the source. Fig-
ure 10 shows an SMM-morphism example. In this case, the morphism is an SMM-morphism
because the inheritance relation in the target is reflected in the source (this time, Contact is
mapped to Employee). Please note that the target meta-model may contain unmapped subtypes
(like Manager) of mapped elements (like Employee), but not unmapped supertypes.

Person
name: String
age: int

Employee Client
contact

Client

age: int

Contact

name: String
contact

f={…,
(Client, Client),
(Contact, Employee)}

MM1

MM2

Person

Manager
boss

Figure 10: An SMM-morphism.

Similar to [21], pushouts (POs) and pullbacks (PBs) of meta-models along SMM-morphisms
can be built componentwise. Pushouts (POs) of meta-models are defined by making the PO
of the underlying models and taking the union of their sets of abstract nodes and inheritance
relations. Pullbacks (PBs) are defined by the PB of the underlying models and the intersection
of their abstract and inheritance sets.

Example 10. Figure 11 shows an example of pushout of two meta-models MM1 and MM2
through a common part K, which yields the pushout object M12. In this case, g is not an SMM-
morphism (because Contact is mapped to Manager), but f is an SMM-morphism, and so the
pushout object MM12 exists an can be built componentwise. Moreover, f ∗ becomes an SMM-
morphism as well.

In order to better understand the need for SMM-morphisms, Figure 12 shows a PO attempt
along two MM-morphisms, f and g, none of which is an SMM-morphism. In this case, the
problem is that, if we just take the union of the inheritance relation, we are unable to place
appropriatelly the marriedto reference.

3.3. Meta-model closures
We now define an inheritance closure for meta-models, which we will use in Section 4

to define the binding from concepts to meta-models. This operation removes a set I′ ⊆ I of
11

Person

name: String
age: int

Employee Client
contact

boss

ClientContact
contact

K

MM2

Client

tel: String

contact

MM1

Address
city: String
addr: String

addr

��������	
���	�	������

������������������

�
���	
���
���	
���

Person

name: String
age: int

MM12

����

��������	
�������	
����

������������������

�
���	
���
���	
���

Contact

Person

Person

Manager
bossage: int

Employee

Manager

Client
contact

boss
Address

city: String
addr: String

addr

tel: String

��

��

Figure 11: Example of pushout of meta-models.

K

MM
2

Client

MM
1

MM
12

P.O.

f={(Person, Client),

 (marriedto, marriedto)} Person

Person

g*
f*

marriedto

marriedto

Manager

Employee

marriedto

g={(Person, Manager),

 (marriedto, marriedto)}

ClientManager

Person Employee

marriedto ?

Figure 12: Attempting a pushout along non SMM-morphisms.

inheritance tuples, making explicit the semantics of inheritance: it replicates in the children nodes
the attributes and edges starting/ending in the parent nodes. This closure can only be performed
if the inheritance relations in I′ are not continued outside I′, as otherwise, the attributes and
relations of the ancestors nodes outside I′ would not get copied to the children nodes.

Definition 9 (Inheritance closure). Let MM = ⟨M; Ab; I⟩ be a meta-model and I′ ⊆ I a set of
tuples s.t. (p, a) ∈ I \ I′ =⇒ @(c, p) ∈ I′. We define the closure of MM with respect to I′, written
MMI′ = ⟨M′; Ab; I \ I′⟩, with M′ = ⟨⟨V; E′; A′; D; src′E , tar′E; src′A; tar′A⟩; DS ;α⟩, as follows:

• E′ = E ∪ {(c, e) | e ∈ E ∧ (c, p) ∈ I′+ ∧ c , p ∧ srcE(e) = p} ∪ {(e, c) | e ∈ E ∧ (c, p) ∈
I′+ ∧ c , p ∧ tarE(e) = p} (edges from/to p are replicated in children nodes).

• A′ = A∪{(c, a) | a ∈ A∧ (c, p) ∈ I′+∧ c , p∧ srcA(a) = p} (attributes in p are replicated).

• The source (src′E) and target (tar′E) functions of edges is defined as:

12

– ∀e ∈ E, src′E(e) = srcE(e), tar′E(e) = tarE(e) (source/target of original edges is pre-
served).

– ∀(c, e) ∈ E′ \ E, src′E((c, e)) = c, tar′E((c, e)) = tarE(e) (replicas of edges from p, are
moved to c).

– ∀(e, c) ∈ E′ \ E, src′E((e, c)) = srcE(e), tar′E((e, c)) = c (replicas of edges to p, are
directed to c).

• The source (src′A) and target (tar′A) of attributes is defined as:

– ∀a ∈ A, src′A(a) = srcA(a), tar′A(a) = tarA(a) (owner of original attributes is pre-
served).

– ∀(c, a) ∈ A′ \A, src′A((c, a)) = c; tar′A((c, a)) = tarA(a) (replicas of attributes in p, are
assigned to c).

where I′+ is the transitive closure of relation I′.

Remark. We have used tuples of the form (c, e) for replicas of edges starting in p, (e, c) for
replicas of edges ending in p, and (c, a) for replicas of attributes belonging to p.
Remark. The resulting meta-model is well formed, because we only remove inheritance rela-
tions. The closure makes explicit the semantics of such inheritance relations by replicating in c
all attributes and edges starting and ending in the parent p. If we only remove one inheritance
tuple (c, p), we simply write MM(c,p) for such closure, while for the closure of the whole I, we
write MM. Please note that this procedure is a slight generalization of the closure operation
presented in [5], which considers all inheritance tuples, while here we consider subsets.

Example 11. Figure 13 shows a meta-model MM and the different steps in applying the closure
for each of the inheritance relations until its inheritance closure MM is obtained. At each step,
the set I′ is made of just one tuple. In MM, the attributes of Person have been replicated in all
its subclasses, and relations contact and boss get replicated as well when the inheritance relation
between Manager and Employee is eliminated. In case of naming conflicts when replicating
edges, we take the convention of assigning to the new edges the name of the original edge (e.g.
boss) followed by the target node name (e.g. Manager, yielding the edge name bossManager).
The figure also shows MM

Person
, the concrete closure, which we explain next.

The concrete closure of a meta-model MM consists in removing a set Ab′ ⊆ Ab of abstract
classes (with none of the classes in Ab′ having children) and all its owned attributes and adjacent
edges.

Definition 10 (Concrete closure). Let MM = ⟨M; Ab; I⟩ be a meta-model, and Ab′ ⊆ Ab a
set of abstract classes s.t. ∀a ∈ Ab′ @(p, a) ∈ I. We define the concrete closure MM

Ab′
=

⟨M′; Ab \ Ab′; I⟩, with M′ = ⟨⟨V \ Ab′; E′; A′; D; src′E , tar′E; src′A; tar′A⟩; DS ;α⟩ as follows:

• E′ = E \ { e | srcE(e) ∈ Ab′ ∨ tarE(e) ∈ Ab′}.

• A′ = A \ { at | srcA(at) ∈ Ab′}.

• src′E and tar′E are equal to srcE and tarE , restricted to E′.

• src′A and tar′A are equal to srcA and tarA, restricted to A′.

13

Person

name : String

age : int

Employee

Manager

Client
contact

1

boss

0..1

Person

name : String

age : int

Employee

Manager

Client
contact

1

boss

0..1

name : String

age : int

Person

name : String

age : int

Employee

Manager

Client
contact

1

boss

0..1

name : String

age : int

name : String

age : int

Employee

Manager

contact

1

boss

0..1

Client

name : String

age : int

Person

name : String

age : int

Employee

Manager

Client contact

0..1

boss

0..1

name : String

age : int

name : String

age : int contactManager

0..1

bossManager
0..1

Employee

Manager

contact

0..1

boss

0..1

name : String

age : int

name : String

age : int
contactManager

0..1

bossManager
0..1

Client

name : String

age : int

Person

name : String

age : int

Person

name : String

age : int

Employee

Manager

Client

contact

0..1

boss

0..1

name : String

age : int

name : String

age : int contactManager

0..1

bossManager
0..1

name : String

age : int

MM

MM(Client,Person)

MM(Employee,Person)

MM{(Client,Person),

 (Employee,Person)}

MM{(Employee,Person),

 (Manager,Employee)}

MM

MM Person

f

g

h

i

j

k

l

m

Figure 13: Inheritance and concrete closures of a meta-model MM.

Remark. The resulting meta-model MM
Ab′

is well formed because we eliminate all edges start-
ing or ending in the classes in Ab′, as well as its attributes. Intuitively, the semantics is preserved,
because each class a ∈ Ab′ has no children, and being abstract, it can not be instantiated in in-
stance models. Following the previous notation, if Ab′ = {a}, we write MM

a
.

Example 12. Figure 13 shows the concrete closure MM
Person

of MM, resulting from removing
the abstract node Person. While the figure makes the concrete closure as a last step, it could be
done in each model where Person has no children.

As in [5], there is a universal morphism u : MM
Ab′

I′ → MM from any closure MM
Ab′

I′ of a
meta-model MM to MM. We obtain a lattice with MM

Ab
I at the bottom and MM at the top,

because there is a morphism u : MM
Ab′

I′ → MM
Ab′′

I′′ if Ab′′ ⊆ Ab′ and I′′ ⊆ I′. For instance, in
Figure 13, there is a universal morphism u = g ◦ i ◦ k ◦ m : MM

Person → MM, identifying the
replicated edges and the original ones (e.g., u(boss) 7→ boss and u(bossManager) 7→ boss).

As in [5], any model M typed by MM is typed by any closure MM
Ab′

I′ , and vice versa.

4. Algebraic Adapters and Bindings

In [6], we defined bindings as injective MM-morphisms from concepts to meta-models. This
is possible because we represent both concepts and meta-models uniformly, as given by Defini-
tion 4. However, this is not enough if we want to allow structural heterogeneities between them,
like those in Figure 2, for which we need to define mappings at the model level as well.

Roughly, a binding is made of an MM-morphism, called correspondence, from a subset C′
of a suitable closure of the concept to the meta-model. C′ contains all classes, fields and edges
that can be directly mapped to the meta-model. Thus, the correspondence declares injective
mappings from each class in C′ to some class in the meta-model, and from the fields and edges

14

in C′ to some field and edge in the meta-model. Choosing a closure of the concept C allows
leaving unmapped some abstract class in C, which gets deleted by the chosen concrete closure,
but the fields and edges inherited by its children classes need to be mapped, as made explicit by
the closure. To deal with the heterogeneities, the correspondence is complemented with adapters
at the model level, as we will see in Definition 16.

Definition 11 (Correspondence). Given a concept C = ⟨M; Ab; I⟩ and a meta-model MM, a
correspondence is an injective MM-morphism m : C′ → MM, with C′ ↪→ C

Ab′

I′ for some Ab′ ⊆
Ab and I′ ⊆ I, where C′ and C

Ab′

I′ have the same graph nodes (VC′ = V
C

Ab′
I′

) and the same set of
inheritance relations.

Remark. C′ contains the elements that can be directly mapped to elements in MM. The elements
in C

Ab′

I′ \C′ need to be mapped at the model level through adapters, as we will show in Definition
16. As a difference from [6], we do not need to map abstract classes in the concept, but we could.
We use some closure of the concept because, in case we do not map an abstract class a ∈ Ab′,
we need to map a’s replicated fields and edges in the closure C

Ab′

I′ . Moreover, we need to map all
non-abstract nodes in C, because of the condition VC′ = V

C
Ab′
I′

.

Remark. C′ ↪→ C
Ab′

I′ is an SMM-morphism, because it is injective, and reflects the inheritance
relation, because C′ has the same inheritance relations as C

Ab′

I′ .

Example 13. In order to illustrate correspondences, we retake the example introduced in Sec-
tion 2, Figure 1. Figure 14 shows, from right to left, a concept for object oriented notations, a
concrete closure Concept

NamedElement
of this concept, and a correspondence m from a subgraph

Concept′ of the closure to a simplified UML2 meta-model. The mapped elements in the UML2
meta-model are highlighted in gray. The chosen closure (Concept

NamedElement
) has eliminated

the inheritance relations ending at NamedElement, replicating the attribute name in the children
Node and Field, and then has removed the class itself. We have chosen this closure as the sim-
plified UML2 meta-model does not define a suitable class to bind NamedElement, and therefore
we need to map its name field on every subclass. The inc morphism is an SMM-morphism.

Classifier

isAbstract: boolean

name: String

Generalization

Property

Type

Class
ownedAttribute

Typed

Element

DataType

name: String parent inh

type

Node

isConcrete: boolean

isFinal: boolean

name: String

parent

Field

fields

DataType

type

name: String

m

UML2
Concept

NamedElement

Concept’

inc

Type

Node

name: String

Field
fields

DataType

name: String

Type
type

isConcrete: boolean

isFinal: boolean

parent

fields

DataType

type

NamedElement

name: String

Type

Field Node

Concept

Figure 14: Correspondence example.

In the example, the concept elements without a direct mapping to meta-model elements, like
association parent or the attributes isConcrete and isFinal, are not in Concept′. Instead, we
define adapters showing how to resolve these structural heterogeneities. Adapters are co-span
of M-morphisms having concept and meta-model instances (objects of category Model) at both
ends, and a gluing model (called store) relating their elements. The meta-model of the store
is the gluing of the chosen concept closure and the meta-model, as shown in the Definition 12.

15

C′ m //� _

�� P.O.

MM
f��

C
Ab′

I′
g // S tore

Figure 15: Store meta-model.

Intuitively, the store contains the new elements that need to be added to the concrete meta-model,
so that it becomes a subtype of the concept. The idea is that those extra elements are to be thought
as derived (check Figure 3) so that the GT template can work on instances of the store. The way
these derived elements are calculated is given by the adapters.

Definition 12 (Store meta-model). Given a correspondence m : C′ → MM, with C′ ↪→ C
Ab′

I′ , the

store meta-model is given by the pushout object of MM
m← C′ ↪→ C

Ab′

I′ (see Figure 15).

Remark. Such pushout exists because C′ ↪→ C
Ab′

I′ is an SMM-morphism.

Example 14. Figure 16 shows the Store meta-model for our example, which is the result of
merging Concept

NamedElement
and the meta-model of UML2 through Concept′. Thus, it con-

tains once the elements from Concept
NamedElement

and UML2 identified by the two morphisms
(their names are concatenated, like NodeClass), and includes the elements from the concept and
the meta-model that are not identified. The Store extends UML2 with derived information (c.f.
Figure 3).

Classifier

isAbstract: boolean
name: String

Generalization

Property

Type

Class
ownedAttribute

DataType

name: String parent
inh

type

Node

isConcrete: boolean
isFinal: boolean
name: String

parent

Field

fields

DataType

type

name: String

m

UML2
Concept

NamedElement

Concept’

inc

Type

Node

name: String

Field
fields

DataType

name: String

Type
type

Typed
Element

Class
ownedAttribute

DataType

Classifier

isAbstract: boolean
name: String

Generalization

FieldProperty

Type

NodeClass

fields
Owned
Attribute

Typed
Element

DataType

name: String inh
type

isConcrete: boolean
isFinal: boolean

Store
����

parent

f
g

isFinal: boolean
parent

Figure 16: Store meta-model for the running example.

16

We use adapters to specify heterogeneities between concepts and meta-models. Adapters are

co-spans typed by C
Ab′

I′
g
→ S tore

f
← MM. The two M-morphisms in the co-span should be

jointly surjective, so that each element in the store model is mapped from some element in the
models to the left or right (i.e. the store does not introduce new elements). Moreover, adapters
must preserve the compatibility of the formulas at both ends of the co-span and the store. The
role of the formula in the store is to relate variables in the concept and meta-model instances.
Thus, this formula should contain all terms from both ends in the co-span, and maybe other terms
relating variables from both ends, but never constraining only one end. As we will see later, this
condition is required to obtain rules with equivalent applicability.

Definition 13 (Adapter). An adapter is a jointly surjective co-span of injective M-morphisms
with the form:

CI = ⟨GCI ; DCI
S ;αCI⟩

c→ S = ⟨GS ; DS
S ;αS ⟩

m← M = ⟨GM; DM
S ;αM⟩

where αS is a satisfiable constraint of the form c(αCI) ∧ m(αM) ∧ α′, and α′ does not contain
terms with variables in c(DCI

S) or in m(DM
S) only.

Example 15. Figure 17 shows some adapters for our running example. While adapter (b) in-
dicates that isConcrete and isAbstract have opposite meanings, (a) identifies the value true for
isFinal with the marker class Final, (d) assigns a default value false to isFinal, and (c) identifies
the relation parents in the concept to an intermediate object of type Generalization in the UML2
meta-model that realizes the same notion. We also require adapters for the elements mapped by
the correspondence, like (e), which can be automatically derived as Definition 14 will show.

Regarding the formulas, adapter (b) has the formula αS ≡ X = not Y . This conforms to
Definition 13, as αCI = true, αM = true, and αS ≡ true∧ true∧ X = not Y ≡ X = not Y . Adding
the term X = f alse to the formula would not be allowed, as this term only constrains the left
model but the left model does not include the term.

Concept UML2 Store

c m

Concept UML2 Store

p
a

re
n

t

p
a
re

n
t c m

n1:Node
n1: NodeClass

n1:Class

Concept UML2 Store

c m

X=not Y

(a) (b)

(c) (e)

isAbstract=Y
isConcrete=X

isAbstract=Y isConcrete=X

n1:Class n1:Node

n1:Node

n2:Node

n1:NodeClass

n2:NodeClass

g: Generalization

n1:Class

g: Generalization

n2:Class

Concept
UML2

Store

c m
n1:Class

n1:NodeClass n1:Node

isFinal=X

X=false

isFinal=X

X=false

(d)

Concept JaMoPP
Store

c m
n1:Class

n1:NodeClass

n1:Node

isFinal=X

X=true

isFinal=X

f:Final f:Final

X=true

n1:NodeClass

Figure 17: Some adapters: (a) field to class, (b) field value adapter, (c) relation to intermediate
class, (d) field to default value, (e) class mapping.

17

Next, we show how to generate adapters (as the one in Figure 17(e)) from a correspondence
m. These trivially bridge concept and meta-model elements, as given by the direct mapping
m : C′ → MM.

Definition 14 (Generated Adapter). Given a correspondence m : C′ → MM, the set GEN(m) =

NODES (m)∪EDGES (m)∪ATTRS (m) of generated adapters, typed over C
Ab′

I′
g
→ S tore

f
← MM

is built as follows:

• ∀n ∈ VC′: CIn
cn→ S n

mn← Mn ∈ NODES (m), with each CIn, S n and Mn made of a single
node, typed over n, g(n) and m(n), respectively.

• ∀e ∈ EC′: CIe
ce→ S e

me← Me ∈ EDGES (m), with each CIe, S e and Me made of a single
edge (with corresponding source/target nodes), typed over e, g(e) and m(e), respectively.

• ∀a ∈ AC′ : CIa
ca→ S a

ma← Ma ∈ ATTRS (m), with each CIa, S a and Ma made of a single at-
tribute (with corresponding source/target nodes), typed over a, g(a) and m(a), respectively.

Example 16. Figure 18 shows the generated adapters from the correspondence m : Concept′ →
UML2 of Figure 16. Each adapter in (a) is generated for each one of the nodes in Concept′
(Node, Field, DataType and Type) in Figure 16, each adapter in (b) is generated for each one of
the edges in Concept′ (type and fields), while the adapters in (c) are generated for the attributes
in Concept′ (attributes name in Node and Field).

Concept UML2Store

c m n:Classn:Node n:NodeClass

Concept UML2Store

c m n:Propertyn:Field n:FieldProperty

Concept UML2Store

Concept UML2Store

c m
t: Typet: Type t: Type

f: Field

type

f:FieldProperty f:Property

type type

Concept UML2Store

c m
f: Field f:FieldProperty f:Property

fields

Concept UML2Store

c m n:Classn:Node n:NodeClass

name=X name=X name=X

Concept UML2Store

c m f:Propertyf:Field f:FieldProperty

name=X name=X name=X

(a) (b) (c)

c m n: DataTypen:DataType n: DataType

Concept UML2Store

c m n: Typen: Type n: Type

c m

n: Node

fields
fields
Owned
Attribute

n:NodeClass n:Class

owned
Attribute

Figure 18: Generated adapters: (a) NODES (m), (b) EDGES (m), (c) ATTRS (m).

Next, we define bindings from concepts to meta-models. A binding is made of a correspon-
dence and a set of store-compatible adapters. Compatibility of adapters asks for coherence of
the inclusions between the adapters. We first define the desired properties of adapters and then
define the binding.

Definition 15 (Compatible adapters). Let P be a set of adapters, and Ai, A j, two adapters of the

set, {Ai = ⟨CIi
ci→ S i

mi← Mi⟩, A j = ⟨CI j
c j→ S j

m j← M j⟩} ⊆ P.
We say that Ai is store-compatible with A j, written Ai ! A j, if ∀si j : S i → S j, ∃mi j : Mi →

M j, ∃ci j : CIi → CI j, (all injective) s.t. (1) and (2) in Figure 19 are pullbacks. Two adapters Ai

and A j are store-compatible if Ai ! A j and A j ! Ai.
18

We say that Ai is forward-compatible with A j, written Ai A j, if Ai ! A j and ∀ci j : CIi →
CI j,∃si j : S i → S j, ∃mi j : Mi → M j, (all injective) s.t. (1) and (2) in Figure 19 are pullbacks.
Two adapters Ai and A j are forward-compatible if Ai A j and A j Ai.

Similarly, Ai is backwards-compatible with A j, written Ai f A j, if Ai ! A j and ∀mi j : Mi →
M j,∃si j : S i → S j, ∃ci j : CIi → CI j, (all injective) s.t. (1) and (2) in Figure 19 are pullbacks.
Two adapters Ai and A j are backwards-compatible if Ai f A j and A j f Ai.

Remark. While every binding needs to be store-compatible, we demand forward-compatibility
when amalgamating adapters given an instance of the concept, because we need to translate
instances of the concept into instances of the meta-model. Typically, this happens when we
need to create meta-model rules, given rules defined over the concept. We require backwards-
compatibility when amalgamating the adapters given an instance of the meta-model (with the
purpose of creating an instance of the concept).
Remark. The adapters in GEN(m) are store-, backwards- and forward-compatible. First, each
subset NODES (m), EDGES (m) and ATTRS (m) is store-compatible, because by construction
there is no si j : S i → S j among adapters in the same subset. This is so as the correspondence

is injective, and hence both g : C
Ab′

I′ → S tore and f : MM → S tore are injective, which means
that not two elements in C

Ab′

I′ (or MM) can be mapped to the same element in S tore. Second,
by construction there is no ci j : CIi → CI j among adapters in the same subset. Then, for each
adapter CIn

cn→ S n
mn← Mn ∈ NODES (m) s.t. ∃CIa

ca→ S a
ma← Ma ∈ ATTRS (m), and commuting

CIn → CIa, S n → S a, Mn → Ma we have that the required pullbacks exist, because CIa
ca→

S a
ma← Ma contains a copy of CIn

cn→ S n
mn← Mn (see Figure 18). A similar reasoning follows

for each adapter CIn
cn→ S n

mn← Mn ∈ NODES (m) s.t. ∃CIe
ce→ S e

me← Me ∈ EDGES (m) and
commuting morphisms. The same reasoning holds for backwards-compatibility.

CIi ci //

ci j

��
(1)

S i

si j

��

Mimioo

mi j

��
(2)

CI j c j // S j M jm joo

Figure 19: Adapters compatibility.

ci
mi

p
a
re

n
t

p
a
re

n
t

n1:Class n1:NodeClass n1:Node

n1:Node

n2:Node

g: Generalization

n1:Class

g: Generalization

n2:Class

P.B. P.B.

cj
mj

cij mij sij

CIi Si Mi

n1:NodeClass

n2:NodeClass

CIj Sj Mj

Figure 20: Example of adapters compatibility.

Example 17. Figure 20 shows two forward and backwards compatible adapters. The one on
the top belongs to GEN(m), while the second one has been manually specified to resolve an
heterogeneity between the concept and the meta-model. There are two M-morphisms from S i to
S j, and in both cases, corresponding morphisms ci j : CIi → CI j and mi j : Mi → M j making the
squares pullbacks. Similarly, there are two M-morphisms from CIi to CI j, and in both cases there
are corresponding M-morphisms from S i and Mi such that the squares are pullbacks. Finally,
there are also two M-morphisms from Mi to M j and corresponding M-morphisms from S i and
CIi making the squares pullbacks.

Looking at the adapters (d) and (e) in Figure 17 (that we denote Ad and Ae), we see that Ae is
19

forward-compatible with Ad, and Ad is (vacuously) forward-compatible with Ae. However, while
Ae is backwards-compatible with Ad, Ad is not backward compatible with Ae.

Now, we are ready to define a binding, as a correspondence and a set of store-compatible
adapters. At this moment, we do not require either forward- or backward-compatibility, which
will be required later depending on the usage of the binding (adaptation of rules, or adaptation
of models).

Definition 16 (Binding). A binding from a concept C to a meta-model MM is a tuple

BC,MM = ⟨m : C′ → MM, P = {CIi
ci→ S i

mi← Mi}⟩
where m is a correspondence, and P is a set of store-compatible adapters, with each CIi typed
on C

Ab′

I′ , S i typed on the S tore, and Mi typed on MM, and s.t. GEN(m) ⊆ P.

In order to be useful, bindings need to be complete with respect to the concept C. This means
that every node, edge and possible attribute value in the concept should be considered by the
binding. Please note that, given a correspondence m, using the set GEN(m) as the set of adapters
in the binding is normally not enough for completeness1, because those adapters only cover the
elements in C′, which is included in a closure C

Ab′

I′ of the concept C. This means that we should
manually provide adapters for the elements in C

Ab′

I′ but not in C′.
Completeness is necessary because we will use adapters for transforming rules conforming

to the concept into rules conforming to the meta-model, as well as to translate instances of the
meta-model into instances of the concept.

Definition 17 (Complete binding). A binding BC,MM = ⟨m, P⟩ is complete with respect to C if:

1. for each node N in C
Ab′

I′ , ∃CI
c→ S

m← M ∈ P with only one instance node n in CI s.t.
type(n) = N.

2. given each E in C
Ab′

I′ , let AdaptE = {CIi
ci→ S i

mi← Mi ∈ P | CIi has exactly one edge ei with
type(ei) = E adjacent to at most two nodes}i∈I ⊆ P. Such set should cover the clan of the
source and target node types of E:
∀NS ∈ clan(src(E)), ∀NT ∈ clan(tar(E)) :

[∃CIi
ci→ S i

mi← Mi ∈ AdaptE | ei ∈ CIi∧NS ∈ clan(type(src(ei)))∧NT ∈ clan(type(tar(ei)))].

3. for each field A in C
Ab′

I′ , let AdaptA = {CI j
c j→ S j

m j← M j |CI j has exactly one instance node
n j and exactly one attribute a j s.t. type(a j) = A} j∈J ⊆ P. Such set should cover all possible
valuations for a for each node type N ∈ clan(src(A)) as follows:
∀N ∈ clan(src(A)) : [

∨
N∈clan(type(src(a j)))

αCI j covers all possible valuations for a].

Remark. GEN(m) is complete w.r.t. C
′
. Hence, P \GEN(m) should properly cover C

Ab′

I′ \C
′
.

Remark. Condition 2 ensures that there is an adapter for each edge type E, covering all combi-
nations of subclasses of the source and target nodes of E. One adapter having a node n covers all

1unless there are no heterogeneities between the concept and the meta-model, so that the correspondence alone is
enough.

20

subclasses of type(n), and hence one adapter for E is enough if it has an edge ei with type(ei) = E
and src(E) = type(src(ei)) and tar(E) = type(tar(ei)). Otherwise, several adapters need to be
given for each combination of subclasses in clan(src(E)) and clan(tar(E)). Condition 3 ensures
that, given each attribute type A, all possible values for such attribute are considered by the bind-
ing, for each subclass of the owner of A. As in the previous case, such adapters can be given
for src(A) or for its subclasses in clan(src(A)). With respect to covering of values, if we have
a boolean attribute, we could have either one adapter covering its two possible values, or two
adapters covering one possible value each. Even for attributes admiting infinite possible values
(e.g, natural numbers), this presents no problem, as adapters can be equipped with formulae over
variables. Therefore for a natural number, we can use several adapters, each covering certain
ranges. For example one covering X < 0, another covering X = 0, and finally one covering
X > 0.

Adapters are amalgamated either by covering a model conformant to the concept and next
merging the store components and then the meta-model instances of all adapters in the covering,
or by covering a model conformant to the meta-model, and then merging the store components
and the concept instances of all adapters in the covering. The first amalgamation kind (called
forward amalgamation) requires forward-compatibility of adapters and will be used to transform
rules defined over concepts so that they become applicable to the bound meta-models. The
second amalgamation kind (called backwards amalgamation) requires backwards-compatibility
and will be used to retype a meta-model instance according to a concept. Figure 21 shows a
schema of both adpater usages.

� ��

����

�����

��	�

����

��	�

������������ �������

���������������������

� ��

�

�����

��	�

�

��	�

������������ �������

�����������������������

� ����

��� ���

Figure 21: Forward amalgamation: using adapters to translate concept rules into meta-model
rules (a). Backwards amalgamation: using adapters to translate meta-model instances into con-
cept instances (b).

We first start defining what a covering of a binding with respect to a model is. We assume
such model is conformant to the concept. Typically, such model will be the left or right hand side
of a rule defined over a concept.

Definition 18 (Covering). Given a binding BC,MM = ⟨m, P⟩ and a model E typed on C, a covering
is the set COVE = {ni : CIi → E | CIi

ci→ S i
mi← Mi ∈ P} of all M-morphisms from some CIi to E.

A covering is complete if the morphisms in COVE are jointly surjective.

Remark. A set of morphisms {ni : CIi → E} with same codomain E is jointly surjective, if every
element of E is mapped by some element of some CIi.

It is interesting to note that a complete binding with respect to C yields a complete covering
over any grounded model typed by C, as next proposition formalizes.

21

CIi
nieee

eeeee

rreeeeee
ee

//

����
��
��
��
��
��

ci j

��

S i

si j

��

����
��
��
��
��
��

Mi

����
��
��
��
��
��

oo

mi j

��
E

CI j

n jXXXXXXX

llXXXXXXXX

vvllll
lll

// S j

vvmmm
mmm

m M joo

vvmmmm
mmm

ACI uc //
un

SS

AS AMumoo

n1:Node n1:Class
c2 m2

n1:Node
n1:Node

Class
n1:Class

c1 m1

n1: Node

E

A
CI A

S A
M

uc um

=

PB PB

X=not Y

isConcrete=X’

n1:Node

isConcrete=X

n1:NodeClass

isConcrete=X

isAbstract=Y

X=not Y

n1:Class

isAbstract=Y

isConcrete=X isAbstract=Y

isConcrete=X

isAbstract=Y

n2

n1

X’=true

un

c12 s12 m12

SCI
S

S S
M

CI1
S1 M1

CI2

S2

M2
n1:NodeClass

Figure 22: Adapter amalgamation (left). Amalgamation example (right).

Proposition 1 (Binding and Covering Completeness). Given a forward-compatible binding BC,MM

that is complete with respect to C and any grounded model E typed by C, then the covering COVE

is complete.

Proof. (Sketch) BC,MM is complete w.r.t. C and hence it has an adapter for each node type and
edge type in C. Therefore the covering is complete w.r.t. the nodes and edges in E. Moreover,
there are adapters covering every possible value for each attribute type in C, and hence the
covering is also complete w.r.t. attributes in E. Please note that if M is not grounded, it is not
possible to ensure complete coverings even for complete bindings.

Completeness of a binding with respect to a concept C yields a complete covering for any
grounded model typed by C. However, it may not yield a complete covering for grounded models
typed by MM (for which we would need completeness w.r.t. MM). Hence, given a binding
BC,MM , which is complete with respect to a concept C, and a model M typed by MM, the covering
COVM with respect to M may not be complete. This is so as in general, MM may contain
elements not considered by the binding (intuitively, MM might be “bigger” than the concept C),
and hence if a model M contains instances of those elements, COVM will not be complete.

Next, we present amalgamation, a mechanism to glue together adapters, to build a bigger one.
The idea is to cover a model E, conformant to a concept C, or a model M, typed by MM. The next
definition corresponds to forward-amalgamation, covering a concept instance. Backward amal-
gamation (covering meta-model instances) is symmetrical, but requires backwards-compatibility
of the binding.

Definition 19 (Forward Amalgamation). Given a covering COVE and a forward-compatible
binding BC,MM , an amalgamation is a co-span ACI

uc→ AS
um← AM , constructed as follows (see the

left of Figure 22):

• Let DCI = ⟨ObCI ,MorCI⟩ be a diagram made of a bag of objects ObCI = {CIi | ∃ni : CIi →
E ∈ COVE} and a set of morphisms MorCI = {ci j : CIi → CI j | CIi

ci→ S i
mi← Mi ∈

P ∧CI j
c j→ S j

m j← M j ∈ P ∧ ci j injective ∧ ∃ni, n j ∈ COVE s.t. ni = n j ◦ ci j}.
• ACI is the co-limit of the diagram DCI , and un : ACI → E exists due to the co-limit universal

property.
• Let DS = ⟨ObS ,MorS ⟩ be a diagram made of a bag of objects ObS = {S i | CIi

ci→ S i
mi←

Mi ∈ P ∧ ni : CIi → E ∈ COVE}, and a set of morphisms MorS = {si j : S i → S j | CIi
ci→

S i
mi← Mi ∈ P ∧ CI j

c j→ S j
m j← M j ∈ P ∧ si j injective ∧ ∃ci j ∈ DCI s.t. si j ◦ ci =

c j ◦ ci j and the square is PB}.
22

• AS is the co-limit object of DS , by the co-limit universal property ∃1ACI
uc→ AS .

• Let DM = ⟨ObM ,MorM⟩ be a diagram made of a bag of objects ObM = {Mi | CIi
ci→ S i

mi←
Mi ∈ P ∧ ni : CIi → E ∈ COVE}, MorM = {mi j : Mi → M j | CIi

ci→ S i
mi← Mi ∈ P ∧CI j

c j→
S j

m j← M j ∈ P ∧ mi j injective ∧ ∃si j ∈ DS s.t. si j ◦ mi = m j ◦ mi j and the square is PB}.
• AM is the co-limit object of DM , by the co-limit universal property ∃1AM

um→ AS .

Remark. The diagrams DCI , DS and DM contain bags of objects, because there can be sev-
eral occurrences of the same object (i.e., repetitions are allowed). The reason is that the same
adapter can be used several times in the covering COVE . In addition, please note that the set of
morphisms of a diagram can be empty.
Remark. The previous procedure can also be used to build an amalgamation for a meta-model
instance M (backwards amalgamation). For this purpose, a covering COVM and a backwards-
compatible binding BC,MM are needed.

Example 18. The right of Figure 22 shows a simple amalgamation, where the left parts of each
adapter cover the model E. The squares are PBs due to adapters compatibility.

The amalgamation of several forward-compatible (resp. backwards-compatible) adapters
yields an adapter that is forward-compatible (resp. backwards-compatible) with them. We will
use this result in Section 5 when instantiating rules defined over concepts for specific meta-
models, using adapters.

Theorem 1 (Compatibility of amalgamation). Given a covering COVE and a forward-compatible
binding BC,MM , the resulting amalgamation ACI

uc→ AS
um← AM is forward-compatible with the

adapters in BC,MM .

Proof. In appendix.

5. Using Algebraic Adapters

Given a transformation defined over a concept and a binding from the concept to a certain
meta-model MM, we can use the binding adapters both for meta-model adaptation (i.e. extend-
ing the meta-model instances with the necessary information to be able to apply the transfor-
mation on them) and template instantiation (i.e. adapting the transformation to enable its direct
application on the meta-model instances), as shown in Figure 21. The next subsections illustrate
these two approaches.

5.1. Transforming models: Meta-model adaptation approach
Given a model M conforming to a meta-model bound to the concept, we can use the adapters

in the binding to build the store and concept models S and E associated to M, trough backwards
amalgamation. This way, once retyped and with appropriate synchronization mechanisms to
update the derived information, the original rules can be applied to S . The next subsection will
show how to obtain rules working on S and emulating this mechanism; in this section, we will
focus on the model adaptation procedure.

The diagram to the left of Figure 23 shows how to use an adapter as a co-span GT rule [13]
to adapt a model M into a model E2. Thus, given a backwards-compatible binding BC,MM , we

2Please note that we perform the amalgamation on the other side, compared to Figure 22.
23

ACI uc //

mci

��
P.O.

AS

ms

��
P.O.

AM

mm

��

umoo

E // S Moo

n1: Node

parent

n2: Node
name=X21

isConcrete=X22

isFinal=X23

p
a

re
n

t n1: Class

n2: Class

X12=not Y1 Ù X22=not Y2 Ù
X13=false Ù X23=false

n1: Class

name=“Student”

isAbstract=false

n2: Class

n1: NodeClass n2: NodeClass

g: Generalization

p
a

re
n

t

name=“Student”

isAbstract=false

isConcrete=true

isFinal=false

n1: Node

parent

n2: Node

P.O. P.O.

g: Generalization

g: Generalization

A
CI

name=X11

isConcrete=X12

isFinal=X13

name=X11

isAbstract=Y1

isConcrete=X12

isFinal=X13

n1: NodeClass n2: NodeClass

name=X21

isAbstract=Y2

isConcrete=X22

isFinal=X23

AS
A

M

E

name=“Student”

isConcrete=true

isFinal=false

name=“Person”

isConcrete=false

isFinal=false

g: Generalization

name=“Person”

isAbstract=true

isConcrete=false

isFinal=false

S

M

mci mm ms

uc
um

name=X11

isAbstract=Y1

name=X21

isAbstract=Y2

name=“Person”

isAbstract=true

Figure 23: Model adaptation schema (left). Model adaptation example (right).

build a covering COVM for the model M and an amalgamation ACI → AS ← AM , together with
the morphism mm : AM → M (see Figure 23). Then, the right PO creates a store model S which
adds to M all elements present in the concept but not in the model, and the left PO removes from
the store the elements that do not belong to the concept, yielding a model E.

Example 19. The right of Figure 23 shows the adaptation of a model M induced by a binding.
The amalgamation ACI → AS ← AM results from the covering of model M by the adapters in the
binding (in particular, there are M-morphisms from the meta-model component of the adapters
in Figures 17(b–e) to M). The store model in the middle contains the elements in M plus all the
extra information. It can be seen as a virtual view gathering the information that is not in the
model, but is needed by the concept. In the lower models, we have used a shortcut for attribute
values, e.g., we write isFinal=false instead of isFinal=X and the formula X=false.

Models M, S and E are typed with respect to different meta-models (MM, MMS and C
respectively). However, if we adapt M following the scheme in Figure 23, the resulting model
E may still include elements not typed by C in certain cases, in particular, if the binding is not
complete with respect to MM (i.e. if there are elements in MM which do not participate in the
binding). These extra elements need to be discarded in advance, as shown in Figure 24. Hence,
in a first step, we consider only the submodel M′ ↪→ M that is completely covered by COVM .
The following Definition 20 describes the model adaptation and how the typing is calculated.

Definition 20 (Model adaptation). Let C be a concept and BC,MM = ⟨m, P⟩ a backwards-
compatible binding. Given a model M typed over MM by typeM : M → MM, and a covering
COVM over M, M is adapted to the typing of concept C by the diagram in Figure 24, where the
amalgamation ACI

uc→ AS
um← AM is built according to Definition 18, and M′ is the submodel of

M which is completely covered by COVM .
The typing typeS uniquely exists due to the pushout universal property, while typeE is simply

typeACI ◦ m−1
ci .

Remark. The left pushout in Figure 24 is calculated as a pushout complement. As mm is surjec-
tive, so is ms (and mci) [4], and therefore no dangling edges can occur. However, the identification
condition may occur, and the pushout fail to exist, if mm is not injective. Therefore, from now
one we assume injective matches for the adapters.

Example 20. Figure 25 shows an example of model adaptation using a covering that is not
complete. Let us assume that the UML2 meta-model in Figure 16 includes the type Operation,
but this type is not considered by any adapter in the binding (basically, because our concept does

24

ACI uc //

mci

��
P.O.

AS

ms

��
P.O.

AM

mm
��

umoo

typeAM

��

E //

typeE

��

S

typeS

��

M′oo � _

��
M

typeM
��

C // MMS MMoo

Figure 24: Typing an adapted model.

not include such a notion). Hence, a model M can include an Operation object because it is
allowed by the meta-model, like model M in the figure. If we do not discard such object by
taking the submodel M′, the pushout would copy such object to the store S and E models.

n1: Class

name=“Student”

isAbstract=false

n2: Class

g: Generalization

n1:NodeClass

parent

n2:NodeClass

P.O. P.O.

g: Generalization

E

name=“Student”

isConcrete=true

isFinal=false

name=“Person”

isConcrete=false

isFinal=false

S

mci mm ms

name=“Person”

isAbstract=true

o:Operation

n1: Node

parent

n2: Node
name=X21

isConcrete=X22

isFinal=X23

p
a

re
n

t n1: Class

n2: Class

X12=not Y1 Ù X22=not Y2 Ù
X13=false Ù X23=false

g: Generalization

A
CI

name=X11

isConcrete=X12

isFinal=X13

name=X11

isAbstract=Y1

isConcrete=X12

isFinal=X13

n1: NodeClass n2: NodeClass

name=X21

isAbstract=Y2

isConcrete=X22

isFinal=X23

A
S

A
M

g: Generalization

uc
um

name=X11

isAbstract=Y1

name=X21

isAbstract=Y2

n1: NodeClass n2: NodeClass

p
a

re
n

t

name=“Student”

isAbstract=false

isConcrete=true

isFinal=false

name=“Person”

isAbstract=true

isConcrete=false

isFinal=false

Node

isConcrete: boolean

isFinal: boolean

name: String

parent

Field

fields

DataType

type

name: String

Type

C

Classifier

isAbstract: boolean

name: String

Generalization

FieldProperty

Type

NodeClass

fields

Owned

Attribute

Typed

Element

DataType

1

name: String inh

type

isConcrete: boolean

isFinal: boolean

parent

parent

MM
S

Classifier

isAbstract: boolean

name: String

Generalization

Property

Type

Class
ownedAttribute

DataType

name: String parent
inh

type
Typed

Element

Operation Operation

MM

operations
operations

n1: Class

name=“Student”

isAbstract=false

n2: Class

g: Generalization

M’

name=“Person”

isAbstract=true

M

Figure 25: Model adaptation considering a non-complete covering of M.

In this example, M � M′ if the binding is complete with respect to the UML2 meta-model
25

and includes some adapter making use of an Operation object.

Once the model M is adapted, if the modelling framework has suitable synchronization mech-
anisms for the derived information, we can retype and adapt the original rules, so that they be-
come applicable on the model S . The next section shows how to perform this rule adaptation and
obtain synchronization mechanisms.

5.2. Transforming rules: Template instantiation approach

In the previous subsection, transformations defined over concepts become applicable to the
instances of the bound meta-models by adapting such instances. In this subsection, we present
an alternative approach to transformation reuse, where we adapt the transformation rules defined
over the concept so that they can be directly applied on instances of the bound meta-models.

We consider Double Pushout GT rules [11]. These are made of a span L
l← K

r→ R of
M-morphisms with a left-hand side model L, a right hand-side model R, and a kernel model
K accounting for the preserved elements. Models L, K and R do not need to be grounded. L
contains the elements that need to be found in a host model M to enable the rule application,
L \ K contains those that should be deleted, while R \ K contains the ones to be created. The
match m : L→ M is an M-morphism as well. For the sake of simplicity, we do not consider rule
application conditions.

We call rule templates to rules typed by a concept.

Definition 21 (Rule Template). Given a concept C, a rule template L
l← K

r→ R is a Double
Pushout rule with injective l and r, typed over C.

Next, we show how to adapt a rule template LC
lC← KC

rC→ RC defined over a concept, into

a rule LM
lM← KM

rM→ RM defined over a meta-model bound to the concept. In the process, we

also obtain a rule LS
lS← KS

rS→ RS working on the store model, which can be seen as a mecha-
nism to synchronize the “real” model elements and the derived ones, as well as an integrated rule

⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC → KS ← KM⟩

⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ to modify the three
models in the co-span at the same time.

Rule adaptation procedure

Inputs:

- A forward-compatible binding BC,MM complete w.r.t. C

- rule template LC
lC← KC

rC→ RC typed over the concept C.

Outputs:

- adapted rule LM
lM← KM

rM→ RM typed on MM.

- adapted rule LS
lS← KS

rS→ RS typed on the store.

- integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC → KS ← KM⟩

⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩

Procedure:

26

CL //

m1
��

S L

��

MLoo

��

CK //

��

{{www
S K

��

{{www
MKoo

��

zzvvv

CK

;;www

m2

��

// S K

mk
��

;;xxx
MK

��

oo

::vvv
CR

��

// S R

��

MR

��

oo

LC // LS LMu2oo KC //

{{www
KS

u1{{
KMoo

zzvvv

KC

;;xxx
// KS

u1
;;

KM

::vvv
oo RC // RS RMu2oo

Figure 26: Rule template instantiation: Adapting LC , KC (left) and RC (right).

1. First, we flatten the rule template (see Definition 15 in [5]) according to the chosen concept
closure.

2. Next, we adapt the flattened rule template, as sketched in the left diagram of Figure 26:

2.1. First, we adapt the components LC and KC of the rule template as follows:

2.1.1. We find three complete compatible amalgamations for LC , KC and RC , which
we denote Cx → S x ← Mx for x = {L,K,R}. Initially, the upper-most squares
in the diagram are PBs because CL → S L ← ML and CK → S K ← MK are
compatible. The square CL, CK , KC , LC is a PB, because the amalgamation is
complete.

2.1.2. We make the PO of the left-back square, leading to the PO object LS .
2.1.3. We make the PO of the left-front square, leading to the PO object KS .

By the PO universal property, ∃1u1 : KS → LS . The left cube is a van Kampen
square with left and top squares PBs, back and front faces POs; therefore, the squares
S K , S L, LS ,KS and KC , LC , LS ,KS are PBs.

2.2. Then, we build the right cube of the same diagram as follows:

2.2.1. We construct the right-front square by calculating the PO complement KM , so
that the square S K ,MK ,KS ,KM becomes a PO. Such PO complement exists be-
cause, being the amalgamations done through complete coverings, mk is surjec-
tive, and hence no dangling edges can occur.

2.2.2. We make the PO of the right-most square, leading to the PO object LM .

By the PO universal property, there is a unique u2 : LM → LS . The square S L,ML, LM , LS

is a PO because the right cube is a van Kampen square, and we have that the front
face is a PO, the left and top faces are PBs, and hence the back face is a PO.
Note that KM exists if CK is a complete covering of KC . This is so as, in such a case,
m2 : CK → KC is an epimorphism, and so is mk : S K → KS . Therefore, the dangling
edges condition is not applicable [11], and the PO complement KM should exist.

3. Finally, we adapt the RC component in the rule template and build its relation with the
previously defined K components, as sketched in the right diagram of Figure 26. As before:

3.1. We construct the left cube (the back face is a PO as explained before). For this
purpose, we first build the front face as the PO of RC ← CR → S R, yielding RS . By
the PO universal property of the back PO, ∃1u1 : KS → RS . The left cube is a van
Kampen square, with back and front faces POs, left and top faces PBs, and so the
squares S K , S R,KS ,RS and KC ,KS ,RC ,RS are PBs.

27

3.2. We construct the right-most square as the PO of MR ← MK → KM , yielding RM . By
the PO universal property, ∃1u2 : RM → RS . The right cube is a van Kampen square,
where the back face is a PO, the top and left faces are PBs, and the front face is a PO,
therefore the bottom and right faces are PBs.

Example 21. Figure 27 shows the integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC → KS ←

KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ that results from adapting the rule template LC ← KC → RC .

The integrated rule synchronizes the original rule (top row), a rule working on the store model
(middle row) and a rule working on instances of the bound meta-model (lower row). According
to the construction, all squares are pullbacks.

LC RC KC

p:Class

c:Class a:Property

LM

g:General

KM RM

p:NodeClass

c:NodeClass

parent

a:Field

Property

LS

g:General

parent

X=false

isConcrete=X

isAbstract=Y

X=false Ù Y=true

isAbstract=Y

p:Class

c:Class a:Property g:General

isAbstract=Y

p:Class

c:Class a:Property g:General

isAbstract=Y

Y=true Y=true Y=true

p:Node

c:Node
parent

a:Field

isConcrete=X

X=false

p:Node

c:Node
parent

a:Field

isConcrete=X

X=false

p:Node

c:Node
parent

a:Field

isConcrete=X

p:NodeClass

c:NodeClass

parent KS

g:General
isConcrete=X

isAbstract=Y

X=false Ù Y=true

p:NodeClass parent
RS

g:General
isConcrete=X

isAbstract=Y

X=false Ù Y=true

parent

c:NodeClass

parent

a:Field

Property

a:Field

Property

Rule

template

Rule

for store

Rule

template

instant.

Figure 27: Example of rule template instantiation: Pull-up field refactoring.

Please note that having a complete binding over the concept does not guarantee a complete
covering of a rule’s LHS. This is so because the LHS is not a grounded model. It may contain
arbitrary expressions in its formula, which may prevent from finding an M-morphism from the
adapter to the LHS. In some cases, this problem can be solved by generating, from the “problem-
atic” rule, a set of more concrete rules (with grounded models in LHS) for which we can obtain
complete covering and which altogether consider all possible mappings modelled by the binding
adapters. We leave an in-depth study of this concretization technique for future work, and here
we just sketch it with an example

Example 22. Figure 28 shows an example of rule template concretization. Compartment (a)
shows two adapters which cover the two possible values for attribute isConcrete. Figure 28(b)
shows a rule template that we want to instantiate. As its LHS is not grounded (it contains the
expression X , Y), there are no M-morphisms from the left part of the adapters to the LHS, and
hence there is no complete covering of the LHS by the binding. In this situation, we can con-
cretize the rule with respect to the ground values of the adapters as follows. First, we concretize
the variable X in the LHS, by creating one rule for each possible value of X. This yields two pos-
sible rules with formulas X = true ∧ X , Y and X = f alse ∧ X , Y . Then, we concretize these
two rules for variable Y , obtaining four rules (i.e. all combinations of true and f alse for X and
Y). Finally, all rules with unsatisfiable formulas can be neglected, obtaining the two concretized
rules shown in Figure 28(c).

28

n1:Node

n2:Node

parent

LHS

n2:Node

RHS

rule template

isConcrete=X

isConcrete=Y

X≠Y

isConcrete=Y

Concept JaMoPP
Store

c m
n1:Class

n1:NodeClass

n1:Node

isConcrete=X

X=false

isConcrete=X

a:Abstract

X=false

a:Abstract

JaMoPP
Store

c m
n1:Class

n1:NodeClass

n1:Node

isConcrete=X

X=true

isConcrete=X

c:Concrete

X=true

c:Concrete

n1:Node

n2:Node

parent

LHS

n2:Node

RHS

isConcrete=X

isConcrete=Y

X=trueÙ Y=false
Ù X≠Y

isConcrete=Y

Concept

n1:Node

n2:Node

parent

LHS

n2:Node

RHS

isConcrete=X

isConcrete=Y isConcrete=Y

X=falseÙ Y=true
Ù X≠Y

(a) (b)

(c)

Figure 28: Example of rule concretization. (a) Adapters for attribute isConcrete. (b) Rule tem-
plate. (c) Two template rule concretizations.

5.3. Behaviour preservation: Correctness and completeness

The instantiation of a transformation template for a binding needs to preserve the original
behaviour of the template. Figure 29 depicts the needed correctness conditions. Starting from
a model M′, we calculate its store and concept models E → S ← M, taking the maximal
submodel M of M′ for which there is a complete covering. The behaviour of the instantiated
GT template is complete if it leads to all behaviours of the original template. That is, if for each
possible transformation of E using the original rules (E ⇒tr f ∗ E′′), there is a transformation
tr fm∗ using the adapted rules starting from M and yielding M′′, a corresponding transformation
M′ ⇒tr fm∗ M′′′, and an integrated transformation tr fi∗ that transforms the co-spans yielding the
co-span E′′ → S ′′ ← M′′. Correctness means that the instantiation does not produce extra
behaviour: each transformation tr fm∗ has a corresponding transformation tr f ∗.

To demonstrate correctness and completeness, we proceed in three steps. First, we check
equivalence of rule matches; then, we check rule applicability; and finally, we argue about rule
sequences.

The next proposition states the equivalence of matches of the three rules making an integrated
rule, provided that the host model M for the matches was adapted using the amalgamation pro-
cedure presented in subsection 5.1. This equivalence shows the compatibility of rule and model
amalgamation. Similar to matches for amalgamation, in the rest of the paper, we assume injective
matches for rules.

Lemma 1 (Match equivalence). Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC →

KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ constructed as explained before, and a cospan E → S ←

M resulting from adapting M, the following statements are equivalent:
(i) ∃mm : LM → M, (ii) ∃ms : LS → S , (iii) ∃mc : LC → E.

29

C // MMS MMoo

ACI uc //

mci

��
P.O.

typeACI

OO

AS

ms

��
P.O.

typeAS

OO

AM

mm

��

umoo

typeAM

OO

E //

tr f ∗
��

S
typeS

^^

tr f ∗i
��

M

typeM

__

� � //oo

tr f ∗m
��

M′

typeM′

ii

tr f ∗m′

��
E′′ // S ′′ M′′oo � � // M′′′

Figure 29: Correctness and completeness conditions.

Proof. In appendix.

Example 23. The upper two rows in Figure 30 show an example of match equivalence. By
construction, the existence of mm : LM → M implies the existence of ms : LS → S and mc : LC →
E′. In this case, M � M′.

n1: Class

name=“Student”

isAbstract=false

n2: Class

n1: Node

Class

n2: Node

Class

g: Generalization

p
a

re
n

t

name=“Student”

isConcrete=true

isAbstract=false

isFinal=false

n1: Node

parent

n2: Node
g: Generalization

E
name=“Student”

isConcrete=true

isFinal=false

name=“Person”

isConcrete=false

isFinal=false

name=“Person”

isConcrete=false

isAbstract=true

isFinal=false

S

M@M’

name=“Person”

isAbstract=true

name=“name”

p: Property

ownedAttribute

name=“name”

p: FieldProperty

fieldsOwnedAttribute

name=“name”

p: Field

fields

p:Class

c:Class

a:Property

g:Generalization

isAbstract=Y

Y=true

LM
p:Node c:Node

a:Field
isConcrete=X

X=false

LC
parent

mm
mc

p:NodeClass

c:Node

Class

a:Field

Property

g:Generalization

isConcrete=X

isAbstract=Y

Y=true Ù X=false

LS

parent

ms

n1: Class

name=“Student”

isAbstract=false

n2: Class

n1: NodeClass n2: NodeClass

g: Generalization

p
a

re
n

t

name=“Student”

isConcrete=true

isAbstract=false

isFinal=false

n1: Node

parent

n2: Node
g: Generalization

E’’
name=“Student”

isConcrete=true

isFinal=false

name=“Person”

isConcrete=false

isFinal=false

name=“Person”

isConcrete=false

isAbstract=true

isFinal=false

M’’

name=“Person”

isAbstract=true

name=“name”

p: Property

ownedAttribute

name=“name”

p: FieldProperty
fields

Owned

Attribute

name=“name”

p: Field

fields

S’’

trf trfM
trfi

Figure 30: Match and applicability equivalence example (upper and middle row). And applica-
tion equivalence example (bottom row).

Example 24. Figure 31(a) shows two adapters, the second one mapping edge parent in the con-
cept to nothing in the model. As Figure 31(b) illustrates, this adapter has the effect of removing
the edge from any adapted rule that is instantiated from a rule template (i.e. the adapter is used

30

in a forward amalgamation, left-to-right), or adding an edge between any pair of classes when
a model M is adapted into a model E (i.e. the adapter is used in a backwards amalgamation,
right-to-left). The co-span E → S ← M shown in Figure 31(b) is calculated as in Definition
20 (i.e., E is built from M by backwards amalgamation), and there are 6 M-morphisms from the
LHS of the template rule into E, and 6 from the LHS of the adapted rule into M (i.e. the matches
are preserved). Still, we will see later that this kind of adapters may introduce unforeseen dan-
gling edges. Figure 31(c) shows a different co-span that results from building M from E (i.e. the
other way round). In this case, matches are not preserved, as there is 1 match from the LHS of
the template rule into E, but 6 matches from the LHS of the adapted rule into M. However, this
co-span is not constructed as explained in Definition 20 (starting from M), which is required by
our notion of match equivalence.

c2
m2

n1:Class n1:Node

Class
n1:Node

CI21
S21 M21

n2:Node

parent

n2:Node

Class

parent

n2:Class

n1:Class

n2:Class

n3:Class

M

n1:Node

n2:Node

parent

n3:Node

E n1:Node

Class

n2:Node

Class

parent

n3:Node

Class

S

c1 m2 n1:Class
n1:Node

Class
n1:Node

CI1
S1 M1

n1:Node

n2:Node

parent

LHS

n2:Node

RHS

rule template

6 matches 6 matches

(a) (b)

n1:Class

n2:Class n3:Class

M
n1:Node

Class

n2:Node

Class

n3:Node

Class

S

n1:Node

n2:Node n3:Node

E

(c)

instantiation n1:Class

n2:Class

LHS

n2:Class

RHS

adapted rule

Figure 31: (a) Two adapters. (b) The adapters are used to instantiate a rule template and to build
model E from model M. (c) Building model M from model E may not fulfill match equivalence.

Given that a certain rule template is applicable in E, the instantiated rule may fail to be appli-
cable in M due to the dangling edge condition. In particular, this may happen if the meta-model
MM defines an edge type r that the binding does not map, the model M defines instances of the
edge, and the rule deletes the source or target objects of the edge. This corresponds to the situa-
tions depicted in Figure 32(b): some node in the concept is bound, but the mapped meta-model
node has incident edges which are not considered by the binding. In this case, if some rule deletes
nodes of type N, we should check whether the particular input model M contains N instances
with adjacent edges of type r, otherwise we may not have the same rule applicability. Addition-
ally, these new edges in MM should be checked for ancestors or descendants of N. Checking
whether a particular model M has instances of the problematic edges can be implemented using
graph constraints [11] like those in Figure 32(c).

Definition 22 (Deletion-safe binding and model). Given a binding BC,MM = ⟨m : C′ → MM, P⟩,

31

P

N

Concept

N’ M
r

Meta-model

:N Þ :N :M

$ Q

N

Concept

N’ M r

Meta-model P

:N Þ :N :M

$ Q

ns:N1

nt:N2

e

n’s:M1

n’t:M2

ns:N1

nt:N2

e

CI S M

(a) (b) (c)

Figure 32: (a) Invalid adapter. (b) Completeness condition for bindings is ensured if no such
bindings exist (i.e. node N mapped and incident edge unmapped) when some rule deletes nodes
of type N. (c) Completeness condition for initial models, when the template rule deletes nodes
of type N.

and a co-span C
c→ S

m← MM, we say that BC,MM is T -deletion-safe for T ∈ VC , if:

∀e ∈ EMM[srcE(e) ∈ clan(c(T)) ∨ c(T) ∈ clan(srcE(e))∨
tarE(e) ∈ clan(c(T)) ∨ c(T) ∈ clan(tarE(e))]⇒ ∃e′ ∈ EC with c(e′) = m(e)

We call unsa f e(T) to the set of all edges e not satisfying the previous condition for a node T .
Given a binding BC,MM = ⟨m : C′ → MM, P⟩ and a model M with type : M → MM, we say

that M is safe if ∀T ∈ VC @e ∈ EM with type(e) ∈ unsa f e(T).

Similarly, adapters mapping an edge ns
e−→ nt to a structure where ns and nt are mapped to

unconnected n′s and n′t (like in Figures 31(a) and 32(a)) are problematic. This is so as a template
rule deleting a node of type type(ns) might fail in E due to the dangling edge condition, but
would be applicable in M as n′s lacks adjacent edges. Hence, edges should be mapped similar
to Figure 17(c). The converse situation, where an edge in M is not mapped to an edge in the
concept is also forbidden, as it might make a rule applicable in E but no applicable in M due to
dangling edges.

Definition 23 (Invalid adapter). An adapter CIi
ci→ S i

mi← Mi is invalid if:

• ∃e ∈ ECIi s.t. @e′ ∈ EMi with mi(e′) = ci(e) and disconnected(s′, t′) with mi(s′) =
ci(src(e)) and mi(t′) = ci(tar(e)), or

• ∃e ∈ EMi s.t. @e′ ∈ ECIi with ci(e′) = mi(e) and disconnected(s′, t′) with ci(s′) =
mi(src(e)) and ci(t′) = mi(tar(e)).

The disconnected predicate holds if the two parameter nodes do not belong to the same
connected component.

Now we are ready to state the conditions for applicability equivalence of a template rule and
the derived rule, as expressed by Lemma 2.

Lemma 2 (Applicability equivalence). Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←−

⟨KC → KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ derived from a binding without invalid adapters,

a safe model M′ and a match mm : LM → M, the following statements are equivalent:

(i) rule LM ← KM → RM is applicable to M′ at mm,
32

(ii) rule LM ← KM → RM is applicable to M ↪→ M′ at mm,

(iii) rule LS ← KS → RS is applicable to S at ms (the equivalent match of mm for model S)

(iv) rule LC ← KC → RC is applicable to E at mc (the equivalent match of mm for model E)

Proof. In appendix.

Remark. The condition for invalidity of adapters of Definition 23 are sufficient but not nec-
essary. One might employ here the conditions for the classical embedding theorem for graph
transformation [11], but those conditions need to be checked “a posteriori”, after a particular
transformation has been applied. In our case, we can check the conditions independent on the
particular transformation to be applied.

Example 25. Figure 31(a) showed an example of invalid adapter (the bottom adapter is invalid,
as it does not satisfy Definition 23). In Figure 31(b), there are six matches from the LHS of the
template rule to E and from the LHS of the adapted rule to M (match equivalence). However, the
template rule cannot be applied in any of the matches due to the dangling edge condition, whereas
the adapted rule can be applied in all matches (i.e. there is no applicability equivalence).

On the contrary, we have applicability equivalence if we use valid adapters, as illustrated in
Figure 33. Compartment (a) shows the adapters used, while (b) shows the template and adapted
rules, both with equivalent applicability. Both rules are applicable at equivalent matches in the
co-span shown in Figure 33(c), as the starting model M is safe. In unsafe models, like M′ in
the co-span (d), the original rule may be applicable, but the adapted rule might be not due to
the dangling edge condition. In this example, the edge type connecting Class and Operation is
unsafe because it does not participate in the binding. Therefore, model M′ is unsafe because it
contains an instance of such an edge.

CI2 S2 M2

c1 m1 n1:Class n1:Node

CI1 S1 M1

n1:Node

n2:Node

parent

LHS

n1:Node

RHS

rule template

n1:Class

n2:Class

LHS

n1:Class

RHS

adapted rule

(a) (b)

p
a
re

n
t

p
a
re

n
t

n1:Node

n2:Node

n1:NodeClass

n2:NodeClass

g: General

ization

n1:Class

n2:Class

g: General

ization

g: General

ization

n2:Class

n1:Class n3:Class

M@M’

n2:Node

Class

n1:Node

Class

n3:Node

Class

S

n2:Node

n1:Node

n3:Node

E

(c) (d)

g: General

ization

g: General

ization

n2:Class

n1:Class n3:Class

M’

g: General

ization
:Operation

c2
m2

n1:NodeClass

n2:Class

n1:Class n3:Class

M

g: General

ization

Figure 33: (a) Adapters. (b) The adapters are used to instantiate a rule template. (c) Applicability
equivalence for the template and adapted rules, in a safe model M. (d) Unsafe model M.

Finally, the last step is to show that applying the original and derived rules on equivalent
matches leads to equivalent results. Lemma 3 states the equivalence of the result of applying
rules derived from bindings with no invalid adapters, to safe models M.

33

LM

mm
��

{{xx
x

KM

��

lMoo rM //

{{www
w

RM

��

{{www
w

LS

ms

��

KS

��

lSoo rS // RS

��

LC

<<yyy

mc

��

KC

��

lCoo rC //

;;www
RC

��

;;xxxx

M

||xxx
xx

MDoo //
md{{

M′′

m′{{
S S Doo // S ′′

E

<<yyyyy
EDoo //

sd
;;

E′′
s′
;;

Figure 34: Transformation of M, S and E, yielding M′′ → S ′′ ← E′′.

Lemma 3 (Application equivalence). Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC →

KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ derived from a binding without invalid adapters, a safe

model M, a match mm : LM → M, and three equivalent matches mm : LM → M, ms : LS → S
and mc : LC → S (see Figure 34) where:

(i) rule LM ← KM → RM is applied to M′ at mm yielding graph M′′′,

(ii) rule LM ← KM → RM is applied to M ↪→ M′ at mm yielding graph M′′ ↪→ M′′′,

(iii) rule LS ← KS → RS is applied to S at ms yielding graph S ′′

(iv) rule LC ← KC → RC is applied to E at mc yielding graph E′′

then, ∃1md : MD → S D, ∃1sd : ED → S D, ∃1m′ : M′′ → S ′′, ∃1s′ : E′′ → S ′′ s.t. the bottom
squares in Figure 34 are pullbacks.

Proof. In appendix.

Example 26. Figure 30 shows an example of application equivalence. We apply the original
rule to model E yielding E′′, the translated rule to M yielding M′′ and the synchronized rule to
S yielding S ′′. By the previous lemma, we uniquely obtain the inclusions E′′ → S ′′ ← M′′.

Theorem 2 (Correctness and completeness). Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←−

⟨KC → KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ and an adapted model E → S ← M ↪→ M′ as in

Figure 29, we have:

• Correctness: For each transformation M′ ⇒tr f ∗m M′′′, exists M ⇒tr f ∗m M′′ and E ⇒tr f ∗ E′′

and S ⇒tr f ∗i S ′′ leading to E′′ → S ′′ ← M′′ ↪→ M′′′

• Completeness: For each transformation E ⇒tr f ∗ E′′, exists M′ ⇒tr f ∗m M′′′ and M ⇒tr f ∗m

M′′ and S ⇒tr f ∗i S ′′ leading to E′′ → S ′′ ← M′′ ↪→ M′′′

Proof. (Sketch) Follows from lemmas 1, 2 and 3, and by the fact that, since correspondences are
injective, the resulting rules cannot introduce new conflicts (critical pairs) that were not present
in the original rule. This could happen if two nodes A and B in the concept are mapped to class C
in the meta-model, and the GT template includes two rules for A and B with conflicting behaviour
when both are applied to C nodes.

34

6. Related Work

Next, we review works related to the different ingredients of our reutilization approach: rule
adaptation, adapters, model co-evolution, the use of store meta-models merging several meta-
models, and genericity for model transformations.

Rule adaptation. There are many works in the literature dealing with rule adaptation [12, 15,
25, 27]. For example, in [12], the authors prove the correct behaviour of a model transformation,
where the GT rules for the behaviour of the target language are derived automatically using
a HOT. In [25], the authors present graph grammar aspects, as aspect rules that modify rules
in a base grammar. In [27] the author introduces grammar transformations, for the purpose
of adaptation of a rule to the different levels of abstraction of the model. While in all these
approaches rule modifications are expressed with rules, we model rule adaptations by means of
adapters, and we show the equivalence of the template rules and adapted rules. Moreover, our
goal is reutilization of rules.

Adapters. Our algebraic adapters are similar to the mapping operators (MOPs) [39], which are a
way to specify transformations by connecting source and target meta-model elements. However,
while the purpose of MOPs is to build model transformations, our goal is to resolve hetero-
geneities for the binding, and while MOPs are specified at the meta-model level, our adapters are
defined at the model level.

One can think of our adapters as the duals of triple graph grammar (TGG) rules [32]. TGG
rules are spans of morphisms typed by a meta-model triple (a span of meta-models). A corre-
spondence meta-model is used to link elements in the source and target languages. Interestingly,
one can build a store meta-model by the pushout of the meta-model triple, but in order to avoid
information redundancy, one should first identify equivalent elements in the source and target
meta-models, what we do with the binding and the adapters. However, TGG rules cannot be
used in place of our adapters because we need to integrate heterogeneous information (e.g. map-
ping an edge to an intermediate class), whereas the middle model in TGG rules contains only
traces. We believe our adapters can also serve as a way to specify bidirectional transformations,
in the style of [23]. A detailed comparison of TGGs and adapter-based transformations is left for
future work.

Co-evolution. In [40], the authors propose merging the original and revised meta-models into a
single one to guarantee that models conformant to the original or revised meta-models are also
instances of the merged meta-model. Then, model co-evolution is specified by GT rules which
add or update elements according to the revised meta-model, and a check-out transformation
eliminates the elements which are no longer in the revised meta-model. Also in the context of
meta-model/model co-evolution, the work presented in [35] describes meta-model evolutions as
co-span rules at the meta-model level, and provide a construction to derive co-span migration
rules to transform instances of the original meta-model to the revised one.

Our work can be seen as a way to specify how to migrate rules typed over a concept (the
original meta-model), so that they become applicable to another meta-model (the revised meta-
model). Migration in our case would be given as a binding, while in co-evolution it is frequent the
use of model comparison techniques to discover the changes made to the original meta-model.
While a large amount of work has been done for model migration, few works deal with transfor-
mation migration yet. One of the exceptions is [15], where the authors deal with the problem of

35

transformation evolution upon meta-model changes, providing automatic co-evolution of break-
ing and resolvable changes, and assistance to the transformation developer for breaking and un-
resolvable changes. While meta-model changes are detected automatically, we explicitly model
them through adapters, enabling the automatic migration of rule conformant to the concept into
rules conformant to another meta-model.

Model integration. In [9], the authors tackle the problem of relating heterogeneous models. They
recognise the recurrent need to relate two models X and Y by first augmenting Y with derived
information from X (yielding Q(Y)), which permits relating X and Q(Y). This is similar to our
way of relating models through an intermediate store. While they represent such relations using
Kleisli categories, the possibility of using this framework in our context is subject for future
work.

Meta-modelling and graph transformation. In [20, 21] graph transformation is used at the meta-
model level. For this purpose, I-Graphs (graphs with inheritance) and I-Graph morphisms (based
on clan morphisms) are introduced. In order to ensure the existence of pushouts and pullbacks,
they define subtype-reflecting morphisms. We borrowed such idea, but using models (graphs
with variables and formulas) instead of graphs.

Genericity. In generic programming [17], concepts can be mapped to types either automatically
when the type has all methods required by the concept, or by means of a concept map when
it does not. The concept map adds such methods, based on the available methods of the type.
Hence, concept maps are a way to adapt the interface offered by the type to the interface required
by the concept. In this sense, they are similar to our binding adapters.

In the context of MDE, the work in [18] compares different approaches to genericity for
model transformations. One option is to adapt the transformation for a concrete meta-model.
Another is to make the meta-model a subtype of the concept that was used to define the trans-
formation. This implies enriching the meta-model with extra derived features, and adapting the
model accordingly to allow the execution of the transformation. In this paper, we have formalized
this approach and shown the correspondence with respect to a pure transformation adaptation.

We have been working on generic model-to-model transformation using languages like ATL [30].
In this setting, we developed a language to express bindings and adapters (with no formal seman-
tics). That approach adapts a generic transformation for a given meta-model, and it also combines
a form of meta-model adaptation. This is so as in ATL transformations, one can dynamically add
helpers to metaclasses to emulate derived attributes (like a constant value for attribute isFinal).
This is a practical way to solve the issue of applying adapters to the expressions in rules (see
Example 19).

There are also some proposals for genericity in graph transformation. VIATRA2 [2] includes
generic rules where types can be rule parameters. MOFLON supports generic and reflective rules
by using the Java Metadata Interface [24]. MOFLON rules can receive string parameters that
can be composed to form attribute or class names, and may contain nodes that match instances
of any class. In both cases, no mechanisms, like concepts, bindings and adapters exist to control
the correctness of the template instantiation, and to adapt the template to related meta-models.

Multi-Level Modelling. In standard MDE approaches, engineers normally work with two meta-
levels at a time: a meta-model is defined, and then instantiated at the model level. However,
some researchers have analysed the benefits of modelling using multiple meta-levels [1]. In fact,

36

multi-level modelling could be used as a way to achieve reusability, by defining transformations
over a meta-meta-model, which then could be reused for instance meta-models [8]. Figure 35
shows a comparison between multi-level based reusability, and the concept-based reusability we
have presented in this work. Figure 35(b) shows that, with multi-level modelling the relation
between a meta-model and the meta-meta-model has to follow the standard typing rules. More-
over, the meta-meta-model has to exist a-priori, before the meta-models can be built. In contrast,
with concept-based reusability, the relation between a concept and a meta-model is given by a
binding. In this paper we have show that this is more flexible than a simple type morphism.
Moreover, using concepts, meta-models can exist a priori, independently of the concept, and
several concepts can be bound to the same meta-model, while in general it would not be possible
to have multiple typings for a meta-model.

(a) (b)

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«type» «type»

Concept

«binds» «binds»

Transformation

«type»

executes on executes on

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«type» «type»

Meta-Meta

Model

Transformation

«type»

executes on executes on

«type» «type»

Figure 35: (a) Concept-based reusability. (b) Reusability based on multi-level modelling.

Hence, altogether, our work is novel as we consider a flexible reutilization approach, where
both models and transformations can be adapted, as specified by the binding and the adapters.
Our formalization enables a precise understanding of the conditions for completeness and cor-
rectness, as well as the relations between the model/meta-model adaptation [18] and the rule
adaptation [6, 30] approaches to transformation reuse.

7. Conclusions and Future Work

The goal of our work is to provide a means to reuse transformations among meta-models
sharing some essential features. For this purpose, we have presented an approach to specify
graph transformation templates over concepts, and instantiate the templates for specific meta-
models using bindings and adapters. The approach is able to resolve heterogeneities between the
concept and the meta-model by the definition of an integrated model (the store). Our formaliza-
tion explains the two main approaches to genericity: an adaptation of the graph transformation
rules, becoming applicable to instances of the specific meta-model, and a modification of the
meta-model to make it compatible with the concept (the store meta-model). We have also shown
the conditions for their equivalence.

We are currently categorizing the heterogeneities we can resolve, and considering more pow-
erful adapters, e.g. with negative application conditions. We are looking at the potential of our
bindings as a simple, bi-directional transformation language, sort of dual to triple grammars [23].

37

We are also working on allowing non-injective correspondences, and checking the needed con-
ditions for behaviour preservation in that case. We will also consider ways to unify concept and
multi-level based reusability, as well as a more abstract formulation of the approach, based on
a category of meta-models and bindings. Finally, we are also tackling richer notions of meta-
models with cardinality and integrity constraints.
Acknowledgements. We thank the referees for their detailed comments, which helped to greatly
improve the paper. This work has been supported by the Spanish Ministry of Economy and
Competitivity with project Go-Lite (TIN2011-24139).

References

[1] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans. Model. Comput. Simul., 12(4):290–
321, 2002.

[2] A. Balogh and D. Varró. Advanced model transformation language constructs in the VIATRA2 framework. In
Proc. SAC’06, pages 1280–1287, 2006.

[3] M. Bambrilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan & Claypool
Publishers, 2012.

[4] F. Borceux. Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, 2008.

[5] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed graph transformation with node
type inheritance. Theoretical Computer Science, 376(3):139–163, 2007.

[6] J. de Lara and E. Guerra. Reusable graph transformation templates. In AGTIVE’11, volume 7233 of LNCS, pages
35–50, 2012.

[7] J. de Lara and E. Guerra. From types to type requirements: genericity for model-driven engineering. Software and
System Modeling, 12(3):453–474, 2013.

[8] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-specific meta-modelling
languages. Software and System Modeling, page in press, 2013.

[9] Z. Diskin, T. S. E. Maibaum, and K. Czarnecki. Intermodeling, queries, and Kleisli categories. In FASE, volume
7212 of LNCS, pages 163–177. Springer, 2012.

[10] G. Dos Reis and J. Järvi. What is generic programming? In Proceedings of the First International Workshop of
Library-Centric Software Design (LCSD ’05). An OOPSLA ’05 workshop, Oct. 2005.

[11] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph transformation. Springer-Verlag,
2006.

[12] H. Ehrig and C. Ermel. Semantical correctness and completeness of model transformations using graph and rule
transformation. In ICGT, volume 5214 of LNCS, pages 194–210, 2008.

[13] H. Ehrig, F. Hermann, and U. Prange. Cospan DPO approach: An alternative for DPO graph transformations.
Bulletin of the EATCS, 98:139–149, 2009.

[14] Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
[15] J. Garcı́a, O. Dı́az, and M. Azanza. Model transformation co-evolution: A semi-automatic approach. In SLE,

volume 7745 of LNCS, pages 144–163. Springer, 2012.
[16] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative study of language support for generic

programming. SIGPLAN, 38(11):115–134, 2003.
[17] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. Concepts: linguistic support for generic

programming in C++. SIGPLAN Not., 41(10):291–310, 2006.
[18] C. Guy, B. Combemale, S. Derrien, J. Steel, and J.-M. Jézéquel. On model subtyping. In ECMDA-FA’12, volume

7349 of LNCS, pages 400–415. Springer, 2012.
[19] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende. Closing the gap between modelling and Java. In SLE’09,

volume 5969 of LNCS, pages 374–383. Springer, 2009.
[20] F. Hermann, H. Ehrig, and C. Ermel. Transformation of type graphs with inheritance for ensuring security in

e-government networks (long version). Technical Report 2008-7, Technical University of Berlin, 2008.
[21] F. Hermann, H. Ehrig, and C. Ermel. Transformation of type graphs with inheritance for ensuring security in

e-government networks. In FASE’09, volume 5503 of LNCS, pages 325–339. Springer, 2009.
[22] F. Jouault and J. Bézivin. KM3: A DSL for metamodel specification. In FMOODS’06, volume 4037 of LNCS,

pages 171–185. Springer, 2006.
[23] Y. Lamo, F. Mantz, A. Rutle, and J. de Lara. A declarative and bidirectional model transformation approach based

on graph co-spans. In PPDP, pages 1–12, 2013.

38

[24] E. Legros, C. Amelunxen, F. Klar, and A. Schürr. Generic and reflective graph transformations for checking and
enforcement of modeling guidelines. J. Vis. Lang. Comput., 20(4):252–268, 2009.

[25] R. Machado, L. Foss, and L. Ribeiro. Aspects for graph grammars. ECEASST, 18, 2009.
[26] F. Orejas and L. Lambers. Symbolic attributed graphs for attributed graph transformation. ECEASST, 30, 2010.
[27] F. Parisi-Presicce. Transformations of graph grammars. In TAGT, volume 1073 of LNCS, pages 428–442. Springer,

1994.
[28] U. Prange, H. Ehrig, and L. Lambers. Construction and properties of adhesive and weak adhesive high-level

replacement categories. Applied Categorical Structures, 16(3):365–388, 2008.
[29] J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Generic model transformations: Write once, reuse everywhere. In

ICMT’11, volume 6707 of LNCS, pages 62–77. Springer, 2011.
[30] J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Flexible model-to-model transformation templates: An application

to ATL. Journal of Object Technology, 11(2):4: 1–28, 2012.
[31] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal Software Development. EATCS

Monographs on theoretical computer science. Springer, 2012.
[32] A. Schürr. Specification of graph translators with triple graph grammars. In WG’94, volume 903 of LNCS, pages

151–163. Springer, 1994.
[33] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, and J.-M. Jézéquel. Reusable model transformations. Software

and System Modeling, 11(1):111–125, 2012.
[34] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework, 2nd Edition.

Addison-Wesley, 2008.
[35] G. Taentzer, F. Mantz, and Y. Lamo. Co-transformation of graphs and type graphs with application to model

co-evolution. In ICGT’12, volume 7562 of LNCS, pages 326–340. Springer, 2012.
[36] G. Taentzer and A. Rensink. Ensuring structural constraints in graph-based models with type inheritance. In FASE,

volume 3442 of LNCS, pages 64–79. Springer, 2005.
[37] UML 2.4.1. http://www.omg.org/spec/UML/2.4.1/.
[38] M. Völter and T. Stahl. Model-driven software development. Wiley, 2006.
[39] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and W. Schwinger. Surviving the heterogeneity

jungle with composite mapping operators. In ICMT’10, volume 6142 of LNCS, pages 260–275. Springer, 2010.
[40] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger, W. Schwinger, and G. Kappel. On using inplace transfor-

mations for model co-evolution. In Proceedings of the 2nd International Workshop on Model Transformation with
ATL (MtATL 2010). INRIA & Ecole des Mines de Nantes, 2010.

Appendix

This appendix provides some proofs of the results in the paper.
Theorem 1 (Compatibility of amalgamation). Given a covering COVE and a forward-compatible
binding BC,MM , the resulting amalgamation ACI

uc→ AS
um← AM is forward-compatible with the

adapters in BC,MM .

Proof. (Sketch) What we need to proof is that the amalgamation of two or more adapters yields
a forward-compatible adapter with the adapters involved in the amalgamation. This means that
pullbacks need to be preserved by colimits. For simplicity, we provide the proof for two adapters,
which can be generalized as in the proof we use pushouts, and hence the needed colimits can be
constructed by iterated pushouts.

Let CIi
ci→ S i

mi← Mi, CI j
c j→ S j

m j← M j be two compatible adapters, and let ci j : CIi → CI j,
si j : S i → S j, mi j : Mi → M j be three M-morphisms such that the resulting squares are pullbacks,
as required by the compatibility condition. The resulting amalgamation adapter ACI

uc→ AS
um← AM

is compatible if squares (1) and (2) in Figure 36 are pullbacks (we omit the squares between the
store and the model for simplicity, but they are also required to be pullbacks, and the proof is
symmetric).

Figure 37 shows the van Kampen square resulting from the amalgamation of the two adapters,
where the top and bottom faces are pushouts. These pushouts are equivalent to the co-limits of

39

CI j

��

c j //

(P.B.)

S j

��

ACI uc // AS

CIi ci //

ci j

OO

��

S i

si j

OO

��

CI j c j //

OO

S j

OO

(2)

(P.B.)

ACI
uc //

(1)

AS CIi ci //

ci j

OO

??

S i

si j

OO

__

Figure 36: Conditions for compatibility of amalgamation.

ci j : CIi → CI j and si j : S i → S j. Then, by the compatibility of the two adapters, the back face
is a pullback, and the left face is a pullback by construction. Hence, the front and right faces are
pullbacks as required.

CIi ci j //

ci

��

id
CC

!!C
C

CI j

!!C
CC

CC

��

CIi

ci

��

// AC

��

S i si j //

id
CCC

!!CC
C

S j

!!C
CC

CC
C

S i // AS

Figure 37: Van Kampen cube derived from the amalgamation.

Lemma 1(Match equivalence) Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC → KS ←

KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩, and a cospan E → S ← M resulting from adapting M, the

following statements are equivalent:
(i) ∃mm : LM → M, (ii) ∃ms : LS → S , (iii) ∃mc : LC → E.

Proof. (Sketch) The diagram in Figure 38 shows the amalgamation to adapt the model (front)
and the rules (back). The front and back squares are pushouts. The upper squares are pullbacks,
because CL → S L ← ML and ACI → AS ← AM have been amalgamated using the same initial
set of adapters, and hence are compatible. This proposition shows that both adaptations are
compatible.
(i) implies (ii) and (iii). Given a M-morphism mm : LM → M, we need to show the existence of
ms : LS → S and mc : LC → E. The front (AM , AS , S , M) and back (ML, S L, LS , LM) squares
in the right cube of Figure 38 are pushouts. Hence, by the universal pushout property, there is
a unique ms : LS → S . The right cube is van Kampen, because the adapters CL → S L ← ML

and ACI → AS ← AM are compatible, and so the top square ML, S L, AS , AM is a pullback.
Finally, the right square ML, AM , LM , M is also pullback (both ML → LM and AM → M are
epimorphisms as we have complete coverings), and hence the square S L, AS , LS , S is also a

40

CL //

��

cvv{{vv
S L

��

sww{{ww

MLoo

��

mvvzzvv
ACI //

��

AS

��

AMoo

��

LC // LS
ms{{

LM
mm
uu

zzuu

oo

E // S Moo � � // M′

Figure 38: Match equivalence, assuming the existence of mm.

pullback. The idea now is to construct a van Kampen cube on the left to show the existence of
an M-morphism mc : LC → E.

Let L′C be the pullback object of LS → S ← E, as shown to the left of Figure 39. We will
show that LC � L′C . By the pullback universal property, there is a unique u : CL → L′C . This new
cube is van Kampen, and hence the back square CL, S L, LS , L′C is a pushout. By the uniqueness
of pushout complements along monomorphisms, we have that L′C � LC and hence that there is
mc : LC → E.

CL //

��

zzttt
tt

u

��

S L

��

zzuuu
uu

LM

mm

��

zzuuu
uu

KM

mk

��

lMoo

zzttt
tt

ACI //

��

AS

��

LS

ms

��

KS

sk

��

lSoo

LC // LS

ms
		
		

��		
		

LC

::vvvvv

mc

��

KC

ck

��

lCoo

::uuuuu

L′C

55kkkkkkkkkkkk

mc
uu

zzuuu
P.B

M

{{vvv
vvv

MDdmoo

zzuuu
uu

E // S S S Ddsoo

E

::vvvvvv
EDdeoo

::uuuuu

Figure 39: Finding morphism m′c : LC → E (left) and applicability equivalence (right).

(iii) implies (ii) and (i). If there is a match mc : LC → E the reasoning is symmetric to the
previous case.
(ii) implies (i) and (iii). Given ms : LS → S , we have that the square S L, AS , LS , S is a pullback
(see Figure 38). Thus, we construct mc : LC → E as shown to the left of Figure 39, and then
mm : LM → M in a symmetric way.

Lemma 2(Applicability equivalence) Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC →

KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ derived from a binding with no invalid adapters, a safe

model M and a match mm : LM → M, the following statements are equivalent:

(i) rule LM ← KM → RM is applicable to M′ at mm,

(ii) rule LM ← KM → RM is applicable to M ↪→ M′ at mm,

41

(iii) rule LS ← KS → RS is applicable at ms (the equivalent match of mm for model S)

(iv) rule LC ← KC → RC is applicable at mc (the equivalent match of mm for model E)

Proof. We first check that (i) and (ii) are equivalent. First mm : LM → M exists if mm : LM → M′

exists, because M′ \ M contains elements not present in the amalgamation. Second, no dangling
edges can occurr in M′ but not in M, because we do not allow new edges in M′ from nodes
present in M, because M is safe.

Now that we have shown equivalence of (i) and (ii), we check equivalence between (ii), (iii)
and (iv).
(iii) implies (ii) and (iv). In the right of Figure 39, assume there exists S D, and hence the square
LS , S , KS , S D is a pushout. Then, we can construct the front and back van Kampen cubes as

follows. We build the pullback of E → S
ds← S D, leading to E

de← ED → S D. By the universal
pullback property, we have that ∃1ck : KC → ED. As we have that the square LC , LS , E, S is
a pullback, by the van Kampen property the front face is a pushout and hence ED is the sought

pushout complement. Symmetrically, we construct MD as a pullback object of M → S
ds← S D.

By the same reasoning, we obtain that the back face is a pushout and hence MD is the sought
pushout complement.
(ii) implies (iii). In this case, we cannot construct a van Kampen square because we would be
starting by the top face pushout, reversing the implication [11]. However, we know that M is
type safe and there are no invalid adapters. Therefore, there are no unsafe or external edges from
MM, and so there are no unsafe or external edges in S either, and hence S is type safe. This
means that if the rule is applicable at M, so is at S , and conversely, if there are dangling edges at
M, so there will be at S .
(iv) implies (iii). Again, in this case we cannot construct a van Kampen square, as we would be
starting by the top face pushout, reversing the implication [11]. However, if M is type safe, so
it is S , and hence if the rule is applicable at E, so it will be at S , because at S we cannot have
dangling unsafe edges.

Lemma 3(Application equivalence) Given an integrated rule ⟨LC → LS ← LM⟩
⟨lC ,lS ,lM⟩←− ⟨KC →

KS ← KM⟩
⟨rC ,rS ,rM⟩−→ ⟨RC → RS ← RM⟩ derived from a binding without invalid adapters, a safe

model M, a match mm : LM → M, and three equivalent matches mm : LM → M, ms : LS → S
and mc : LC → S (see Figure 40) where:

(i) rule LM ← KM → RM is applied to M′ at mm yielding graph M′′′,

(ii) rule LM ← KM → RM is applied to M ↪→ M′ at mm yielding graph M′′ ↪→ M′′′,

(iii) rule LS ← KS → RS is applied to S at ms yielding graph S ′′

(iv) rule LC ← KC → RC is applied to E at mc yielding graph E′′

then, ∃1md : MD → S D, ∃1sd : ED → S D, ∃1m′ : M′′ → S ′′, ∃1s′ : E′′ → S ′′ s.t. the bottom
squares in Figure 34 are pullbacks.

Proof. Consider the cube to the left of Figure 41. The front and back faces are pushouts (first
step in rule applications), and the top is a pullback by rule construction. To find md : MD → S D,
we calculate the pullback of S D → S ← M. There is a unique arrow to the pullback object

42

LM

mm

��

{{www
w

KM

��

lMoo rM //

zzvvv
v

RM

��

zzvvv
v

LS

ms

��

KS

��

lSoo rS // RS

� �

LC

;;xxxx

mc

��

KC

��

lCoo rC //

;;wwww
RC

��

;;wwww

M

{{ww
ww
w

MDoo //
md{{

M′′

m′{{
S S Doo // S ′′

E′

;;xxxxx
EDoo //

sd
;;

E′′
s′

;;

Figure 40: Transforming M, S and E, and obtaining E′′ → S ′′ ← M′′.

u : KM → M′D. This new cube is van Kampen. Hence, by uniqueness of the pushout complement,
we obtain that M′D � MD and md : MD → S D, being md the unique arrow making the square a
pullback. Then, by the pushout universal property, ∃1m′ : M′′ → S ′′ (see the right of Figure 41,
where the back face is a pushout).

KM //

��

zzvvv
v

u

��

LM

��

{{www
w

KM //

$$H
HHH

��

RM

$$H
HH

H

��

KS //

��

LS

��

KS //

��

RS

��

MD // M

����
��
��
��
�

MD //

md
GG

##GG
M′′

m′ ##
M′D

55kkkkkkkkkkk

md{{ww P.B

S D // S ′′

S D // S

Figure 41: Finding morphism md : MD → S D (left). Finding morphism m′ : M′′ → S ′′.

A similar reasoning can be used to obtain sd : ED → S D and s′ : E′′ → S ′′.

43

