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Abstract—The correctness of model transformations is key to
obtain reliable MDE solutions. However, current transformation
tools provide limited support to statically detect and correct
errors. This way, the identification of errors and their correction
are mostly manual activities. Our aim is to improve this situation.

Based on a static analyser for ATL model transformations
which we have previously built, we present a method and a system
to propose quick fixes for transformation errors. The analyser
is based on a combination of program analysis and constraint
solving, and our quick fix generation technique makes use of the
analyser features to provide a range of fixes, notably some non-
trivial, transformation-specific ones. Our approach integrates
seamlessly with the ATL editor. We provide an evaluation based
on an existing faulty transformation, and automatically generated
transformation mutants, showing overall good results.

Index Terms—Model Transformation, Transformation Static
Analysis, ATL, Quick fixes, Verification and Testing.

I. INTRODUCTION

Model transformation is key in Model Driven Engineering
(MDE), as it enables automated model manipulations. Hence,
methods to detect and correct transformations errors, as well
as to speed up their construction are of great interest [17].

Many transformation languages and tools have been pro-
posed along the years, and some like ATL [5] or ETL [6]
are widely used in the MDE community. However, few (if
any) have achieved the same level of maturity as supporting
tools for general-purpose programming languages like Java.
In this respect, missing features include static analysers that
detect advanced typing and rule errors, as well as quick fix
generators able to propose corrections to these problems.

The static guarantees that transformation languages provide
varies. For instance, most QVT implementations statically
type the transformation against the meta-models, but other
languages such as ATL or ETL are dynamically typed. In
that case, transformations are prone to typing errors that can
only be discovered by thorough testing if no static analysis is
applied. In all cases, facilities to fix typing errors may help to
improve productivity and transformation quality. Other elusive
errors that are important to detect and fix correctly include
rule conflicts, target meta-model conformance, and whether
rule guards cover all possible cases [3].

In previous work [3], we built a static analyser for ATL
transformations, named anATLyzer1, which is able to detect
a wide number of typing errors (about 40 different types).
The analyser is integrated with the standard ATL editor,
so that errors can be detected interactively while the user
is constructing the transformation. Using the analyser, we

1Available at http://www.miso.es/tools/anATLyzer.html

discovered that even transformations considered in a mature
stage, like those in the ATL Use Cases2, contain errors.

In this work, we have extended the analyser with the
possibility to propose and apply quick fixes for the detected
errors. Quick fixes can be used for autocompletion to speed
up transformation development, or as a means to solve errors.
Depending on the kind of error, quick fixes can suggest
changes in the transformation (e.g., adding filters to rules
or collections, refine the type of a variable), in the meta-
model (e.g., set a feature cardinality to optional), or add
transformation pre-conditions that prevent the transformation
execution for problematic models.

We have evaluated our approach from two perspectives.
First, we have tested the degree in which we can fix a faulty
transformation developed by a third party (one from the ATL
Use Cases). Second, we have tested the completeness of our
quick fix catalogue by applying it to automatically generated
transformation mutants. To the best of our knowledge, this is
the first work proposing a catalogue of quick fixes for model
transformations which can be used in practical tools.

Paper organization. Sec. II introduces types of quick fixes,
and a running example. Sec. III explains our method for
static analysis. Sec. IV presents our catalogue of quick fixes,
classified according to a feature diagram. Sec. V describes our
implementation, and Sec. VI its evaluation. Sec. VII discusses
related research, and Sec. VIII ends with the conclusions.

II. OVERVIEW

Recommenders are increasingly being used to assist in
different software engineering tasks [18]. In particular, code
recommenders assist programmers with coding activities, like
API usage or quick fixes. The actual recommendation may
come from a mix of sources, like the static analysis of the
program being developed, its execution, or the programmer
himself [16]. In this work, we focus on quick fixes, where
information is gathered via static analysis.

We define a quick fix as an automatable solution to a
problem detected statically. Typically, a quick fix provides a
rapid means to correct a problem reported by the IDE as the
program (a transformation in our case) is developed. We found
no explicit classification of quick fixes in the literature, but the
following classification has suited our needs:
1) Repair. These quick fixes generate a fix that removes the

targeted problem, typically adding or modifying expres-
sions in certain locations, and without any additional input

2http://www.eclipse.org/atl/usecases/, some of these transformations origi-
nated from industrial projects



from the developer. An example is a quick fix adding a
condition to ensure that a null pointer exception cannot
occur. Sometimes the application of this kind of quick fixes
may introduce errors in other locations.

2) Template. This type of quick fix generates a piece of code
solving a problem, but there may be missing information
that is only initialized with default values, and the devel-
oper must add the logic to complete the generated code.
For example, a program may refer to a non-existent helper,
and the quick fix creates a template for it, which the user
needs to fill with appropriate code.

3) Heuristic. This corresponds to a suggestion, e.g., proposing
a valid name for a collection operation based on string
similarity [2]. Unlike the first type of quick fix, these
suggestions are among several possibilities, and their ap-
plication normally implies just some replacement.

In practice, quick fixes are used in two ways: to correct
errors or for code autocompletion. In the former scenario,
the developer is reported a problem, and he applies one of
the available quick fixes to solve it. For this purpose, repair
and heuristic quick fixes are useful. In the latter scenario, the
developer may even make the error on purpose (e.g., invoking
a non-existing lazy rule) and he uses the proposed quick fix
as a means to generate a template. This is the most common
use of template quick fixes.

Quick fixes can also be classified according to the artefact
they fix. In the context of model transformations, quick fixes
may target the transformation implementation (the most com-
mon case), the involved meta-models, or the transformation
specification by adding a transformation pre-condition. The
latter two possibilities (fixing the transformation contract) are
sometimes preferred over changing the implementation, as
discussed in [15] in the context of object-oriented programs.

A. Running example

Next, we introduce a running example that will be used to
present our quick fix generation techniques. Listing 1 shows
an excerpt of the PNML2PetriNet transformation, from the
Grafcet to PetriNet scenario in the ATL Zoo3, slightly modified
to illustrate a richer set of quick fixes. Fig. 1 shows the source
and target meta-models of the transformation.

1 rule PetriNet {
2 from n : PNML!NetElement
3 using {
4 arcsSet : Set(PNML!NetContentElement) =
5 n.contents−>select(e | e.oclIsKindOf(PNML!Arc));
6 }
7 to p : PetriNet!PetriNet (
8 elements <− n.contents,
9 arcs <− arcsSet

10 )
11 }
12

13 helper def : selectLabel(labels : Sequence(PNML!Label)) : String =
14 if labels−>isEmpty() then ’no−name’
15 else labels−>first().text endif;
16

17 rule Place {
18 from n : PNML!Place
19 to p : PetriNet!Place (

3http://www.eclipse.org/atl/atlTransformations/
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Fig. 1. Source and target meta-models of the transformation.

20 name <−thisModule.selectLabel(n.name.labels)
21 )
22 }
23

24 rule Transition {
25 from n : PNML!Transition
26 to p : PetriNet!Transition
27 }
28

29 rule PlaceToTransition {
30 from n : PNML!Arc (
31 n.source.oclIsKindOf(PNML!Place) and
32 n.target.oclIsKindOf(PNML!Transition)
33 )
34 to p : PetriNet!PlaceToTransition (
35 name <− thisModule.selectLabel(n.name.labels),
36 ”from” <− n.source,
37 ”to” <− n.target
38 )
39 }
40

41 rule TransitionToPlace {
42 from n : PNML!Arc (
43 −− The developer forgets to add n.source.oclIsKindOf(PNML!Transition)
44 n.target.oclIsKindOf(PNML!Place)
45 )
46 to p : PetriNet!TransitionToPlace (
47 name <− thisModule.getLabel(n.name.labels),
48 ”from” <− n.source, −− Problem here, n.source could be a Place
49 ”to” <− n.target
50 )
51 }

Listing 1. Excerpt of the PNML2PetriNet ATL transformation.

Our analyser reports the following problems, for which we
show one illustrative quick fix. Other quick fixes are possible,
as we will show in the following sections.
• Declared type mismatch. Our static analyser in-

fers the type Sequence(Arc) for the expression in
line 5, which is incompatible with the declared type
Set(NetContentElement).
Quick fix: change declared type by inferred type.

• Possible unresolved binding (lines 8–9). Some models
may contain objects that appear in the right part of these
bindings, but are not matched by any rule. In particular,
both bindings will be unresolved for PNML documents
that contain arcs linking places to places, or transitions
to transitions. Although this is an incorrect Petri net, the
PNML meta-model does not forbid these cases.
Quick fix: add pre-condition to the transformation.

• Invalid target for resolved binding (lines 8 and 48).
This problem arises when the rule matched by the right
part of a binding generates an object of type incompatible
with the feature where it is assigned. In line 8, the error
is due to a missing filter in the right part of the binding.
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Fig. 2. Example of static analysis. Solid lines represent inferred type
annotations. Dashed lines represent “resolved-by” binding-rule dependencies.

Quick fix: filter out Arc objects from the binding. This also
removes the “possible unresolved binding” problem.
The binding of line 48 can be resolved by rule Place, since
property n.source may hold either a place or a transition.
Quick fix: ensure that n.source holds a transition, for
instance, checking this condition in the rule filter.

• Access to undefined value (lines 20, 35 and 47). The
name property is optional, so in case it holds an undefined
value, it will cause a runtime exception.
Quick fix: change the cardinality in the meta-model.

• Compulsory feature not initialized (line 26). Rule Tran-
sition creates a Transition object, but it does not initialize
its mandatory attribute name.
Quick fix: generate a default value.

• Operation not found (line 47). getLabel does not exist.
Quick fix: change the called operation to selectLabel.

III. TRANSFORMATION ANALYSIS

Our system uses static analysis to identify problems that
need to be fixed and gather the information required to
implement the quick fixes. Next, we describe the main parts
of our analyser and classify the problems it is able to detect.

A. Static analysis of ATL model transformations

Our static analyser proceeds in three steps [3]. First, it type-
checks the transformation, annotating each node of the abstract
syntax with its type. Then, it creates the transformation
dependence graph (TDG), which makes control and data flow
explicit, including information about rule resolution and rule
dependencies. The TDG enables rule analysis, e.g. to deter-
mine unresolved bindings. However, some of the identified
problems may not happen in practice, e.g., if the program logic
prevents the error. In those cases, the analyser uses a model
finder (USE Validator [7] in our current implementation) to
confirm or discard the problem.

Fig. 2 shows an example of the analysis process. Initially,
the type of the expression n.target in the filter of rule Tran-
sition2Place is NetContentElement, but the analyser detects the
occurrence of oclIsKindOf and annotates the expression with
the more refined type Place. In the second binding of this rule,
the expression n.source has type NetContentElement. Using the
TDG, the analyser infers that this type can be resolved by
rules Place and Transition. However, resolving the binding by
rule Place yields an incorrect target model, because reference
from in class Transition2Place can only hold Transition objects,
while rule Place creates Place objects.

To confirm whether the binding could actually be resolved
by rule Place, the analyser uses the TDG to build an OCL

path condition from the entry points of the transformation to
the possible error location. This condition collects the features
that an input model needs to have to make the transformation
fail. Then, the analyser uses a model finder to search a
model conformant to the input meta-model and satisfying the
computed OCL path condition. If the finder finds a model,
the error is confirmed. In the example, the entry point is rule
Transition2Place, and we want to enforce binding from to be
resolved by rule Place. Therefore, the needed OCL path con-
dition is: Arc.allInstances()→exists(n | n.target.oclIsKindOf(Place) and
n.source.oclIsKindOf(Place)), for which the model finder indeed
finds a model, meaning that the error can occur in practice.

B. A taxonomy of errors in ATL model transformations

Fig. 3 summarizes kinds of problems detected by our
analyser. These are classified into rule problems (which are the
most specific to model transformations), style and optimization
warnings, and object-oriented and OCL typing problems.

In the rest of the paper, we focus on quick fixes for
transformation-specific errors (Rule conflict, Unresolved bind-
ing, Rule resolution with invalid target, Feature initialization)
and on errors that typically appear in ATL transformations
although they are not exclusive of ATL (Invalid receptor,
Declaration mismatch, Operation not found).

IV. GENERATING QUICK FIXES

Each kind of problem detected by the analyser has one
or more associated quick fixes. Each quick fix comprises an
optional application condition and an action. The application
condition allows discarding the quick fix if the problem occurs
in a context where it does not make sense or that the quick
fix cannot handle. The action implements a strategy to fix
the problem, which can be modifying the transformation,
modifying the meta-model, or generating a transformation pre-
condition. In all cases, the quick fix implementation can use
the information gathered during the static analysis.

Fig. 4 shows a feature diagram with the available fixing
strategies. Each one includes a label that is used to refer to the
fix in a compact way. Possible transformation modifications
include generating new expressions (a, c), adapting an existing
expression to a new context (b), or modifying operation/feature
calls (d). Rule-related problems are typically fixed by creating
or removing rules (e, f), modifying their filters (g), creating or
removing bindings (k), or modifying the right part of a binding
(l). Other fixes may involve the creation of a new helper or a
lazy/called rule4 (h, i), or changing a reference to a type (m).

A. Catalogue of quick fixes

Fig. 4 classifies the quick fixes provided by our system,
while Fig. 3 shows which quick fixes become applicable for
each kind of error (the fixes are identified using the labels in
Fig. 4). Table I summarizes some errors and their associated
quick fixes. Due to space constraints, the table only shows
some quick fixes applicable to error types 0–14 from Fig. 3.
The full catalogue is available at http://miso.es/qfx.

4In practice, it is more natural to consider lazy/called rules as operations.
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In Fig. 3 and Table I, we group fix strategies common to
several error types in the common ancestors. For example,
Rule resolution errors (E1) can be of type possible unresolved
binding (E2) and invalid target for resolved binding (E3). Both
error types share 5 fixing strategies (c, g, k, l, o), while each
has a specific fixing strategy (e and f, respectively).

In the following subsections, we focus on the quick fixes
more specific to transformations.

B. Rule resolution (E1, E2, E3)

Given a binding of the form feature← expr, the ATL engine
looks up in the trace model the source elements resulting
from evaluating expr, and assigns their corresponding target
elements to feature. This is called binding resolution. Two
main problems may occur in this process, possible unresolved
binding (E2) and invalid target for resolved binding (E3),
which may cause performance penalties and invalid target
models respectively. Both problems have the same fix strate-
gies, except creating a rule to make the binding resolvable
(Q2.1) and deleting the rule that is creating the invalid target
element (Q3.1). Moreover, all quick fixes receive the following
input: the type Tf of the feature, the expression expr in the
right part of the binding, the type Texpr of expr, and the set
of rules R resolving Texpr and involved in the problem.
Q1.3: Add filter to binding expression. This strategy filters
expr to avoid the resolution of the problematic elements.

For the possible unresolved binding problem, the filter
will select only the elements that will be certainly re-
solved by some rule. In this case, R is the set of rules
able to resolve the binding. For example, in the problem-
atic line 9 of Listing 1, we have Tf = Sequence(Arc),

expr = arcsSet, Texpr = Sequence(Arc), and R =
{TransitionToP lace, P laceToTransition}.

Then, the quick fix proceeds as follows:

1) Group R by input type, yielding sequence Gr. This
sequence is ordered by subtype relationships, where more
concrete types go first. If a matched rule has more than
one input type, it will not appear in R because ATL does
not consider it as a candidate to resolve bindings.

2) Create a filter expression, filter, as follows. Take the
head of Gr, and create an if expression whose condition
checks the type given to the group, and the then branch
is the or-concatenation of the rule filter expressions. The
else branch applies the same procedure to the rest of
Gr. When there are no more groups, the last else branch
returns false.

3) If Texpr is a collection, modify expr to expr→select(v |
filter(v)).

4) If Texpr is a single value, create let v = expr in if filter(v) then
v else <default value> endif.

The quick fix for the problem in line 9 of Listing 1 is:

1 arcs <− arcsSet−>select(v | if v.oclIsKindOf(PNML!Arc) then
2 v.target.oclIsKindOf(PNML!Place) or
3 (v.source.oclIsKindOf(PNML!Place) and
4 v.target.oclIsKindOf(PNML!Transition))
5 else false endif

This is so as both TransitionToPlace and PlaceToTransition are
grouped by their common input type PNML!Arc. Then, lines 2-
4 of the generated quick fix have the or of both rules filters,
while the else branch returns false. Notice that, while this quick
fix removes the problem, the developer is in charge of ensuring
that it is semantically correct.



TABLE I
SOME QUICK FIXES. R: REPAIR, T: TEMPLATE, H: HEURISTIC.

Errors (E) and Quick fixes (Q) Fix Type
Rule conflict (E0)

Q0.1 Modify guilty rules filter g R
Rule resolution (E1)

Q1.1 Modify filter of container rule g R
Q1.2 Remove problematic binding k R
Q1.3 Add filter to binding expression cl R
Q1.4 Generate transformation pre-condition o R

Possible unresolved binding (E2)
Q2.1 Create new rule e T

Invalid target for resolved binding (E3)
Q3.1 Remove guilty rule f R

Feature initialization (E4)
Q4.1 Modify feature (cardinality/type) in the mm. n R

Compulsory feature not initialized (E5)
Q5.1 Initialize with default literal (e.g., empty string) a R
Q5.2 Copy and adapt an existing expression b H
Q5.3 Suggest mapping to a similar source feature k H

Assignment from higher cardinality (E6)
Q6.1 Add ->first() to the collection d R

Invalid type (E7)
Q7.1 Suggest a type of the meta-model m H
Q7.2 Add type to the meta-model n R

Declaration mismatch (E8)
Q8.1 Change declared type for inferred type m R

Invalid receptor (E9)
Q9.1 Surround problem with “if” c R
Q9.2 Modify filter of container rule g R

Possible access to undefined property (E10)
Q10.1 Change the feature lower bound to 1 n R

Access to a property defined in a subclass (E11)
Q11.1 Create helper h T

Feature/operation not found (E12, E14)
Q12.1 Suggest an existing feature/operation d H
Q12.2 Create a feature/operation helper h T
Q12.3 Create feature in the meta-model n T
Q12.4 Change feature call to operation call (and vice.) d R

For the invalid target for resolved binding error, the quick
fix filters out the elements resolvable by rules that produce
incompatible target objects. In this case, R is the set of
guilty rules. The identification of guilty rules is similar to
the mechanism proposed in [3]. Briefly, we generate a path
condition for each rule that may potentially cause the problem,
and use a model finder to produce a witness model satisfying
each path condition. The rules for which a witness model is
found are marked as guilty and added to R. The generated
quick fix is similar to possible unresolved binding, except that
the filter condition is negated.
Q1.1 Modify filter of container rule. This strategy avoids
executing the container rule of a problematic binding for the
objects that cause the problem. For this purpose, the rule filter
is added (and-concatenated) an expression similar to the one
of the previous strategy.

For example, in the invalid target for resolved binding prob-
lem of line 48, we have Tf = Transition, expr = n.source,
Texpr = NetContentElement, and R = {Place}. To obtain
set R, the static analyser first computes the set of possible
guilty rules, with only one rule in this case, {Place}. Then,
the model finder is used to discriminate which rules actually
cause the problem, selecting Place. Applying the quick fix adds
an additional condition to the filter of rule TransitionToPlace:

1 from n : PNML!Arc (
2 n.target.oclIsKindOf(PNML!Place) and
3 not n.source.oclIsKindOf(PNML!Place)
4 )

Actually, the previous algorithm would generate the expres-
sion let v = n.source in if v.oclIsKindOf(PNML!Place) then false else true
endif, but we have an optimization for the cases when only one
rule is involved.
Q1.2 Remove problematic binding. This quick fix is appli-
cable when the lower cardinality of the feature is 0 in the
meta-model.
Q1.4 Generate transformation pre-condition. Sometimes,
the problem is not in the transformation itself, which is correct
according to the developer assumptions concerning the source
models. In such cases, applying this quick fix generates a
transformation pre-condition that makes those assumptions
explicit. This pre-condition serves as documentation, and in
addition, it will be used to feed the model finder in subsequent
invocations in order to discard problems the pre-condition
rules out. Technically, pre-conditions are implemented as
comments in the transformation header, prefixed with “@pre”.

The generation process of pre-conditions uses a strategy
similar to the generation of path conditions explained in
Section III-A, but in this case, the path to the error is negated.
The pre-condition generated for the problem in line 9 of
Listing 1 is the following (provided the problem in line 48
has been fixed, as shown before):

1 not NetElement.allInstances()−>exists(n |
2 n.contents−>select(e | e.oclIsKindOf(Arc))−>exists(a |
3 not (a.source.oclIsKindOf(Place) and a.target.oclIsKindOf(Transition)) or
4 not (a.source.oclIsKindOf(Transition) and a.target.oclIsKindOf(Place))))
5 or NetElement.allInstances()−>isEmpty()

Although this pre-condition is not optimal in the sense of
being as general as possible, it correctly states the fact that arcs
in a Petri net must connect places to transitions or transitions
to places, and any other configuration of arcs is invalid.
Q2.1 Create new rule (only for possible unresolved binding).
This quick fix adds a new rule which complements the existing
ones so that the binding never gets unresolved. The input
pattern of the new rule uses the type of the binding expression,
while the output pattern uses the type of the assigned feature.

If the resolving rules have filter conditions, such filters must
be considered in the filter of the new rule, in order to avoid a
rule conflict (i.e., two rules matching the same element).

Finally, if the type of the assigned feature is abstract, it
cannot be used as output pattern. For our experiments, we
heuristically select a non-abstract subclass that preferably is
not used in any other rule. In practice, the system could allow
selecting the appropriate type manually.

As an example, the quick fix for the possible unresolved
binding problem in line 8 generates the following rule:

1 rule Arc2TransitionToPlace {
2 from a : PNML!Arc ( not
3 (a.source.oclIsKindOf(PNML!Place) and
4 (a.target.oclIsKindOf(PNML!Transition) or
5 a.target.oclIsKindOf(PNML!Place))) )
6 to t : PetriNet!TransitionToPlace ...



Q3.1 Remove guilty rule (only for invalid target for resolved
binding). This quick fix removes the guilty rules, identified
as explained above. Although this may result in subsequent
unresolved bindings in other places, we do not check this
situation in the application condition of the quick fix as it
is too time consuming to be integrated in the IDE.

C. Rule conflicts

In ATL, if two or more rules match the same element, a
rule conflict is raised and the transformation fails at runtime.
Our static analysis is able to report this situation, identifying
which sets of rules are in conflict.
Q0.1 Modify guilty rules filter. This quick fix is technically
similar to Q1.1. In this case, given a set of guilty rules, we
extend the filter of each rule by and-concatenating the negation
of the other rules’ filters. In this way, all rule filters are disjoint,
ensuring that no rule conflict can arise.

D. Invalid receptor (E9, E10, E11)

This kind of problem appears when the receptor object of a
feature access or operation call can be invalid. We distinguish
two cases: access to an undefined value (i.e., a “null pointer
exception”), and a special kind of feature not found problem
in which the accessed feature is defined in a subclass of the
receptor object’s class, but it is missing in other subclasses.
Q9.1 Surround problem with “if”. This quick fix surrounds
the problematic expression with a conditional. Its if branch
checks that the receptor object is not undefined (for E10) or its
type has the accessed feature (for E11), while the else branch
contains an appropriate default value according to the type of
the expression (e.g., the empty string for a String).

The expression thisModule.selectLabel(n.name.labels) in lines
20 and 35 of Listing 1 may cause a runtime exception if n.name
(the receptor object) is undefined. This quick fix will generate:

1 if not n.name.oclIsUndefined() then thisModule.selectLabel(n.name.labels)
2 else ’’ endif −− The type of the binding is ’String’

Q9.2 Modify filter of container rule. The underlying idea of
this strategy is similar to Q1.1. If the problem appears within
a binding, it is possible to avoid the problem by preventing
the rule execution. In this case, the filter is modified to select
a subclass that defines the feature.

This is a typical idiom in ATL, in which there are several,
similar rules dealing with different variations (e.g., a rule to
deal with objects for which certain property is undefined, and
another rule dealing with the definite case).
Q10.1 Change the feature lower bound to 1 (only possible
access to undefined property). The lower cardinality of the
feature is set to 1 in the target meta-model. This may cause
compulsory feature not initialized problems in other trans-
formations using the same target meta-model, though these
problems can be easily detected using our analyser.

E. Feature initialization (E4, E5, E6)

We focus on compulsory feature not initialized since it is
the most common error in ATL transformations [3].

Q4.1 Modify feature cardinality in the meta-model. The
lower cardinality of the feature is set to optional in the target
meta-model. This may cause possible access to undefined
value in other transformations using the same meta-model,
or in the current transformation if it is endogenous.
Q5.1 Initialize with default literal. This is the simplest
strategy, as we just generate a default value according to the
feature type. For primitive types we generate the usual default
values (e.g., an empty string, 0 for integers, etc.). For objects,
we try to assign a target object of the compatible type that is
the scope of the rule (i.e., other output pattern elements).
Q5.2 Copy and adapt an existing expression. This strategy
relies on the same hypothesis as the GenProg system [10]: “a
program that makes a mistake in one location often handles
a similar situation correctly in another”.

In this way, we seek for bindings in other rules that assign
the same feature, and for each candidate binding we check
if the variables used in the right part of the binding are
compatible with the variables accessible from the current rule.
A variable in the current rule is compatible with a variable used
in the candidate if the feature calls over the candidate variable
can be performed over the rule variable. Currently, we select
just one binding, copying and adapting it to the rule. However,
all different bindings could also be shown to the user.

For example, in line 26, there is no binding for the name fea-
ture. However, such feature is assigned in lines 20, 35, and 47.
Thus, the bindings name ← thisModule.selectLabel(n.name.labels)
and name ← thisModule.getLabel(n.name.labels) could be pro-
posed. Unfortunately, they are discarded as our analyser has
detected problems in both bindings. Nevertheless, if we apply
quick fixes Q9.1 or Q9.2, the problems in lines 20 and 35
become fixed, thus enabling this quick fix.
Q5.3 Suggest mapping to a similar source feature. This
quick fix tries to find a feature, accessible from the rule input
type, whose name is similar to the assigned feature and its
type is compatible with the feature.

F. Declaration mismatch (E8)

This problem is frequent in ATL transformations developed
without any static analysis tool like ours, due to ATL not
checking neither statically nor dynamically variable, param-
eter and return type declarations. While this problem does
not prevent the correct execution of a transformation, it is
a maintenance problem because developers normally have
expectations according to the declared types.
Q8.1 Replace declared type with inferred type. This quick
fix replaces the declared type with the type inferred by the
static analyser. In the example, the assignment in lines 4–5 is
fixed to:
1 arcsSet : Sequence(Arc) = n.contents−>select(e | e.oclIsKindOf(PNML!Arc))

In some cases, the type inferred by the analyser is richer
than any type that can be expressed with the ATL type system.
For example, when the branches of an if expression have types
that are not related by inheritance. In such cases, we use the
most general type OclAny.



G. Operation not found

ATL supports two types of helpers, attribute helpers and
operation helpers. An operation helper may take parameters,
while an attribute helper acts as a derived attribute, whose
result is memoized. On the other hand, a helper can be defined
in the context of a class, called context helper, acting as a
regular polymorphic method, or without context, called module
helper, acting as a global function. In addition, for practical
purposes, we consider lazy and called rules to be module
helpers since they are invoked like module helper operations
with one or more parameters.
Q12.1 Suggest an existing feature/operation. We use the
Levenshtein string distance [2] to look up candidate features
(including both helper and meta-model features) and opera-
tions. In the case of operations, we take into account the types
of the parameters to improve filtering. We also consider built-
in functions, such as collection operations.
Q12.2 Create new context helper (only calls over an object).
A new context helper is created, whose context is the inferred
class for the receptor object of the call, and its parameters will
be created according to the types of the actual arguments. The
body of the helper is initialized to a default value according
to its return type.
Q12.2 Create new module helper (only calls over thisMod-
ule). Given a call thisModule.op(par1, . . . , parn), the quick
fix proposes adding a new helper, lazy or called rule. The
heuristic to select each option is the following:
• Lazy rule. The problematic call is within a collect’s body

and belongs to the right part of a binding. Besides, the
feature initialized by the binding must be a reference (i.e.,
a non-primitive type), the number of arguments of the call
must be one, and the argument must be a single object.

• Called rule. Same as before, but either more than one
parameter is passed, or just one parameter of primitive type
(including collections).

• Module helper. Otherwise.
This heuristic reflects the most usual invocation patterns in

ATL. In the example, the quick fix suggests creating a module
helper for the call thisModule.getLabel(n.name.labels).

H. Summary

A developer working interactively with our system would be
able to completely fix the running example using the following
sequence of quick fixes: Q8.1 to fix the declaration mismatch
(lines 4–5), Q1.1 to modify the rule filter and fix the problem
in line 48, Q1.3 to add a filter to the binding in line 8 so
that arcs are filtered out (this solves problems E02 and E03
at once), Q1.4 to add a pre-condition to prevent the invalid
arcs causing the problem in line 9, Q9.1 to avoid accessing
an undefined value in lines 20, 35 and 47, Q5.2 to initialize
the name property in line 26, and Q12.1 to replace the invalid
call in line 47 by the one suggested.

V. IMPLEMENTATION

Our proposal is backed by an implementation atop anAT-
Lyzer, our static analyser for ATL, which is integrated with the

Fig. 5. Screenshot of the tool

Eclipse/ATL IDE. In particular, the quick fixes are available
through the standard facilities provided by Eclipse, comple-
mented with a dedicated view to easily inspect and fix detected
problems (see Fig. 5).

A screencast of the tool, the complete results of our experi-
ments, the source code and an Eclipse Update site are available
at http://miso.es/qfx.

Implementation-wise, our quick fixes do not work at the
text level, as standard Eclipse quick fixes do, but they modify
the ATL abstract syntax using a dedicated API that we have
built. This decision was motivated by the need of automatically
applying quick fixes in our experiments, but it also opens the
possibility of implementing advanced quick fix strategies like
speculative analysis [13]. This posed several challenges, such
as the need to build a variant of the ATL meta-model suitable
to be easily manipulated using Java code, and the generation of
the new code, which is performed by means of an incremental
ATL serializer built as part of the framework.

Finally, our catalogue of quick fixes is extensible by means
of an extension point and a set of pre-defined abstract quick
fixes, along with the API to modify the ATL abstract syntax.

VI. EVALUATION

This section reports on the evaluation of our system. We
evaluate its completeness by generating mutants of a transfor-
mation in order to create a wide range of problems, and its
usefulness by manually quick fixing a transformation written
by a third-party. In both cases we analyse the amount of appli-
cable quick fixes and their impact after their application, that
is, the difference between the number of detected problems
before and after the application of a quick fix. The evaluation
is performed using the following automation script:
1 Input: transformation T, list of problems Lp
2 Step 1: Confirm or discard problems using the model finder
3 If discarded, remove problem from Lp
4 Step 2: Foreach P in Lp
5 Retrieve the set of available quick fixes for P
6 Foreach quick fix, Q
7 Copy T into Tq
8 Apply Q on Tq
9 Run the static analyser on Tq, obtaining

10 the problems, Lpq, remaining after Q
11 Confirm or discard problems from Lpq, as in step 1
12 Compare the size of Lp and Lpq



TABLE II
MUTATION OPERATORS FOR ATL TRANSFORMATIONS.

Type Targets
Deletion rule, helper

binding
source/target pattern element
rule filter
rule inheritance relation
operation context
formal/actual parameter in operation or called rule
variable definition

Type type of source/target pattern element
modification helper context type, helper return type

type of variable or collection
parameter type of operation or called rule definition
type parameter (e.g., oclIsKindOf(Type), Type.allInstances())

Feature name navigation expression
modification target of binding
Operation predefined operator (e.g., and) or operation (e.g., size)
modification collection operation (e.g., includes)

iterator (e.g., exists, collect)
operation/attribute helper invocation

A. Evaluating completeness

In order to evaluate the completeness of our quick fix
catalogue (i.e., does it cover a range of different problems?)
we have performed an experiment based on using mutations
to generate possibly faulty transformations, and then measure
how many quick fixes are applicable and their impact in terms
of the number of fixed and newly generated problems.

For the experiment, we have selected the original
PNML2PetriNet transformation, fixing its errors manually with
our quick fixes, so that it is error free. Then, we have applied
the mutation operators shown in Table II, one at a time. For
each mutation, the generated transformation is likely to have
only one problem, or if it has more they are likely independent.

In total, we obtained 304 mutated transformations, out of
which 56 were discarded because the analyser did not detect
any problem (due to false negatives or because the mutation
did not introduce errors). Table III summarizes the results. For
each problem detected by the analyser, we show the number
of occurrences in all the mutated transformations (#Occ.), the
number of applied quick fixes (#Qfx.), the average number of
quick fixes per transformation (Avg) and the minimum/max-
imum number of quick fix proposals in the transformations.
Columns Fix. and Gen. show the number of fixed and newly
generated problems after applying the quick fix.

The number of quick fixes ranges normally between 2 and
3 for most of the problems, which indicates that our catalogue
covers an acceptable range of situations. We checked the main
causes of failure by manual inspection.

Rule conflicts (E00) do not arise frequently. In all cases our
strategy fixes the problem, but it tends to generate additional
possible unresolved bindings because the modified rules filter
cover less cases. For binding resolution problems (E02 and
E03), most quick fixes do not generate additional problems.
This is due to the use of the model finder to confirm the
problem, which provides detailed information to generate
accurate fixes. On the contrary, creating a new rule (Q2.1)
produces many errors because of uninitialized compulsory
features. Deleting guilty rules (Q3.1) sometimes yields a
possible unresolved binding.

Regarding invalid receptor problems, several null pointer
exceptions are generated (E10). Fixes based on changing the
meta-model (Q10.1) and fixes based on adding a conditional
(Q9.1) work well. However, adding a rule filter (Q9.2) is
introducing several binding resolution issues.

Regarding quick fixes related to operation and feature calls,
we have implemented the most usual ones found in IDEs for
object-oriented languages. Quick fixes that create helpers or
rules (Q12.2) tend to generate additional problems because we
only generate a generic body or because of missing bindings,
and thus they are useful as autocompletion facilities. Similarly,
we could not evaluate the application of Q12.3 automatically,
because it requires user intervention to set the new feature
type. Finally, Q12.1 is not very accurate because there are
few helpers to choose in the transformation, and our system
tends to suggest ATL built-in operations, for which we have
not considered yet whether their types fit well in the context
of the replaced expression.

TABLE III
ERRORS DETECTED IN THE MUTATED TRANSFORMATIONS AND FIXES

Problem #Occ. #Qfx Avg Min Max Fix. Gen.
E00 7 7 1.0 1 1 6 7

Q0.0 - 7 - - - 6 7
E02 55 140 2.5 1 4 111 150

Q1.2 - 27 - - - 28 0
Q1.3 - 29 - - - 17 0
Q1.4 - 29 - - - 38 0
Q2.1 - 55 - - - 28 150

E03 36 114 3.2 2 5 119 19
Q1.1 - 24 - - - 18 8
Q1.2 - 9 - - - 10 0
Q1.3 - 36 - - - 30 0
Q1.4 - 36 - - - 52 0
Q3.1 - 9 - - - 9 11

E05 56 148 2.6 2 3 156 0
Q4.1 - 56 - - - 56 0
Q5.1 - 56 - - - 64 0
Q5.2 - 36 - - - 36 0

E06 9 9 1.0 1 1 9 0
Q6.1 - 9 - - - 9 0

E07 2 4 2.0 2 2 0 0
Q7.1 - 2 - - - 0 0
Q7.2 - 2 - - - 0 0

E08 10 10 1.0 1 1 12 0
Q8.1 - 10 - - - 12 0

E10 28 84 3.0 3 3 57 44
Q10.1 - 28 - - - 28 0
Q9.1 - 28 - - - 24 0
Q9.2 - 28 - - - 5 44

E12/E14 92 162 1.8 0 3 57 7
Q12.1 - 67 - - - 18 3
Q12.2 - 64 - - - 39 4
Q12.3 - 31 - - - 0 0

B. Evaluating usefulness
Next, we analyse to what extent a real world transformation

can be fixed in practice using our proposal. To this end, we
have selected the CPL2SPL transformation from the ATL Zoo.
It is a moderately complex transformation, consisting of 15
rules and 4 helpers, and it has already been used to analyse
fault localization techniques [1].

Table IV summarizes the errors detected by the analyser
and the proposed fixes. The listing below shows an excerpt of
two rules to give an impression of the transformation.



TABLE IV
ERRORS DETECTED IN CPL2SPL AND APPLIED FIXES

Problem #Occ. #Qfx Avg Min Max Fix. Gen.
E02 11 37 3.4 1 5 50 34

Q1.1 - 2 - - - 0 0
Q1.2 - 8 - - - 14 0
Q1.3 - 8 - - - 0 0
Q1.4 - 8 - - - 36 0
Q2.1 - 11 - - - 0 34

E05 49 98 2.0 2 2 2354 0
Q4.1 - 49 - - - 2305 0
Q5.1 - 49 - - - 49 0

E10 7 21 3.0 3 3 56 1
Q10.1 - 7 - - - 49 0
Q9.1 - 7 - - - 7 0
Q9.2 - 7 - - - 0 1

1 rule CPL2Program {
2 from s : CPL!CPL
3 to ..., d : SPL!Dialog (
4 methods <− Sequence {s.incoming, s.outgoing} ) }
5 rule SubAction2Function {
6 from s : CPL!SubAction
7 to t : SPL!LocalFunctionDeclaration (
8 statements <− s.contents.statement ) }

There are 48 problems due to the location target attribute not
being initialised. This attribute is used by TCS to maintain
traceability between text and model elements. The best option
in this case is to accept quick fix Q4.1 to make the feature
optional in the meta-model, since it is not mandatory in TCS,
and there is no similar feature in CPL that can be mapped
into. There is another uninitialized feature (branches), which
is made optional in the meta-model since it is not compulsory
according to the SPL specification and its concrete syntax.

Then, there are 3 bindings similar to the one in line 4, but
there is no rule to resolve them. These are 3 clear cases for
new rule (Q2.1). The other 8 possible unresolved problems are
similar to the one in line 8. The statement reference may hold
objects of a subclass not handled by the transformation, and
therefore a pre-condition is generated (Q1.4).

Finally, there are 7 possible access to undefined value,
due to the contents feature being optional (line 8). The most
obvious quick fix is Q9.1 to surround the problem with an
if. However, the default value for the else branch will not
be adequate, as an object must be assigned to the statements
feature. Therefore, we should create a lazy rule and invoke it
to create a proper default object. We could fix the meta-model
as well (Q10.1), but in this case it does not seem adequate
according to the semantics of the CPL language. By inspecting
a related transformation (XML2CPL) we realised that this
transformation expects contents not to hold an undefined value.
Hence, the most adequate action is to create a pre-condition.

In summary, we have been able to fix a transformation with
67 problems by applying 13 quick fixes (2 Q4.1, 3 Q2.1, 8
Q1.4), and with the manual completion of 3 new rules and the
creation of one pre-condition.

C. Threats to validity

The main threat to internal validity is that our analyser
may report some false positives (i.e., indicate an error in-
correctly). In this case, the quick fix will be applied to a
correct statement yielding an unknown result. It may also have

false negatives (i.e., fail to report a true error) which may
yield an incorrect counting of fixed errors. In our experience,
the analyser has a low rate of false positives (a preliminary
evaluation is presented in [3]). For false negatives, we do not
have a proper evaluation yet. Finally, the model finder used
by our implementation (USE) is based on the “small scope
hypothesis”, limiting the search of models to the given scope.
To minimise the number of false negatives due to this, we
have used reasonably wide searching scopes.

Related to the previous threat, our system relies on anAT-
Lyzer to statically spot faults and it uses the TDG to build the
quick fixes. At the same time, the counting of newly generated
problems by a quick fix is performed using anATLyzer as
the oracle. Unfortunately, to our knowledge, there is no other
analyser of ATL with which cross-validate the results.

Another threat to internal validity is that mutations could
be biased towards the generation of errors for which we have
available quick fixes. To limit this issue, the mutation operators
were developed independently.

The main threat to external validity is that we have used
only one transformation in each experiment. Another threat is
that we only cover ATL. The features of other transformation
languages may limit or impose additional constraints in some
quick fixes. However, provided that a suitable static analysis
phase is available, quick fixes related to OCL and model nav-
igation are directly applicable to OCL-based transformation
languages, such as QVT or ETL. Languages such as ETL and
RubyTL could also benefit from rule related quick fixes.

D. Discussion

Quick fixes for rule resolution may generate large filter
expressions because they aggregate the types and filters of sev-
eral rules. For some cases, we have optimizations that generate
more compact expressions, as in the running example, where
we generate the filter not n.source.oclIsKind(Place) with Q1.1.
However, a more natural filter is n.source.oclIsKindOf(Transition).
In recommender systems terms, our method is not able to
generalize, in the sense that the generated code just targets the
detected error, and does not consider the future cases that may
arise (e.g., adding a subclass of NetContentElement breaks the
current fix). Another view of this issue is that our system tends
to generate alien code, which is not adequate for a human-
targeted repair system as ours [12]. Improving this issue is
part of our future work.

In comparison with established quick fix frameworks, such
as Eclipse JDT or Intelli/J, our proposal would be classified
as a recommendation system for model transformations. How-
ever, some of the problems that the analyser detects are bugs
(i.e., problems that manifest themselves at runtime provoking
an incorrect behaviour of the transformation), though they
are uncovered statically. This is particularly the case of rule
conflicts, binding resolution and invalid receptor problems.
Hence, part of our proposal can be seen as a lightweight form
of automatic program repair.

Furthermore, as shown in Section VI-B, the detected prob-
lems and the proposed quick fixes prove to be useful to reason



about the correction of the meta-models, allowing fixing them
when necessary. The generation of pre-conditions is useful to
document which cases are not handled by a transformation.
Moreover, our system uses these pre-conditions to provide
accurate problem reports (i.e., it does not show a rule problem
if the pre-condition guarantees that will not happen).

Regarding the performance of the system, it is responsive
enough to be used as an editing facility. The use of the model
finder does imply a bottleneck since the search is limited to
the error meta-model, as discussed in [3].

Finally, our evaluation shows that some quick fixes are more
likely to solve problems than others. This could be a starting
point to rank quick fixes, and show the “best quick fixes” more
prominently to the user.

VII. RELATED WORK

Strategies for proposing and ranking quick fixes have been
studied in the programming community. For example, in [13],
quick fixes are ranked according to the number of errors
remaining after their application. However, there are few works
dealing with this topic in the MDE literature.

Solutions for quick fix generation have also been applied
to Domain-Specific Modelling Languages (DSMLs). For ex-
ample, [4] uses design-space exploration to propose quick
fixes for DSMLs. A quick fix is defined as a set of model
operations that reduces the number of errors. The authors
propose some guidelines for quick fix generation, like ranking
quick fixes by their simplicity (offer first those with less
model modifications). In our case, errors are detected by static
analysis, and quick fixes implement pre-defined correction
strategies and may introduce new problems.

In [8], [19], the authors present a taxonomy of common
pitfalls in QVT-R transformations. Some of these errors are
detected by executing the transformation using Petri nets. In
our case, errors are detected statically and we provide a suite
of quick fixes to amend them.

In [20], a catalogue of refactorings for model-to-model
transformations is presented. We believe our method can be
applicable to the automated refactoring of ATL transforma-
tions, but we leave this aspect for future work.

Automated program repair [9] aims at correcting faulty
programs, where faults are detected by the dynamic testing
of the programs. The work [11] is close to our proposal, but
for an object-oriented language. Autofix [15] uses pre/post-
conditions and invariants to synthetize repairs. While most
program repair techniques are time consuming (as e.g., they
evaluate possible patches by random testing), our goal is
to integrate quick fix proposals in the development process,
which requires lighter, quicker techniques that do not involve
executing the transformation using a test suite.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a method based on static analysis and
constraint solving to generate quick fixes for ATL transforma-
tions and a catalogue of such quick fixes. The synthetic eval-
uation based on analysing and fixing mutated transformations

has shown that our proposal covers a wide range of problems,
and that the quick fixes actually fix most of the problems. The
manually performed case study has shown the usefulness of
our proposal. In addition, the implementation of the tool and
the detailed results of the evaluation are available.

As future work, we plan to use speculative analysis [14]
to improve the accuracy of the quick fixes. To improve the
recommendation aspect of the system, we aim at creating a
ranking of quick fixes that may be modified at run-time by
taking into account previously selected quick-fixes by the user.
We also plan to perform a controlled experiment with users to
provide stronger evidence of the usefulness of the approach.
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[4] Á. Hegedüs, Á. Horváth, I. Ráth, M. C. Branco, and D. Varró. Quick
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