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Abstract
Like any other software artifact, models evolve and need

to be versioned. In the last few years, dedicated support

for model versioning has been proposed to improve the de-

fault text-based versioning that version control systems offer.

However, there is still the need to comprehend model differ-

ences in terms of the semantics of the modeling language.

For this purpose, we propose a comprehensive approach

that considers both abstract and concrete syntax, to express

model differences in terms of the domain-specific language

(DSL) used and define domain-specific semantics for spe-

cific difference patterns. The approach is based on the au-

tomatic extension of the DSL to enable the representation

of changes, on the definition of rules to capture recurrent

domain-specific difference patterns, and on the automatic

adaptation of the graphical concrete syntax to visualize the

differences. We present a prototype tool support and discuss

its application on versioned models created by third parties.

CCS Concepts • Software and its engineering → Do-
main specific languages; Visual languages; Software con-
figuration management and version control systems.

Keywords Model-driven Engineering, Model differencing,

Graphical concrete syntax
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1 Introduction
Model-driven Engineering (MDE) relies on models to con-

duct all phases of software development. Models can be built

using general-purpose modeling languages, like the UML,

but the use of domain-specific languages (DSLs) is also fre-

quent [18, 31].

Like other software artifacts involved in a development

process, models evolve [29] and, therefore, need to be ver-

sioned to have a record of their changes [3]. Sometimes,

models are persisted as text files (e.g., using XMI), which per-

mits using code version control systems on them. However,

text-differencing is not adequate for models as it may report

irrelevantmodel differences (e.g., objects that appear in differ-

ent file positions). For this reason, the modeling community

has proposed specific model versioning systems [1, 7, 12, 26]

and approaches for model differencing [9], conflict resolu-

tion, and merging [4, 32].

A crucial aspect of versioning systems is the possibility to

visualize matches and differences of the history of a model

in a comprehensible manner. However, many approaches,

like EMFCompare [9], represent the differences between two

versions of a model using low-level generic traces that may

be difficult to comprehend. Moreover, these traces typically

are at the level of the abstract syntax, which may hinder their

understanding. Therefore, we propose to represent traces in

a domain-specific way, assign a domain-specific semantics to

recurring model differences, and visualize those differences

at the concrete syntax level. To ensure the practicality of our

proposal, we provide automated tool support to minimize

the effort of applying the approach to arbitrary DSLs. In

this paper, we focus on graphical concrete syntaxes realized

through the Sirius framework [33].

The contributions of this paper are the following. First,

we propose a method to encode model differences as a single

domain-specific model. This is achieved by automatically
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extending the DSL meta-model with domain-specific change

operations. Second, we propose a means to create higher-

level representations of lower-level differences using rules.

Third, we provide an automated way to represent model

differences using the DSL graphical concrete syntax. Finally,

we provide a prototype tool support, able to adapt automat-

ically Sirius-based editors for model change visualization,

and use it to validate our proposal based on graphical DSLs

and model histories created by third-parties.

The rest of this paper is organized as follows. In Section 2,

we overview the approach and introduce a running example.

In Section 3, we describe how to represent model differences

in terms of the DSL. This encompasses the semi-automated

extension of the DSL meta-model and its concrete syntax.

For the latter, we use Sirius as an illustration. In Section 4,

we detail how to define domain-specific higher-level change

descriptions. In Section 5, we evaluate the approach by its ap-

plication to the visualization of differences of model histories

in an open source project. Finally, we compare with related

work in Section 6 and conclude the paper in Section 7.

2 Overview and Running Example
In the following, we motivate our approach with a running

example and present its overall rationale.

2.1 Motivating example
A typical model differencing tool compares two versions of

a model based on the performed editing steps (e.g., added

class or deleted reference). The result of this comparison is

identified by low-level differences between the two versions,

which includes at least two sets: match and diff. The match

set contains the compared pair of elements. The diff set illus-

trates how much a model element in the match is different

from its pair, i.e., each match can have multiple diffs. The

most popular generic model comparison tools, EMFCom-

pare [9] for instance, produces three kinds of diffs: ADD,

DELETE, and MODIFY.

However, a DSL user works with an end-user tool and

does not interact with the abstract syntax. Instead, she uses

end-user features such as domain-specific views and dia-

grams, to manipulate models. Any change in this level of

abstraction (i.e., the domain-specific concrete syntax) can

turn into several fine granular changes in the model. Con-

sequently, the comparison tool shows the user all low-level

changes, such as an association between two objects deleted,

which may not make sense to a DSL user who is not familiar

with the metamodel of the DSL. This creates a mismatch

between what the comparison tool produces and what a DSL

user would expect to understand: the differences in terms of

domain-specific concepts rather than concepts of the abstract

syntax.

There have been approaches that tried to mitigate this is-

sue, e.g., through the semantic lifting of the low-level changes

Figure 1. The metamodel of the Pacman DSL (MM)

[16] or by using a metamodel to represent model differences

[8]. However, these approaches do not provide a comprehen-

sive framework for handling domain-specific model differ-

ences. In particular, the existing approaches mostly focus on

expressing model differences at the abstract syntax level and

do not show differences at the concrete syntax level (i.e., the

graphical notation of a DSL). Furthermore, the existing ap-

proaches do not take domain-specific model semantics into

consideration during the comparison process.

To address these issues, we introduce an approach, called

DSMCompare, that provides the DSL user with a set of se-
mantic domain-specific model differences that highlight the
differences between two versions of a model at both the

abstract and concrete syntax levels. We explain how a DSL

user uses DSMCompare using a running example of a sim-

plified Pacman game, a well-known game where Pacman

navigates through grid nodes searching for food to eat, while

ghosts try to kill him. We provide a modeling environment

to define game configurations, based on [35]. Figure 1 shows

the metamodel of this game. Figure 2 sketches what DSM-

Compare outputs given two versions (M1 followed by M2)

of a Pacman game configuration. The black arrows pointing

up over Pacman, food, and the ghost are the associations

representing their position on a grid node. Comparing M1

and M2, we can easily conclude that Pacman has moved

right to the middle grid node and ate the food on it. The

score value is incremented accordingly. DSMCompare pro-

duces a domain-specific difference model Diff12 in two steps.

First, in the middle of Figure 2, Diff12 contains all the fine
granular diffs. The green arrow with a ‘+’ denotes that an

association is added to a grid node, the red arrow with an ‘x’

denotes a deleted association, and the blue arrow with a ∼

(on the scoreboard) denotes an attribute value change. Then,

DSMCompare applies the provided domain-specific rules on

Diff12. In this case, two rules can be applied: Pacman Eats
Food and Pacman Moves Right. For example, the former rule

checks that Pacman is on a grid node that also has food on it

2
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Figure 2. Running example using DSMCompare

Figure 3. Representation of difference model in EMFCom-

pare for the Pacman game DSL

which gets deleted, and the scoreboard value is incremented.

The final difference model Diff12 is depicted at the right of

Figure 2.

In contrast, using EMFCompare for comparison results

in a list of low-level changes as presented in Figure 3. The

DSL user needs additional analytical effort to understand

these changes to infer the difference in a meaningful way.

For example, the user needs to understand that (on the top

panel of Figure 3) “on changed” means that Pacman has

moved to a different grid node (because the reference “on”

has changed), and needs to inspect the lower juxtaposed

panels to understand that food has disappeared. However, as

the “on” reference is not shown on the tree editor, it becomes

difficult to realize that this is because Pacman ate the food.

2.2 Overview of DSMCompare
Figure 4 gives an overview of DSMCompare. This is useful for

two types of users: DSL engineers and DSL users. The DSL

engineer creates a metamodel MM (abstract syntax) and the

{…}DSL Engineer

DSL User

Metamodel

Concrete Syntax

DSDiff Metamodel

DSDiff Concrete Syntax

DSDiff Rule Metamodel
(for semantic rules)

DSDiff Rule Concrete Syntax

Generation of 
Diff environment

Generation of 
Rule Environment

Model Version 2

Application of 
semantic rules

Model Version 1

Domain Specific Diff Model
(Fine Granular)

Domain Specific Rules

Domain specific diff model 
(Semantic)

Differentiation

{…}+

X +

X

X +

{…}+
X

X +
X +

Conformance 
Legends

Transformation Input

Figure 4. Overview of the approach

concrete syntax CS to define the DSL. In DSMCompare, we

reuse both components to define the domain-specific model

differences for that DSL and show any domain-specific diff

Diff12 between two versions of a model M1 and M2. Con-
cretely, the approach produces a domain-specific diff meta-

model DSDiffMM and concrete syntax DSDiffCS, as shown in

Figure 4. DSDiffMM extends the language metamodel to de-

fine domain-specific diffs, such as adding/removing a model

element. DSDiffCS shows the corresponding concrete syntax
elements: graphical elements that could be added, removed,

or updated. The approach also produces an environment to

describe high-level semantic differences in the form of rules

tailored to the DSL. Namely, it produces a domain-specific

rule metamodel DSRuleMM and concrete syntax DSRuleCS,
to allow the DSL engineer to define the set of rules to apply

on Diff12. As discussed previously, having domain-specific

rules is important to reason about model differences. With-

out these rules, low-level differences may not convey the

intention or the reason behind a change, and it may be dif-

ficult to understand how changes relate to each other. For

example, the DSL engineer could define a rule for operation
overriding in class diagrams which matches an operation in

one version of a model with a variant of that operation in a

different model version. Instead of showing that an operation

is simply being added in the second version, DSMCompare

3
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Figure 5. Excerpt of the generated difference metamodel

uses the rule to represent this change as the second operation

overriding the first one.

The DSL user can use our approach for different purposes.

For example, in a version control system, the DSL user may

want to understand high-level semantic differences between

two versions of a class diagram. By using rules that represent

refactorings, it would be possible to identify the places in the

model that underwent refactoring. In a collaborative devel-

opment environment, a DSL user may identify the domain-

specific changes that a collaborator introduced, by applying

DSMCompare on the collaborator version of the model and

the model at hand.

DSMCompare produces a traditional diff of the two model

versions by reusing a difference tool such as EMFCompare.

This result is processed to generate Diff12, that conforms

to DSDiffMM, and is represented according to DSDiffCS. At
this point, Diff12 contains the fine granular differences in the

concrete syntax of the DSL.With a library of rules predefined

by the DSL engineer, the approach applies the applicable

rules on Diff12 to produce a semantically lifted difference

model.

3 Fine Granular Differencing
To overcome the restrictions of generic approaches for model

comparison, we propose to represent all model differences

in a format tailored to the domain of the original metamodel.

We also visualize the differences using domain-specific con-

crete syntax.

3.1 Domain-specific difference metamodel
To represent model differences in a domain-specific way,

the metamodel of model differences should remain faithful

to the original metamodel MM. Therefore, we create a new

metamodel for domain-specific difference DSDiffMM (see

Figure 5) based on MM (see Figure 1). Algorithm 1 outlines

the transformation from the latter to the former. It starts by

cloningMM to ensure thatDSDiffMM comprises all the struc-

tural features of the DSL. In Figure 5, DSDiffMM includes all

Algorithm 1 Transformation from MM to DSDiffMM

1: procedure GenerateDSDiffMM(MM)
2: DSDiffMM← MM.clone(“DSDiffMM” )
3: DSDiffMM.createEnum(“ClassDiffKind”, {ADD,DEL,MOD})
4: DSDiffMM.createEnum(“AscDiffKind”, {ADD,DEL})
5: for all class C in DSDiffMM do
6: if not C.isAbstract() then
7: DiffC← DSDiffMM.createClass(“DiffC” )
8: DiffC.setSuperClass(C)
9: DiffC.addAttribute(“diff_kind”, ClassDiffKind)
10: end if
11: for all attribute a in C.getAllUniqueAttributes() do
12: DiffC.addAttribute(“new_a”, a.getType())
13: end for
14: end for
15: for all association S in DSDiffMM do
16: C1← S.getSource(), C2← S.getTarget()
17: if C1 , DSDiffMM.getRootClass() then
18: DiffC1_S← DSDiffMM.createClass(“DiffC1_S” )
19: DiffC1_S.addAttribute(“diff_kind”, AscDiffKind)
20: n← S.getTargetCardinalities().target().upperBound()
21: if S.isComposition() then
22: diffS← C1.addComposition(“diffS”, DiffC1_S)
23: else
24: diffS← C1.addAssociation(“diffS”, DiffC1_S)
25: end if
26: diffS.setCardinalities(1..1, 0..2×n)
27: target← DiffC1_S.addAssociation(“target”, C2)
28: target.setCardinalities(0..1, 1..1)
29: end if
30: end for
31: DSDiff← DSDiffMM.createClass(“DomainSpecificDiff” )
32: DSDiff.addAttribute(“name”, String)
33: for all class C in DSDiffMM do
34: diff_C← DSDiff.addAssociation(“diff_C”, C)
35: diff_C.setCardinalities(1..1, 0..*)
36: end for
37: R← DSDiffMM.getRootClass()
38: diffs← R.addComposition(“diffs”, DSDiff)
39: diffs.setCardinalities(1..1, 0..*)
40: return DSDiffMM
41: end procedure

classes and associations that the MM metamodel possesses.

The remaining steps extend the metamodel as follows. We

create two enumerations that will be used to annotate each

class and association by the kind of difference. To represent

a difference in an object of a class, like Score, we create a
subclass with an additional attribute diff_kind that states
whether the object has been added, deleted, or that at least

one of its attributes has been modified. In the subclass we

also add, for each attribute in the class, a new attribute of

the same type that will hold the new value. For example, the

subclass of Score has an attribute new_value. This is par-
ticularly useful when auditing changes in different versions

of a same model.
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Note that this procedure does not transform class inher-

itance. If MM has a class A and a class B that inherits from
A, then, in DSDiffMM, DiffA inherits from A and DiffB
inherits from B. There is no inheritance between DiffA
and DiffB. We argue that this decision is to allow imple-

menting our solution in frameworks where multiple inheri-

tance is not supported. Therefore, on line 11 of Algorithm 1,

C.getAllUniqueAttributes() retrieves all attributes of C and
those inherited from its super classes transitively. Further-

more, abstract classes have no corresponding Diff class since

they cannot be instantiated in the compared models.

As outlined in lines 15–30 of Algorithm 1, for each as-

sociation in MM, we create a class to reflect the kind of

change (addition or deletion). We then connect this new

class with the source and target classes of the association.

In the Pacman example, the on association is transformed

into the DiffPositionableEntity_on class. Since on is a

composition, diffon is also a composition, to preserve the se-

mantics of the association. Suppose that a difference model

Diff12 needs to reflect that the Pacman object has moved

from one grid node to another. Then, there will be two

DiffPositionableEntity_on instances: one representing
the deletion of the on relation to the old grid node and one

for the addition of the on relation to the new grid node. This

is why the upper bound of the cardinality of diffon in DS-
DiffMM must be doubled on line 26.

The elements created up to now can only capture individ-

ual fine granular differences in Diff12. To enable the repre-

sentation of semantic differences, the procedure creates a

DomainSpecificDiff class that holds the name of the se-

mantic difference that a combination of original and DSDiff
classes represent. This will be used in the second step when

applying domain-specific rules.

One benefit of this procedure is that a difference class, like

DiffScore, still contains all attributes and relations with

the same name, type, cardinalities, and constraints as in

Score. The rationale is to allow an instance of MM to be a

valid instance of DiffMM. This is useful in case M1 and M2
are identical, as their difference can be represented by M1.
Consequently, a difference model can contain both instances

of Score and DiffScore if one is unchanged and the other

is, say, deleted.

3.2 Visualization of domain-specific differences
When the DSL user manipulates models in their concrete syn-

tax representation, it makes no sense for her/him to analyze

the difference model in its abstract syntax form. Therefore,

the DSL to represent the difference model should also be

assigned a concrete syntax DSDiffCS. Since the DSL engineer
has defined a concrete syntax CS for the DSL, he should also
provide one for DSDiffMM. Instead of starting from scratch,

we propose to generate a default DSDiffCS that reuses the

style from CS to remain in the spirit of the DSL. The DSL en-

gineer can then customize it if so desired. In this subsection,

we describe how to generate DSDiffCS from CS, assuming a

graphical concrete syntax.

Sirius [40] is one of the most popular frameworks to gen-

erate graphical modeling environments and to manipulate

models graphically in the Eclipse ecosystem. Although our

approach is applicable to other graphical language work-

benches, such as GMF [15], MetaEdit+ [17] and AToMPM

[36], our description is based on Sirius as it offers a model-

based approach for concrete syntax definition.

In Sirius, the main component of the concrete syntax def-

inition is a viewpoint specification model (odesign). It de-
fines a mapping of graphical representations to elements of

MM. For example, to render the visualization of the Pacman
class, we define a NodeMapping that refers to an icon in an im-

age file. The NodeMapping can be a combination of text, icons,

shapes and style customizations, such as color and size. Sim-

ilarly, associations are rendered by an EdgeMapping. As for
compositions, the target class is rendered by a BorderedNode-
Mapping within the NodeMapping of the source class. Con-
straints expressed in the Acceleo Query Language (AQL), a

variant of the Object Constraint Language (OCL) [27], can

filter visualizations depending on a condition. Finally, it is

possible to define a palette of icons to instantiateMM classes

and associations by customizing the ToolSection in Sirius.

We generate DSDiffCS by means of an outplace transfor-

mation that takes as input CS and outputs DSDiffCS. The
overall logic of the transformation is to copy each compo-

nent of CS onto DSDiffCS and create the representation of

each Diff_ class by extending the representation of its cor-

respondingMM class. This maximizes the reuse of CS to rep-
resent the difference model intuitively for the DSL user. For

each NodeMapping, e.g., PacmanNode, we create three new
ones for each difference kind: DiffPacmanNodeADD, DiffPac-
manNodeDELETE, DiffPacmanNodeMODIFY. By default, the

add node is the same as the original node annotated with a

green ‘+’ sign, the delete with a red ‘x’, and modify with a

blue ‘∼’. The latter indicates that at least one of the attribute

values has changed. For example, the ScoreNode is a rec-

tangle with the value of its value attribute displayed inside.

We change the text displayed in DiffScoreNodeMODIFY by
showing the value concatenated with an arrow ‘–>’, fol-
lowed by the new_value. One particularity of the mapping

in Sirius is that if DiffPacman inherits from Pacman in DS-
DiffMM, Sirius displays the representation of the former for

the latter. Therefore we need to add an AQL condition in

DiffPacmanNodeADD to force it to represent DiffPacman in-

stances only and not its super classes.

EdgeNodes are treated slightly differently. Recall that an

association S from class A to class B inMM is transformed into

a class DiffA_Swith an incoming composition diffS from A
and an outgoing association target to B. Therefore, in DSD-
iffCS, DiffA_S is represented with a BorderedNodeMapping
as a subnode of the NodeMapping of A.We create two Border-
edNodeMappings for each Edge, one for adding and one for

5
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Figure 6. Fine granular difference model Diff12 of M1 and
M2

deleting, annotated similarly to Nodes. The target associa-
tion is rendered by an EdgeNode.

The only element in DSDiffMM that does not have a visu-

alization in CS is the DomainSpecificDiff class. By default,
we represent it with a rectangle with its name attribute value
displayed inside. Note that if CSmakes use of icon files to ren-

der the elements ofMM, the DSL engineer must also provide

a set of icon files for each Diff_ class and association. The

transformation assumes the naming convention correspond-

ing to the name of the class to map an icon to each node of

DSDiffCS. This opens the door to a variety of visualizations

to represent domain-specific semantic differences.

Defining DSDiffMM along with DSDiffCS as a domain-

specific difference language using frameworks (such as Sir-

ius) allows the DSL engineer to generate a domain-specific

model environment to represent difference models Diff12.
These can be inspected andmanipulated like any othermodel

(M1 andM2) in an environment familiar to the DSL user. Fig-

ure 6 illustrates Diff12 presented in its concrete syntax as

output by DSMCompare.

3.3 Fine-grained domain-specific model
comparison

Given two models M1 and M2 of a DSL, we want to output

a single model Diff12 depicting the changes from M1 to M2,
as an instance of DSDiffMM. Note that the two models are

provided with their abstract and concrete syntax represen-

tations. Most current model comparison approaches detect

changes at the abstract syntax level only. For instance, [22]

dynamically computes an identifier for each model element

based on their properties (e.g., type and attribute values).

Alternatively, metamodel-agnostic approaches, like [6, 8],

compute the structural and attribute value similarities be-

tween M1 and M2. These tools produce a generic difference
model that lists the changes between the two models. We

chose to reuse these difference algorithms and then process

the result to produce Diff12. In our implementation, we rely

on the change list output by EMFCompare.

To produce the Diff12 model, we first clone M1 since the
differences will be expressed in terms ofM1. We will assume

that the result from a difference algorithm outputs a list of

differences for classes ∆C and for associations ∆A separately,

such as in EMFCompare. We denote an element E ′ ∈ ∆C
using primed uppercase letters. This way, if E ′ is a deletion

Figure 7. Excerpt of the domain-specific difference rule

metamodel PacmanRuleMM

or a modification, we identify E to be the corresponding

element in M1. For example, in Figure 6, E ′ can be the score

object with its value modified from 1 to 2. We replace E ′, the
score object, in M1 by an instance of the DiffScore class

as per Algorithm 1. This new object will hold all original

attribute values, so score=1, and all new attribute values,

so new_score=2. If E ′ is an addition, we create an instance

of the Diff class corresponding to E ′ and set all its new at-

tribute values. Finally, we mark the new Diff element with

its ClassDiffKind.
An association A′ ∈ ∆A is treated a bit differently. If A′

is a deletion, we remove the link A in M1 corresponding to
A′ and create an instance of the Diff class corresponding

to it. For example, in Figure 6, the on link from the Pac-

man to the first grid node is removed and an instance of

DiffPositionableElement_on is created. In case A′ is an
addition, only the creation of the Diff class is needed.We then

connect the Diff instance to the source and target elements

of A. Finally, we mark it with its AscDiffKind.
Our approach does not require additional manual effort

to produce the concrete syntax of Diff12. Since Diff12 is an in-

stance of DSDiffMM, then DSDiffCS is applied automatically

on Diff12 to represent it visually as in Figure 6.

4 Domain-specific Differencing
In this section, first we outline how to generate a graphi-

cal environment for the DSL engineer that allows creating

domain-specific difference rules. We then show how to apply

the rules to aggregate fine granular differences in a mean-

ingful manner that follows the intention of the domain.

4.1 Rules for domain-specific differences
As explained in Section 2, we automatically derive an en-

vironment for specifying domain-specific difference rules.

This enables the DSL engineer to define higher-level changes

specifically tailored for the domain. A rule needs to detect

a pattern of fine granular differences and replace it with a

DomainSpecificDiff class that was created in Algorithm 1.

6
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Our domain-specific difference rules act similarly to inplace

model transformation rules [11] with a precondition and a

postcondition component. Algorithm 2 outlines the proce-

dure to produce DSRuleMM from DSDiffMM and Figure 7

shows the result. It is inspired from [20] where they produce

domain-specific model transformation rule patterns from a

DSL.

Algorithm 2 Transformation from DSDiffMM to DSRuleMM

1: procedure GenerateDSRuleMM(DSDiffMM)
2: DSRuleMM← DSDiffMM.clone(“DSRuleMM” )
3: for all class C in DSRuleMM do
4: C.keepDiffKindAttribute()
5: Pattern_C← C.setName(“Pattern_” + C.getName())

6: Pattern_C.addAttribute(“pattern_id”, int)
7: Pattern_C.addAttribute(“filter”, bool)
8: end for
9: for all association S in DSRuleMM do
10: S.setName(“Pattern_” + S.getName())

11: end for
12: Rule← DSRuleMM.createClass(“Rule” )
13: Rule.addAttribute(“name”, String)
14: Rule.addAttribute(“constraints”, String[])
15: R← DSRuleMM.getRootClass()
16: pattern← Rule.addComposition(“pattern”, R)
17: pattern.setCardinalities(1..1, 1..1)
18: return DSRuleMM
19: end procedure

As in Algorithm 1, this procedure starts by reusing all the

elements of DSDiffMM and adapts them to the new needs.

Every class and association are prefixed with Pattern_. All
attributes from DSDiffMM except diff_kind are removed,

since they do not contribute to the rule. However, the con-

nectivity of the associations remains as in DSDiffMM. This

simplifies the detection of patterns in the difference model

Diff12. We add two attributes for all pattern classes. A unique

identifier distinguishes instances of the same classes to facil-

itate writing constraints. A filter attribute is used to signify

that the element in Diff12 should be removed when applying

the rule. This filters out fine granular differences when a

domain-specific difference is more meaningful.

Finally, we add a new Rule class as the new root class of

the metamodel. This enables the transformation engine to

navigate easily through the elements of the rule. The Rule
class allows specifying a list of constraints over attribute val-

ues. In practice, constraints are written in Java and executed

dynamically using BeanShell
1
, an embedded interpreter to

run Java scripts. Within constraints, pattern objects can be

accessed using their identifier. For instance, the constraint

Item(3,‘value’) < Item(3,‘new_value’) states that the
new value of the score should be greater than the original

value in rule PacmanEatsFood in Figure 8.

1https://github.com/beanshell/beanshell

Figure 8. The domain-specific difference rule for

PacmanEatsFood

4.2 Automatic generation of a visual environment
for domain-specific rules

Our approach not only helps the DSL user to better under-

stand the difference between two models, but it also assists

the DSL engineer to design conveniently the domain-specific

rules in the same language workbench.

For this purpose, we transform the DSDiffCS model into

the concrete syntax for rulesDSRuleCS. The transformation is

very similar to the one described in Section 3.2. We copy the

viewpoint specification model and adapt it to the DSRuleMM.

Each NodeMapping displays “filter” if the filter attribute

is set to true, as well as the pattern_id of the object. All

other attribute values from their DSDiffMM counterpart are

removed as they are no longer present in pattern classes, like

in the Score.
Figure 8 illustrates a rule in the generated domain-specific

environment. The rule describes that a PacmanEatsFood
change occurs when Pacman is on a grid node, a food is

deleted from that same node, and the score is incremented.

4.3 From fine granular to domain-specific
differences

As outlined in Figure 4, we apply the domain-specific rules

to enhance the fine granular difference model Diff12 with
semantic differences. Given the difference model Diff12 pro-
duced as described in Section 3.3, we implemented an inplace

transformation that applies the rules on Diff12.
Inspired by inplace graph transformations [11], the algo-

rithm has a matching phase to find an occurrence of the

precondition of the rule and a rewriting phase to apply the

postcondition of the rule. In a domain-specific rule, the pre-

condition consists of the constraints of the rule and the struc-

ture formed by the pattern objects contained inside the rule

except for the DomainSpecificDiff object. The postcon-

dition of the rule is specified by the DomainSpecificDiff
instance and its diff_ associations (see lines 31–36 of Algo-

rithm 1), along with all filter attributes that are set to true
7
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Figure 9. The domain-specific difference for PacmanEats-

Food in the generated editor after applying the rules

in the pattern classes. For example, the PacmanEatsFood
rule in Figure 8 looks for a Pacman object and a deleted

DiffFood on the same grid node. It also requires that the

new value of DiffScore has increased. Then, it creates the
DomainSpecificDiff object named PacmanEatsFood and

hides the deleted DiffPositionableElement_on link asso-

ciated with DiffFood.
Thematching phase starts from the root element (e.g., Game

or DiffGame) and traverses the Diff12 model following the

pattern elements of the rule. Our implementation follows

a depth-first search strategy with backtracking. To slightly

optimize the traversal, DSDiffMM classes have priority over

MM classes. When a complete match of the pattern is found,

we evaluate the list of constraints. Once a pattern that satis-

fies the constraints is found, we apply the rewriting phase

according to the postcondition of the rule. The DomainSpeci-
ficDiff object is created in Diff12 with its diff_ associa-

tions. All objects marked as filtered in the pattern are re-

moved. Altogether, the resulting Diff12 model is semantically
lifted to show higher-level differences that are deemed im-

portant and meaningful to the DSL user. Applying the rule

on the abstract syntax of Diff12 automatically updates its

concrete syntax. Therefore, the final difference model is pro-

vided to the DSL user in a representation tailored for the

domain.

Figure 9 illustrates the final difference model provided by

our approach. It shows that Pacman has moved right and

eaten the food: an example where two rules have been ap-

plied. Altogether, compared to Figure 3, the DSL user can

inspect the domain-specific changes in an editor that resem-

bles the one he used to manipulate the original models M1
and M2.

As a current limitation, our rules do not support matching

a subclass of a pattern class: in DSDiffMM, the DiffScore
class inherits from the Score class. Furthermore, abstract

classes from MM, like PositionableElement, cannot be

used when specifying patterns. As this can be useful to de-

fine more general rules [10], we plan to provide support for

this feature in future work.

A rule may find more than one match in Diff12. However,
care should be taken since applying a rule may remove ele-

ments. In our implementation, we apply the rules iteratively

as long as matches are found. However, a rule is applied only

once to each match thanks to a temporary dirty flag. Most

of the time, there are more than one domain-specific rule

specified for a DSL. Our current implementation applies the

rules sequentially. As a limitation, if a rule filters an element

that is required in the precondition of another rule, the latter

will not find a match.

5 Evaluation and Discussion
In this section, we validate the approach with a non-trivial

visual DSL developed by a third party (the Arduino Designer)

and on existing versionedmodels, from theArduinoDesigner

repository on GitHub
2
. First, we describe the case study, and

then we present an evaluation aimed to answer these three

research questions (RQs):

RQ1 Can we extract semantic diffs from fine granular diffs?

RQ2 Are fine granular diffs more verbose than semantic

diffs?

RQ3 Are semantic diffs recurring?

5.1 Case study: Arduino Designer
Arduino Designer is an environment specially tailored to

young children, to create simple programs for Arduino
3
,

an open-source electronics platform based on easy-to-use

hardware and software. The Arduino Designer language is

a DSL built to model Arduino configurations and programs

graphically, based on Sirius. The DSL has two parts: one for

configuration of devices and another for sketching programs.

The configuration part contains primitives for placing hard-

ware devices on the appropriate pins of the Arduino board.

In Arduino, the code is placed and executed within a main

loop. The sketch part models the code within the loop. It is

a graphical programming language with arithmetic expres-

sions, loops, and conditional instructions.

Just like code, these models evolve in new versions. For

example, in the GitHub repository, we can find a history of

different models that underwent bug fixes, improvements,

and migrations to a new framework. Understanding com-

plex changes that have occurred from one version to another

may be hard for Arduino developers, especially if they are

children. Our approach can help these developers visualize

the changes in the same graphical language and environ-

ment they used for development. Furthermore, we report

the changes as semantic differences. For the sketch part, we

reuse known code refactoring patterns and model them as

2https://github.com/mbats/arduino/
3https://www.arduino.cc/
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semantic diff rules. The changes in the configuration part typ-

ically consist of adding or replacing devices in appropriate

pins of the board.

5.2 Domain-specific comparison of Arduino models
We have applied DSMCompare on different versions of Ar-

duino models available in the repository. The original meta-

model ArduinoMM consists of 36 classes, 33 associations,

and 17 attributes. The concrete syntax ArduinoCS assigns an
icon for every class and association. With DSMCompare, we

generated the difference metamodel ArduinoDiffMM with

96 classes, 137 associations, and 110 attributes. The rule

metamodel ArduinoRuleMM contains one more class and as-

sociation, with 219 attributes. The generated concrete syntax

definitions are of similar scale.

The Arduino GitHub repository includes 13 working ex-

ample projects. We applied DSMCompare on all projects;

Table 1 summarizes the results. Each model has between 2 to

6 versions in the repository. The commit message associated

with a version helped us to identify the purpose of the model

changes (shown in the Version one and Version two columns).

The fourth column (Fine Diffs) shows the total number

of class/association diff pairs found by DSMCompare. For

example, as the fifth row of the table shows, in the fadelight

project, when comparing the version While and the version

Sub instructions, DSMCompare reported 20 fine-granular

class differences and 22 association differences. The column

Semantic Diff shows the title of the semantic diff recognized

among the fine-granular diff, and column Ocurrences repre-
sents the number of occurrences of that semantic diff. Finally,

the last column shows the number of fine granular pairs of

class/association differences encapsulated in the correspond-

ing semantic diff.

As Figure 10 illustrates, DSMCompare reported two se-

mantic differences of “Refactor a while loop” type represent-
ing a while-loop refactoring in the fadelight project. The

first while-loop sets the device for a specific time in the on
state, and the second loop models the off state of a “Fade-
Light”. In addition to one class difference, each of the two

semantic diffs has also two diffs of associations. One of them

represents the “condition” of the while-loop, and the other a

link to the “next” instruction after the loop.

As expected, the fine granular Diff12 model represents

fewer changes since this corresponds to the changes output

by EMFCompare and converted into domain-specific diffs.

For example, the tigger.tail model adds a music player

module to a digital pin of the board and adds instructions to

turn it on and off at the beginning and at the end of the main

loop. In this case, the fine granular Diff12 model shows one

class and association removal and two of each added. This

change can be encapsulated in a domain-specific difference

rule “Add music player” which corresponds to the intention

of the change.

Figure 10. The domain-specific difference in Arduino de-

signer for fadelight project

The table also clearly shows that DSMCompare is able to

extract semantic diffs from fine granular diffs. Moreover, in

some cases, no DSRule matches in a comparison (e.g., morse-

code), whereas some differencing also result in reporting

more than one semantic diff (e.g., functions). DSMCompare

is also able to find the expected semantic diffs. For example, it

detected the “Refactor a while loop” semantic diff not only in

the fadelight project twice, but it also recognized the “Servo
Feature enabled” semantic diff in both the infraredsensor

and the servo projects. Most of the identified semantic dif-

ferences are additions to an already designed Arduino model

related to fixing errors. Any insertion of a device in the con-

figuration part also requires changes in the sketch part. In

fadelight, only the sketch part of the model is affected as

we are inserting a while-loop to turn the LED light on and

off gradually. Only the singleinput project involved a cor-

rection, where the devices plugged in the input and output

pins were inverted.

Overall, using a case study of a DSL built by a third party,

we can aswer RQ1 by stating that our approach can be used

to extract semantic diffs from fine granular ones. Regard-

ing RQ2, these semantic diffs use concepts of the domain

and are typically much more succinct than the final gran-

ular ones, as in 10 out of the 17 cases, semantic diffs are

one order of magnitude smaller (while providing domain-

specific visualization capabilities). Finally, regardingRQ3, as
column semantic diff shows, we were able to build a library

of diff rules to capture recurring semantic changes, like the

refactoring of loops, or refactorings to a conditional.

9
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Table 1. Comparison of model versions in the Arduino Designer examples repository

Project Version one Version two Fine Diffs Semantic Diff Occurrences Semantic Fine Diffs
Class/Association Class/Association

/alarmlight

Initialize Migrate alarmlight example to sirius 41/16 Refactor a Repeat Loop 3 1/1

Repeat Fix Generation For AlarmLight Example 52/8

Increase Repeat iteration 2 1/0

Refactor a Repeat Loop 1 1/1

Delete a Repeat Loop 1 1/1

/fadelight
While Sub instructions 20/22 Refactor a While Loop 2 1/2

Fadelight example Migrate alarmlight example to sirius 5/3 Incomplete While Loop Deleted 1 1/1

/functions Initialize Add functions example 39/24

Add a function 1 1/0

Function Call 2 1/1

/infraredsensor Initialize Add servo 15/2

Servo Feature enabled 1 2/3

Support infrared connections 1 1/2

/morsecode Morse code Migrate morsecode example to sirius 2/0 – - -/-

/reset Initialize Add reset example 6/0 Reset functionality enabled 1 1/2

/rotationsensor Initialize While 6/0 – - -/-

/servo Initialize Migrate morsecode example to sirius 14/2

Servo Feature enabled 1 2/3

Support infrared connections 1 1/2

/simpleinput simpleinput Simple input example 3/0 – - -/-

/tigger.all Add Tigger example Update the tigger example 99/36

Refactor a Repeat Loop 1 1/1

Refactor to an if condition 1 1/2

/tigger.bubble
Initialize Add tigger bubble example 41/14

Refactor to an if condition 1 1/2

Refactor a Repeat Loop 1 1/1

Refactor a Bubble machine 1 9/9

Add tigger bubble example Fix issue on bubble example 2/0 – - -/-

/tigger.necklace Initialize Add tigger necklace example 36/15

Refactor to an if condition 1 1/2

Refactor a Repeat Loop 1 1/1

A cat necklace added 1 9/9

/tigger.tail
Initialize Update cat tail example to Add miaou sound 13/1

Refactor to an if condition 1 1/2

Add music player 1 3/2

Add Tigger tail example Update tail example 2/2 – - -/-

5.3 Discussion and threats to validity
Both Pacman and Arduino projects are examples where pro-

viding the differences between two model versions is of

tremendous value to the DSL user. Without DSMCompare,

differencing reports many changes at the abstract syntax

level. This is particularly peculiar for the Arduino models

where the users are young developers with no notion of

object-orientation embedded in the abstract syntax. Showing

differences using the hardware notations and code sketches

can certainly improve their comprehension of the changes

and, ultimately, their productivity. We plan to validate this

claim with a controlled experiment observing DSL users

using DSMCompare or not.

Apart from providing the differences in concrete syn-

tax, the efficiency of our approach depends on the domain-

specific rules provided. Typically, these rules come from the

operational semantics of the DSL (as in Pacman) or from

known refactoring patterns in the DSL: e.g., code-level, like

the sketch in Arduino, class-level, like in object-oriented

models (EcoreTools
4
), or model-level, like in feature mod-

els [37].

Regarding threats to validity, we were able to use DSM-

Compare on a DSL built by a third party. However, the use

of other case studies is required for a stronger validation

of our approach. Similarly, the models we analyzed are of

moderate size. The models in each project are of similar size:

around 38 class instance (objects) and instances of associa-

tions (references). GitHub reports the textual differences of

the serialized model in XMI. We plan to use our approach

4https://www.eclipse.org/ecoretools/

with larger models in future work to assess the scalability of

DSMCompare.

6 Related Work
This section reviews relatedworks onmodel differencing (see

also [34] for a survey on model comparison approaches and

applications). Model differencing involves calculation of the

matching model elements, representation of their differences,

and visualization of the differences. Hence, we structure this

section paying attention to these three aspects.

Model matching calculation. Kolovos et al. [19] survey
current approaches for model matching. These can be: static
identity-based, which assume a unique identifier for objects;

signature-based, which compare objects based on a dynamic

signature calculated from the objects’ properties; similarity-
based, whichmatch objects based on the aggregatedweighted

similarity of their properties, but obviates the model seman-

tics; and language-specific, developed ad-hoc for a modeling

language and its semantics. For example, using signifiers [21]
(i.e., combinations of features of a metamodel class) as com-

parison criteria falls in the signature-based category, EM-

FCompare is similarity-based but permits defining custom

matching algorithms, and UMLDiff is language-specific. In

general, each solution is better fit for certain kinds of prob-

lems: a language-specific matching algorithm may be faster

and more accurate than a generic algorithm, but its imple-

mentation requires more effort.

Maoz et al. [24] argue that existing model differencing ap-

proaches are purely syntactic and challenge the community

to develop semantic diff operators. These calculate a set of

diff witnesses that give a proof of the real change between

10
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two models and the effect on their semantics. Two models

may be syntactically different but have no diff witnesses,

meaning that they are semantically equivalent. For example,

a diff witness of two class diagrams would be an object di-

agram that is an instance of one of the class diagrams but

not of the other, while for activity diagrams, it would be

an execution trace admitted by only one of the diagrams.

Diff witnesses also allow deciding whether the semantics

of two versions of a model are equivalent, incomparable, or

one refines the other. This approach was later realized in

the Diffuse framework [23]. Extending our approach to deal

with model diffs concerned with the instantiability or exe-

cutability of models as comparison criteria is left for future

work.

Representation of model differences. Cicchetti et al. [8]
propose an approach to represent model differences that is

metamodel independent and agnostic of the difference calcu-

lation method. Specifically, given two models conforming to

the same metamodel, their difference is expressed as another

model that conforms to a new metamodel. This new meta-

model is derived from the original one by a transformation,

and allows representing model changes (additions, deletions,

and changes). Such difference models induce transforma-

tions to translate from one model version to the other and

can be composed. While this approach to represent model

differences is similar to our proposal, it only works at the

abstract syntax level, whereas we also deal with the concrete

syntax and support domain-specific patterns to visualize the

model differences.

Our approach extends the metamodel of the DSL to repre-

sent rules for domain-specific model differences. A related

technique is the ramification of metamodels for domain-

specific model transformations [20]. Graph transformation

rule patterns are expressed in a domain-specific way. The

metamodel of the patterns is generated by transforming the

metamodel of the input/output DSLs: relaxing cardinalities,

adding transformation-specific attributes and other concepts,

and modifying attribute types.

Since low-level differences returned by generic compari-

son tools may be incomprehensible, Kehrer et al. [16] per-

form a semantic lifting of such differences to the level of

editing operations. For this purpose, low-level differences

are represented as models, so that the identification of edit-

ing operations consists of finding groups of related low-level

changes. This search is performed by rules that are auto-

matically derived from the rule-based specification of the

editing operations. Hence, the notion of semantic lifting is

similar to our rules for expressing domain-specific differ-

ences. However, semantic lifting only deals with the abstract

syntax of models, whereas we consider the concrete syn-

tax as well. Similar to semantic lifting, approaches such as

[13, 39] identify complex change patterns from low-level

changes involved in a metamodel evolution. Although these

patterns resemble the rules in our approach, they are generic

and predefined. In contrast, our approach allows the DSL

engineer to define the domain specific rules.

Visualization ofmodel differences. Gleicher [14] provides
general guidelines for visualizing comparisons. For many

different domains, comparing artifacts is a common task

and visualizing the comparison often helps. Generally, vi-

sual comparison is displayed using juxtaposition (e.g., as

EMFCompare does in Figure 3), superposition, or explicit

encoding (like we do in Figure 9).

Brosch et al. [5] visualize the changes and conflicts in con-

currently evolved versions of the same UML model using

UML profiles (stereotypes and tagged values). This permits

modelers to resolve the conflicts within the UML editor of

their choice while using the concrete syntax of the manip-

ulated language. However, this approach is only suitable

for UML models whereas we pursue a general approach for

arbitrary domain-specific languages.

More similar to our work, the authors in [30] focus on the

visualization of diagram differences on the diagrams them-

selves. The rationale is helping users to understand the modi-

fications immediately. Their proposed visualization includes

pop-ups reporting the changes performed in the neighbor-

hood, zooming to changes, collapsing irrelevant parts, and

using different colors to represent additions (green), dele-

tions (red) and changes (blue), either in a single diagram or

confronting two diagram versions. They have developed a

tool that uses EMFCompare for model comparison, as we do.

However, their tool only permits visualizing atomic changes,

represented by different colors. Instead, we support both

fine-grained and coarse-grained domain-specific patterns of

change. Furthermore, the visualization associated with each

pattern is highly configurable. Other works, such as [25, 28],

only permit showing changes using different colors or shape

styles.

A few works deal with the scalable visualization of differ-

ences in case of large models. To solve this problem, van den

Brand et al. [38] combine a generic visualization framework

for metamodel-based languages to show the fine-grained

differences, with polymetric views that provide support for

zooming and filtering. Wenzel [41] also relies on polymetric

views to support scalable visualization of differences based

on model metrics. Both works are complementary to ours:

whereas we provide domain-specificity to the visualization,

these other works add a general visualization layer on top.

Altogether, to the best of our knowledge, ours is the first

comprehensive approach that handles both fine-grained and

coarse-grained, domain-specific model differences both at

the abstract and concrete syntax levels. Moreover, our ap-

proach supports the visualization of changes on an auto-

matically modified editor that reuses the graphical concrete

syntax of the DSL.
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7 Conclusion
In this paper, we have presented a comprehensive approach

to represent domain-specific model diffs at the abstract and

concrete syntax levels. The approach is based on the au-

tomated modification of the DSL metamodel to represent

fine-granular diffs, on the specification of rules to model

recurring changes (based on an automatically generated edi-

tor), and on the graphical representation of changes using

the DSL syntax (by automatically modifying the DSL con-

crete syntax specification). We have realized our approach

within the Eclipse Modeling Framework with Sirius. We have

shown the practicality of our approach to represent changes

of Arduino Designer models.

In the future, we plan to improve the expressiveness of our

pattern rules, e.g., adding negative application conditions,

and support for abstract objects. We are also considering

extending the approach to capture changes between more

than two models. We also plan to incorporate our approach

within model repositories, like MDEForge [2], or version

control systems for code, like GitHub. Finally, we will also

conduct a user study to check the usability and utility of the

approach.
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