
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

An example is worth a thousand words: Creating graphical modelling
environments by example

Jesús J. López-Fernández?, Antonio Garmendia, Esther Guerra, Juan de Lara

Universidad Autónoma de Madrid (Spain),
e-mail: {Jesusj.Lopez, Antonio.Garmendia, Esther.Guerra, Juan.deLara}@uam.es

Received: date / Revised version: date

Abstract Domain-Specific Languages (DSLs) are
heavily used in model-driven and end-user development
approaches. Compared to general-purpose languages,
DSLs present numerous benefits like powerful domain-
specific primitives, an intuitive syntax for domain ex-
perts, and the possibility of advanced code generation for
narrow domains. While a graphical syntax is sometimes
desired for a DSL, constructing graphical modelling
environments is a costly and highly technical task. This
relegates domain experts to a rather passive role in their
development and hinders a wider adoption of graphical
DSLs.

Our aim is achieving a simpler DSL construction pro-
cess where domain experts can contribute actively. For
this purpose, we propose an example-based technique
for the automatic generation of modelling environments
for graphical DSLs. This way, starting from examples of
the DSL likely provided by domain experts using draw-
ing tools like yED, our system synthesizes a graphical
modelling environment that mimics the syntax of the
provided examples. This includes a meta-model for the
abstract syntax of the DSL, and a graphical concrete
syntax supporting spatial relationships like containment
and adjacency. Our system, called metaBUP, is imple-
mented as an Eclipse plugin. In this paper, we demon-
strate its usage on a running example in the home net-
working domain, and evaluate its suitability for the con-
struction of graphical modelling environments by means
of a user study.

Key words Domain-Specific Modelling Languages,
Graphical Modelling Environments, Example-Based
Meta-Modelling, Flexible Modelling.

Send offprint requests to:
? Present address: Computer Science Department, Univer-

sidad Autónoma de Madrid, 28049 Madrid (Spain)

1 Introduction

Model-Driven Engineering (MDE) is founded on the use
of models to describe the systems to be built. Often,
these models are defined using Domain-Specific Lan-
guages (DSLs) that provide high-level primitives tailored
to a particular field [19]. Hence, MDE projects frequently
need to create DSLs and their associated modelling envi-
ronments. DSLs are also heavily used in end-user devel-
opment approaches [28] in order to allow users with no
or little computer science background to perform small
programming tasks in particular domains using DSLs.

The concrete syntax of a DSL may be graphical
or textual, though in this paper we focus on graphical
DSLs [26]. Many tools have emerged along the years to
build environments for graphical DSLs [10,15–17,26,32,
40,48]. However, building such environments remains a
technical, complex and time-consuming task. For exam-
ple, developing a graphical editor with Graphiti [15] re-
quires manual programming based on a large Java API.
In the case of GMF [16] and Sirius [48], it is neces-
sary to describe the different aspects of the editor by
building one or more models, which may become very
detailed, large and hard to build and maintain for non-
experts, and which frequently must be constructed using
unhandy tree-based editors.

Apart from the technical difficulties, a salient issue
with most graphical language workbenches is the need to
construct a meta-model upfront, and to describe the fea-
tures of the concrete syntax and the modelling environ-
ment using a technical language or notation in a second
stage. This approach hinders the active participation of
domain experts in the DSL construction process, who
might find it easier to work with examples rather than
with meta-models [3,14,34] and might lack the technical
knowledge to define complex environment specifications.
However, the active involvement of domain experts is
crucial for the success of the DSL to be built, as other-
wise, they may reject the resulting DSL [14,25].

To avoid these obstacles, we propose a novel tech-
nique for the automatic generation of graphical mod-
elling environments starting from examples of the DSL.
Hence, instead of building a meta-model first and de-
scribing its concrete syntax at the meta-model level, our
proposal is to collect graphical examples built by do-
main experts using drawing tools like PowerPoint, Dia
or yED. Our framework processes the provided examples
to derive a meta-model by using the bottom-up tech-
niques presented in [34], and it also extracts a description
of the graphical concrete syntax that includes graphical
forms for classes (svg files), edge styles, and spatial re-
lationships like containment or adjacency. This informa-
tion is used to synthesize a graphical modelling environ-
ment that mimics the graphical syntax used in the ex-
amples, and in addition, it enforces the well-formedness
rules of the DSL and enables the creation of models
(in contrast to drawings) that can be manipulated us-
ing MDE technology (e.g., model transformations and
code generators). As a result, a graphical DSL environ-
ment is generated with no need to code or create com-
plex technical specifications, hence, giving rise to the
motto of the paper title “an example is worth a thou-
sand words”. Our proposal is backed by a working pro-
totype, called metaBUP, available as an Eclipse plugin at
http://miso.es/tools/metaBUP.html.

This is an extended version of our previous paper [35]
with the following contributions. Prominently, we have
performed a user study where eleven participants, play-
ing the role of domain experts, have used our tool to
develop a graphical modelling environment from exam-
ples. From the obtained results, we outline some lessons
learnt, best practices and common pitfalls. In addition,
we now provide a more detailed description of the ap-
proach to extract the concrete syntax from examples,
and give heuristics to handle overlapping or conflict-
ing spatial relationships coming from different examples.
The comparison with related works has also been im-
proved to make it more systematic, and grounded on the
basis of the running example. Finally, we have added a
section with a gallery of DSL examples and a discussion
of capabilities and limitations of the approach.

The remainder of this paper is organised as follows.
First, Section 2 presents an overview of our approach and
a running example. Then, Section 3 introduces example-
based meta-modelling, and Section 4 shows our approach
to extract concrete syntax information from graphical
examples. Section 5 describes the synthesis of graphical
modelling environments from the extracted information.
Section 6 presents our tool support. Next, Section 7 dis-
cusses the results of our user study. Section 8 presents a
gallery of DSL examples, and discusses the kinds of lan-
guage our method is suitable for. Finally, Section 9 com-
pares our approach with related research, and Section 10
draws some conclusions and lines of future work. The ap-
pendices contain the documents and questionnaires used

in our user study, and detail the effort spent by the mod-
elling expert.

2 Overview and running example

Our approach permits the automatic generation of
graphical modelling environments from examples (i.e.,
from drawings made with informal diagramming tools).
This includes the automatic derivation of the abstract
and concrete syntax of the targeted DSL, as Figure 1
shows. While the process is fully automated, some in-
tervention is allowed, e.g., to customise the names of the
extracted relations, or to supervise meta-model refactor-
ings. We term our approach “what you draw is what you
get” (WYDIWYG), as the resulting environment mim-
ics the provided examples. However, one obtains all the
advantages of a modelling environment, like type check-
ing, constraint evaluation, and the possibility to apply
model transformations or code generators to the created
models.

Automatic derivation

• Abstract syntax (meta-model)

• Concrete syntax (including

spatial relationships)

Modelling tool

• Eclipse

• EMF

• Sirius

Informal
drawing tool

• yED

Fig. 1: From examples to modelling environments.

Figure 2 shows a more detailed view of the process
for our example-based generation of graphical modelling
environments. It involves two roles: the Domain expert,
and the Modelling expert. The former has knowledge in
the domain where the DSL is to be built, and is respon-
sible for providing graphical examples and ultimately
validating the generated environment. In this way, do-
main experts provide domain knowledge for the DSL by
means of examples instead of working at the meta-model
level, which could be challenging for them as they may
lack the necessary computer science background. They
can define the examples using publicly available drawing
tools (e.g., yED), and may require discussing to identify
good examples. We currently do not provide support for
monitoring such discussions, helping with the selection
of suitable domain type names and icons, or deciding
the slots each object in the examples should have. On
the other hand, the modelling expert has experience in
modelling and meta-modelling, and on the specific MDE
platform being used to create the DSL. Moreover, the
task of this role is monitoring the meta-model deriva-
tion process from which the desired DSL environment is
derived.

2

Draw
fragment

Parse
fragment

Revise and
annotate
fragment

Export
meta-model

DSL editor
generation

Editor
validation

Update meta-
model according

to revised
fragment

Domain

expert

Modelling

expert

Automatic

activity

1

2
3

4

5

6

7

fragment

textual

model

annotated

model

current meta-model

(with concrete syntax

information)

meta-model

modelling

environment

Ecore

meta-model

Optional

activity

missing

reqs.

Concrete

syntax model

Fig. 2: Example-based process for developing graphical DSLs.

The core part of our process (steps 1-4 in Figure 2) is
iterative. Here, the domain expert provides input exam-
ples made with tools like yED, portraying how models
should look like graphically (label 1). These examples
may represent complete models, or they may focus on an
aspect of interest and therefore be partial, in which case
we call them fragments. Then, the examples are auto-
matically parsed into models conforming to our own in-
ternal meta-model, which are more amenable to manip-
ulation (label 2). These models are represented textually
and declare the existing objects, attributes and relations
in the examples. Moreover, they are enriched with an-
notations that make explicit information regarding the
graphical rendering of the elements in the examples (e.g.,
spatial relationships between objects or line styles). The
modelling expert can optionally edit this textual repre-
sentation (label 3) to set more appropriate names to the
derived relations, or to trigger refactorings in the meta-
model derivation process that takes place next (label 4).
In this automatic derivation process, the meta-model is
updated so that it accepts the provided example. More-
over, the meta-model elements become automatically an-
notated with the concrete syntax information (i.e., icons,
edge styles, spatial relationships) extracted from the ex-
amples. This way, an iteration step finishes when the
meta-model under construction evolves to accept the re-
vised fragment. This process can be repeated with new
fragments, which would update the previously derived
meta-model accordingly.

After the system processes all provided examples, the
modelling expert can export the derived meta-model to a
suitable format. In our current implementation, we gen-
erate an Ecore [54] meta-model for the abstract syntax,
and the concrete syntax information is exported in the
form of a model that annotates the Ecore meta-model
(label 5). Then, the editor generator can be invoked to
obtain a fully operating editor that mimics the concrete
syntax of the examples (label 6). Moreover, the exam-
ples are migrated into models and can be edited and
visualized in the generated editor. The domain expert

can validate the editor (label 7), likely based on the
converted examples, requirement documents, or using
languages tailored to the validation and verification of
meta-models and DSLs [36,37]. If necessary, the domain
expert can refine the DSL by providing further examples
and re-generating the editor.

2.1 Running example

As a running example to illustrate our approach, we will
develop a DSL in the home networking domain. The
DSL is inspired by one of the case studies in the Sirius
gallery1. In this DSL, we would like to represent the cus-
tomer data held by internet service providers (ISPs), the
possible configurations of home networks, and their con-
nection with the ISP infrastructure. Customer homes are
connected via cable modems to the ISP network. Typi-
cally, each home has a (normally WiFi-enabled) router to
which the landline phone is connected, and with a num-
ber of Ethernet cable ports. WiFi networks are password
protected and work in a frequency range. Moreover, each
home may have both cabled devices (e.g., PCs, print-
ers or laptops) and wireless devices (e.g., smartphones,
tablets or laptops).

Using our approach, domain experts provide example
fragments that illustrate interesting network configura-
tions and depict the desired graphical representation for
them. As an example, Figure 3 shows one fragment built
with yED2, representing the connection between some
customer homes and the ISP through cable modems. The
elements in the drawing define some properties, like the
ipBase of cable modems, the name of the home owner,
the tier and location of the ISP network, and the name of
the ISP. The legend to the right assigns a name to every
picture used in the drawing.

1 https://eclipse.org/sirius/gallery.html
2 https://www.yworks.com/products/yed

3

Fig. 3: Fragment showing a connection between customer homes and an ISP.

3 Example-based meta-modelling

In [34], we introduced a bottom-up meta-modelling tech-
nique that enables the automatic derivation of a meta-
model starting from sketches3 built using drawing tools.
The main idea is to start at the object level (sketches)
instead of at the class level (meta-models). The ra-
tionale is two-fold. On the one hand, domain experts
with little or no background on computer science might
find it more familiar working with examples than with
generalizations. This is so as, in daily life, people are
confronted with exemplars (of animals, houses...), while
meta-models contain universals, i.e., abstract general-
izations of concrete examples. On the other hand, mod-
elling tools can be too rigid for domain experts, who
might prefer the freedom of drawing tools and use the
graphical notation most intuitive to them. Hence, do-
main experts keep working at the object level by sketch-
ing examples, and our tool generalizes these examples
into a meta-model.

The meta-model derivation process starts by parsing
the provided sketch or fragment into a textual internal
representation that is easier to manipulate by the mod-
elling expert. The type of the parsed objects is obtained
from a legend that assigns a name to each symbol in
the fragment, as shown in Figure 3. Fragments have an
open-world semantics, in the sense that they only convey
the relevant information for the given scenario, and thus,
they may omit additional information that will be given
in further fragments (e.g., they may miss attributes or
relations). As explained in Section 2, examples are a spe-
cial kind of fragments used to represent complete models,
and they have a closed-world semantics as they need to
be correct when evaluated as full-fledged models.

For instance, Listing 1 shows the textual represen-
tation model automatically obtained from parsing the
fragment in Figure 3. Every object (e.g., h1 in line 2) re-

3 We call these examples sketches to distinguish them from
models conformant to a meta-model, though they are not
hand-drawn but made with diagramming tools.

ceives a type as indicated in the legend (e.g., Home), and
may contain slots (e.g., name in line 3) and links (e.g.,
modem in line 6) according to the original fragment. The
fact that this is a fragment (in opposition to an example)
is indicated with the keyword fragment in line 1.

1 fragment fragment1 {
2 h1 : Home {
3 attr name = ”Elliott Smith”
4 @overlapping
5 @composition
6 ref modem = cm3
7 }
8 isp1 : InternetServiceProvider {
9 attr name = ”lemon”

10 ref infrastructure = ispn1, ispn2
11 }
12 h2 : Home {
13 attr name = ”Damien Jurado”
14 @overlapping
15 @composition
16 ref modem = cm2
17 }
18 h3 : Home {
19 attr name = ”Laura Marling”
20 @overlapping
21 @composition
22 ref modem = cm1
23 }
24 cm1 : CableModem {
25 attr ipBase = ”251.12.211.6”
26 ref isp = ispn1
27 }
28 cm2 : CableModem {
29 attr ipBase = ”251.12.210.56”
30 ref isp = ispn1
31 }
32 cm3 : CableModem {
33 attr ipBase = ”251.12.210.48”
34 ref isp = ispn2
35 }
36 ispn1 : ISPNetwork {
37 attr tier = 3
38 attr location = ”MAD”
39 }
40 ispn2 : ISPNetwork {
41 attr tier = 3
42 attr location = ”BCN”
43 }
44 }

Listing 1: Textual representation of the fragment in Figure 3.

4

The modelling expert can revise the textual fragment
to annotate its objects, slots and links. The annotations
can provide design or domain information accounting for
well-formedness constraints of the DSL (see [34]), or they
can convey concrete syntax details. In addition, the frag-
ment importer automatically adds some concrete syntax
annotations documenting the link styles and spatial rela-
tionships between the objects in the graphical fragment.
Node icons or shapes do not need to be recorded in an-
notations as they are already provided by the legend.

As an example, the importer added the annotation
@overlapping in lines 4, 14 and 20 of Listing 1. They an-
notate the modem references declared by three Home ob-
jects in lines 6, 16 and 22, respectively. In this way, these
annotations convey the fact that Home and CableModem

objects overlap each other. We will detail the use of this
kind of annotations in Section 4. In [34], we reported on
another use of annotations, as a means to encode meta-
model integrity constraints. This is the case of the @com-

position annotation in lines 5, 15 and 21. As we will see
in Section 4, these @composition annotations were heuris-
tically added due to the existence of overlapping.

Textual fragments contain directed links, which are
translated into directed references in the meta-model (in
contrast to associations). The direction of the link is
taken from the direction of the graphical edge in the
fragment, or from the spatial relationships using some
heuristics that are described in Section 4. In any case,
a link can be set to result in a bidirectional association
(i.e., two opposite references) in the meta-model, by an-
notating it with @bidirectional [34].

Once the modelling expert has revised the textual
fragment, this is automatically processed to derive an
appropriate meta-model that “accepts” the fragment, or
to evolve a previous version of the meta-model if it al-
ready exists. For example, if a fragment contains objects
of an unknown type, this type is incorporated into the
meta-model. Similarly, if an object assigns a value to fea-
tures that are not present in its type, then its meta-class
is extended with these new features.

Figure 4 shows the meta-model derived from the frag-
ment in Listing 1. As this is the first fragment, the meta-
model was initially empty, and so, four new classes are
added, each containing the necessary attributes for the
slots in the class’ objects. We use simple heuristics to as-
sign a type to primitive attributes, like setting the type
to int when all slots within a fragment are compatible
with that type (e.g., tier in the example). If a subsequent
fragment invalidates such an assumption, then the type
will be changed to String. We natively support numeric
(int and float), String and boolean data types. Regard-
ing the cardinality of references, the modelling expert
can configure their default lower bound (0 or the min-
imum in the fragment) and upper bound (unbounded
or the maximum in the fragment). In this example, the
default value for the lower and upper bounds is 0 and
unbounded, respectively. Hence, references will be as-

signed an upper bound * as soon as an object points
to two or more objects using edges with the same style
(e.g., infrastructure), or 1 if it points to at most 1 ob-
ject (e.g., modem). Moreover, if two references have the
same name, stem from objects with the same or a com-
patible type, and point to objects of different type, our
algorithm creates an abstract superclass as target of the
reference type, with a subclass for the type of each tar-
get object. Finally, domain and concrete syntax anno-
tations are transferred from the fragment to the appro-
priate meta-model element (e.g., @overlapping). For clar-
ity, in this and the following figures containing meta-
models, we represent the @composition annotation using
the standard black-diamond notation (see, e.g., reference
modem).

Home

name : String

CableModem

InternetService

Provider
name : String

0..1
infrastructure *

ISPNetwork

tier : int
location : String

isp
ipBase : String

modem 0..1

@overlapping

Fig. 4: Meta-model derived from the fragment in Listing 1.

The system is equipped with an assistant that may
recommend refactorings to improve the quality of the
meta-model that results from processing each fragment.
The catalogue of available refactorings is extensible. As
an example, if two classes have similarities (common at-
tributes or references pointing to the same class) the sys-
tem suggests applying the extract superclass refactoring,
to factor out the common information [34].

Our technique is incremental, as new examples and
fragments can be provided to make the meta-model
evolve. Moreover, it fosters the active participation of do-
main experts in the meta-model construction process, as
they can contribute with sketched fragments which are
no longer passive documentation, but they are used to
derive a meta-model. Up to now, our technique had been
only able to derive the abstract syntax of the DSL [34].
In the following, we elaborate on the main contribution
of this paper, which is the extension of our approach to
derive a concrete syntax for the DSL (Section 4) and to
synthesize a graphical modelling environment that em-
ulates the syntax of the fragments (Section 5). We also
provide an evaluation of this contribution in Section 7.

4 Example-based concrete syntax inference

We take advantage from the graphical information al-
ready encoded in fragments for both minimising the job
of the modelling expert and deriving a concrete syntax
close to the domain expert’s conception.

5

StyleElement

color : String

width : Integer

Node

name : String

height : Integer

transparent : Boolean

fileLocation : String

x, y : Integer

Edge

lineType : LineType

srcDecoration : ArrowType

tarDecoration : ArrowType

Relation

SpatialRelation

Containment Overlapping Adjacency

fragment: metamodel:

@style

object

@style

metaclass

fragment: metamodel:

@containment

@overlapping

@adjacency

link

@containment

@overlapping

@adjacency

reference

fragment: metamodel:

@style

link

@style

reference

<<enum>>

Position
top

bottom

right

left

side alignment 0..* 0..*

Fig. 5: Graphical properties inferable from fragments, and corresponding annotations.

Figure 5 shows a conceptual model with the graphical
properties that we automatically extract from fragments
and use to derive the concrete syntax of the DSL. Some
are explicit features from the elements in the drawing,
like their colour or size. Other properties are implicit re-
lationships concerning the relative position of icons, like
overlapping or adjacency. Both kinds of graphical prop-
erties are encoded as annotations of the corresponding
objects and links in the textual representation of the
fragment. Then, these annotations are transferred to the
appropriate domain meta-model classes and references
when the fragment is processed. Figure 5 also shows the
correspondence between the graphical properties and the
elements they can annotate.

In the remainder of this section, we explain how we
extract and manipulate this graphical information.

4.1 Detection of icons and line styles

We retrieve each icon employed in the provided frag-
ments, since this is the most relevant aspect of the ap-
pearance that the domain expert expects from the final
DSL. Since the drawing tools we work with demand the
definition and usage of palettes with all available icons,
technically, we provide a directory where we store a copy
of the files containing the icons in the palette. These files
are employed both in the serialization of fragments and
in the generation of the concrete syntax, and are named
according to the icon they contain. For instance, Fig-
ure 6 shows to the right the legend folder that contains
the svg files used to represent each domain object in the
fragment to its left. The file names (Home, CableModem,
etc.) will be used as type names for the objects repre-
sented using the icons in the fragment.

Regarding edges, we detect and classify their style,
recording their colour, line width, style (e.g., dotted,
dashed) and source and target decorations. Other types

of decorations, like labels or decorators in the middle of
the edge, are not supported.

As an example, Figure 6 contains an edge linking
a Router and a Cable modem. When the fragment is im-
ported, the link is annotated with the identified style
(lines 27–29 in Listing 2), and its name is made of the
concatenation of the graphical features of the style. For
instance, the name inferred for the link is not modem,
but the one struck through (see lines 30–31 in Listing 2).
Because the text fragments can be edited, the modelling
expert has replaced the inferred name with one closer
to the domain. What is interesting about this operation
is that, from this moment on, each time a link with the
same style between a router and a cable modem is im-
ported, it will be automatically named modem. If the
modelling expert renames the reference in the future, he
will be offered two options: either to replace the previ-
ous name modem with the new one, or creating a new
reference in class Router which would coexist with the
existing reference modem.

By taking the edge style as a source of information,
two links between the same two objects will have the
same type if their style coincides, and a different type if
their style is different. This avoids symbol overload for
link types [41]. Nonetheless, the modelling expert can
deactivate this functionality if the edge style is irrelevant
for the domain. In such a case, any link between the same
two objects will be assigned the same type, and it will
be named using the type of the link’s target object in
lowercase (cablemodem in case of the link in line 31).

Any graphical information annotation on a link will
be transferred to the corresponding meta-model refer-
ence, and eventually, to the concrete syntax generator.
Meta-classes, on the other hand, never carry graphical
information with them, since we store their exact repre-
sentation (their icon) in the legend folder.

6

Fig. 6: Fragment with spatial features (left). Content of the legend folder (right).

1 fragment fragment2 {
2 home1 : Home {
3 attr phoneNo = 5550225
4 attr name = ”Phil Ochs”
5

6 @overlapping
7 @composition
8 ref modem = cableModem1
9

10 @containment
11 @composition
12 ref electronicDevices = router1
13

14 @containment
15 @composition
16 ref phones = fixedPhone1
17

18 @containment
19 @composition
20 ref wifiNetworks = wifiNetwork1
21 }
22 router1 : Router {
23 @composition
24 @adjacency(side = bottom)
25 ref ports = port1, port2
26

27 @style (color = ”#000000”, width = 3,
28 line = dashed, source = none,
29 target = crows−foot−many)
30 ref ’00000 3 dashed none crows−foot−many’
31 modem = cableModem1
32 }
33 fixedPhone1 : FixedPhone { }
34 wifiNetwork1 : WifiNetwork {
35 attr name = ”myWifi”
36 attr password = ”myPw”
37 }
38 port1 : Port { attr portNo = 2 }
39 port2 : Port { attr portNo = 1 }
40 cableModem1 : CableModem {
41 attr ipBase = ”251.12.211.16”
42 }
43 }

Listing 2: Textual representation of the fragment in Figure 6.

4.2 Detection of spatial relationships

Sometimes, spatial relationships between graphical ob-
jects have a meaning in the domain [52], which needs to
be reflected in the meta-model. However, it is likely that
the domain expert is unaware of whether a certain lay-
out implies some requirement for the domain. For this
reason, we automatically detect spatial relationships in

fragments, and let the modelling expert discard them
by editing the textual fragments. By keeping them, they
will be reified in the meta-model as references. We cur-
rently identify and give support to three kinds of spatial
relationships:

– Containment: a graphical object is within the bounds
of another object.

– Adjacency: two graphical objects are joined or very
close. The maximum distance with which adjacency
is to be considered is user-defined (0 by default). Two
optional properties are likewise detected: the sides
from which objects are attached to each other (e.g.,
two objects adjacent left-to-right), and if in addition
they are aligned and how (e.g., at the bottom).

– Overlapping: two graphical objects are superimposed
but not contained.

When we detect one of these spatial relationships, we
represent it explicitly as a reference in the meta-model.
In the case of containment, the reference is added to the
container and points to the containee. For adjacency and
overlapping, we use the following heuristic: if an object
o overlaps or is adjacent to more than one object of the
same kind, the reference stems from o’s class; otherwise,
the reference stems from the class of the bigger object,
and if all objects have the same size, there is the possi-
bility to make the reference bidirectional. The rationale
is that, frequently, the different parts of bigger objects
are represented as smaller affixed elements (e.g., a com-
ponent with affixed ports).

The fragment in Figure 6 illustrates the three kinds of
spatial relationships, which are automatically detected
when the fragment is imported (see Listing 2). In the
fragment, the Home contains a Router, a Fixed phone and
a Wifi network; hence, in the textual representation, the
Home object has three links annotated as @containment

(lines 12, 16 and 20). The Home overlaps with a Cable

modem in the fragment; hence, a new link annotated as
@overlapping in the textual representation (line 8) is cre-
ated from the node with the bigger icon (the Home), to

7

Router

Port

portNo: int

ports *

WifiNetwork

name: String
password: String

Home

FixedPhone

name: String
phoneNo: int

modem electronicDevices 0..1 0..1
modem

0..1

phones wifiNetworks

CableModem

ipBase : String

@overlapping @containment

@adjacency

(side = bottom)
@style

0..1 0..1

InternetService

Provider
name : String

0..1
infrastructure *

ISPNetwork

tier : int
location : String

isp

Fig. 7: Updated meta-model after processing the fragments of Listings 1 and 2.

the smaller one (the Cable modem). Finally, the Router

has two adjacent Ports to the bottom side in the frag-
ment; since there are multiple ports, the Router is added
a link annotated as @adjacency in the textual represen-
tation (line 25). The side parameter of this annotation
indicates the side where the adjacency occurs (at the
bottom of the router), but it can be removed if this is
irrelevant to the domain.

In addition to creating explicit links for the de-
tected spatial relationships, our importer heuristically
adds @composition annotations to the created links (see
lines 7, 11, 15, 19 and 23 in Listing 2). This helps in
organizing and realising only a minimal but sufficient
set of meta-model references, in the sense that it suf-
fices to capture all inferred spatial relationships. For ex-
ample, both Ports in the fragment are contained in the
Home, but this relation is not made explicit in the tex-
tual representation because they are already adjacent to
the Router, which is inside the Home. Hence, the importer
adds the @composition annotation, which allows inferring
that Ports are indirectly contained in Home objects via
Router objects (line 11). Section 4.3 will analyse this and
other heuristics that we have devised to handle redun-
dant relationships and conflicts.

Figure 7 shows the resulting meta-model after auto-
matically processing this second fragment, including the
annotations for style properties and spatial relationships.
The grey-shaded elements are new with respect to Fig-
ure 4. In particular, the meta-model has been extended
with four new classes: Router, FixedPhone, WifiNetwork and
Port. Each class has been added attributes accounting for
the slots appearing in the fragment objects. As an exam-
ple, the Home class now includes the new attribute pho-

neNo that appears in the second fragment but not in the
first one. Regarding the new references added, all com-
positions correspond to detected spatial relationships,
while the non-composition Router.modem represents the
edge from the router to the cable modem in the provided
fragment. The lower bound of the created references is
0 because this is the default value set by the modelling
expert, who can change it if appropriate. Moreover, if
the modelling expert modifies the derived reference car-

dinalities, all previously imported fragments would be
checked in real-time to notify potential inconsistencies
with the current meta-model version.

4.3 Resolution of conflicts in spatial relationships

In this section, we introduce several heuristics to avoid
representing redundant spatial information, to deal with
multiple spatial relationships converging on the same
objects, and to handle optionality of spatial relation-
ships appearing in some fragments but not in others. We
will illustrate these heuristics showing small excerpts of
fragments and the meta-models inferred from them. In
general, our heuristics represent spatial relationships as
compositions in order to identify objects that are part of
another ones, and to facilitate exporting the generated
meta-model to frameworks like EMF, where each ob-
ject should be contained directly or indirectly in a root
object. While the default behaviour of some heuristics
can be configured, in all cases, the modelling expert can
modify the obtained result if it does not fit the domain
at hand.

4.3.1 Avoiding redundancy As previously mentioned,
our system tries to create the minimum set of references
needed to represent all spatial relationships discovered in
an imported fragment. For this purpose, it takes advan-
tage of the transitivity of composition relations to decide
which ones encode redundant information and can be re-
moved.

Figure 8 illustrates the situations where redundant
relations can be safely removed. We consider the cases
where a containment relation can be derived out of other
overlapping, adjacent or containment relations.

In case a), A contains objects of type B and C, which
in their turn overlap. Moreover, B is bigger than C, and
therefore, our heuristic identifies C objects as parts of B

objects. In the generated meta-model to the right, we
create a composition reference from A to B due to the
containment, and another from B to C due to the over-
lapping and the fact that the B object is bigger. How-
ever, although the C object is also contained in A, we

8

A
B

C
A

B C Containment+Overlapping

A
B

C

Containment+Adjacency

A

B C

A
B

C

A

B C
Containment+Containment

@containment

@overlapping

@containment

@adjacency

@containment

@containment

a)

b)

c)

Fig. 8: Avoiding the creation of redundant references to ex-
press containment.

do not add a composition reference between classes A

and C because the other two composition references al-
ready imply that C objects are indirectly contained in A

objects.
The situation in case b) is similar, where the adjacent

object C is identified as a part of B. Case b) occurs in the
running example, as the Home object in Figure 6 contains
a Router with adjacent Ports. In this case, a composition
reference is created between Home and Router, and be-
tween Router and Port, but not between Home and Port.
This situation is frequent in languages where nodes have
“ports” or “attachment points” to connect to other ele-
ments (called plex languages [11]) and where nodes can
be nested. Component diagrams are an example of this
kind of languages, which we will illustrate in Section 8.3.

Finally, in case c), we use the transitivity property
of spatial containment, so that if C is inside B, and B

inside A, then C is inside A; hence, we do not reify the
latter spatial relationship with a composition because it
is implied by the former relations.

4.3.2 Multiple spatial relationships Fragments where a
set of objects participate in more than one spatial re-
lationship between each other, may lead to alternative
ways to arrange the composition relations in the derived
meta-model to avoid conflicts between them. Figure 9
illustrates some representative scenarios.

In scenario a), containment and overlapping relation-
ships arise for an object of type B. In particular, the B

object is contained in an A object and overlaps with a C

object, but in contrast to case a) in Figure 8, the A ob-
ject does not contain the C object but both overlap. As
a result, the inferred meta-model has two references to
represent the different overlappings of C, and the ques-
tion is which one of them should be a composition, and
which one should not. Declaring that a reference is a
composition implies a stronger relation between the re-
lated classes. Due to the semantics of composition, both
references cannot be compositions because that would
not allow an object of type C to be contained in both ref-

A
B

C
A

B C

1

2 Containment+Overlapping

A

B

C

Overlapping+Adjacency

a)

b)

@containment

@overlapping

@overlapping

A

B C

1

2

@overlapping

@adjacency

@adjacency

A
B

C

Containment+Internal-adjacency

c) internal adjacency
is not supported

A
B

C

Containment+Internal-adjacency+Adjacency

d)

A

B
C

internal adjacency
is not supported

A
B

C

Fig. 9: Handling multiple spatial relationships converging on
the same objects.

erences at the same type, which is the case shown in the
figure (the C object overlaps with objects of type A and
B simultaneously). Removing one of the references would
not capture this case either. Hence, both references are
needed, and the modelling expert should decide whether
the composition corresponds to the reference defined ei-
ther by class A (option 1) or class B (option 2). The
possibility to always use the container (class A) or the
containee (class B) as holder of the composition can be
configured by default.

Scenario b) is similar to the previous one, where ob-
jects of types A and B overlap and are adjacent to a
C object. Assuming that a composition reference is cre-
ated from class A to B because the A object is bigger
than the B object, the question is again which one of the
two references inferred from the adjacency relationships
should be a composition. As in scenario a), the default
behaviour can be customised.

The last two scenarios show unsupported combina-
tions of spatial relationships. In scenario c), objects of
types B and C are contained in an object of type A,
and moreover, the C object is adjacent to both A and B

objects. However, the adjacency of objects A and C is in-
ternal4. Our system does not currently support this kind
of adjacency, which is just interpreted as containment,
as shown in the fragment to its right. Therefore, this
scenario is treated like case b) in Figure 8. Similarly, in
scenario d) of Figure 9, the internal adjacency between
objects of types A and B is interpreted as containment,

4 By internal adjacency we mean an object that is simulta-
neously contained by and adjacent to one of the inner borders
of another object.

9

A
B

C
A

B C Containment +
Overlapping

A

C
{xor}

-Overlapping

A
B

C

Containment +
Containment

A

B

C
Overlapping +
Adjacency

A

C

-Overlapping

a)

b)

c)

@containment

@overlapping

A

B C

@containment

@overlapping

@containment

A

B C

@containment

@containment

{xor}

A

B C

@containment

@containment

@containment A

C

-Containment

A

B C
@overlapping

@adjacency

@adjacency A

B C

@overlapping

@adjacency

@adjacency

Fig. 10: Handling optionality of spatial relationships.

and hence, the fragments shown to the left and to the
right are equivalent.

4.3.3 Optional spatial relationships Special cases also
arise when some spatial relationship is present in some
examples but not in others, meaning that such relation-
ship is optional. This may imply reifying previously de-
rived spatial relationships as references, or reorganizing
the composition references in the derived meta-model,
as Figure 10 shows.

In case a) of Figure 10, there is a first fragment where
the B and C objects overlap and are contained in an A

object. Then, in a second fragment, a C object is inside
an A object without overlapping with any B object. The
meta-model obtained from the first fragment does not
suffice to represent the containment relationship in the
second fragment, since class A does not define a con-
tainer reference for C objects. Hence, the meta-model is
extended with a new composition from A to C, together
with a xor constraint to indicate that C objects can be
contained either in A objects (due to the containment re-
lationship in the second fragment), or in B objects (due
to the overlapping relationship in the first fragment)5.

Similarly, in case b), C objects can be placed either
inside of B or A objects. This is represented by two com-
positions from classes A and B to C, and a xor constraint.

In these two previous cases, the second fragment does
not contain B objects, which makes the relation between
B and C become optional because the fragment exem-
plifies that A objects can contain C objects directly (in
addition to indirectly via B objects). Hence, the compo-
sition relation from A to C needs to be made explicit.

Finally, in case c), the first fragment includes over-
lapping objects of types A and B, which in addition are

5 Although this xor constraint would be implicit in UML,
we show it explicitly for clarity.

adjacent to a C object. In this case, the modelling expert
has selected the second option in case b) of Figure 9 to
infer the meta-model, and hence, the reference from B to
C has been marked as a composition. Then, in the second
fragment, there is a C object that is not adjacent to any
B object. Therefore, we move the composition from the
reference between B and C, to the reference between A

and C. This change would not be necessary if the mod-
elling expert had selected this option when processing
the first fragment.

5 Generation of graphical modelling
environments

Our approach to synthesize the graphical editor proceeds
in two steps, both automatically performed using model
transformations. First, we convert the information gath-
ered from the fragments into a technology-neutral rep-
resentation, and then, this representation is translated
into a technology-specific editor specification. We cur-
rently target Sirius [48], but other technologies like Eu-
GENia [32] could be easily targeted as well.

Figure 11 outlines this process, where three transfor-
mations take place: one generates the meta-model with
the abstract syntax of the DSL (label 1); another takes
care of the concrete syntax by constructing a technology-
neutral model with the graphical information (label 2)
from which a modelling environment for a specific tech-
nology is synthesized (label 3); the last transformation
converts the provided fragments into models conformant
to the derived meta-model (label 4). Note that, as ex-
plained in the previous section, our approach represents
the concrete syntax information extracted from frag-
ments, including spatial relationships, as meta-model an-
notations (boxes concrete syntax info and legend (im-
ages) in Figure 11). Then, the transformation with label

10

Sirius
editor model

(.odesign)

º

legend
(images)

meta-model
(.mbup)

concrete
syntax info

meta-model
(.ecore)

GraphicRepresentation

model transf.

 transf.

Example-1 Example-1 example-1
(.mbupf)

Example-1 Example-1 example-1
(.xmi)

EMF models

Example-1 Example-1 example-1
(.aird)

graphical models

 transf.

 transf.

fragments, examples

emf

2 3

1

4

Fig. 11: Technical process: generating a (Sirius) graphical editor from examples.

2 collects this information and creates a graphical rep-
resentation model where, e.g., spatial relationships are
reified as objects. Next, we describe in more detail this
transformation dealing with the concrete syntax, since
it is the most challenging.

Figure 12 shows an excerpt of the neutral meta-
model we have developed to represent graphical concrete
syntaxes, which is called GraphicRepresentation. It is an
extended version of the meta-model presented in [12],
where we have added further features like layers, spa-
tial relationships, reutilization through node inheritance,
abstract nodes, and support for figures and edge styles.
Thus, we convert the concrete syntax information de-
rived from fragments into this intermediate meta-model
to be independent from the target technology, but also,
to be able to refine this information, e.g., by specifying
palette information, organize elements in layers, or select
labels for nodes.

A graphical representation in our GraphicRepresen-
tation meta-model is organized into one or more layers
(class Layer). One of them is the defaultLayer where all
diagram elements belong by default.

DiagramElementTypes define the graphical representa-
tion types of the objects of a certain meta-model class,
and can be visualized either as nodes (class NodeType) or
edges (class EdgeClassType). In both cases, they may hold
a PaletteDescription with information on how the element
is to be shown in the editor palette. NodeTypes may be
represented as geometrical shapes (Ellipse, Rectangle, etc.)
or as image figures (class Figure). They can display a label
either inside or outside the node, being possible to con-
figure its font style (class LabelAttribute). Moreover, some
nodes may need to be displayed in a relative position
with respect to other nodes in the diagram, like being
adjacent to (class Adjacency) or being contained in (class
Containment) other nodes. The container, overlapping or
adjacent node types are indicated through reference Spa-

tialRelation.with. On the other hand, as abovementioned,
classes can also be visualized as edges using class Edge-

ClassType. In such a case, it is possible to configure their
style (class EdgeStyle). Regarding the representation of
references, they can be visualized as links by means of

the class EdgeReference, and can define a style and deco-
rators (omitted in the figure).

The GraphicRepresentation meta-model also enables
the reuse of graphical property definitions by means of
relation inheritsFrom in class NodeType, so that graphical
properties defined for a node are inherited by its children
nodes. If a node is only being used as a placeholder for
reusable properties but is not intended for being drawn
on its own, then it should be marked as abstract.

The generation of the modelling environment re-
quires establishing a correspondence between the ab-
stract syntax meta-model of the DSL and the concrete
syntax meta-model in Figure 12. We consider abstract
syntax meta-models defined with Ecore, for which map-
pings can be established according to Figure 13. In par-
ticular, classes in the domain meta-model (class EClass)
can be represented either as nodes (class NodeType) or as
edges (class EdgeClassType), and are referred to through
the reference DiagramElementType.eClass. In case the class
is represented as an edge, it is possible to configure
the references of the class acting as source and target of
the edge. Attributes in the domain meta-model (class
EAttribute) can be mapped into a LabelAttribute. Refer-
ences in the domain meta-model (class EReference) can
be mapped into EdgeReferences, and their concrete syntax
annotations are mapped into an EdgeStyle. In addition,
if a reference is annotated with @containment, @adjacency

or @overlapping, then it gets assigned a Containment, Ad-

jacency or Overlapping object, respectively (not shown in
Figure 13). All created graphical elements are included
in the default layer and receive a palette description.

Altogether, to generate the modelling environment,
we first synthesize an Ecore meta-model with the defini-
tion of the DSL abstract syntax, and then, we transform
the obtained GraphicRepresentation model into a Sirius
model (*.odesign) describing the graphical syntax and
its correspondence to the Ecore meta-model. This latter
transformation is implemented using the Atlas Transfor-
mation Language (ATL) [21].

11

Fig. 12: Excerpt of the GraphicRepresentation meta-model.

Fig. 13: Mapping between GraphicRepresentation meta-model and Ecore meta-model (classes of Ecore are shaded).

6 Tool support

The architecture of our solution encompasses drawing
tool like yED or Dia to draw the graphical fragments,
and two Eclipse plug-ins: metaBup [34] and EMF Split-
ter [12,20]. While metaBup supports the whole bottom-
up abstract syntax construction process, we provide a
specific metaBup exporter that wraps the resulting meta-
model and passes it to EMF Splitter, which produces a
fully operational graphical modelling environment from
it. In the following, we explain how these two tools
are integrated to support the presented approach (Sec-

tion 6.1), as well as the extensibility mechanisms of the
tools (Section 6.2).

6.1 Tool support for the generation process

Domain experts can draw fragments with yED as shown
in Figure 14. Once an initial set of examples is ready, the
modelling expert creates a new metaBup project. This
will initially contain a blank meta-model file with mbup
extension, and empty fragments and legend folders. The
yED drawings are imported one by one, and automat-
ically converted into text fragment models, which then
are shown in the shell console of metaBup. Once parsed,

12

Fig. 14: Fragment drawn in yED.

the modelling expert can modify the textual fragments if
needed. The revised fragments are fed to the meta-model
derivation process, which may trigger refactorings on the
meta-model. Figure 15 shows the tool once the fragment
of Figure 14 has been parsed, including the current ver-
sion of the derived meta-model (accessible on the second
tab of the editor). Technically, we need to copy the im-
ages used in the yED palette (right side of Figure 14)
into our legend folder.

Each time the tool processes a fragment, it stores a
text version of the drawing in the fragments folder of the
project. These fragments are validated upon each meta-
model change, so that they will be error-flagged if they
become inconsistent after a meta-model modification.

After all fragments have been processed, the mod-
elling expert can produce the Sirius-based modelling ed-
itor by just clicking on a button. In this way, first some
necessary EMF artefacts are automatically generated,
like the ecore and genmodel files (label 5 in Figure 15),
and the generated meta-model Java classes (label 6).
These resources contain the equivalent representation to
our working meta-model in EMF. The modelling expert
is prompted to type a file extension for the models that
will be built with the new modelling editor (“ext” in our
example).

Then, a new Sirius Viewpoint Specification project is
automatically created by internally using EMF Splitter
(label 7 in Figure 15). This created project includes two
key elements: (i) an odesign file, the core resource of a
Sirius editor, describing the DSL concrete syntax and its
mapping to the DSL abstract syntax, and (ii) a folder
named models containing models equivalent to those in
the fragments folder, but now in xmi format. These files
serve as validation units, since they are expected to be
represented in the new editor similarly to the original
fragments. The generated Sirius project can then be run,
and Figure 16 shows the resulting editor with one model
coming from an initial yED fragment.

Compared to the yED editor, the synthesized envi-
ronment relies on an underlying meta-model, and can
perform validation of integrity constraints (e.g., cardi-
nalities, OCL) and check whether the values of object
slots are conformant to their data type. Moreover, since
the generated environment is an Eclipse plugin, it can
work with the rich Eclipse ecosystem of MDE tools, e.g.,
for model transformation or code generation.

The environment can be evolved if so desired by pro-
viding new fragments, and regenerating it again. This
means that, if the generated editor definition is modi-
fied by hand, those changes will be overridden. In future
work, we plan to add better evolution support to avoid
this overriding.

Altogether, for the running example, we synthe-
sized a graphical DSL using 4 fragments, with 13 ob-
ject types, 4 edge styles and using 3 spatial relation-
ships (containment, overlapping and adjacency, but not
alignment). The system automatically produced a meta-
model with 16 classes, 16 attributes, 13 references and
8 inheritance relationships. The generated Sirius ode-
sign model contains 178 objects. The details of this
case study, and some other examples, are available at
http://miso.es/tools/metaBUP.html.

6.2 Extension mechanisms

Both metaBup and EMF Splitter can be extended via
Eclipse extension points in four different parts of the pro-
cess, as shown in Figure 17. First, there is the possibil-
ity to contribute new fragment importers (label 1). For
this purpose, we provide a platform-independent “pivot”
meta-model to represent the objects and relations in
fragments [34], from which we produce the internal tex-
tual representation shown in the paper. We currently
have importers from yED and Dia, but other drawing
tools could be supported as well. Additionally, we pro-
vide a meta-model for modelling the graphical properties
explained in Section 4. Since spatial relationships are
automatically inferred from fragments, it is necessary
to save the location of objects in fragments (attributes
width, height, x and y in Figure 5).

The catalogue of meta-model refactorings supported
by metaBup is also extensible (label 2 in Figure 17). As
the meta-model grows, the modelling expert is suggested
suitable refactorings to be performed on the meta-model.
We natively cover basic rules, like pluralizing multi-
target reference names or generalizing common features
to abstract classes. These rules can be extended to create
custom meta-model modifications [34].

The tool can also be extended with new meta-model
exporters (label 3 in Figure 17), like the one we have
presented for EMF Splitter. Similarly, EMF Splitter cur-
rently targets the generation of Sirius-based editors, but
other technologies to build graphical editors like EuGE-
Nia could be targeted as well (label 4).

13

Fig. 15: metaBup tool: (1) Legend folder, (2) Fragments folder, (3) Parsed fragment in textual format, (4) Current version of
meta-model, (5) Generated Ecore meta-model, (6) Java code generated from Ecore meta-model, (7) Generated Sirius project,
(8) Sirius editor model, (9) Models transformed from the initial yED fragments.

Fig. 16: Sirius graphical modelling environment for the running example.

14

Meta-
model

derivation

text

fragment

Meta-
model
export

meta-

model

Ecore MM

graph. repr

figures

sketch

yED
Dia

Drawing
platform

…

Meta-model
refactorings

Ecore
EMF

Splitter

catalogue

metaBUP EMF Splitter

Sirius
EuGENia

Editor
generation

Exporter
Editor
platform

modelling

environment

1 2 3 4

…

Fig. 17: Extension points: (1) Drawing platform, (2) Meta-model refactorings, (3) Exporter, (4) Editor platform.

On the other hand, the generated graphical editors
are also extensible via the standard Eclipse extension
points, e.g., to plug some MDE tools of the Eclipse
ecosystem. However, we currently do not provide spe-
cific extension points for that.

7 Evaluation

We have conducted a user study to evaluate our
example-based approach to generate graphical modelling
environments. Since one of the goals of our proposal is
enabling the active involvement of domain experts in
the DSL environment construction process, the study
was performed from the point of view of the domain
expert. Hence, the participants in our study played the
role of domain experts, whereas we (the authors) played
the role of modelling experts. As domain experts, the
participants were asked to provide fragments, as well
as to evaluate the environments generated from them.
In this way, the goal of our evaluation is two-fold: first,
to assess whether our example-based approach is per-
ceived as useful to generate graphical environments,
and second, to explore to what extent the generated
environments fulfil the domain experts’ expectations
regarding their devised DSL. Hence, our study explores
the following two research questions:

– RQ1: How useful is our approach to create graphical
environments?

– RQ2: How well do the generated environments re-
flect the devised DSLs?

From a technical perspective, we are also interested
in the quality of the artefacts produced by our approach,
which leads to a third research question:

– RQ3: How is the quality of the derived domain meta-
models perceived?

7.1 Evaluation setup

To evaluate these research questions, we designed a user
study that emulates a typical example-based workflow,

with remote participants playing the role of domain ex-
perts (DEs), and the authors playing the role of mod-
elling experts (MEs). Figure 18 summarizes this work-
flow. It includes the following six steps:

Step 1 (DE): provision of fragments. First, the par-
ticipants were given an online textual description of the
requirements of a DSL, and a yED installation which
contained a palette with admissible icons for the DSL.
We decided to use the DSL presented as a running ex-
ample in this paper (i.e., home networks), as this would
allow analysing whether the same requirements might
lead to different graphical representations. Appendix 1
contains the provided description of DSL requirements,
as well as the instructions to complete the experiment.

In this step, the participants used yED to draw as
many examples as necessary to represent all desired as-
pects of the expected DSL, and uploaded these examples
via a web application together with the time employed
to complete them.

Step 2 (ME): generation of modelling environment.
Starting from the fragments, we used our tooling to gen-
erate a graphical modelling environment for each partici-
pant. Then, we sent to each participant the environment
generated out of his/her fragments. At this stage, we oc-
casionally had to perform little formal corrections over
the fragments, always ensuring a minimal intervention
(see Section 7.4 for more details).

Step 3 (DE): evaluation of modelling environment.
The participants were allowed to use the generated en-
vironment freely with no time restrictions. Then, they
replied an online questionnaire rating different aspects,
like resemblance of the generated DSL to their expecta-
tions, and remarkable or missed features in the modelling
environment. We used both Likert scales with scores
from 1 to 5, and free-answer questions. In case the partic-
ipants had developed meta-models or modelling environ-
ments in the past, they were asked additional technical
questions related to the quality of the generated meta-
model, and could comment on their preferences on using
an example-based meta-model or graphical editor con-
struction process instead of using the typical top-down
approach. The complete questionnaire is available in Ap-
pendix 1 (questionnaire 1).

15

provision of
fragments

(DE)
1

generation
of modelling
environment

(ME)

fragments

2

evaluation
of modelling
environment

(DE)

3

editor

satisfied?
yes

questionnaire requirements

new
provision of
fragments

(DE)

evolution of
environment

(ME)
5

new
evaluation of
environment

(DE)

6

modified editor

4

no

new fragments
questionnaire

Fig. 18: Evaluation process involving domain experts (DE) and modelling experts (ME).

Step 4 (DE): new provision of fragments. Partici-
pants were given the opportunity to provide new ex-
amples complementing those in the first iteration. This
was optional, only if they wanted to refine the gener-
ated environment, e.g., because they had spotted some
defect on the environment, or because they had failed to
represent some DSL requirement in the first iteration.

Step 5 (ME): evolution of environment. We used the
new examples to evolve the initial version of the mod-
elling environments.

Step 6 (DE): new evaluation of environment. The
participants in this second iteration evaluated the new
version of their editors, answering whether their qual-
ity had improved and which DSL aspects still remained
uncovered. The complete questionnaire is available in
Appendix 1 (questionnaire 2).

We invited 30 people with different backgrounds and
ages to participate in the study. In total, 11 replied to
our petition, 3 female and 8 male, with ages ranging from
24 to 46 years old. Amongst the different respondents,
8 were university employees (either in an academic or a
technical position), 2 worked in the private sector (one in
the IT field and the other in a different sector), and 1 was
unemployed. Regarding their technical background, 6 of
them had developed meta-models and graphical DSLs
in the past, 2 had built meta-models but not graphical
DSLs, 1 had used modelling languages like UML but had
no experience on meta-modelling, and 2 had no experi-
ence on modelling or meta-modelling.

7.2 Evaluation results

This section shows the results of our evaluation. First,
we analyse some features of the fragments provided by
the participants. Then, we use this information as well as
the questionnaire replies to give an answer to our three
initial research questions.

7.2.1 Diversity of fragments Each participant could
provide as many fragments as desired. Eventually, the
number of provided fragments per participant ranges
from 1 to 6, with a median of 2. Figure 19 shows how

3

4

2

1

0

1

0

1

2

3

4

1 2 3 4 5 6

p

ar
ti

ci
p

an
ts

fragments

Fig. 19: Number of fragments per participant.

0

2

4

6

8

10

12

14

1 2 3 4 5 6

av
er

ag
e

fr
ag

m
en

t
sc

o
p

e

provided fragments

Fig. 20: Average fragment scope (i.e., number of element
types) w.r.t. number of provided fragments.

many participants (y axis) provided each number of frag-
ments (x axis).

We examine the structure of the provided fragments
to assess the extent of use of the capabilities of our frame-
work. First, we study the scope of each fragment. Sim-
ilar to unit tests in test-driven development [6], in our
methodology, each fragment is meant to identify a situ-
ation of interest (ideally one DSL requirement) using
the minimal number of elements to convey the given
meaning. The DSL palette for our experiment had 13
element types, and the average number of element types
per fragment was 9 (see Figure 20). The three partici-
pants that provided a single fragment used all 13 element
types in the fragment, which is understandable as, oth-
erwise, their editors would have resulted incomplete.

16

Fig. 21: User fragments with heavy (left) and meager (right) use of the supported graphical features.

Concerning size, fragments had an average of 12 ob-
jects and 9 edges, though their size strongly differ from
2 to 30 objects and from 0 to 29 edges. Considering that
the average number of object types per fragment is 9,
we observe low redundancy (i.e., few repeated objects of
the same type).

If we compare the number of spatial relationships and
edge-based relationships used in fragments, we find that
objects are connected through edges 2,3 times more fre-
quently than they are using spatial relationships (over-
lapping, adjacency or containment). While every partici-
pant used at least 1 edge per fragment, 4 participants did
not employ any of the detectable spatial relationships.
However, if we do not consider these 4 participants, the
ratio spatial relationship/edge decreases to 1,3, which
puts the average use of both kinds of relationships at
a closer level. Still, the general shape of the DSLs was
very much graph-like. Anyhow, it is remarkable that all
participants with no modelling background made use of
spatial relationships in their fragments.

Similarly, although the documentation that accom-
panied the DSL requirements detailed the possibility of
using different edge styles, edge styling was seldom used.
Only 2 out of the 11 participants exploited this option to
discriminate different ways to connect pairs of the same
object types. Just as illustration, Figure 21 shows to the
left the fragment of a user who made heavy use of most
of the graphical features supported by our framework,
namely spatial relationships, edge styling and attribute
labelling for nodes. The fragment to the right belongs
to another user who merely connected the objects with
non-styled edges and made no use of text labels.

Altogether, we can summarize the use of graphical
features by the participants as follows:

– 100% used edges for connecting objects.
– 63% used spatial relationships.
– 27% used object or edge labelling.
– 18% gave style to edges for distinguishing different

types of connections between pairs of objects.

Despite the DSL requirements document encouraged
the use of edge styling and layout in fragments, and al-
though the proposed problem really fostered their usage,
the results evidence that, in the future, the possibili-
ties of the environment should be further emphasized
to potential users. On the other hand, we did not find
a correlation between the technical background of the
participants, and the number, size or structure of the
fragments they provided.

Once we have analysed the features generally present
in fragments, we answer the three research questions.

7.2.2 RQ1: How useful is our approach to create graph-
ical environments? We consider that our approach is
useful if it speeds up the construction of graphical en-
vironments and it promotes the active involvement of
domain experts. To evaluate this, we first analyse the
creation time of the environments in our study, and then,
we assess their usability.

Using our approach, the time to create a graphical
environment is the sum of the time employed to draw
the DSL examples, plus the time required by the mod-
elling expert to supervise the parsed fragments, plus the
time to generate the environment from them. The super-
vision activities, which are detailed in Section 7.4 and
Appendix 2, took in the order of a couple of minutes
at most for every fragment. Generating the environment
from the revised fragments is automatic, and its time
negligible. Hence, the time to create a graphical envi-
ronment is clearly dominated by the time to draw the
examples. Figure 22 shows the time employed in this task
by our 11 participants. The times range from 15 to 120
minutes, with a median of 37 minutes and an average
of 43,8 minutes, while the time per fragment is between
3 and 60 minutes. Hence, the average time to create an
environment for the DSL in our study was 43,8 minutes,
with 72% of the participants employing even less. This
time can be considered short, as developing a similar
environment by hand would require implementing the

17

following artefacts (average numbers over all generated
editors): an Ecore meta-model with 14 classes, 14 at-
tributes, 22 references and 1,5 inheritance relationships;
and a Sirius odesign model with 232 objects. Moreover, it
would require having deep technical knowledge on these
technologies, which probably domain experts would lack.

15
20

30 30 30
37 40 40

60 60

120

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
to

 d
ra

w
 t

h
e

ex
am

p
le

s
(m

in
u

te
s)

Participants

Fig. 22: Time employed to draw the fragments.

In the study, 6 participants had experience on de-
veloping meta-models and modelling environments. Sur-
prisingly, three of them were the slowest (60, 60 and 120
minutes), while the other three were the fastest to build
the examples (15, 20 and 30 minutes); hence, there is
no correlation between time and MDE experience. The
only 2 participants that had no experience on modelling
or meta-modelling dedicated 37 and 40 minutes on draw-
ing 3 and 1 fragments, respectively. This demonstrates
that non-modelling experts can actively contribute to de-
veloping graphical editors by providing DSL examples,
as our tool synthesizes working editors out of them.

Regarding the usability of the generated editors, Fig-
ure 23(b) shows how easy to use they are according to
the participants. The answers range from average (3) to
very easy (5), with a median of 4 (easy), and average
of 4,1. These numbers suggest a good usability of the
final environments, although the participants also men-
tioned some aspects to improve which are summarized
in Table 1. In particular, one participant suggested re-
ducing the high number of edge types that appear in the
palette, e.g., by having one button for all of them, and
deducing the type of any created edge from the types
of the objects it connects. While this is a good strategy
for large DSLs, the default drawing mode of Sirius is us-
ing a palette button per edge type, and hence, we plan
to study the feasibility of this proposal in the future.
The rest of suggestions are limitations of Sirius which
we cannot overcome. As an example, two participants
stated that containment seemed “odd” in the generated
editor, and that objects placed in a container could not
be moved to any other container. We should not ignore
that the handling of containment is not currently one of
the best fine-tuned features in Sirius. Regarding the edi-
tor aspects the participants liked the most (question Q9
in the questionnaire, see Appendix 1), they mentioned

flexibility, simplicity, being easy to use, and the support
of many edge styles. Table 2 details the answers to this
question.

Table 1: Answers to question Q8: Which aspects of the (gen-
erated) environment would you improve?

There are too many edge types in the palette.
Creating new models is not intuitive.
Objects are hard to resize.
Handling of containment is intricate.
Moving an object between containers is not possible.
Difficulty to draw edges and layout.

Table 2: Answers to question Q9: Which aspects of the (gen-
erated) environment do you like the most?

The conversion performed by the tool is spectacular.
Very intuitive and flexible.
The placement of the objects in the editor.
Easy to use.
Intuitive tool, which captures well the DSL semantics.
I liked the integration of a drawing tool within Eclipse.
Generating an editor out of 3 fragments is quite useful.

In summary, the participants found our ap-
proach to create graphical modelling environ-
ments useful. More importantly, participants with no
modelling background were able to design a graphical
DSL and, by providing examples, creating an editor for
the DSL. Nonetheless, the participants have also pro-
posed some improvements to the usability of the gener-
ated environments, which we plan to incorporate when-
ever possible in future versions of metaBup.

7.2.3 RQ2: How well do the generated environments re-
flect the devised DSLs? To answer this research ques-
tion, we examine the responses to questions Q4, Q5 and
Q6 in questionnaire 1. Question Q4 requests a score for
grading how precisely metaBup was capable of producing
a graphical syntax that resembles the original drawings.
Figure 23(a) summarizes the given scores, which went
from much (4) to very much (5), with a median of 4 and
average of 4,36.

Questions Q5 and Q6 in the survey (both free-answer
questions) provide more elaborate answers concerning
the accuracy of the generated graphical DSLs. First, one
participant complained that fixed and mobile phones
could be placed both inside and outside homes in the
generated environment. It is significant that this partic-
ipant provided fragments in which phones were inside
homes, and fragments in which they were not. Because
we incorrectly interpreted these fragments as examples
(i.e., as complete versions of models), our tool gener-
ated an environment where phones could be placed in

18

0 0 0

7

4

0

1

2

3

4

5

6

7

1				 				 				 				
(not	at	all)

2 3 4 5				 				 				 		
(very	 much)

Q4:	Does	the	synthesized	modelling	
environment	meet	the	graphical	

syntax	you	envisioned?

(a)

0 0

2

6

3

0

1

2

3

4

5

6

7

1
(very diff.)

2 3 4 5
(very easy)

Q7: How easy is it to use the
modelling environment?

(b)

0 0

2 2

4

0

1

2

3

4

5

6

7

1
(not at all)

2 3 4 5
(very much)

Q11: Is the generated meta-model
similar to the one you would have

built by hand?

(c)

Fig. 23: Scores to different aspects of the generated environments and their underlying domain meta-models.

two different kinds of containers: homes and “the can-
vas”. Interpreting the drawings as fragments (i.e., as
possibly incomplete models) solves the problem. Alter-
natively, the environment could have been refined in a
second iteration, though the participant deemed it was
not necessary. Another participant stated that objects
originally painted superimposed in the fragments had
been substituted by containment relationships in the fi-
nal editor. This is a limitation of Sirius, which does not
support overlapping relationships between objects. To
handle this, our Sirius exporter offers the possibility to
choose which of the two remaining spatial relationships
(adjacency or containment) should substitute overlap-
ping in the editor. During the experiment, this prefer-
ence was set to containment for all examples. Finally,
two participants reported differences on the size and po-
sition of the model elements with respect to the original
fragments, but they did not report mismatches regarding
the expected DSL itself.

Among the aspects best captured by the generated
DSLs, the users mentioned the edge styles and the con-
tainment and adjacency relationships. Anecdotally, one
participant liked that the position of elements had been
preserved in the migrated models, which surprisingly,
was mentioned as an aspect to improve by another par-
ticipant.

Notably, no participant requested a second iteration
to refine the generated environments. This fact, and the
average score 4,36 out of 5 (i.e., 93%) given by the par-
ticipants when asked if the DSL met their expectations,
indicate that the environments reflect very well the
devised DSLs.

7.2.4 RQ3: How is the quality of the derived domain
meta-models perceived? All solutions led to similar
meta-models, with differences lying in how participants
chose to graphically represent certain aspects of the do-
main.

Next, to answer RQ3, we analyse the replies to ques-
tions Q11, Q12 and Q13 in questionnaire 1, which were
only available to participants with meta-modelling ex-
perience (8 out of 11 participants). Question Q11 pro-

vides a measure of the degree in which the derived meta-
model matches the user’s expectations. As Figure 23(c)
shows, the similarity between the expected meta-model
and the generated meta-model ranges from average to
very much, with a median of 4,5 and average of 4,25.
These numbers indicate that the derived meta-model
was found similar to what a modelling expert would
build by hand.

Question Q12 identifies aspects incorrectly captured
by the derived meta-model, hence giving an indication of
the perceived meta-model quality. This is of special inter-
est in the case of participants that assigned lower scores
to Q11. Table 3 summarizes the identified issues. Two
participants commented that they would have created
one abstract class holding common references to other
classes. Interestingly, our tool supports this refactoring
and recommended its application in these cases, though
we did not apply it because we did not want to pervert
the evaluation with manual modifications to the derived
meta-model. Another participant complained that the
name of some inferred references was strange, e.g., con-

tainment; as before, these names could have been mod-
ified by the modelling expert in the fragment revision
phase. This same participant also missed some meta-
model attributes to represent the object locations; how-
ever, this is not necessary in our approach as this infor-
mation is directly managed by the concrete syntax layer,
and anyhow, it would be easy to add it as a configura-
tion option in the future. The remaining 5 participants
(including one that ranked 3 to Q11) did not find errors
in the derived meta-model. Overall, these results show
that the participants perceived the quality of the derived
meta-models as high.

Table 3: Answers to question Q12: Which aspects does the
(generated) meta-model not capture correctly?

Common features are not generalised.
Missing attributes to represent object locations.
Some features have strange names, e.g., containment.

19

Regarding Q13, only 2 participants stated that they
would prefer building the meta-model by hand, even
though they had rated the derived and expected meta-
models as very similar (maximum score in Q11). The
remaining 6 participants would prefer using an example-
based approach, 4 of them requiring the ability to mod-
ify the resulting meta-model by hand, and the other 2
considering this unnecessary.

Altogether, the participants ranked the quality of
the generated meta-models as 4,25 out of 5 in aver-
age, hence, the perceived quality of the generated
meta-models is high. Regarding the few detected is-
sues (like the generalization of common features), our
tool assists the modelling expert in their correction by
recommending suitable refactorings.

7.3 Threats to validity

Next, we analyse the threats to the validity of our study.
We tried to minimise the selection bias by promoting

the participation of people with different background,
ranging from computer science students with a shallow
knowledge of modelling techniques, professors both with
and without expertise on DSLs, workers on technology
companies without a specific training on modelling, and
people working on non-technological companies. This
is representative of very different domain expert pro-
files. However, the participants were not real experts
on the selected home network domain, and therefore,
they might have been less demanding when evaluating
the expressiveness of the generated editors. We tried to
minimize this effect by asking the participants whether
the final DSL was the one they had in mind, for which
the domain expertise is not relevant. Similarly, we did
not offer any incentive (monetary or of any other kind)
to the participants, which may have hindered their en-
gagement leading to less accurate scores or answers, and
preventing their participation on a second iteration of
the editor [29].

Another threat to the internal validity of the results
is the 6-7 days elapse since the participants provided
the examples until they evaluated the generated environ-
ment, as in the meantime, some of their initial expecta-
tions regarding the DSL may have been distorted. This
elapse was due to the variety of participant profiles, and
in order to promote the participation, we granted 7 days
to draw and submit the examples off-line, and another 7
to evaluate the generated editor and fill in the question-
naire. Moreover, 3 participants delayed their evaluation
7 extra days due to professional commitments.

On the other hand, having performed an off-line
double-blind user study has eliminated any experimenter
bias that we could have inadvertently introduced.

Regarding the generalizability of our results across
people, as we mentioned before, we selected participants
with different backgrounds on modelling and DSLs in

order to make our results as general as possible. However,
considering the nature of the proposed problem (in the
field of computer network configuration), all of them had
some training or working experience on computer science
and programming. Hence, it remains as a threat to the
external validity of our study considering other kinds of
domain experts with a low technological profile.

Another threat to the generalizability is that the
study is on the construction of one DSL, and hence, the
results might be biased to the features of this DSL. To
minimize this risk, we selected a DSL that allowed us-
ing a rich set of spatial relationships and connections
between nodes (so-called hybrid visual languages [8]).
To have an intuition of the generality of our approach,
Section 8 explores the use of our framework to build a
gallery of DSLs of different types.

Moreover, our study emulated a workflow where only
one domain expert contributed DSL examples. Hence,
our findings cannot be generalised to situations where
contributions come from several experts who might even
provide different representations for the expected DSL.
In particular, in a project setting, there would probably
be teams of domain experts providing fragments.

Finally, regardless the number of people invited to
participate in our study, only 11 participants completed
the evaluation. As stated in [29], recruiting participants
in tool studies is difficult, but we aim at performing fur-
ther studies with more participants, working in teams.

7.4 Discussion

Next, we discuss some interesting details of the experi-
ment, lessons learnt, and open challenges for future work.

In our roles of modelling experts, we tried to inter-
fere as little as possible in the editor generation process.
However, in some cases, we had to perform little ad-
justments to the imported fragments to correct evident
mistakes made by accident when drawing the examples,
or to perform fixes that did not affect the semantics of
the domain. We show an example in Figure 24. In yED,
each element in the palette is contained in an invisible
bounding box, and we calculate spatial relationships in
accordance to this box. Thus, in Figure 24, although the
intention of the domain expert was to draw all ports
adjacent to the router, the two ports that are superim-
posed to the bounding box of the router (i.e., Port1 and
Port2) get classified as overlapping references by our tool.
Hence, in this case, we had to manually modify the im-
ported fragment to delete the overlapping ports reference
and add Port1 and Port2 to the adjacency ports reference.

Next, we list the adjustments we had to perform,
indicating in parenthesis the frequency of changes with
respect to the total number of participants (a detailed
list of individual changes is given in Appendix 2):

20

Port 1

Port 2

Port 3

Port 4

shell importedFragment fragment sketch
{

router : Router{
@overlapping
ref overlapping_ports

= port1, port2

@adjacency
ref adjacent_ports

= port3, port4
}

port1 : Port { }
port2 : Port { }
port3 : Port { }
port4 : Port { }

}

1 fragment importedFragment {
2 router : Router {
3 @overlapping
4 ref overlapping ports =
5 port1, port2
6

7 @adjacency
8 ref adjacent ports =
9 port3, port4

10 }
11

12 port1 : Port {}
13 port2 : Port {}
14 port3 : Port {}
15 port4 : Port {}
16 }

Fig. 24: Common faux pas in the drawing of fragments (left)
and its automatic parsing into text fragment (right).

– Ignore invisible bounding box (3/11). The
abovementioned case, in which a participant is ig-
norant of the transparent bounding box of objects.

– Rename reference (11/11). Because fragments do
not include reference names, we manually set refer-
ence names that were easily identifiable in the gen-
erated editor, in the format <source>2<target>.

– Rename auto-generated superclass (1/11).
Our meta-model derivation algorithm is able to infer
abstract superclasses for common features, assigning
as class name a common substring of the chil-
dren class names (e.g., Phone if the children classes
are FixedPhone and MobilePhone). If the subclasses
lack a common morpheme, the modelling expert is
prompted to set a domain-significant name for the
new class.

We found positive that, although the process entitles
the modelling expert to perform deep changes over the
fragments and the meta-model, little manual editing was
needed to obtain well-valued editors.

Currently, our approach supports fragments from
yED and Dia, and we based our evaluation on yED.
To this respect, roughly half the participants expressed
some discomfort with the use of yED. Most criticisms
indicated the complexity to draw edges in yED as the
main reason to delay the completion of fragments. How-
ever, when analysing the results of the survey, the time to
draw each fragment does not seem significant in the as-
sessment of the generated editors. Looking at Q4, which
asked whether the synthesized environment met the en-
visioned graphical syntax, the average score given by the
participants who took 24 minutes (the average time per
fragment) or more to complete each fragment is 4,25
out of 5, while the score given by the participants who
took less than 24 minutes to draw each fragment is 4,43,
which is not a significant difference. Probably, a more
usable or popular drawing tool, like PowerPoint, would
have led to shorter drawing times. Anyhow, our frame-
work can be extended with importers for other drawing
tools, not being the particular selection of drawing tool
a limitation of our approach.

Similarly, most identified deficiencies regarding the
usability of the generated editors are due to limitations
of some Sirius features. Although our framework is like-
wise extensible in the export stage as it is in the import,
Sirius is one of the most powerful tools nowadays for
developing graphical modelling editors.

Regarding the fragment provision process, we have
detected that there is a need to better instruct domain
experts in some features of our framework, in particular
concerning the usage of spatial relationships and edge
styling. Moreover, some participants did not understand
the difference between fragment and example. A better
understanding would have helped in clarifying certain
ambiguities and misinterpretations, contributing to the
utter completion of more qualified editors. In our frame-
work, examples are built in the same way as fragments,
but only the former represent complete models. Hence,
the meta-model derivation algorithm does not have to
apply heuristics or prompt disambiguation tasks to the
modelling expert when processing examples, as it may
happen for fragments. Ideally, fragments should contain
minimal sets of objects representing portions of domain
information, whereas examples are more widespread. In
both cases, they can be used as test cases [37] to iden-
tify conflicts that should be resolved before altering the
domain meta-model.

Finally, the experiment has purposely omitted some
advanced features of our system for simplicity. For in-
stance, yED drawings can be annotated to introduce
domain restrictions which get compiled into OCL meta-
model constraints (see [34] for more details). Actually,
one participant stated in the questionnaire that the Sir-
ius editor should have incorporated an OCL constraint.

8 Gallery of DSLs

This section presents additional DSL examples built
with our tool, and identifies some of the strengths
and limitations of our approach. The examples are
also available at http://jesusjlopezf.github.
io/metaBup/gallery.html.

We base our presentation on the classification of
visual languages proposed in [8], which distinguishes
two main types of visual languages: connection-based
and spatially defined. The former type includes plex-like
languages (where nodes are connected via ports) and
graph-like languages, further divided into multipartite
graphs (with different types of nodes) and hypergraphs
(where edges can connect any number of nodes). Spa-
tially defined languages are classified into containment-
based and adjacency-based. Grid-based languages (e.g.,
a chess board) belong to both categories as board cells
contain pieces and are adjacent to each other. Finally,
hybrid languages, like statecharts, have features of both
connection-based and spatially defined languages.

As it can be observed, our running example is hybrid
as it makes use of graph-like connections (e.g., routers

21

connected to different devices), containment (devices in-
side the home), adjacency (ports adjacent to the router)
and overlapping (modems overlapping the home).

Next, we present examples of DSLs in every category.
The research question we aim to answer is whether our
framework can handle different types of DSLs – accord-
ing to a well-established classification of visual features –
in order to identify strengths and limitations. Hence, we
did not rely on domain experts to build these examples,
but we built them ourselves.

8.1 Connection-based languages

Figure 25 shows an editor built with our tooling for a
graph-like language to define fault-tree diagrams. These
diagrams are multipartite graphs with four types of
nodes: or gates, and gates, basic events and intermediate
events.

Fig. 25: An editor for fault-tree diagrams.

Building a multipartite graph-like DSL using our ap-
proach typically requires providing fragments that illus-
trate the properties of each node type and how they can
be connected. In this case, we used the two fragments
shown in Figure 26, which include three different types
of objects: circles represent basic events, rectangles are
intermediate events, and gates are labelled with their
type. The first fragment uses 4 objects and 3 connectors,
while the second one uses 7 and 6, respectively. None of
the two fragments make use of spatial relationships, but
just connections.

Figure 27 shows the textual representation extracted
from the fragment to the right of Figure 26. Several
references have been manually annotated with general

(lines 4, 7, 16 and 19). Consequently, the derived meta-
model generalizes these references by creating the ab-
stract classes Event and Gate to correctly classify events
and gates (see right of the figure). The name of the cre-
ated abstract classes is automatically generated, being
the common intersection of all subclasses names.

Fig. 26: Fragments used to define the DSL in Figure 25.

1 fragment yed sketch {
2 ”Motor does...” : IntermediateEvent {}
3 OrGate 1 : OrGate {
4 @general ref output = ”Motor does...”
5 }
6 ”Motor Fails...” : BasicEvent {
7 @general ref gateInput = OrGate 1
8 }
9 ”No EMF applied...” : IntermediateEvent {

10 ref gateInput = OrGate 1
11 }
12 ”Wire from...” : BasicEvent {
13 ref gateInput = AndGate 1
14 }
15 ”No EMF from...” : IntermediateEvent {
16 @general ref gateInput = AndGate 1
17 }
18 AndGate 1 : AndGate {
19 @general ref output = ”No EMF applied...”
20 }
21 }

Event

Basic
Event

Intermediate
Event

Gate

Or
Gate

And
Gate

gateInput

0..1

output 1

Fig. 27: Textual fragment (left). Derived meta-model (right).

8.2 Spatially defined languages

In this kind of languages, nodes are related via spatial re-
lationships like adjacency, containment and overlapping.
Typical languages belonging to this category are Venn
diagrams and their variants [53], as well as grid-based
languages such as board games like chess, checkers or
Ludo [43].

As an example, Figure 28 shows the editor gener-
ated for the chess game. The editor permits creating the
board, its cells and the pieces. We employed two frag-
ments to generate this editor. The first fragment con-
sisted of the board, which contained a grid of cells re-
lated to each other by adjacency and alignment spatial
relationships. The second fragment illustrated the con-
tainment of white and black pieces inside cells.

8.3 Hybrid languages

Hybrid languages combine edge-based connections with
spatial relationships. As an example of this kind of lan-
guages, Figure 29 shows an editor for use case diagrams.
These diagrams employ containment and several types of
nodes (actors, systems, packages and use cases) that can
be connected with both directed and undirected edges.
On the one hand, use cases can be contained in subsys-
tems and packages. On the other, use cases can be con-
nected between them with two types of directed edges,
while actors can inherit from each other using directed

22

Fig. 28: A chess game editor.

edges, and be connected to use cases with undirected
edges. In particular, the editor from Figure 29 was de-
rived from 3 fragments including 5, 9 and 10 objects,
which used 4 different types of objects. All fragments
included some containment relationship between the ob-
jects: in the first fragment, one subsystem contained two
use cases; in the second one, there was a subsystem with
5 use cases; and the last fragment included 3 packages
containing several use cases.

Fig. 29: An editor for use case diagrams.

Component diagrams are another example of hybrid
language. They have been used to evaluate graphical
DSL generation frameworks, like Eugenia [30]. This kind
of diagram has plex features as components are intercon-
nected via ports, and containment is relevant to indicate
the subcomponents of a composed component. Figure 30
shows an editor for component diagrams, where there
are components inside components, and some compo-
nents are interconnected through their attached ports.
This editor was inferred from only 2 fragments using 2
different object types. The fragments included 8 and 4
objects each, consisting in a number of components that

exhibited an overlapping relationship with several ports
connected between them.

Fig. 30: An editor for component diagrams.

To build the editors for these languages, the provided
fragments need to illustrate the allowed connections and
spatial relationships. For the case of component dia-
grams, the containment relation between components is
optional, as there may be top-level components and sub-
components. Hence, fragments reflecting both cases need
to be provided.

8.4 Strengths and limitations of the approach

Next, we characterise the kinds of DSLs our approach
supports. In general, as we have shown, our approach
permits creating editors for the three kinds of languages
identified in [8]: connection-based, spatially defined, and
hybrid. However, we have to mention some limitations.

First, our approach supports DSLs where there is a
one-to-one mapping between the abstract syntax and the
concrete syntax. Hence, every class in the meta-model
must be represented through an icon or an edge type.
We do not support a combination of abstract syntax
elements to be represented as a single icon, or having
several concrete syntax representations for the same ab-
stract syntax element. This leaves out languages like se-
quence diagrams, where the concrete and abstract syn-
tax are very dissimilar. Likewise, our approach does
not support variations on the concrete syntax elements
(icons or edges) depending on attribute values, as it oc-
curs for example in UML where associations can have
decorations in case they are compositions, and class
names are shown in italics when the class is abstract.

Edges can have decorators in the source and target
ends but not in the middle, and we currently do not
support edge labels.

Concerning spatial relationships, our algorithm iden-
tifies containment, adjacency, alignment and overlap-
ping. However, adjacency only works for rectangular ele-
ments, as it is calculated based on the elements’ bound-

23

ing box. This means adjacency cannot generally work,
e.g., with triangles, and hence, complex adjacency-based
languages like Nassi-Shneiderman diagrams or struc-
tograms [57] cannot be described with our approach.
Moreover, our current target Sirius does not support
overlapping. Instead, we give the option to substitute it
by adjacency or containment. Hence, languages heavily
relying on overlapping, like Venn and Euler diagrams [7,
51], cannot be handled. Regarding alignment, it is only
reified on the presence of adjacency. While this is a rea-
sonable heuristic for most engineering diagrams, it leaves
out some pure spatially defined languages like the Braille
language for the blind.

Finally, line-based diagrams, like those representing
knots [44], cannot be recognized either. This is so as our
approach is targeted to DSLs that include node types,
and line-to-line relationships like overpassing or under-
passing are not recognised.

Altogether, the main limitations of our approach
come from being unable to handle spatial relationships
over non-rectangular shapes, or very dissimilar concrete
and abstract syntaxes. Anyhow, most languages in soft-
ware engineering are hybrid (e.g., like those in Figures 29
and 30), do not make use of complex spatial relation-
ships, and relations are most frequently depicted as edges
(maybe via ports) and containment. The running exam-
ple and the DSLs in this section illustrate the kind of
languages our approach is suitable for.

9 Related work

In this section, we review related approaches to the defi-
nition of DSL requirements (Section 9.1) and the gener-
ation of flexible modelling tools (Section 9.2), and per-
form a feature-based comparison of the main tools for
the flexible creation of graphical DSLs (Section 9.3).

9.1 DSL requirements

According to [33,39], domain analysis techniques are
still missing for DSLs, as this phase is most frequently
done in an informal way. Our work uses drawings built
with diagramming tools to represent DSL requirements.
Other ways to represent requirements include feature
diagrams [23] or notations inspired by mind-maps [42].
While these approaches focus on representing and classi-
fying desired DSL features, our example-based approach
relies on concrete examples of language use, promoting
a more direct involvement of domain experts.

In some sense, our approach is conceptually similar
to test-driven development approaches [6]. This is so as,
in test-driven development, the software requirements
are expressed as test cases, and the software is evolved
to make it pass the tests; while in our approach, the ex-
ample models can be seen as DSL requirements, and we
provide an automated process that evolves the current

version of the DSL meta-model so that it accepts the
examples.

In [1], domain analysis is application-driven and
DSLs are produced as output artefacts when develop-
ing a software framework, while in [49], the Question-
Options-Criteria guides the design decisions involved
when creating UML-based DSLs. However, none of these
two works propose a concrete notation to represent DSL
requirements.

9.2 Flexible modelling

While MDE is founded on the ability to process mod-
els with a precisely defined syntax, some authors have
recognised the need for more flexible and informal ways
of modelling. This is useful in the early phases of system
design [38,46,56], or as a means to promote an active
role of domain experts in DSL development [9,14,59], as
we advocate in this paper.

There are two orthogonal design choices enabling
flexible modelling in DSL development: (i) the use of
examples to drive the construction process, and (ii) the
explicit generation of a meta-model and a modelling tool
different from the drawing tool used to build the initial
examples.

Regarding the first design choice, “by-demonstration”
techniques have been applied to several MDE artefacts,
like model transformations [2,4,5,24,27,55] and model
refactorings [13]. Some approaches, like [2], rely on map-
pings specified manually over examples with a graphical
concrete syntax. However, the use of example-based
techniques is not so common to describe graphical mod-
elling environments. The closest work to ours is the
MLCBD framework [9], which describes a system atop
Microsoft Visio to derive DSLs by demonstration. Given
a single example, the system derives the concrete syn-
tax from the icons in the palette, and some abstract
syntax constraints, e.g., concerning the connectivity of
elements. This information is recorded and used within
Microsoft Visio. Instead, we derive an explicit meta-
model, infer spatial relationships like containment and
overlapping, and generate a modelling tool. Moreover,
our deduced meta-model supports modelling concepts
like abstract classes, inheritance, compositions and
attributes, which are not found in [9].

The approach in [31,59], called Muddles, uses yED
to draw examples of the DSL. Types are assigned to el-
ements based on type annotations, and functions can be
defined to check for shape overlapping, colour or prox-
imity. Type annotations are placed on every node in
the drawing, and can indicate subtyping relations. All
modelling is performed within yED, and no dedicated
modelling environment is explicitly generated. The ra-
tionale of the approach is to enable early use of model
management languages over the drawings. For this pur-
pose, Muddles permits the use of the Epsilon model

24

management languages to query and manipulate the
yED models directly. This is possible because the Ep-
silon languages communicate with the modelling plat-
form through a connectivity layer. Muddles does not
expose a meta-model to the user, but instead, a meta-
model is created in-memory from the type annotations.
This meta-model deliberately leaves out elements like
cardinalities or composition references.

The Free Modeling Editor (FME) presented in [14]
permits developing DSLs starting either from example
models or from meta-model concepts. The proposal is
based on the Openflexo tool, which supports the con-
current development of both models and meta-models,
and has importers for models stored in PowerPoint and
Word formats. The approach has been successfully ap-
plied to an industrial project [14].

Some tools for DSL development generate an exter-
nal modelling tool different from the one used to de-
fine the DSL. For instance, EuGENia Live [45] is a web
tool for designing graphical DSLs. It supports on-the-fly
meta-model editing while the user is building a sample
model and its concrete syntax. From this definition, the
tool exports an Ecore meta-model enriched with con-
crete syntax annotations, which can be used to generate
an Eclipse GMF-based environment.

Some modelling tools promote flexibility in the early
phases of system design by offering sketching capabil-
ities similar to pen-and-paper drawing. For instance,
SKETCH [46] provides an API to enable sketch-based
editing on Eclipse; Calico [38] is a sketching tool for
electronic whiteboards, where the sketched elements can
be scrapped and reused in other parts of the diagrams;
and FlexiSketch [56] allows creating sketches, and to
manually lift the created shapes and connections to
the meta-model level. However, FlexiSketch does not
support meta-modelling features like named attributes,
class inheritance, abstract classes or different association
types (e.g., compositions).

Finally, although not specific for DSL creation, there
is a trend in recent modelling tools to promote flexi-
bility by relaxing the conformance relationship in early
phases of modelling, while enforcing strictness in later
phases [18,50]. These tools benefit from the flexibility of
JavaScript as the underlying implementation language.

Altogether, bottom-up approaches to DSL construc-
tion (FME, MLCBD, metaBup) foster an active partic-
ipation of domain experts, who provide examples that
drive the DSL construction process, including the deriva-
tion of the meta-model. However, for large meta-models
(e.g., found in large standards like UML or BPMN) a
combination with top-down meta-model design would
be more adequate, to organise and architect the differ-
ent parts of the meta-model. Regarding DSL evolution,
the relaxed model/meta-model conformity provided by
flexible modelling approaches might be useful to cope
with non-conforming models. Moreover, the incorpora-
tion of new requirements to an existing DSL might be

simplified with bottom-up approaches, if those require-
ments can be expressed as a new example.

9.3 Comparison of flexible tools to build graphical DSLs

Table 4 compares our approach metaBup with the most
prominent tools for the flexible creation of graphical
DSLs, namely, EuGENia Live [45], FlexiSketch [56],
FME [14], MLCBD [9] and Muddles [31,59]. In the fol-
lowing, we comment on the differences between the fea-
tures of these tools.

9.3.1 Approach First, we compare the overall approach
the tools implement. metaBup and EuGENia Live rely
on informal drawing tools to specify examples, and then
generate an external modelling tool that mimics the ex-
emplified graphical syntax. In particular, metaBup gener-
ates a Sirius-based modelling editor, and EuGENia Live
generates a GMF-based one. In contrast, MLCBD and
Muddles also start from informal drawings, but then
modelling is performed in the same drawing tools (i.e.,
no external modelling tool is generated). The remaining
cases (FlexiSketch and FME) do not rely on external
drawing tools or graphical modelling frameworks, but
they are themselves flexible self-contained modelling en-
vironments. FME, in addition, can also import drawings
from some external tools, but the meta-model needs to
be manually created.

9.3.2 Process Second, we compare the process followed
to define the DSL. metaBup implements a bottom-up ap-
proach, where the provided examples are used to auto-
matically deduce a meta-model making explicit the syn-
tactic rules of the DSL. FlexiSketch and Muddles also
deduce a meta-model, however their use is internal and
does not get exposed to the user. Instead, MLCBD does
not infer or need an explicit meta-model, while EuGENia
Live and FME require creating a meta-model manually.

9.3.3 DSL examples Table 4 also compares how the ex-
amples are created in the different tools. Some of them
use existing popular drawing tools like yED, Dia or the
Microsoft Office suite. The advantage is that domain ex-
perts might find familiar some of them. Instead, EuGE-
Nia Live and FlexiSketch require using the modelling
tool itself to draft the examples.

Like our approach, Muddles relies on yED drawings,
where each node should be annotated with its type. This
is done using type extension fields. In contrast, our type
names are taken from the icon used to create each node.
This is less demanding for the user, who does not need
to explicitly annotate each node.

9.3.4 DSL meta-model As abovementioned, metaBup,
FME, Muddles and FlexiSketch allow building meta-
models from the examples, although the latter two do

25

Table 4: Flexible approaches for DSL creation

Approach Process DSL
examples

DSL
meta-model

Modelling
environment

Advanced
recognition

metaBup informal drawings +
editor generation

examples +
meta-model derivation

yED, Dia automatic
(rich meta-
modelling
features)

generated
(Eclipse)

spatial relations

EuGENia Live [45] informal drawings +
editor generation

examples +
meta-model

inside tool manual generated
(Eclipse)

-

FlexiSketch [56] flexible tool
(sketches+models)

examples +
meta-model derivation

inside tool automatic
(basic meta-
modelling
features)

inside tool sketching

FME [14] flexible tool
(examples+models)

examples +
meta-model

inside tool,
Office

manual inside tool -

MLCBD [9] informal drawings +
informal editor

examples Ms Visio - Ms Visio -

Muddles [31,59] informal drawings +
informal editor

examples yED automatic (type
annotations)

yED spatial relations

not expose the meta-model to the user. Muddles relies on
type annotations to derive the meta-model, and allows
the specification of type hierarchies. While it can recog-
nise spatial relationships programmatically, they are not
reified as meta-model references, which makes model
management cumbersome. FlexiSketch permits assign-
ing a type name to the elements created in a sketch.
However, the deduced meta-models do not support regu-
lar modelling concepts like inheritance, abstract classes,
compositions or constraints. Nodes can be assigned sev-
eral untyped labels to emulate attribute values, but they
have no name and their type-checking w.r.t. basic data
types cannot be performed. FME requires manual cre-
ation of the meta-model, but supports features like ab-
stract classes, inheritance, cardinalities and full-fledged
attributes.

Similar to FME, metaBup supports conceptual mod-
elling facilities like composition, attributes, cardinalities
and inheritance. In contrast to FME, the meta-model
is automatically deduced from the examples. Moreover,
metaBup incorporates a catalogue of refactorings that can
be used to improve the meta-model quality, and an as-
sistant able to recommend those refactorings.

9.3.5 Modelling environment Regarding the modelling
environment obtained from the DSL definition, metaBup

and EuGENia Live generate external modelling envi-
ronments for Eclipse, MLCBD and Muddles enable the
tools they use to draw examples as modelling environ-
ments, and FlexiSketch and FME support modelling in-
side them.

We believe that creating a dedicated meta-model and
modelling environment atop a meta-modelling frame-
work has several benefits. First, a modelling environ-
ment provides customised forms to create and edit ob-
jects of the different meta-model types, with appropriate
fields for the object attributes and facilities for their type
checking. Instead, attribute values must be specified via
tags in drawing tools like Visio and yED, and there is no
conformance or type checking. Second, the created mod-
els can be manipulated using standard model manage-

ment languages for model transformation or code gener-
ation.

9.3.6 Advanced recognition Some of the analysed tools
can recognise advanced graphical aspects (i.e., beyond
the identification of nodes and edges) in the provided
examples. Muddles identifies spatial relationships, like
proximity or overlapping. Similar to our approach, over-
lapping is recognised based on the bounding box of el-
ements, so overlapping of shapes like triangles or cir-
cles is only approximated. Spatial relationships are not
reified in its internal meta-model, and they are not en-
forced when modelling. FlexiSketch is the only analysed
tool that supports sketching, but it does not provide
spatial relationship recognition. Among the approaches
that generate a dedicated environment, metaBup is the
only one able to identify spatial relationships between
elements, and enforce them in the generated modelling
environments.

9.3.7 Comparison based on the running example We
have used the tools from Table 4 that are publicly avail-
able, to develop the DSL of our running example. In
particular, we were able to use FlexiSketch and FME.
Muddles is also available, but as modelling occurs within
yED, the resulting editor would look like our fragments
(see, e.g., Figure 14).

Figure 31 shows the running example DSL built with
FlexiSketch. The tool works on mobile devices and An-
droid tablets. The node icons can be both images and
hand-made sketches, though we opted for the latter to
avoid transparency issues. The first time a node is cre-
ated, it can be assigned a type name. Nodes can be con-
nected using edges with different styles. While we have
emulated containment of devices inside the home, over-
lapping of the modem and the house, and adjacency of
ports and the router, these spatial relationships do not
have any meaning because the tool does not interpret
them. Instead, it is necessary to provide explicit edges.
We could not provide information of edge cardinalities,
but edge labels are supported. Attributes can be emu-

26

lated through plain text annotations with no name and
no declared type.

Fig. 31: Running example DSL in FlexiSketch.

Figure 32 shows how the running example DSL looks
like in FME. This tool permits importing example draw-
ings from PowerPoint files, or directly drawing example
models in the tool. Then, the user can select manually
which shapes in the models should become concepts of
the meta-model. This step is similar in FlexiSketch. Con-
cepts can be enriched with full-fledged attributes of a
set of predefined data types, be declared abstract, or in-
herit from other concepts. Edges in examples can also be
lifted to meta-model associations, and define cardinali-
ties. Similar to FlexiSketch, the tool does neither sup-
port nor recognize spatial relationships, which need to
be specified in models using edges. Hence, although Fig-
ure 32 shows devices inside the home, a modem overlap-
ping the house, and ports adjacent to the router, these
relationships do not have any impact on semantics.

Fig. 32: Running example DSL in FME.

In summary, FME is able to import examples from
PowerPoint, similar to our approach. Both FME and
FlexiSketch support bottom-up meta-modelling, though
it is not automatic, but the modelling expert must se-
lect manually the model elements to be lifted to the
meta-model, and configure attributes and cardinalities

by hand. Instead, our approach derives a meta-model au-
tomatically upon the provision of new examples. Hence,
the burden of the modelling expert is lower in our case.
Moreover, deriving the meta-model automatically pre-
vents errors derived from forgetting assigning types to
model elements. According to [58], this is an issue in
flexible modelling approaches that manually construct
the meta-model. None of these two tools generate an
explicit meta-model, and the resulting editor is embed-
ded in the tool itself. In contrast, we produce an ex-
plicit meta-model and a separated modelling environ-
ment. This results in a customized environment for the
end user, which is not mixed with meta-modelling func-
tionalities. As our environment is based on EMF, it can
be combined with model management tools of the rich
EMF ecosystem. Finally, neither FlexiSketch nor FME
support spatial relationships, a salient feature of our ap-
proach. Instead, these need to be emulated using edges.

9.4 Summary

Altogether, our approach is novel as it enables the cre-
ation of graphical DSL editors based on drawings pro-
duced by domain experts, automatically generating a
meta-model and a dedicated modelling environment.
With respect to existing flexible modelling tools (see Ta-
ble 4), it has advantages like recognition of spatial rela-
tionships, reification of those in the meta-model, and ex-
plicit generation of a meta-model and a custom graphical
modelling environment. This approach helps in transi-
tioning from informal modelling in a diagrammatic tool,
to formal modelling in a modelling tool, where models
are amenable to automated manipulation.

10 Conclusions and future work

This paper has presented our approach to the example-
based generation of graphical modelling environments.
In our approach, domain experts contribute with exam-
ples of the DSL built with diagramming tools, and our
system derives a meta-model and a graphical modelling
environment, currently based on Sirius. The paper has
shown the advantages of the approach, like: (i) there is
no need to code or create editor specifications; (ii) it low-
ers the barrier to build graphical environments, which is
a highly technical task requiring expert knowledge; (iii)
it bridges the gap between drawing tools (likely used by
domain experts in early phases of the development) and
modelling tools (useful for automated model manipula-
tion); and (iv) drawings can be transformed into models
and be manipulated using MDE technology (transforma-
tions and code generators). We have conducted a user
study that shows positive results and encourages further
research on this approach to DSL creation.

In the future, we plan to facilitate the validation of
the final editor by the domain experts by integrating our

27

mmXtens language [36], which is able to generate exam-
ple models satisfying certain properties of interest using
constraint solving. We also plan to improve our support
for the editor evolution. For instance, a common sce-
nario might be the manual modification of the Sirius
editor model. To avoid overriding these manual changes,
we may employ techniques similar to [32], where man-
ual changes are described as a program that is reap-
plied when re-generation occurs. Similarly, we also plan
to provide support for meta-model/model co-evolution.
Another interesting aspect is to integrate mechanisms
for assessing the quality of the created DSL within our
process, in the style of [22,41,47], and improve the tool
capabilities regarding concrete syntax. A particular chal-
lenging aspect is the inference of conditional styles. We
will also improve the bottom-up meta-model construc-
tion process by providing support for enumerations, and
investigating possible effects of fragment ordering.

Regarding the provision of fragments, we currently
do not maintain traceability between the graphical and
textual fragments. If the domain expert changes a graph-
ical fragment, this should be imported again into the
system, and it would be considered as a new fragment.
Hence, we plan to add traceability support, as well as
the possibility to update or roll back some previously
introduced example.

Acknowledgements

Work funded by the Spanish Ministry of Economy and
Competitivity (TIN2014-52129-R), and the R&D pro-
gramme of the Madrid Region (S2013/ICE-3006).

References

1. X. Amatriain and P. Arumı́. Frameworks generate
domain-specific languages: A case study in the multime-
dia domain. IEEE Trans. Software Eng., 37(4):544–558,
2011.

2. I. Avazpour, J. Grundy, and L. Grunske. Specifying
model transformations by direct manipulation using con-
crete visual notations and interactive recommendations.
J. Vis. Lang. Comput., 28:195–211, 2015.

3. K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz,
Z. Diskin, A. Wasowski, and D. Rayside. Example-driven
modeling: model = abstractions + examples. In ICSE,
pages 1273–1276. IEEE / ACM, 2013.

4. I. Baki and H. A. Sahraoui. Multi-step learning and
adaptive search for learning complex model transforma-
tions from examples. ACM Trans. Softw. Eng. Methodol.,
25(3):20, 2016.

5. Z. Balogh and D. Varró. Model transformation by ex-
ample using inductive logic programming. Software and
System Modeling, 8(3):347–364, 2009.

6. K. Beck. Test Driven Development: by Example.
Addison-Wesley Professional, 2003.

7. P. Bottoni and A. Fish. Coloured euler diagrams: A tool
for visualizing dynamic systems and structured informa-
tion. In Proc. Diagrams, volume 6170 of Lecture Notes
in Computer Science, pages 39–53. Springer, 2010.

8. P. Bottoni and A. Grau. A suite of metamodels as a
basis for a classification of visual languages. In VL/HCC,
pages 83–90. IEEE Computer Society, 2004.

9. H. Cho, J. G. Gray, and E. Syriani. Creating vi-
sual domain-specific modeling languages from end-user
demonstration. In MiSE @ ICSE, pages 22–28, 2012.

10. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-
formalism and meta-modelling. In FASE, volume 2306
of LNCS, pages 174–188. Springer, 2002.

11. J. Feder. Plex languages. Inf. Sci., 3(3):225–241, 1971.
12. A. Garmendia, A. Pescador, E. Guerra, and J. de Lara.

Towards the generation of graphical modelling environ-
ments aided by patterns. In SLATE, volume 563 of CCIS,
pages 160–168. Springer, 2015.

13. A. Ghannem, G. El-Boussaidi, and M. Kessentini. Model
refactoring using examples: a search-based approach.
Journal of Software: Evolution and Process, 26(7):692–
713, 2014.

14. F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and
C. Guychard. Using free modeling as an agile method
for developing domain specific modeling languages. In
MoDELS, pages 24–34. ACM, 2016.

15. Graphiti. https://eclipse.org/graphiti/.
16. R. C. Gronback. Eclipse Modeling Project: A Domain-

Specific Language (DSL) Toolkit. Addison-Wesley Pro-
fessional, 2009.

17. J. C. Grundy, J. G. Hosking, K. N. Li, N. M. Ali, J. Huh,
and R. L. Li. Generating domain-specific visual language
tools from abstract visual specifications. IEEE Trans.
Software Eng., 39(4):487–515, 2013.

18. N. Hili. A metamodeling framework for promoting flex-
ibility and creativity over strict model conformance. In
FlexMDE @ MoDELS, volume 1694 of CEUR Workshop
Proceedings, pages 2–11. CEUR-WS.org, 2016.

19. J. Hutchinson, J. Whittle, and M. Rouncefield. Model-
driven engineering practices in industry: Social, organi-
zational and managerial factors that lead to success or
failure. Sci. Comput. Program., 89:144–161, 2014.

20. A. Jiménez-Pastor, A. Garmendia, and J. de Lara. Scal-
able model exploration for model-driven engineering.
Journal of Systems and Software, 132:204–225, 2017.

21. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL:
A model transformation tool. Sci. Comp. Programming,
72(1):31–39, 2008.

22. G. Kahraman and S. Bilgen. A framework for qualitative
assessment of domain-specific languages. Software and
System Modeling, 14(4):1505–1526, 2015.

23. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute, November 1990.

24. G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger,
and M. Wimmer. Model transformation by-example: A
survey of the first wave. In Conceptual Modelling and Its
Theo. Foundations, volume 7260 of LNCS, pages 197–
215. Springer, 2012.

25. S. Kelly and R. Pohjonen. Worst practices for domain-
specific modeling. IEEE Software, 26(4):22–29, 2009.

28

26. S. Kelly and J. Tolvanen. Domain-Specific Modeling -
Enabling Full Code Generation. Wiley, 2008.

27. M. Kessentini, H. A. Sahraoui, M. Boukadoum, and
O. Benomar. Search-based model transformation by ex-
ample. Software and System Modeling, 11(2):209–226,
2012.

28. A. J. Ko, R. Abraham, L. Beckwith, A. F. Blackwell,
M. M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance,
H. Lieberman, B. A. Myers, M. B. Rosson, G. Rother-
mel, M. Shaw, and S. Wiedenbeck. The state of the art
in end-user software engineering. ACM Comput. Surv.,
43(3):21, 2011.

29. A. J. Ko, T. D. LaToza, and M. M. Burnett. A practical
guide to controlled experiments of software engineering
tools with human participants. Empirical Software En-
gineering, 20(1):110–141, 2015.

30. D. S. Kolovos, A. Garćıa-Domı́nguez, L. M. Rose, and
R. F. Paige. Eugenia: towards disciplined and automated
development of gmf-based graphical model editors. Soft-
ware and System Modeling, 16(1):229–255, 2017.

31. D. S. Kolovos, N. D. Matragkas, H. H. Rodriguez, and
R. F. Paige. Programmatic muddle management. In
XM@MoDELS, volume 1089 of CEUR Workshop Pro-
ceedings, pages 2–10. CEUR-WS.org, 2013.

32. D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige,
F. A. C. Polack, and G. Botterweck. Taming EMF and
GMF using model transformation. In MoDELS Part I,
volume 6394 of LNCS, pages 211–225. Springer, 2010.

33. T. Kosar, S. Bohra, and M. Mernik. Domain-specific
languages: A systematic mapping study. Information &
Software Technology, 71:77–91, 2016.

34. J. J. López-Fernández, J. S. Cuadrado, E. Guerra, and
J. de Lara. Example-driven meta-model development.
Software and System Modeling, 14(4):1323–1347, 2015.

35. J. J. López-Fernández, A. Garmendia, E. Guerra, and
J. de Lara. Example-based generation of graphical mod-
elling environments. In ECMFA, volume 9764 of LNCS,
pages 101–117. Springer, 2016.

36. J. J. López-Fernández, E. Guerra, and J. de Lara.
Example-based validation of domain-specific visual lan-
guages. In SLE, pages 101–112. ACM, 2015.

37. J. J. López-Fernández, E. Guerra, and J. de Lara. Com-
bining unit and specification-based testing for meta-
model validation and verification. Inf. Syst., 62:104–135,
2016.

38. N. Mangano, A. Baker, M. Dempsey, E. O. Navarro, and
A. van der Hoek. Software design sketching with calico.
In ASE, pages 23–32. ACM, 2010.

39. M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM Com-
put. Surv., 37(4):316–344, 2005.

40. Microsoft. https://msdn.microsoft.com/en-us/
library/aa937723(v=vs.113).aspx, 2017.

41. D. L. Moody. The “physics” of notations: Toward a sci-
entific basis for constructing visual notations in software
engineering. IEEE Trans. Software Eng., 35(6):756–779,
2009.

42. A. Pescador and J. de Lara. Dsl-maps: from requirements
to design of domain-specific languages. In ASE, pages
438–443. ACM, 2016.

43. A. Rensink, A. Dotor, C. Ermel, S. Jurack,
O. Kniemeyer, J. de Lara, S. Maier, T. Staijen,

and A. Zündorf. Ludo: A case study for graph transfor-
mation tools. In Proc. AGTIVE, volume 5088 of Lecture
Notes in Computer Science, pages 493–513. Springer,
2007.

44. M. D. Rosa, A. Fish, V. Fuccella, R. Saleh, S. Swartwood,
and G. Costagliola. A toolkit for knot diagram sketching,
encoding and re-generation. In Proc DMS, pages 16–
25. KSI Research Inc. / Knowledge Systems Institute
Graduate School, 2016.

45. L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia live:
A flexible graphical modelling tool. In XM @ MoDELS,
pages 15–20. ACM, 2012.

46. U. B. Sangiorgi and S. D. Barbosa. SKETCH: Modeling
using freehand drawing in eclipse graphical editors. In
FlexiTools @ ICSE, 2010.

47. O. Semeráth, A. Barta, A. Horváth, Z. Szatmári, and
D. Varró. Formal validation of domain-specific languages
with derived features and well-formedness constraints.
Software and System Modeling, In press, 2016.

48. Sirius. https://eclipse.org/sirius/.
49. S. Sobernig, B. Hoisl, and M. Strembeck. Extracting

reusable design decisions for uml-based domain-specific
languages: A multi-method study. Journal of Systems
and Software, 113:140–172, 2016.

50. J. Sottet and N. Biri. JSMF: a javascript flexible mod-
elling framework. In FlexMDE @ MoDELS, volume 1694
of CEUR Workshop Proceedings, pages 42–51. CEUR-
WS.org, 2016.

51. G. Stapleton, J. Howse, J. Taylor, and S. J. Thompson.
The expressiveness of spider diagrams. J. Log. Comput.,
14(6):857–880, 2004.

52. G. Stapleton, M. Jamnik, and A. Shimojima. What
makes an effective representation of information: A for-
mal account of observational advantages. Journal of
Logic, Language and Information, 26(2):143–177, 2017.

53. G. Stapleton, S. J. Thompson, A. Fish, J. Howse, and
J. Taylor. A new language for the visualization of logic
and reasoning. In Proc. DMS, pages 287–292. Knowledge
Systems Institute, 2005.

54. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd Edi-
tion. Addison-Wesley Professional, NJ, 2008.

55. Y. Sun, J. Gray, and J. White. A demonstration-based
model transformation approach to automate model scal-
ability. Software and System Modeling, 14(3):1245–1271,
2015.

56. D. Wuest, N. Seyff, and M. Glinz. Flexisketch team:
Collaborative sketching and notation creation on the fly.
In ICSE, volume 2, pages 685–688, 2015.

57. C. Yoder and M. Schrag. Nassi-Shneiderman charts:
an alternative to flowcharts for design. In ACM SIG-
SOFT/BIGMETRICS Software and Assurance Work-
shop, pages 386–393, 1978.

58. A. Zolotas, R. Clariso, N. Matragkas, D. S. Kolovos,
and R. F. Paige. Constraint programming for type in-
ference in flexible model-driven engineering. Computer
Languages, Systems & Structures, (to appear):–, 2017.

59. A. Zolotas, D. S. Kolovos, N. D. Matragkas, and R. F.
Paige. Assigning semantics to graphical concrete syn-
taxes. In XM @ MoDELS, volume 1239 of CEUR Work-
shop Proceedings, pages 12–21. CEUR-WS.org, 2014.

29

Appendix 1

This appendix contains the following documents pro-
vided to the participants in our evaluation: formulation
of the expected DSL requirements, instructions of the
experiment, and questionnaires. Questionnaire 1 was
answered by all the participants, in order to convey
their opinions on the first version of the generated mod-
elling tool. Questionnaire 2 was only answered by the
participants that opted for generating a second version
of the modelling tool. Mandatory questions are marked
with an asterisk.

Formulation of DSL requirements:

Next, we describe a domain for which we want to
create a graphical modelling language. For this purpose,
we only need you to provide some drawings with the
appearance you would like to have in your models.

Description: We want to model domestic networks
in which a Service Provider (ISP) provides Internet
access to its clients by means of local networks. Each
client hosts a domestic net, connected to a unique local
network via a modem. Each client can also have a
router (which can be enabled for WiFi connections)
with a number of ports to which different devices can
be connected. The router has access to Internet through
the modem.

Devices are connected to the net in a different way, de-

pending on whether they are wireless or not. Printers,

desktop computers, servers and fixed phones are con-

nected through the router. They need to be plugged to one

of the router ports, but the fixed phone which is directly

connected to the router. On the other hand, wireless de-

vices (laptops, Smart TVs and smartphones) can only

access Internet through a WiFi network, which will be

the one connected to the router directly.

Instructions:

You can provide as many drawings as you deem neces-
sary, each one illustrating domain examples according
to your own criterion. They do not mandatorily have
to be complete examples, but they can focus on specific
aspects of the problem domain. For instance, you can
make a diagram with just some local networks connected
to Internet, another with the configuration of a WiFi
network, etc.

The drawings do not need to include unnecessary
elements for the aspect you want to model, while you
should make as many drawings as necessary to illustrate
all aspects of the domain. Each element in the palette
should be used at least once in some drawing.

When making the drawings, please remind that the fol-

lowing properties are meaningful. (i) If you want to es-

tablish several kinds of connections between two objects,

you should use different line styles. (ii) The relative po-

sition of objects is meaningful. This means that draw-

ings can make use of containment, adjacency and over-

lapping of objects. (iii) You can add information to ob-

jects by attaching them labels with the following format:

〈field− name〉 = 〈field− value〉.

Questionnaire 1:

Q1 Indicate your age * :
Q2 Indicate your gender * :

◦ Male
◦ Female

Q3 Indicate your current workplace * :
◦ University
◦ Information technology company
◦ Different sector
◦ Unemployed

Q4 Does the synthesized modelling environment meet the
graphical syntax you envisioned when providing the
examples? *
Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q5 Which aspects of the graphical language are not cor-
rectly captured by the modelling environment?

Q6 Which aspects of the graphical language are best cap-
tured by the modelling environment?

Q7 How easy is it to use the modelling environment? *
Very difficult ◦1 ◦2 ◦3 ◦4 ◦5 Very easy

Q8 Which aspects of the environment would you im-
prove?

Q9 Which aspects of the environment do you like the
most?

Q10 Which is your higher level of expertise with mod-
elling? *
◦ I have developed both meta-models and graphical

domain-specific languages.
◦ I have developed meta-models, but not graphical

domain-specific languages.
◦ I have used domain-specific languages like UML

or BPMN.
◦ I have never used or developed models or meta-

models.

Answer the following questions only if you selected one
of the first two choices in the previous question (Q10).

Q11 Is the meta-model generated from the examples sim-
ilar to the one you would have built by hand? *
Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q12 Which aspects does the meta-model not capture cor-
rectly? *

Q13 Which approach would you prefer to build the meta-
model? *
◦ I would prefer designing the meta-model myself.
◦ I would prefer using examples, and then being

able to modify the meta-model manually.
◦ I would prefer using examples, and I do not think

necessary to modify the meta-model manually.

30

Questionnaire 2:

Q1 Has the editor quality been improved with respect to
the first iteration?
Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q2 Which aspects of the language are still not reflected
in the editor?
◦ None
◦ Other:

Appendix 2

Table 5 shows the changes made by the modelling expert
on the fragments provided by the participants in our
evaluation (cf. Section 7). The columns contain the par-
ticipant identifiers, the number of fragments, the editing
actions, and the time employed to commit them in sec-
onds.

Table 5: Manual changes made by the modelling expert to
the fragments provided in the evaluation, and time taken

Part. #Fr. Edits made by modelling expert Time
(s)

1 1 – Rename references 19

2 1 – Rename references 27

3 1 – Rename references
– Delete references ignoring the invisi-

ble bounding box of objects (see Fig-
ure 24)

– Fix inconsistent spatial relations
– Change the type of an attribute

from String to Integer; this attribute
had been assigned the value ’n’ to
indicate a number in the fragment

44

4 2 – Rename references
– Rename auto-generated superclass

49

5 2 – Rename references 12

6 2 – Rename references 70

7 2 – Rename references
– Adjust containment spatial relations

(for CableModem)

78

8 3 – Rename references
– Move object misplaced in the graph-

ical sketch

66

9 3 – Rename references
– Delete references ignoring the invisi-

ble bounding box of objects (see Fig-
ure 24)

– Move object misplaced in the graph-
ical sketch

– Adjust containment spatial relations
(for CableModem and Router)

128

10 4 – Rename references 77

11 6 – Rename references
– Adjust containment spatial relations

224

31

