
A

When and How to Use Multi-Level Modelling

JUAN DE LARA, Universidad Autónoma de Madrid (Spain)
ESTHER GUERRA, Universidad Autónoma de Madrid (Spain)
JESÚS SÁNCHEZ CUADRADO, Universidad Autónoma de Madrid (Spain)

Model-Driven Engineering (MDE) promotes models as the primary artefacts in the software development
process, from which code for the final application is derived. Standard approaches to MDE (like those based
on MOF or EMF) advocate a two-level meta-modelling setting where Domain-Specific Modelling Languages
(DSMLs) are defined through a meta-model, which is instantiated to build models at the meta-level below.

Multi-level modelling – also called deep meta-modelling – extends the standard approach to meta-
modelling by enabling modelling at an arbitrary number of meta-levels, not necessarily two. Proposers of
multi-level modelling claim that this leads to simpler model descriptions in some situations, although its
applicability has been scarcely evaluated. Thus, practitioners may find it difficult to discern when to use it
and how to implement multi-level solutions in practice.

In this paper, we discuss the situations where the use of multi-level modelling is beneficial, and iden-
tify recurring patterns and idioms. Moreover, in order to assess how often the identified patterns arise in
practice, we have analysed a wide range of existing two-level DSMLs from different sources and domains,
to detect when their elements could be rearranged in more than two meta-levels. The results show that
this scenario is not uncommon, while in some application domains (like software architecture and enter-
prise/process modelling) is pervasive, with a high average number of pattern occurrences per meta-model.

Categories and Subject Descriptors: D.2.2 [Design Tools and Techniques]: Object-oriented design meth-
ods; D.3.2 [Language Classifications]: Design languages; Extensible languages; D.3.3 [Language Con-
structs and Features]: Patterns; Classes and objects

Additional Key Words and Phrases: Model-driven engineering, meta-modelling, domain-specific modelling
languages, multi-level modelling, meta-modelling patterns

ACM Reference Format:
Juan de Lara, Esther Guerra and Jesús Sánchez Cuadrado, 2014. When and how to use multi-level mod-
elling. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 46 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Models and modelling play a cornerstone role in the Model-Driven Engineering (MDE)
development paradigm [Völter and Stahl 2006]. In contrast to code-centric develop-
ment approaches, MDE advocates a pervasive use of models throughout the develop-
ment cycle, and their automated processing for simulating, verifying and generating
code for the final system.

This work is supported by the Spanish Ministry of Economy and Competitivity with project Go-Lite
(TIN2011-24139) and the EU commission with project MONDO (FP7-ICT-2013-10, #611125).
Author’s addresses: J. de Lara, Computer Science Department, Universidad Autónoma de Madrid (Spain);
E. Guerra, Computer Science Department, Universidad Autónoma de Madrid (Spain); J. Sánchez Cuadrado,
Computer Science Department, Universidad Autónoma de Madrid (Spain).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 J. de Lara et al.

In MDE, models frequently describe the systems to be built from the problem per-
spective, in contrast to algorithmic or solution-oriented descriptions. Therefore, as a
central asset for the development process, MDE promotes the construction of Domain-
Specific Modelling Languages (DSMLs) specially tailored and highly effective for par-
ticular domains [Völter 2013]. DSMLs provide powerful, expressive primitives of the
domain, while hiding any accidental complexity. Hence, domain-specific models become
simpler and easier to understand than a description based on algorithmic construc-
tions. In general, techniques, patterns and tools to strip models of accidental details
are of great importance in MDE, enabling models to be truly intensional to better re-
flect the intrinsic structure of systems.

Standard approaches to MDE rely on a two meta-level architecture1 to define meta-
models for DSMLs and instantiate those into models. This architecture, implemented
in widely used frameworks like the Eclipse Modelling Framework (EMF) [Steinberg
et al. 2008], forces the description of a domain (a meta-model) within one meta-level
using the natively available meta-modelling facilities, like type definition, type inheri-
tance, data types, definition of features and cardinalities. Such facilities are not avail-
able at the model level; hence, whenever they need to be used in models, they must
be explicitly modelled at the meta-model level, resulting in unnecessary accidental
complexity [de Lara et al. 2014a].

Several researchers have proposed multi-level modelling as a means to overcome
this limitation by making it possible to define deep languages that span more than two
meta-levels [Atkinson and Kühne 2003; González-Pérez and Henderson-Sellers 2006].
Thus, this approach recognises the fact that some model elements may have a dual
type/instance facet, and hence it makes some meta-modelling facilities available at
every meta-level. In some situations, this may result in simpler models as the engineer
does not need to explicitly model and give semantics to those meta-modelling facilities
or resort to artificial workarounds [Atkinson and Kühne 2008].

Altogether, multi-level modelling has become a promising technology for DSML en-
gineering. Unfortunately, there are scarce applications of multi-level modelling in real-
istic scenarios [de Lara et al. 2014b], and few attempts to show the range of problems
where multi-level modelling provides benefits compared to other meta-modelling ap-
proaches. Without such know-how, practitioners frequently find it difficult to discern
when it is practical to use it, and how to implement multi-level solutions.

This paper aims at filling this gap by identifying a set of patterns and idioms where
the use of multiple levels makes sense. For each pattern, we enumerate the advan-
tages and disadvantages of different modelling alternatives considering both a multi-
level setting and a two-level architecture, provide guidelines of the more appropriate
solution depending on the modelling goal and scenario, and illustrate their usage in
real scenarios. In order to assess the applicability of our patterns, we have analysed
a large corpus of more than 400 existing meta-models and detected a number of them
that could benefit from a multi-level architecture. The meta-models come from differ-
ent sources (most notably, the ATL meta-model zoo [AtlanEcore 2014], the ReMoDD
repository [ReMoDD 2014] and OMG specifications [OMG 2014]) and domains (like
software architecture, process modelling, software design, web engineering, software
modernization and health). Interestingly, for some domains like software architecture
and enterprise/process modelling, some of our patterns are pervasive for most DSMLs
in the domain, with a high number of pattern occurrences in each meta-model (es-
pecially in the enterprise/process modelling domain). Moreover, for some sources, like

1Although the OMG proposes a four meta-layer architecture, in practice, MDE practitioners use just two
layers at a time: one to build meta-models for DSMLs and another one to instantiate those in the form of
models.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:3

OMG specifications, their frequency of occurrence is high (more than 35%). Therefore,
we can conclude that multi-level modelling is applicable and potentially beneficial in
real scenarios, and therefore a relevant technology for MDE in practice.

The rest of the paper is organized as follows. Firstly, we use an example to illus-
trate different modelling idioms based on a two-level architecture in Section 2, and
using multi-level modelling in Section 3. Section 4 presents different meta-modelling
patterns and alternative modelling solutions for them, including both multi-level and
two-level, and discusses advantages and disadvantages. Then, Section 5 evaluates the
extent to which these patterns occur in practice by analysing a wide corpus of existing
meta-models. In view of the results of this analysis, Section 6 discusses the benefits
of using a multi-level modelling solution instead of two-level solutions, giving some
guidelines on how to refactor into multi-level and proposing requirements and chal-
lenges for multi-level modelling tools in order to address the different situations found.
Finally, Section 7 reviews related research, and Section 8 draws some conclusions and
lines for future work.

2. MOTIVATING EXAMPLE: DYNAMIC MODELLING OF OPTIMIZATION PROBLEMS
Assume we are interested in describing combinatorial optimization problems (e.g.,
determining the optimal way to deliver packages) and their solution techniques [Pa-
padimitriou and Steiglitz 1998]. Our system is aimed at being extensible, and hence its
description should enable a flexible, dynamic addition of new kinds of problems, like
the Travelling Salesman Problem (TSP) or the Chinese Postman Problem (CPP) [Gutin
et al. 2002]. Moreover, it would be desirable to classify problems according to their con-
figuration features. For example, both TSP and CPP are problems on graphs, and so
both need to be configured with the graph on which the problem should be solved.

We also want to be able to create new solution methods for a given problem dynam-
ically, classified according to their working scheme, as some methods are direct (like
those based on “brute force”, combinatorial solutions), while others are transformation-
based, relying on transforming a particular instance of a problem into a different
one [Papadimitriou and Steiglitz 1998]. For example, we may add a heuristic, di-
rect solution of the TSP based on multi-agent systems [Wooldridge 2009] (e.g., the
Ant Colony Optimization [Dorigo and Gambardella 1997]), or define a transformation-
based method which translates CPP instances into TSP instances [Laporte 1997].

Finally, it should be possible to instantiate a problem kind (like solving the TSP on
a graph of 24 cities) using an appropriate solution method (like a multi-agent system
with 24 agents).

The following list summarizes the desired features of the system:

(1) Dynamic addition of problem types.
(2) Dynamic addition of direct and transformation-based solution methods.
(3) Description of features for problem types (e.g., number of graph nodes) and solution

types (e.g., number of agents), factoring out commonalities.
(4) Instantiation of problem types and their solution methods.

We will use different meta-modelling styles to solve this problem. A meta-model MM
is a model that describes the structure of a set SMM of models considered valid. Each
model in the set SMM is said to be a valid instance, or conform to the meta-model MM .
Meta-models contain the definition of classes, attributes and relations that can be used
(instantiated) in instance models. Additionally, meta-models may include further in-
tegrity constraints that instance models need to satisfy. Different meta-modelling lan-
guages and technologies can be used for describing meta-models, like MOF (imple-
mented in popular frameworks like EMF Ecore [Steinberg et al. 2008]), KM3 [Jouault

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 J. de Lara et al.

and Bézivin 2006], or UML class diagrams. Frequently, integrity constraints are spec-
ified using the Object Constraint Language (OCL) [OMG 2012d].

In the following, when using standard two-level meta-modelling, we assume Ecore-
based meta-models unless explicitly stated otherwise2, and in some occasions, we re-
port on unsupported features of Ecore that would be needed for a particular example.

2.1. First solution: Static types
A first attempt to modelling the example system is shown in Figure 1. The upper
part (labelled (a)) shows a meta-model of the problem, while the lower part (label (b))
depicts an instance model. In this attempt, we have modelled problem and solution
types as meta-classes. At first sight, this seems natural, and enables a hierarchical
classification of problem types through inheritance, reflecting the fact that both the
ChinesePostman and TravellingSalesman problem types are graph optimization prob-
lems (as they are subclasses of GraphOptimProblem) and share common properties like
the number of nodes in the graph3. Similarly, we can define transformation-based and
direct solution methods, like MultiAgentSystem, each defining their own configuration
properties by means of attributes, like the number of agents used in the multi-agent
system solution. This successfully addresses requirement 3 of our list. Below, the fig-
ure shows a model defining an instance of the TSP to be solved using the multi-agent
system solution method instantiated with 24 agents. Thus, this solution addresses suc-
cessfully requirement 4.

GraphOptimProblem
numNodes: int[0..1]

SolutionMethod
solver

*

DirectSolution TransformationSolution

to 1

MultiAgentSystem
numAgents: int

Chinese
Postman

OptimProblem

tspSol

0..1

{redefines
solver}

Travelling
Salesman

Chinese2Travelling

toTSP 0..1

transfName: String {readOnly}

transfName: String =
“CPP2TSP.atl”

(a)

myTSP: TravellingSalesman

numNodes=24

:MultiAgentSystem

numAgents=24

:tspSol

cpSol
{redefines solver}

{redefines to}
toTSP 0..1 “CPP2TSP.atl”{readOnly}

0..1

(b)

Fig. 1. Modelling optimization problems and solution types as meta-classes.

However, this modelling solution does not cover requirements 1 and 2 in our list. The
reason is that, to add a new problem type or solution method, one needs to modify the
meta-model, which is normally rigid and non-modifiable at run-time in meta-modelling
environments. While we can “dynamically create” objects at the model level, this is not
so for new classes at the meta-level, for which we most probably need a recompilation
step for the meta-model, or resort to complex reflective mechanisms.

2The main implication is that Ecore does not provide associations, but references, and so cardinalities are
only attached to the target reference ends. Or otherwise stated, the source cardinality of references can be
assumed to be *. However, associations can be emulated with opposite references.
3We have simplified the problem, allowing the configuration of the number of nodes in the graph, but not
the number of edges or their weight.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:5

Another problem arises when trying to constrain the valid solution methods for spe-
cific problem types. For instance, to specify that MultiAgentSystem is a valid solution
method for the TravellingSalesman problem, we have to redefine the solver refer-
ence defined from OptimProblem to SolutionMethod. This solution becomes particu-
larly tricky if we want to define several solution methods for the same problem, like
being able to use a MultiAgentSystem or a solution based on exhaustive combinatorial
search to solve the TravellingSalesman problem. This is so because it requires the
meta-modelling framework to support advanced overriding mechanisms that are not
available in popular frameworks like EMF, but that to some extent exist in (Complete)
MOF [OMG 2013i] and UML [OMG 2011g]. A similar problem arises when defining
transformation-based solution methods, as references solver and to need to be rede-
fined. Moreover, if we want to store the name of the file with the code implementing
the transformation, we need a mechanism to provide a value for attributes defined
in meta-classes (attribute transfName in TransformationSolution), and forbid their
modification in instances. In the example, this is done using a static, read-only at-
tribute. However, some popular meta-modelling frameworks like EMF lack this over-
riding mechanism.

2.2. Second solution: Explicit dynamic types
On reflection, we may realise that the system requirements demand meta-classes to
have object-like features: dynamic creation of meta-classes for the definition of new
types of problems and solutions, and valuation of references and attributes at the
meta-model level. The previous solution emulates such object-specific features with
type-specific mechanisms (subclassing and reference/attribute overriding). Hence, next
we explore an alternative approach modelling those elements as objects.

Figure 2 shows a simplified version of the new solution using what we call explicit
dynamic types, where we model problem types (like TravellingSalesman) and solution
types (like MultiAgentSystem) as objects. In this way, requirements 1 and 2 are sat-
isfied because we can create new types dynamically. However, we need to include in
the meta-model elements to emulate such a type facet. In particular, in order to ad-
dress requirement 3, we need to add a meta-class Feature to permit the definition of
features for new problem and solution types, a relation extends to allow organizing
problem and solution types along hierarchies, and an attribute isAbstract for prob-
lem and solution types (e.g., GraphOptimProblem is abstract). For clarity, the figure only
shows these elements for problem types.

Once we model problem types as objects, we can no longer use the native in-
stantiation mechanism of the meta-modelling framework to instantiate them, but
instantiation needs to be emulated. For this purpose, the meta-model includes dif-
ferent meta-classes to model problem types (OptimProblemType) and their instances
(OptimProblem), together with a reference type for the instantiation relation. In addi-
tion, since problem types may define features, their instances need to define Slots to
assign each feature a value. Thus, although not shown in the figure, the meta-model
needs to include OCL constraints checking that each problem instance has one slot
for each feature in the problem type, and the value in the slot is correct according to
the feature’s type (String, int and so on). A similar problem arises for the modelling of
solution method types (subclasses of SolutionMethodType) and their instances.

Altogether, while this solution addresses all system requirements, it adds much
more complexity than the previous one. The reason is that we need to assign type-
facet features to instances. Hence, we need to explicitly model and provide seman-
tics to meta-modelling facilities (inheritance, instantiation, data types) that a meta-
modelling framework natively provides. However, such facilities are only available at
the meta-model level (where types reside) and not at the model level (where instances

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 J. de Lara et al.

solver

0..1

solverType

*

OptimProblem

Type

type 1

to

to

extends

*

Feature

name: String

type: String

Slot

value: String

slots

*

feats

*

type 1

myTSP:

OptimProblem
mas: DirectSolution

GraphOptimProblem:

OptimProblemType

isAbstract: bool

isAbstract = true

:Feature

name=“numNodes”

type=“int”

:feats

TravellingSalesman:

OptimProblemType

ChinesePostman:

OptimProblemType

:extends

MultiAgentSystem:

DirectSolutionType

Chinese2Travelling:

TransfSolutionType

transfName=“CPP2TSP.atl”

:solverType

:to

:solverType

:type

:solver

:type

:Slot

value=“24”

:type

OptimProblem

1

SolutionMethod

Type

DirectSolution

Type

TransfSolution

Type

DirectSolution

TransfSolution

type

type

transfName: String

SolutionMethod

1

1

:extends

:slots

Fig. 2. Modelling optimization problems and solution types as objects.

arise). The next section introduces a third solution based on the uniform modelling of
types and instances and the possibility of using more than two meta-levels to describe
the problem.

3. MULTI-LEVEL MODELLING AND THE ORTHOGONAL CLASSIFICATION ARCHITECTURE
In order to alleviate the drawbacks of the solutions proposed in the previous section, we
introduce two techniques that extend the standard two-level meta-modelling approach:
potency-based multi-level modelling [Atkinson 1997; Atkinson and Kühne 2001] and
the orthogonal classification architecture (OCA) [Atkinson and Kühne 2002; Atkinson
et al. 2010].

3.1. Potency-based multi-level modelling
Potency-based multi-level modelling (also called deep meta-modelling4) was intro-
duced by Atkinson and Kühne in [Atkinson 1997; Atkinson and Kühne 2001]. It en-
ables the use of an arbitrary number of meta-levels when describing a problem. In
this way, elements within a model have a dual facet: they are instances with respect
to some element in the meta-model above, and they are types with respect to ele-
ments in the meta-level below. For this reason, they are often called clabjects (from
class+object) [Atkinson 1997]. This approach solves the duality of the two previous
solutions, as clabjects have both type and instance characteristics at the same time.

Figure 3 shows the multi-level solution for our running example. At the upper
meta-level, we define meta-classes representing types of problems, transformation-
based solutions and direct solutions. These meta-classes are instantiated in the in-
termediate meta-level in order to dynamically create new problem types (like the

4For simplicity, we will use the term “multi-level modelling” to refer to potency-based multi-level modelling,
when no confusion can arise.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:7

TravellingSalesman problem) and solution method types (like MultiAgentSystem).
These instances are indeed clabjects and thus can be instantiated. In this way, the
bottom-most model enables the configuration of specific problems and solution meth-
ods, just like the model in Figure 1 (b).

@2

to 1

MultiAgentSystem:
DirectSolution

numAgents: int

tspSol:solver
@1 GraphOptimProblem:

OptimProblem
numNodes: int[0..1]

Chinese2Travelling:

0..1

SolutionMethod
solver

*OptimProblem

DirectSolutionTransformationSolution

transfName@1: String

@0

ChinesePostman:
OptimProblem

TravellingSalesman:
OptimProblem

Chinese2Travelling:
TransformationSolution

transfName = “CPP2TSP.atl”

toTSP: to

cpSol: solver

0..1

0..1

myTSP: TravellingSalesman

numNodes=24

:MultiAgentSystem

numAgents=24

s:tspSol

Fig. 3. Modelling optimization problems and solution types using deep meta-modelling.

In the figure, the clabjects in the middle meta-level have a dual type/instance facet:
TravellingSalesman is an instance of OptimProblem, and it is the type of myTSP. This
duality applies also to references. For example, tspSol is an instance of solver, and is
also a type for the s link at the bottom model. Being an instance, tspSol should obey
the cardinalities at the level above (* in this case); being a type, it can define its own
cardinalities (0..1). Hence, similar to the solution based on explicit dynamic types,
new problem types and solution methods can be dynamically created at the middle
meta-level, therefore addressing requirements 1 and 2.

As multi-level modelling spans several meta-levels, it becomes necessary to control
the instantiation depth of elements and the features of instances beyond the adjacent
meta-level below. For this purpose, the potency permits specifying in how many meta-
levels an element can be instantiated. The potency is a positive number (or zero) that
can be attached to models, clabjects, fields and references. It gets automatically decre-
mented in the instances at each deeper meta-level, and when it reaches zero, it is not
possible to instantiate the element in lower meta-levels.

In Figure 3, we use ‘@’ to denote the potency of elements, following the syntax of the
METADEPTH multi-level modelling tool [de Lara and Guerra 2010]. If an element is
not tagged with a potency, then it receives the potency from its immediate container,
and ultimately from the model. In the example, the top-level model has potency 2 and
therefore can be instantiated in two meta-levels. All elements in this model receive
the same potency, except the field transfName, which explicitly declares potency 1.
This means that the instances of TransformationSolution should provide a value for
it at the next meta-level. If the field were defined with potency 2, it should receive a
value two levels below, though it could still receive a value at the intermediate level
acting as default for the instances at the level below. Hence, while in standard two-level

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 J. de Lara et al.

modelling a type can only control the features of its instances at the immediate meta-
level below, the potency is a way for deep characterization, enabling the declaration of
properties for elements several meta-levels below. An example of fields with potency
2 is given in the running example of Section 4. We take the convention of hiding the
fields with primitive type and potency bigger than 0 at intermediate meta-levels.

The multi-level solution addresses all requirements of the running example, in con-
trast to the static type solution in Figure 1. Moreover, it is conceptually simpler than
the explicit dynamic type solution in Figure 2, as it has less modelling elements (11
clabjects vs 19 classes/objects, and 6 references vs 22 references) and there is no need
to define OCL constraints to make explicit the instantiation semantics of any element.

3.2. The orthogonal classification architecture: Linguistic and ontological typings
Technically, one may wonder how it is possible to define inheritance relationships or
fields (like numNodes) in the intermediate meta-level of our example. While two-level
meta-modelling frameworks make available meta-modelling facilities (like inheritance
or the ability to define abstract classes) only at the top meta-model, in multi-level mod-
elling these facilities are available at every meta-level by adhering to the orthogonal
classification architecture (OCA), as Figure 4(a) shows. This architecture was origi-
nally proposed in [Atkinson and Kühne 2002].

Li
ng

ui
st

ic
m

et
a-

m
od

el
(m

et
a-

m
od

el
lin

g
fa

ci
lit

ite
s)

�

Meta-meta-model
(meta-modelling facilitites)

Meta-model

Model

MM

M

MM

M

M’

«instance of» (onto)

«instance of» (onto)

«i
ns

ta
nc

e
of

»
(li

ng
)

in
st

an
ce

of
»

lin
g)

«i
ns

ta
nc

e
of

»
(li

ng
)

«instance of»

«instance of»

(m
et

a

M
M’

«i
ns

ta
nc

e
(li

ng
)

(a) (b)

Fig. 4. (a) Orthogonal classification architecture. (b) Standard meta-modelling architecture.

OCA distinguishes two orthogonal typings for model elements: ontological and lin-
guistic. The ontological classification structure or logical dimension of an element ex-
presses instantiation within a domain. For instance, DirectSolution is the ontological
type of MultiAgentSystem. The linguistic typing or physical dimension of an element
refers to the meta-modelling facility used for the construction of the element. Here,
one assumes a linguistic meta-model which includes concepts like Clabject, Field
and Reference, and makes available meta-modelling facilities like inheritance and in-
stantiation. For example, the linguistic type of MultiAgentSystem is Clabject, and the
linguistic type of toTSP is Reference. While all elements in a model have a linguistic
typing, they may lack the ontological typing. This is the case of the field numNodes.
The set of elements of a model with only linguistic typing is called linguistic exten-
sion [de Lara and Guerra 2010].

In contrast, standard two-level meta-modelling architectures do not distinguish be-
tween ontological and linguistic typings, but there is only one typing, as Figure 4(b)
shows. This architecture makes available meta-modelling facilities only at the meta-
model level. However, we have seen that making available these facilities at every

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:9

meta-level avoids the need to explicitly model them, as we did in the solution of Fig-
ure 2. The instantiation relation between MM and the meta-meta-model is linguistic
because it provides the meta-modelling facilities to build MM . Thus, the meta-meta-
model plays the role of the linguistic meta-model in the OCA architecture. The instan-
tiation relation between M and MM is of ontological nature.

So far, we have illustrated that multi-level modelling can help in building systems
in a simpler way. However, when facing the development of a new system, the question
still remains of whether using multi-level modelling for that particular case would be
useful. To answer this question, in the next section we systematically identify different
meta-modelling patterns, analyse potential solutions, and discuss the advantages and
disadvantages of each solution depending on the scenario.

4. MULTI-LEVEL META-MODELLING PATTERNS
This section introduces different meta-modelling patterns where multiple levels are
implicit, and discusses the advantages and disadvantages of different modelling solu-
tions, including both two-level and multi-level. The patterns emulate different meta-
modelling facilities, like the instantiation relation and the type-object facet of elements,
the dynamic creation and instantiation of features, the definition and instantiation of
attributed entities, the configuration of references, and the classification of elements.

The patterns we present emerged from both our own experience building multi-level
systems and by encoding such systems in a two-level setting following alternative ap-
proaches. As we will show in Section 5, it was also crucial to perform an extensive
analysis of the literature and existing meta-models, like the ATL meta-model zoo or
the OMG specifications. This study made evident that these patterns were actually
modelling different meta-modelling facilities using different techniques.

We use a presentation of the patterns in the style of [Gamma et al. 1994], includ-
ing first a brief statement of the pattern goal (“intent” section), followed by additional
names that practitioners use for the pattern (“also known as” section), a motivating ex-
ample revolving around the classical problem of dynamically modelling product types
and their instances (section “motivation”), several solutions (section “solutions”), the
structure of the pattern (section “structure”) and some conclusions with the trade-offs
of each solution (section “conclusions”). As a difference with [Gamma et al. 1994], in
the solutions section we discuss the merits of both two-level and multi-level solutions.

4.1. Modelling types and instances: The type-object pattern
Intent. This pattern allows the explicit modelling of types and their instances, where
types are not static but can be added dynamically. Types and their instances may
define features, which are fixed and known a priori.

Also known as. This pattern also arises in programming, where it is called type-
object [Martin et al. 1997], item descriptor [Coad 1992] or metaobject [Kiczales and
Rivieres 1991] pattern.

Motivation. In the running example, we have the need to define different kinds of
optimization problems and solution methods dynamically, and then create instances
of them. Another example is the classical problem of modelling product types – like
books or CDs – which need to be added to the system on-demand, as well as their
instances [Atkinson and Kühne 2002]. Product types have a value-added tax (vat),
while instances have a price.

Solutions. We next describe seven possible solutions for the “product types” example.

Static types. The first two-level solution, shown in Figure 5(a), models product types
as static entities at the meta-level. They are defined as subclasses of Product, from

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 J. de Lara et al.

which they inherit both the price (instance level property) and the vat (type level
property). The vat is given a value at the meta-level via redefinition.
The advantage of this solution is that it uses a native meta-model facility (the in-
stantiation) to relate product instances (GoF) with their type (Book). The drawback is
that this solution emulates values at the meta-level by means of redefinition, which
may be difficult for references/associations as some meta-modelling frameworks (e.g.,
EMF) do not support their redefinition. Moreover, this solution does not meet the in-
tent of the pattern, as the product types (like Book) are fixed a priori; if a new kind
of Product is to be added, the meta-model has to be changed to add a new subclass of
Product.

Product

Book: Product

GoF: Book

vat@1: double

price: double

vat=4.0

price = 35

@2

@1

@0

Product

Book

vat: double {readonly}

price: double

vat : double =4.0

ProductType

vat: double

Product

price: double

type

1

Book: ProductType

vat = 4.0

:type

(a) (b) (c) (d)

GoF: Book

price = 35

GoF: Product

price = 35

ProductType

Product

- Book

price: double

/vat: double =
 self.type=ProductType.Book

 implies 4.0

GoF: Product

type = ProductType.Book

price = 35

/vat = 4.0

«enum»

type 1

Fig. 5. Solutions for the type-object pattern. (a) Static types. (b) Enumerated types. (c) Explicit dynamic
types. (d) Multi-level.

Enumerated types. Figure 5(b) shows another two-level solution where an enumerated
type (ProductType) defines all possible types of product (Book in this case). Since the
types defined in the enumeration (Book) cannot declare attributes5, we define vat as
a derived attribute in Product, and calculate its value depending on the selected type
for the product.
Albeit simple, this solution does not meet the intent of the pattern because, similar
to the static types solution, the product types are fixed a priori in the enumeration.
Another issue is that not all meta-modelling frameworks support the definition of
derived attributes or automate their computation. On the other hand, the advantage
of using an enumerated type is that it allows instances to have zero or several types
just by changing the cardinality of the reference type, and it would be possible to
change the type of an instance dynamically at the model level [Riehle et al. 2000].

Explicit dynamic types. Figure 5(c) shows a two-level solution consisting of the explicit
modelling of types (ProductType) and instances (Product). Thus, product types and
products are both objects, fully satisfying the requirements of the scenario.
The drawback of this solution is that it requires adding an extra class to enable the in-
stantiation of both product types and instances, and the instantiation relation needs
to be explicitly modelled (reference type). As we will see, this solution can get quite
complicated if sophisticated features like inheritance or dynamic features are also

5Some programming languages like Java support the definition of attributes in enumerated types, but most
meta-modelling frameworks lack this feature.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:11

needed. Nonetheless, the explicit modelling of meta-modelling facilities also has ad-
vantages, as it provides greater flexibility to define domain-specific typings. Similar
to the enumerated types solution, it allows a product to have several types or no type
at all by changing the cardinality of reference type, and the dynamic retyping of
instances. This solution also enables non-uniform instantiation, where types and in-
stances have different structure. We will explore this possibility in Section 4.4.

Multi-level. Figure 5(d) shows the multi-level solution. The feature for product types
(vat) is assigned potency 1, while the feature for instances (price) has potency 2 in-
herited from the container model. Compared to (a), this solution allows the dynamic
addition of new product types. Compared to (b), this solution permits assigning in-
stance facets (e.g., vat) to types. Compared to (c), this solution does not need to ex-
plicitly model the instantiation relation, as it uses the native meta-modelling facili-
ties of the framework. However, the drawback is that the instantiation semantics is
fixed, as given by the meta-modelling framework. Moreover, instantiation is always
mediated, that is, in order to be able to create GoF at level 0, first it is necessary to
create its type Book at level 1.

Promotion. A way to solve the drawbacks of the static types and the explicit dynamic
types approaches using a two-level architecture is to model product types as ob-
jects, and then promote these objects into instantiable meta-classes. This can be done
through a so-called promotion model-to-model transformation which receives a model
as input and produces a meta-model as output, as shown in Figure 6(a). In this way,
we are conceptually emulating the multiple meta-levels of the multi-level solution,
but here the instance and type facet of elements are separated. The instance facet
is defined by instantiating the meta-model with label (1) in the figure, and then a
transformation creates the type facet (meta-model with label (3)). Figure 6(b) shows
a variant of this solution, where the meta-classes generated by the transformation
inherit from some base class which provides them with common features (e.g., the
price). Altogether, the generated meta-model is similar to the static types solution of
Figure 5(a), but product types can be created dynamically as objects.

ProductType

Book:ProductType

vat: double

vat=4.0

(2) instance facet

(3) type facet (1)

(4)

Book

(3) type facet

GoF: Book

price = 35

(4)

Product

price: double

(a) (b)

Book

price: double

GoF: Book

price = 35

ProductType

Book:ProductType

vat: double

vat=4.0

(2) instance facet

(1)

Fig. 6. Solutions for the type-object pattern. (a) Promotion. (b) Promotion with base classes.

The main advantage of this design is its flexibility, as one can create types at will
using the promotion transformation, enabling non-uniform instantiation. This benefit
was also present in the explicit dynamic types solution. However, there are a number
of drawbacks. First, there is the need to add an additional operational element when
modelling: a promotion transformation. This transformation can “hide” important
information about the system. For example, the fact that every Book has a price in
solution (a), or that any meta-class coming from a product type must inherit from

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 J. de Lara et al.

Product in solution (b), is hard-coded in the transformation. Moreover, there is a
disconnection between the instance facet and the type facet of a same element (e.g.,
accessing the vat value of Books from the GoF object may become cumbersome).

Powertypes. A powertype [Odell 1994] is a type, the instances of which are subtypes
of another type. Conceptually, this is what the promotion transformation with base
classes shown in Figure 6(b) yields, as the instances of ProductType – like Book –
become subtypes of Product. Thus, following the same idea, we can use powertypes
to model the system as depicted in Figure 7(a). The powertype (ProductType) holds
the attributes for types (vat), while another type (Product) holds the attributes for
instances (price). Then, we can create Book as an instance of ProductType, which
by definition becomes a subclass of Product and therefore can be instantiated to cre-
ate GoF. In this way, using powertypes is a multi-level solution where the subtyping
relation can cross meta-levels6.

GoF: Book

price= 35

ProductType

vat: double

Product

Book

price: double

vat= 4.0

CD

vat= 4.0

{disjoint, incomplete}

GoF: Book

price= 35

ProductType

vat: double

Product

Book:ProductType

price: double

vat= 4.0

«powertype»

:ProductType

«
p

o
w

e
r

ty
p

e
» *1

category

(a) (b)

U
M

L
cl

a
ss

 d
ia

g
ra

m

U
M

L
o

b
je

ct
d

ia
g

ra
m

Fig. 7. Solutions for the type-object pattern. (a) Powertypes. (b) UML powertypes.

The UML realizes the powertype concept using the notation shown in Figure 7(b). The
figure contains a class diagram and an object diagram. Both diagrams are instances
of the UML meta-model, which is defined one meta-level above. We use dash lines to
separate both diagrams because the instantiation relation between class and object
diagrams is modelled within the UML (i.e., it could be represented as an association
named type, similar to the explicit dynamic types approach).
This solution is problematic because UML classes do not have an instance facet
(i.e., Classifier, which is the meta-class for UML classes, is separated from
InstanceSpecification, which is the meta-class to represent UML objects); hence,
it is not possible to assign a value to the slot vat. Actually, the UML standard states
that “Power types are a conceptual, or analysis, notion. [...] In object-oriented imple-
mentations, the instances of a class could also be classes”.
Altogether, powertypes separate the type and instance facet of elements in two meta-
classes. This provides clarity to the design, but at the expense of a bigger number
of meta-classes and associations. While potency-based multi-level modelling allows
the characterization of features at any meta-level below by using potency, power-
types are only able to characterize features of the next two meta-levels. Moreover,
clabjects can define slots due to their instance facet; hence, they do not suffer from
the problem in UML powertypes shown in Figure 7(b). However, subtyping across
meta-levels as required by the powertype concept is not supported in potency-based

6Note that [Eriksson et al. 2013] propose a more compact notation where inheritance is hidden.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:13

multi-level modelling and would be forbidden in strict meta-modelling frameworks
(like the EMF), where only the instantiation relation can cross meta-levels and is not
allowed between elements at the same meta-level [Atkinson and Kühne 2002]. Alter-
natively, one could use a promotion transformation with base classes to implement
powertypes. Very few tools natively support powertypes [Volz and Jablonski 2010].

Stereotypes. Stereotypes [OMG 2011g] are an extension mechanism proposed by the
OMG for MOF-based meta-models. They are quite popular among engineers to define
extensions for UML (called UML profiles) for different domains, like real-time [OMG
2011f] or business process modelling [OMG 2013b; 2008a].
A stereotype represents a domain concept. It is defined as an extension of some meta-
class of the UML meta-model, and can have attached tagged values (meta-attributes)
defining specific features, as well as OCL constraints. Figure 8 shows a solution of
the example using stereotypes. We need to define the stereotype ProductType with
the tagged value vat as an extension of the UML meta-class Class. This way, in UML
models, we can assign a vat to a class stereotyped ProductType. Moreover, since all
product instances have a price, we define the stereotype Product as an extension of
InstanceSpecification, and attach to it the feature price. Finally, we need an OCL
constraint to check that any UML object stereotyped Product must be an instance of
a UML class stereotyped ProductType.

«Metaclass»

Class

«ProductType»

Book

«Stereotype»

ProductType

vat: double

«Product»

GoF: Book

«ProductType»

vat=4.0

«Metaclass»

InstanceSpecification

«Stereotype»

Product

price: double

UML meta-model

UML model

context UML::InfrastructureLibrary::Core::

 Constructs::InstanceSpecification

inv : self.isStereotyped(“Product”) implies

 self.classifier.isStereotyped(“ProductType”)

UML object diagram

UML class diagram

«Product»

price=35

Fig. 8. Solution for the type-object pattern using stereotypes.

This solution is simple and builds on MOF, which is a standard. As in multi-level
modelling, there is no need to explicitly model the instantiation relation between do-
main types and instances, but the one defined in the UML meta-model is reused;
however, note that this instantiation relation is different from the one used between
meta-levels, and its semantics is fixed, with objects being an instance of a type at
a time. Among the disadvantages, this solution requires from the definition of two
stereotypes, while just one clabject is needed in the multi-level solution. Moreover,
the definition of profiles requires knowledge of the UML meta-model, and the result
is an extension of the (rather large) UML, which sometimes may be useful but other
times not. A small meta-model will normally be easier to instantiate for users than a
large meta-model with many concepts. Stereotypes are limited to model domain types
(e.g., Book) and instances (e.g., Product), but are unable to model more than two lev-
els, because the UML provides linguistic support for classes (meta-class Class) and
instances (meta-class InstanceSpecification) only. Moreover, this solution relies on

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 J. de Lara et al.

the degree of coverage of the profiling mechanism by the used UML tool, which may
vary between different tools. In particular, the definition of arbitrary OCL constraints
in profiles is only supported by some tools. Finally, the fact that an instance of Book
(like GoF) should be stereotyped with Product is not explicit, but it needs to be encoded
as constraints. Some OMG specifications, like MARTE [OMG 2011f], informally doc-
ument this fact through dependency relations.

Structure. Figure 9 shows the structure of the type-object pattern using multi-level
modelling, which is used as a basis to compare with the structure of the other solutions.
The multi-level solution declares the domain type with potency 2, the features of the
type with potency 1, and the features of the instances with potency 2. In this way, the
dynamic types can be created in the intermediate level. Such dynamic types have a
dual type/instance facet, as they can be instantiated in the lower meta-level.

DomainType

DynamicType:

DomainType

DynamicTypeInstance:

DynamicType

@2

@1

@0

typeFeature

instanceFeature

typeFeature = value

instanceFeature = value

@1

Both meta-levels are

merged in the static

types and enumerated

types solutions

Both meta-levels are merged in

the explicit dynamic types solution

This dual type/instance facet is

played by two different elements

in the promotion solution

typeFeature is added to a stereotype for Class,

and instanceFeature to a stereotype for

InstanceSpecification, in the stereotype solution

Two classes (one with the type features

and another with the instance features)

are needed in the powertypes solution

Fig. 9. Structure of the type-object pattern using multi-level modelling.

Other solutions emulate the instantiation relation and the dual type/instance facet
of DynamicType in different ways. The static types solution declares both DomainType
and DynamicType at the top-most meta-level using subclassing, while the enumerated
types solution declares the dynamic types as literals in an enumeration. Hence, these
two solutions “merge” the meta-levels with potency 2 and 1 in Figure 9, so that dy-
namic types are not really dynamic, but they are statically defined. Instead, the ex-
plicit dynamic types solution supports the creation of truly dynamic types and their
instances at the model level by defining meta-classes for them. Hence, this solution
merges the meta-levels with potency 1 and 0 in Figure 9. The promotion solution em-
ulates the dual type/instance facet of DynamicType using two separate elements: first,
one has to create an instance of DomainType (i.e., it works with the models at potency
2 and 1 in Figure 9); and then, it promotes that instance into a new type that can
be instantiated (i.e., it works with the models at potency 1 and 0). Powertypes use
two meta-classes to represent DomainType: one contains the features with potency 1,
and the other the features with potency 2. In this way, the dynamic types are created
by both instantiating the first meta-class and subclassing the second. Finally, stereo-
types allow extending UML with domain types (stereotype for Class defining the type
features) and instances (stereotype for InstanceSpecification defining the instance
features). Then, dynamic types can be created in class diagrams and instantiated in
object diagrams.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:15

Conclusions. From the previous solutions, the ones that do not solve the scenario are
the static types and the enumerated types solutions, because adding new dynamic types
implies modifying the meta-model. While this may not break the conformance of ex-
isting models, it may imply a recompilation step. Moreover, it might not be adequate
to permit a direct manipulation of the meta-model to the users, as they would be able
to make arbitrary changes which could break conformance of existing models. Explicit
dynamic types and promotion are the only solutions which may enable non-uniform
instantiation. Explicit dynamic types provide extra flexibility, enabling instances with
several types, as the instantiation relation is hand-made and can be customized. If
such facilities are not needed, either multi-level or stereotypes are simpler to imple-
ment, as the instantiation relation is built-in. Whereas multi-level modelling allows
the construction of tailor-made DSMLs containing only concepts of the domain, stereo-
types extend the UML with domain concepts (i.e., the DSML is embedded in the UML).
Altogether, the potency-based multi-level solution is simpler (it requires less modelling
elements), and should be preferred to stereotypes when reusing the whole UML is not
desired.

4.2. Dynamic features
Intent. This pattern permits the dynamic addition of new features to a type, and the
corresponding slots to the instances of those types.

Also known as. This pattern arises in data modelling, where it is called entity attribute
value [Sanders 1995] model, and in programming, under the name of object attribute
value, dynamic object model [Riehle et al. 2000], and adaptive object-model [Yoder and
Johnson 2002].

Motivation. Sometimes, it is not possible to foresee the features needed by a certain
type, or extensibility by the end-user is required in that aspect. In such cases, a mech-
anism is needed to add and instantiate features on demand. This is in contrast with
the type-object pattern, where features for types and instances are fixed a priori. Dy-
namic features appear together with the type-object pattern and it can be seen as a
special case of it, where the feature is the type, and the slot is the instance; however,
dynamic features frequently need to impose additional constraints regarding the com-
patibility of the elements defining and instantiating the features, and the adequacy of
data types and values. A “shallow” version of this pattern appears when there is the
need to define features for some element, but such features do not get instantiated.

The motivating example of Section 2 contains two instances of this pattern, as we
need to define features for the created problem and solution types, and assign them a
value in the instances. Coming back to the products example, we can extend it to re-
quire the definition of features for product types. For example, we may add the number
of pages to the product type Book, or the RAM memory size to Computer.

Solutions. We next describe six solutions for the “product types” example. We omit the
enumerated types solution because it does not allow a direct declaration of features in
the enumeration, but features should be modelled using a similar approach to the one
we will explain for explicit dynamic types. Unless explicitly stated, the same advan-
tages and disadvantages discussed in Section 4.1 for each approach remain, so next
we only comment on new issues.

Static features. Figure 10(a) shows an inadequate solution combining static types and
features defined at the meta-model level. For instance, the product type Book is as-
signed the book-specific feature pages at the meta-level. Adding features dynamically
at the model level is not possible.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 J. de Lara et al.

ProductType Product
type

1
*

:type

Slot Feature

name: String

DataType

StringType

IntType

DataValue

… IntValue

value: int

StringValue

value: String

…

type

1 *

type

type

1

{redefines type}

*

*

{redefines type}

1

value

1

type

1 *
slots

features

*

*

type 1

:IntType :StringType

vat: double price: double

Book: ProductType

vat=4.0

:Slot

:Feature

name=“pages”

:IntValue

value=349
:value

:type

:type

:type

:slots

:features
…

(a) (b)

Product

Book

vat: double {readonly}

price: double

vat : double=4.0

pages: int

GoF: Book

price = 35

pages=349

context Product inv :

 self.slots->forAll(s |

 self.type.features->includes(s.type))

context ProductType inv :

 self.products->forAll(p |

 self.features->forAll(f |

 p.slots->exists(s |

 s.type = f)))

…

GoF: Product

price=35

products

Fig. 10. Solutions for the dynamic features pattern. (a) Static features. (b) Explicit dynamic features.

Explicit dynamic features. Figure 10(b) shows a general two-level solution solving the
scenario, where features, data types, slots and data values are explicitly modelled. As
an example, the lower model shows the addition of the feature pages to the product
type Book, as well as the assignment of the value 349 to the corresponding slot in
the GoF book instance. Actually, one can interpret that the meta-model entails three
nested occurrences of the type-object pattern: for product types and their instances
(ProductType / Product), for features and their instances (Feature / Slot), and for
data types and their instances (DataType / DataValue)7. However, we need to define
additional OCL constraints ensuring the compatibility of the instantiated elements.
The figure shows a pair of such constraints, which check whether a product has slots
for all features in its product type; further constraints should take care of the cor-
rect assignment of data values to the slots according to the data type of the feature.
Although data types could be modelled with an enumerated type, the proposed solu-
tion is more general as it enables the definition of attributes and associations on data
types, being easier to extend if dynamic references are also needed.
This solution has the same pros and cons as the dynamic types version of the type-
object pattern, but now a few more disadvantages arise. First, the meta-model in-
troduces quite a number of extra meta-classes and OCL constraints, in particular to
model data types and instances and to ensure compatible instantiation. Moreover,
this solution does not model uniformly “fixed” features (price) and dynamic features
(pages), which contributes to further complexity (e.g., when writing a model-to-model
transformation).

Multi-level. Figure 11(a) shows a multi-level solution. It makes use of linguistic exten-
sions at the intermediate meta-level (i.e., definition of elements without an ontolog-
ical type) in order to add new features, like pages, dynamically. The added features
can be assigned a value in the meta-level below. The advantage of the solution is
its simplicity, and the fact that both dynamic features (pages) and “fixed” features
(price) are handled uniformly.

Promotion. Figure 11(b) shows a promotion-based solution. Only product types, data
types and features are explicitly modelled (meta-model 1). A transformation promotes
their instances (label 2) into meta-classes with an attribute coming from each feature
(meta-model 3). Then, instantiation can be used to natively provide values for these
attributes (model 4). Although dynamic and “fixed” features are used uniformly in

7Actually, one can also recognise the use of a static approach to define a fixed set of data types (like IntType)
and data values (like IntValue).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:17

ProductType

Feature

name: String

DataType

StringType

IntType …

features *

type

1

:IntType

:StringType

vat: double

Book: ProductType

vat=4.0

:Feature

name=“pages”

:type

:features

…

Book

pages: int

GoF: Book

price = 35

pages=349

Product

price: double

(a) (b)

Product

Book: Product

GoF: Book

vat@1: double

price: double

vat=4.0

pages: int

price = 35

pages = 349

@2

@1

@0

(2) instance facet

(3) type facet (1)

(4)

Fig. 11. Solutions for the dynamic features pattern. (a) Multi-level. (b) Promotion.

model 4, they are defined using different techniques (dynamic ones are modelled, but
the generation of the “fixed” ones must be encoded in the promotion transformation).

Powertypes. Figure 12(a) shows a solution using UML powertypes, in which we simply
use the native UML modelling facilities to add features to the UML class Book and
instantiate them in the UML object GoF. However, as we explained previously, UML
classes do not have an instance facet, and therefore, even though we could define the
attribute vat in the meta-class ProductType, it would not be possible to assign it a
value in Book (see Figure 7(b)).

pages: int

pages= 349

GoF: Book

price= 35

pages = 349

ProductType Product

Book

price: double

pages: int

{disjoint, incomplete}

:ProductType

* 1

category

(a) (b)

«Metaclass»

Class

«Stereotype»

ProductType

vat: double

«Metaclass»

InstanceSpecification

«Stereotype»

Product

price: double

UML meta-model

«ProductType»

Book

«Product»

GoF: Book

«ProductType»

vat=4.0

«Product»

price=35

UML model

U
M

L
cl

a
ss

 d
ia

g
ra

m

U
M

L
o

b
je

ct

d

ia
g

ra
m

Fig. 12. Solutions for the dynamic features pattern. (a) UML powertypes (b) Stereotypes.

Stereotypes. Figure 12(b) shows a solution using stereotypes. As before, we can use the
native UML modelling facilities to define features in Book and instantiate those in the
GoF object. However, a disadvantage is that the features coming from the stereotype
(price) and those coming from the type (pages) are not handled uniformly, adding
accidental complexity to the solution.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 J. de Lara et al.

Structure. Figure 13 shows the structure of the pattern using multi-level modelling.
The dynamic feature is defined at level 1 as a regular feature because DynamicType has
a type facet.

DomainType

DynamicType:

DomainType

DynamicTypeInstance:

DynamicType

@2

@1

@0

dynamicFeature: primitiveType

dynamicFeature = value

Both meta-levels are

merged in the static

features solution

The dynamic feature, its type and

the slot for its value are instances

of user-defined meta-classes, in

the explicit dynamic features solution

The dynamic feature and its type are

instances of user-defined meta-classes,

in the promotion solution

Fig. 13. Structure of the dynamic features pattern using multi-level modelling.

In contrast, the static features solution uses inheritance to relate DynamicType and
DomainType in the same meta-level, while dynamicFeature is declared in DynamicType.
In the explicit dynamic features solution, the meta-model needs to include facilities
to both declare and instantiate dynamic features, while the promotion solution only
requires defining facilities for feature declaration. Powertypes can use the standard
facilities to declare and instantiate features, and similar for stereotypes, as the UML
provides support for feature definition (in UML classes) and feature instantiation (in
UML objects).

Conclusions. The only approach that covers all requirements of the scenario and han-
dles uniformly all types of features (i.e., type features like vat, “fixed” instance features
like price, and dynamic instance features like pages) is the multi-level solution. The
explicit modelling of dynamic features results in much complexity, though this solution
allows for the definition of domain-specific data types that are not natively provided
by the meta-modelling framework.

4.3. Dynamic auxiliary domain concepts
Intent. The pattern helps with the dynamic addition of new entities related to a type,
as well as the instantiation of those entities, which should be correctly related to in-
stances of the type. Entities may define their own features, in which case, their in-
stances need to define slots for the feature values. This pattern can be seen as a vari-
ant of dynamic features, but instead of defining features for dynamic types, here the
aim is defining dynamic entities in relation to dynamic types.

Also known as. None.

Motivation. Sometimes, it is not possible to foresee the entities needed to describe all
properties of a certain type, or want to achieve extensibility in that aspect. In such
cases, it is necessary to dynamically create and instantiate new entities, being able
to relate these entities to the type they are describing. For example, resuming the
products example, we may want to be able to dynamically add an entity Author and
use it to describe the authors of the product type Book.

Solutions. We next describe six solutions for the “product types” example.

Static entities. Figure 14(a) shows how to define new entities (Author) related to par-
ticular types (Book) at the meta-model level. However, this solution using static types
and static relations is invalid because entities cannot be created dynamically.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:19

ProductType

(a) (b) (c)

Book

GoF:Book

ProductType Product
type

1 *

Slot Feature

name: String

type

1 *

slots features * *

value: String

Book:

ProductType

GoF:

Product

:Feature

name=“author”

:Slot

value=“E. Gamma”

:type
:type

:features

:slots

Author

name: String

authors *

*

:Author

name= “E. Gamma”

Author:

Entity

Author:

EntityInstance

:type

Entity EntityInstance
type

1 *

relatedTo relatedTo

* * Product

Book: Product

GoF: Book

@2

@1

@0

Author

name: String

authors *

*

:Author

name= “E. Gamma”

+ OCL

constraints

:authors :authors

Fig. 14. Solutions to the dynamic auxiliary domain concepts pattern. (a) Static entities. (b) Explicit mod-
elling of domain concepts. (c) Multi-level.

Explicit modelling of domain concepts. Figure 14(b) shows a solution where entities
and their features are explicitly modelled in the meta-model (we omit the OCL con-
straints needed to ensure their correct instantiation, as they are similar to those in
Figure 10(b)). This solution introduces a number of additional meta-classes and con-
straints, which makes it complex to define (at the meta-model level) and use (at the
model level). Moreover, it is not possible to configure the relations defined between
the instances of ProductType and Entity, for instance, to enforce Books to have more
than one Author. The proposed solution allows any number of them. In section 4.4 we
will show how to deal with this problem using the relation-configurator pattern.

Multi-level. Figure 14(c) corresponds to the multi-level solution for this pattern. It
makes use of linguistic extensions at the intermediate meta-level to define a new
entity Author related to the product type Book. Relation authors is a proper relation,
and therefore, it is possible to configure its cardinality, e.g., 1..*.

Promotion. A solution based on promotion would require explicitly modelling product
types, entities and their features. Then, the promotion transformation should cre-
ate meta-classes from the instances of the product types and entities, and attributes
from the features. This is similar to the solution provided for dynamic features in
Figure 11(b), having the same benefits (flexibility) and drawbacks (heterogeneity of
specification mechanisms).

Powertypes. The solution for this pattern using powertypes is similar to the one shown
for dynamic features in Figure 12(a). Since Book is a UML class, it can define relations
to other UML classes by means of UML properties. This solution has the same advan-
tages and disadvantages as the use of powertypes for modelling dynamic features.

Stereotypes. The solution for this pattern using stereotypes is similar to the one shown
for dynamic features in Figure 12(b). Since Book is a UML class, it can define relations
to other UML classes by means of UML properties. This solution has the same advan-
tages and disadvantages as the use of stereotypes for modelling dynamic features.

Structure. Figure 15 shows the structure of the pattern using a multi-level approach.
The new dynamic auxiliary domain entity, as well as its features and relations, are
defined at the meta-level with potency 1, and can be instantiated at the meta-level
below in a straight-forward way.

In comparison, the two upper meta-levels in Figure 15 are merged in the static en-
tities solution, so that the class DynamicAuxiliaryDomainConcept and its relation with

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 J. de Lara et al.

DomainType

DynamicType:

DomainType

DynamicTypeInstance

: DynamicType

@2

@1

@0

Both meta-levels are

merged in the static

entities solution

The domain concept, its feature, its relation,

and their instantiations, are all instances of

user-defined meta-classes or associations,

in the explicit modelling solution

The domain concept, its feature and

its relation are instances of user-defined

meta-classes or associations, in the

promotion solution

DynamicAuxiliaryDomainConcept

conceptFeature: primitiveType

ConceptInstance:

DynamicAuxiliaryDomainConcept

conceptFeature = value

concepts min..max

Fig. 15. Structure of the dynamic auxiliary domain concepts pattern using multi-level modelling.

DynamicType can be defined in the same meta-level as DomainType; however, this so-
lution does not allow defining new concepts dynamically. In the explicit modelling of
domain concepts, the meta-model needs to include facilities to both declare and in-
stantiate the auxiliary domain concept, its feature and its reference. In the promotion
solution, it is enough to include facilities for the declaration of these elements, but not
for their instantiation. Finally, both powertypes and stereotypes can use the standard
facilities to declare and instantiate dynamic entities.

Conclusions. Multi-level modelling, powertypes and stereotypes natively support the
dynamic creation of entities and their features. Moreover, it is straightforward to con-
strain the cardinality of the relations defined between the primary type (e.g., product
type) and its constituent entities (e.g., author). The latter becomes more complex for
the solutions based on the explicit modelling of domain concepts and promotion.

4.4. Relation configurator pattern
Intent. It allows the configuration of a reference type dynamically created, and the
instantiation of the reference type according to that configuration.

Also known as. None.

Motivation. Sometimes, it is needed to define reference types on demand (e.g., inside
new dynamic types) which can be instantiated (e.g., in the instances of the dynamic
type). In this scenario, it may become necessary to configure the association ends of
reference types created on demand, for instance to determine their cardinality or the
allowed class of objects to which the reference or association instances can be con-
nected.

Solutions. We next describe six solutions for an extended version of the “product types”
example, where we consider that product types are made by zero or more manufacturer
types, and we want to configure the relation between concrete products and manufac-
turer types in a dynamic way. For example, we may want to specify that books are
published by exactly one editorial.

Static references. Figure 16(a) shows a static solution where we redefine the relation
madeBy for the Book product type. At the instance level, we can specify that the GoF
book is published by AdWesley.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:21

Although this is a neat solution, it does not allow creating product types and refer-
ences to manufacturer types dynamically, but the meta-model needs to be changed,
which can break the conformance of existing models. Moreover, as previously stated,
association redefinition is not supported in many meta-modelling frameworks. In ad-
dition, the solution does not adequately capture the requirements: the madeBy rela-
tion is aimed at specifying that a product type (a Book) can be made by zero or more
Manufacturer types (e.g., published by one Manufacturer and written by one Author).
Hence, even if the * cardinality of madeBy actually constrains the lower meta-level,
our aim here is to constrain how many times the reference can be redefined, and
then let the cardinality of the redefined associations constrain the lower meta-level.
However, this is not possible with the static solution.

(a) (b)

ProductType MadeByType

name: String

min: int

max: int

Product MadeBy

type

type

1

*

1

*

Book:

ProductType

:MadeByType

name = “pub”

min = 1

max = 1

GoF:Book

:type

:MadeBy

:type

madeBy

*

imadeBy

*

Manufacturer

Type

Manufacturer
1

1

mto

ito

type 1

*

Editorial:

ManufacturerType

AdWesley:

Manufacturer

:type

:mto

:ito

:madeBy

:imadeBy

Product

Book

 {redefines

madeBy}

Manufacturer

Editorial

madeBy

*

1 pub

GoF:Book
:pub AdWesley:

Editorial

context Product inv :

 self.type.madeBy->forAll (r |

 let

 sz= self.imadeBy->select(s|

 s.type=r)->size()

 in sz >= r.min and

 (sz <= r.max or r.max=-1))

Fig. 16. Solutions to relation configurator pattern. (a) Static references. (b) Explicit reference modelling.

Explicit reference modelling. Figure 16(b) shows a solution based on the explicit mod-
elling of reference types and their instances at the meta-level. In this solution, we
need to create an intermediate class MadeByType to store the configuration (name and
cardinality) of relation types. The OCL constraint ensures an appropriate number of
instances of each relation type, according to the cardinality defined in MadeByType.
This solution improves the previous one because it allows the creation of new relation
types dynamically, and the cardinality constraint * on relation madeBy does constrain
the number of relation types that can be defined on specific product types. However,
it introduces complexity because the solution involves a relation configurator class
(MadeByType) and another class for their instances (MadeBy). At the model level, this
solution is not optimal because we would prefer to use references instead of an inter-
mediate MadeBy object. This object is needed to distinguish between different relation
types, which in the solution is done by the reference type from the MadeBy object to
the MadeByType object.

Multi-level. Figure 17(a) shows the multi-level solution. Instead of modelling the re-
lation configurator as a meta-class at the top meta-level, it is defined as a reference
(madeBy) which can be instantiated at level 1 (pub). Since the instantiated reference
pub has a type facet, we can assign it a cardinality (1) and instantiate it at the lower
meta-level. This solution is simpler than the explicit reference modelling, and more
flexible than the static references solution.
In the running example, the relation configurator customises typical features of ref-
erences, like their name and cardinality. If we need to customise features beyond
those offered by the meta-modelling framework, like a feature dictating whether it is

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 J. de Lara et al.

(a) (b)

Product
madeBy

Book:

Product

pub: madeBy

GoF:Book
:pub

@2

@1

@0

Manufacturer
*

Editorial

:Manufacturer 1

AdWesley

:Editorial

Product
madeBy

Book:

Product

ed: mTar

GoF:Book
:ed

@2

@1

@0

Manufacturer
1

Editorial

:Manufacturer 1

AdWesley

:Editorial

MadeBy

mandatory@1: boolean

+ OCL constraint

*

mTar

Publi:MadeBy

mandatory=true 1

pub: madeBy

:Publi
:pub

Fig. 17. (a) Multi-level solution to the relation configurator pattern. (b) Multi-level solution to the extended
relation configurator pattern.

mandatory for the target objects to be pointed by the reference, then the multi-level
solution needs to explicitly model these features in a meta-class, as shown in Fig-
ure 17(b) (clabject MadeBy). In addition, we need an OCL constraint at the top-most
meta-level to take care of the semantics of the mandatory attribute. Having the con-
straint potency 2, it gets evaluated two levels below (see [de Lara et al. 2014a] for
details on the working scheme of constraints in multi-level modelling). Thus, in gen-
eral, multi-level modelling is most suitable when the features to configure are native
for references (like cardinality), but otherwise, it requires their explicit modelling.
Nonetheless, some multi-level meta-modelling frameworks (like [de Lara and Guerra
2010]) skip this problem by supporting attributed associations (though not attributed
references).

Promotion. Figure 18 shows a solution using promotion. Similar to the explicit refer-
ence modelling approach, the meta-model (1) contains meta-classes that enable the
definition of new Product and Manufacturer types. From the instances of this meta-
model (model 2), a promotion transformation creates a meta-model (3) that contains
a meta-class for each ProductType and ManufacturerType, and a reference for each
MadeByType instance. The created references have the configured name, type and car-
dinality.

Book
pub

(1)

(2) instance facet

(3) type facet

(4)

Product

Type
MadeByType

name: String

min: int

max: int

madeBy

*

Manufacturer

Type 1

mto

Book:

ProductType

Publi:

MadeByType

name=“pub”

min=1

max=1

Editorial:

Manufacturer

Type

:mto :madeBy

Editorial
1

GoF:Book
:pub AdWesley

:Editorial

Fig. 18. Promotion solution to the relation configurator pattern.

The advantage of using promotion is that it removes complexity from the model (4),
as there is no need to explicitly instantiate the MadeByType meta-class, but a native
reference (pub) is used instead. This is an example of what we call non-uniform in-
stantiation: if we see model (4) as an instance of model (2), we notice that while the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:23

instances of Book are objects, the instances of Publi are references. This flexibility in
instantiation is gained by an appropriate encoding of the promotion transformation.
In order to handle the extended relation configurator scenario (Figure 17(b)) using
promotion, we should add the feature mandatory to the meta-class MadeByType, and
modify the promotion transformation to generate OCL constraints in the meta-model
(3) interpreting the value of the feature.

Powertypes. A solution based on powertypes would use the native instantiation capa-
bilities of UML properties, having the same advantages and limitations as a pure
multi-level solution (i.e., non-standard features of UML properties, like mandatory,
must be explicitly modelled).

Stereotypes. As Figure 19 shows, we can create stereotypes for Manufacturer types
and instances, Product types and instances and MadeByType links. The stereotype for
MadeByType extends the UML Property meta-class; hence, we can configure the cardi-
nality of any property stereotyped MadeByType (like pub in the figure) and use the na-
tive instantiation semantics of UML. In case we need to define a property mandatory
to configure the relation, then it can be added to the definition of stereotype MadeBy,
together with additional OCL constraints to check its semantics.

«ProductType»

Book

«Stereotype»

ProductType

«Product»

GoF : Book

«Metaclass»

Property

«Stereotype»

MadeByType

UML profile

UML model

context UML::InfrastructureLibrary::Core::

Constructs::InstanceSpecification

inv : self.isStereotyped(“Product”) implies

self.classifier.isStereotyped(“ProductType”)

context UML::InfrastructureLibrary::Core::

Constructs::Property

inv : self.isStereotyped(“MadeByType”) implies

self.class.isStereotyped(“ProductType”)

…

pub

1

:pub

«Metaclass»

Instance

Specification

«Stereotype»

Product

«MadeByType»

{mandatory=true}

mandatory: bool

«Metaclass»

Class

«Stereotype»

ManufacturerType

«ManufacturerType»

Editorial

«Manufacturer»

AdWesley: Editorial

«Stereotype»

Manufacturer

Fig. 19. Solution to the relation configurator pattern using stereotypes.

Structure. Figure 20 shows the structure of the pattern using a multi-level approach.
The relation is defined at the upper meta-level, and its cardinality indicates how many
of their instances are allowed in the next meta-level. Then, when the relation is in-
stantiated at level 1, each instance can define its own name and cardinality, used to
constrain the lowest meta-level.

Instead, the static references solution merges the two upper meta-levels, and hence
the definition and configuration of reference dynRel is performed as a regular refer-
ence; however, this solution does not allow creating new references dynamically. In the
explicit reference modelling solution, the two lower meta-levels are merged, and so the
upper meta-model needs to define meta-classes to allow declaring the relation configu-
ration information and to instantiate the relation according to that configuration. This
solution implies representing the relation instances as objects at the model level. The
promotion solution also requires defining meta-classes to explicitly declare the rela-
tion configuration; however, in contrast to the explicit reference modelling approach,
relations are represented as links (and not as objects) at the model level.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 J. de Lara et al.

SrcDomainType
relation

SrcDynamicType:

SrcDomainType

dynRel: relation

SrcDynamicTypeInstance:

SrcDynamicType

rel: dynRel

@2

@1

@0

TarDomainType
min..max

TarDynamicType

:TarDomainTypedmin..dmax

TarDynamicTypeInstance:

TarDynamicType

Both meta-levels are

merged in the static

references solution

Both meta-levels are

merged in the explicit

reference modelling solution

The relation configuration

information is declared in a

meta-class, in the explicit

reference modelling and

promotion solutions

The instances of the configured

relation are links in the promotion

solution

The instances of the configured

relation are objects in the explicit

reference modelling solution

Fig. 20. Structure of the relation configurator pattern using multi-level modelling.

Conclusions. If the configurator is being used to customise typical features for rela-
tions, like cardinality, the simplest solutions (i.e., with less classes and not requiring
coding) are multi-level modelling and stereotypes, this latter restricted to UML-based
systems. However, if arbitrary features need to be configured, the multi-level solution
may require to explicitly modelling association ends, adding some complexity. This is
not the case for stereotypes, or if the multi-level framework supports attributed asso-
ciations. Finally, promotion is the only solution enabling non-uniform instantiation.

4.5. Element classification
Intent. This pattern allows the organization of dynamically created elements along
subtyping and inheritance hierarchies. Features defined in a dynamically created type
are inherited by the child types, so that the features will be allocated in the instances
of both the parent and the child types. Additionally, some types in the hierarchy may
be abstract, meaning that there cannot be instances of such types.

Also known as. None.

Motivation. Organizing elements in hierarchies allows the factorization of common
features which can be reused by children. This also applies to hierarchies of types
created dynamically (see type-object pattern). The optimization problem presented in
Section 2 includes two instances of this pattern, as both dynamically created problem
types and solution methods can be arranged hierarchically, as well as be abstract if
they act just as holders of common attributes. Another example is the “product types”
if we want to enable the definition of hierarchies of products with different character-
istics, like publications, electronic devices, etc.

Solutions. We next describe six solutions for the “product types” example extended
with hierarchies of product types.

Static inheritance. Figure 21(a) shows how to organize hierarchies of product types
using static types and static inheritance relations at the meta-level. However, this is
not a valid solution for the pattern as new product types and inheritance hierarchies
cannot be created dynamically.

Explicit modelling of inheritance. Figure 21(b) explicitly models the inheritance rela-
tion as an association. The first two OCL constraints ensure that any product has
slots for all features directly or indirectly defined in its type. The last OCL constraint
checks that the type of products is not abstract. Additional constraints would be
needed to ensure acyclic inheritance. As in the previous patterns, such an explicit

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:25

(a) (b) (c)

Book:

Product

Publication:

Product

GoF: Book

publisher: String

publisher=“Add.Wesley”

@2

@1

@0

Product

Newspaper:

Product Book Newspaper

Product

Publication

publisher: String

GoF: Book

publisher=“Add.Wesley”

ProductType Product
type

1
*

Feature

name: String

type

1
*

slots features * *

isAbstract: bool

context Product inv :

 self.slots->forAll(s |

 self.type->closure(super)->union(Set{self.type})

 ->collect(features)->flatten()->includes(s.type))

context ProductType inv :

 self.products->forAll(p |

 self->closure(super)->union(Set{self})

 ->collect(features)->flatten()->forAll(f |

 p.slots->exists(s |

 s.type = f)))

context Product inv : self.type.isAbstract = false

Slot

value: String

Newspaper: ProductType Book:ProductType

Publication:ProductType

isAbstract=true

isAbstract=false isAbstract=false

:super :super

:sub :sub

GoF:Product

:Feature

name=“publisher”

:Slot

value=“Add.Wesley”

:type

:type

:features

:slots

super *

sub

*

products

slots

Fig. 21. Solutions to element classification pattern. (a) Static inheritance. (b) Explicit modelling of inheri-
tance. (c) Multi-level.

modelling results in more complex systems. However, the semantics of inheritance
can be customized for the specific domain.

Multi-level. Figure 21(c) shows the multi-level solution. Due to the type facet of el-
ements at the intermediate meta-level, it is possible to define inheritance relations
between them, as well as to define abstract clabjects (like Publication). Thus, sup-
port for element classification is natively available at every meta-level. Moreover, this
solution ensures that the type of the elements in the inheritance hierarchies is com-
patible [de Lara et al. 2014b]. That is, Book can inherit from Publication because
both are instances of Product (indeed, the type of Book could also be a subtype of
Product); otherwise, such an inheritance relation would be forbidden. The benefit is
that hierarchies of incompatible types, which could give rise to safety problems, can-
not be constructed.

Promotion. In this case, the starting meta-model (1) should explicitly model the in-
heritance relation between product types as an association (see Figure 11(b) for a
reference), and the promotion transformation would generate proper inheritance re-
lations from the instances of this association.

Powertypes. The solution for the dynamic features pattern using powertypes shown in
Figure 12(a), is a valid solution for element classification as well. This is because UML
natively supports the definition of UML class hierarchies and the correct allocation
of slots in the class instances according to the defined hierarchies. However, it is not
possible to constrain the type of the objects in these hierarchies. Hence, instances of
the powertype ProductType can inherit from, and be child of, any arbitrary class, not
necessarily other product types. As a consequence, safety-related problems may arise.

Stereotypes. As for powertypes, the solution previously proposed for dynamic features
covers the element classification pattern (see Figure 12(b)). This is because inheri-
tance is native between UML classes, so that it is possible to define inheritance re-
lations between UML classes having the ProductType stereotype. Nonetheless, as a
difference from powertypes, here we can attach OCL constraints to the stereotype
definition in order to constrain the types appearing in inheritance hierarchies to be
all (or none) product types.

Structure. Figure 22 shows the structure of the pattern using multi-level modelling.
In the intermediate meta-level, the instances of DomainType have a type facet, and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 J. de Lara et al.

therefore, they can participate in inheritance relations or be abstract. The support for
this is native in multi-level frameworks.

DomainType

DynamicTypeClassifier:

DomainType

DynamicTypeInstance:

DynamicType

@2

@1

@0

commonFeature

commonFeature = value

specificFeature = value

Both meta-levels are

merged in the static

Inheritance solution

Both meta-levels are

merged in the explicit

modelling of inheritance

solution

The facilities to support classification

must be declared at the top-most level

in the explicit modelling of inheritance

and promotion solutions

DynamicType:

DomainType

specificFeature

Fig. 22. Structure of the element classification pattern using multi-level modelling.

In comparison, the static inheritance solution merges the two upper meta-levels,
and classification is established by using the regular inheritance relation; however,
new inheritance hierarchies cannot be created dynamically. The solution based on the
explicit modelling of inheritance merges the two lower meta-levels instead, and so, the
meta-model must explicitly define facilities to declare inheritance relationships and
check that the instances contain slots respecting the inheritance semantics. In the case
of promotion, the meta-model also needs to provide facilities to declare inheritance,
but then, the promotion transformation can create proper inheritance relations in the
resulting meta-model. Powertypes natively support classification, but it is not possible
to restrict which types of elements can inherit from each other. Stereotypes support the
definition of such restrictions by means of constraints.

Conclusions. The typesafe solutions for element classification use either explicit mod-
elling of inheritance, promotion, multi-level modelling or stereotypes. Among them, the
two latter are simpler because they do not require modelling the inheritance relation
explicitly. However, explicit modelling and promotion allows to customize inheritance
(e.g., to restrict it to single inheritance) and its semantics.

5. ASSESSING THE APPLICABILITY OF MULTI-LEVEL MODELLING: A FIELD STUDY
In this section, we present a field study with the aim of collecting existing meta-
models that contain occurrences of the identified patterns, and therefore could have
been modelled using the OCA and multi-level technology. The purpose is to analyse
how frequently these patterns arise in practice, and which are the approaches most
frequently adopted. We have examined more than 400 meta-models and UML profiles,
gathered from four sources:

— The ATL meta-model zoo [AtlanEcore 2014], a collection of 305 meta-models con-
tributed by the EMF meta-modelling community.

— The OMG [OMG 2014] specifications, which amount to 116 specifications from ar-
eas like modelling, finance, manufacturing and electronic commerce, among many
others. These specifications are proposed by committees of professionals and re-
searchers.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:27

— The ReMoDD repository [ReMoDD 2014], which gathers heterogeneous MDE arte-
facts contributed by the modelling community, like model transformations, UML
models, domain-specific models, and meta-models. In particular, it contains 15 Ecore
meta-models.

— Scientific papers in renowned conferences and journals in the modelling area, in-
cluding MODELS, ECMFA, SOSYM, ACM TOSEM, and IEEE TSE. Whenever pos-
sible, we have looked at the meta-model implementation, normally in Ecore format.

In this study, we only report on occurrences of at least the type-object pattern. That
is, we do not report the occurrence of “shallow” versions of the dynamic features or
element classification patterns. Moreover, we do not report on usages of potency-based
multi-level solutions, as we did not find any repository of multi-level models beyond
our own models built using METADEPTH [de Lara and Guerra 2010]. Our purpose is
to assess the opportunities for using multi-level technologies in practice.

Interestingly, we have discovered that most occurrences of the patterns under study
are in the following application areas:

— Software architecture, components and services. The type-object pattern is
pervasive in this domain, as many modelling languages in this area model com-
ponent types and component instances, together with component ports and port
instances. In most cases, the approach followed is explicit modelling of types and in-
stances. Prototypical examples include MetaH [Barbacci and Weinstock 1998] and
CloudML [CloudML 2014]. Sometimes, components are instantiated, but not ports,
like in UML Components. In any case, inheritance is seldom supported.

— Business process/enterprise modelling. Enterprise modelling languages often
provide a stratified modelling approach, where a base meta-model is customized for
different enterprises or project types. In this way, languages like DoDAF [DoDAF
2010] contain type-object pairs like OrganizationType/Organization, ProjectType-
/Project, ActivityType/Activity and so on. The same approach is also common in
process modelling languages, like ISO/IEC 24744 [González-Pérez and Henderson-
Sellers 2007], where there is the need to define task types (e.g., Testing) which are
used (i.e., instantiated) in specific project plans. Conceptually, a common solution
in this area is the use of powertypes, though for implementation they resort to ex-
plicit modelling (like in UEML [Bergholtz et al. 2005]) or stereotypes (like in the
UPDM OMG profile [OMG 2013j]). We have observed an intense occurrence of pat-
terns in this domain, i.e., many different occurrences of the patterns in the same
meta-model, which suggests that many problems in this domain are intrinsically
multi-level.

— Software and systems modelling. In software design, it is often necessary to
describe both types and sets of interacting instances. A prominent example is the
UML [OMG 2011g] and its class/object diagrams. The most usual approach in these
cases is their explicit modelling.

— Data modelling and data management. Some languages allow describing the
structure of data and build data samples. The prototypical case is the Common
Warehouse Meta-Model (CWM) [OMG 2003], but other similar cases exist, like
the Historical Data Access from Industrial Systems Specification (HDAIS) [OMG
2005e], or the Records Management Service (RMS) for government data manage-
ment [OMG 2011c].

Other areas where we have found occurrences of the analysed patterns are reverse
reengineering (in the Knowledge Discovery Metamodel [OMG 2011a] and the Ab-
stract Syntax Tree Metamodel [OMG 2011e] OMG standards), requirements engineer-
ing (most notably in the Requirements Interchange Format OMG specification [OMG

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 J. de Lara et al.

2013c]), bibliographic data (most notably in the Bibliographic Query Service OMG
specification [OMG 2002a]), metrics (in the Structured Metrics Meta-Model OMG spec-
ification [OMG 2012e]), software testing (in the UML testing profile [OMG 2013k]),
user interfaces (UsiXML [UsiXML 2014]), traceability (TML [Drivalos et al. 2008]
and the Traceability Metamodel TmM [Espinoza and Garbajosa 2011]) and feature-
oriented development (fmp [Czarnecki et al. 2005]).

Tables I, II, III, and IV detail the analysed meta-models and profiles where we have
found occurrences of the patterns described in Section 4. The first two columns of
the tables show the name of the meta-model or profile and the adopted approach
(Static, Explicit, ENumerated types, Promotion, PowerType, StereoType, or meta-
model EXtension8). Columns 3–7 summarize the number of occurrences of each pat-
tern. Note that, for columns 4–7, we only indicate the occurrences where the type-object
pattern occurs as well. While this is not strictly necessary for some of the patterns (e.g.,
one can define data structures using element classification without explicitly instanti-
ating the structures), our goal is to assess the applicability of multi-level modelling in
practice, which revolves around the type-object pattern. The last column of the tables
shows the following meta-model size metrics: number of classes (c), number of refer-
ences (r, for Ecore-based meta-models), number of associations (a, for UML or CMOF-
based meta-models), and number of stereotypes (s, for UML profiles). In most cases,
the size was automatically calculated from the xmi file with the meta-model; however,
such a computer-processable file was not available in a few cases, where we had to do
the counting by hand (these cases are marked with “m”). Finally, in two cases [Ceri
et al. 2009; González-Pérez and Henderson-Sellers 2007], the metrics were taken on
the meta-models as published in research papers, even if they were fragments of a
bigger meta-model, which we could not access.

While we resorted to automatic means for computing metrics, the assessment of
pattern occurrences was done manually. We used a systematic approach, where each
pattern occurrence found by one author was reassessed by at least another author.
This leads to a conservative reporting of occurrences. In the case of OMG standards,
we went through the specifications accessing the profiles or meta-models in xmi for-
mat whenever possible. The assessment of other meta-models (e.g., from the ATL zoo)
was sometimes complemented by reading published papers with the description of the
meta-models.

More detailed tables, which include the main classes participating in
the pattern occurrences and pointers to the meta-models, can be found at
http://miso.es/multilevel/multi-level-patterns.htm.

From the analysed meta-models, 84 contain at least one occurrence of the type-object
pattern. Out of these cases, roughly 69% use the explicit modelling approach, 10%
static inheritance, 8% stereotypes, 8% enumerated types, 3% powertypes, and 2% pro-
motion. Solutions based on powertypes were only found in the traceability and pro-
cess/enterprise modelling domains.

Regarding the rest of the patterns, 30 meta-models contain at least one occurrence
of the dynamic features pattern, 5 meta-models contain the dynamic auxiliary domain
concepts pattern, 14 the relation configurator pattern, and 11 the element classifica-
tion pattern. The areas where we found more pattern instances are software architec-
ture (17 meta-models), enterprise/process modelling (19 meta-models) and systems/-
software modelling (13 meta-models).

Concerning the total number of occurrences of patterns, we found 459 occurrences in
total, distributed among 84 meta-models, with an average of 5.5 pattern occurrences
per meta-model or profile. More specifically, we found 363 occurrences of the type-object

8This approach involves direct extension of the Ecore meta-meta-model. We only found this technique once.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:29

Table I. Meta-Models in the Software Architecture Domain. The second column indicates the followed approach:
S (Static Inheritance), E (Explicit Modelling), EN (Enumerated Types), ST (Stereotypes).

Name App. Type Dyn. Domain Relation Element Meta-Model
Object Feats. Concepts Config. Classif. Size

ACME [AtlanEcore 2014] E 1 1 – – – 16c, 13r
ARCAS [Google Code] E 2 2 – – – 40c, 71r
ArchiMeDeS [Sanz and Marcos 2012] E 1 – – – – 25c, 34r (m)

CCMP [OMG 2005d] E 5 3 – – – 20c, 19r (m)
ST 2 1 – – – 19s (m)

CloudML [CloudML 2014] E 6 1 – 1 – 33c, 36r
EDOC [OMG 2004a] E 2 2 – – 2 75c, 53a (m)

MARTE [OMG 2011f] ST 4 1 – – – 158s, 56a
EN 5 – – – –

MetaH [AtlanEcore 2014] E 4 2 – – – 14c, 8r
ProMARTE [AtlanEcore 2014] E 4 1 – – – 108c, 142r

QFTP [OMG 2008c] E 5 1 – – – 29c, 50a
ST 2 – – – – 67s

SAM [ReMoDD 2014] E 4 – – – – 48c, 56r
SoaML [OMG 2012b] ST 1 1 – – – 27s
SPTP [OMG 2005c] E 3 – – – – 88c, 121r (m)

SysML 1.2 [OMG 2012c] S 2 – – – – 47s, 6a
E 2 1 – – – 66c, 27r

UML2 Components [OMG 2011g] E 1 1 – 1 1 143c, 180a
UML2 Deployment [OMG 2011g] E 2 1 – – – 157c, 190a
Wright [Fourati 2010] E 2 – – – – 19c, 24r (m)

Table II. Meta-Models in the Business Process/Enterprise Modelling Domains. The second column indicates the
followed approach: E (Explicit Modelling), EN (Enumerated Types), PT (Powertypes), ST (Stereotypes).

Name App. Type Dyn. Domain Relation Element Meta-Model
Object Feats. Concepts Config. Classif. size

Agate [AtlanEcore 2014] E 3 – – – – 69c, 123r
Ant [AtlanEcore 2014] E 1 2 – – – 48c, 28r
BPDM [OMG 2008b] E 4 1 – 1 1 152c, 139a
BPMN 2.0.1 [OMG 2013f] E 12 3 1 – – 137c, 193a
Intalio BPMN 1.1 [AtlanEcore 2014] EN 1 – – – – 18c, 31r
BPMNProfile [OMG 2013b] ST 12 1 1 1 – 130s, 179a
CMMN [OMG 2013g] E 2 1 – – – 30c, 65a
DeclarativeWorkflow [ReMoDD
2014]

E 4 – – – 1 39c, 31r

DoDaF 2.02 [DoDAF 2010] PT 35 – – – – 130c, 135a (m)
DT4BP [ReMoDD 2014] E 2 1 – – – 86c, 73r
ISO/IEC 24744 [González-Pérez and
Henderson-Sellers 2007]

PT 5 – – – – 19c, 5r (m)

ITPMF [OMG 2007] E 13 – – – – 49c, 61a
Promenade [AtlanEcore 2014] E 1 – – – – 18c, 22r
REA (Resource-Event-Agent)
[Google code]

E 6 – – – – 23c, 57r

SPEM [OMG 2008a; AtlanEcore
2014]

E 5 – – – – 302c, 380a

UEML [AtlanEcore 2014; Bergholtz
et al. 2005]

E,PT 3 – – – – 23c, 27r

UML2 Activities [OMG 2011g] E 1 – – – – 228c, 274a
UPDM 2.1 [OMG 2013j] ST 25 3 – – – 226s
XPDL [AtlanEcore 2014] EN 1 – – – – 52c, 66r

pattern (average of 4.3 occurrences per meta-model), 59 of the dynamic features (0.7
occurrences per meta-model), 5 of the dynamic auxiliary domain concepts (0.06 occur-
rences per meta-model), 14 of the relation configurator (0.17 occurrences per meta-
model) and 18 of the element classification pattern (0.21 occurrences per meta-model).

If we classify the pattern occurrences by application domain, we have 153 occur-
rences in the enterprise/process modelling domain, 85 in the software architecture
domain, and 48 in the systems/software modelling domains. Hence, our patterns are
frequent in software architecture and enterprise/process modelling, and in particular,
in this latter domain they occur intensely. Thus, the greatest benefits from the use of

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 J. de Lara et al.

Table III. Meta-Models in the Software/Systems Modelling Domain. The second column indicates the followed
approach: S (Static Inheritance), E (Explicit Modelling), EN (Enumerated Types), P (Promotion), EX (Meta-Model
Extension).

Name App. Type Dynamic Domain Relation Element MM
Object Features Concepts Config. Classif. size

AbstractSyntaxStereotypes [At-
lanEcore 2014]

E 1 – – 1 – 9c, 16r

Domain meta-model [Gallardo et al.
2012]

P 1 1 – 1 – 11c, 16r

DSLModel [AtlanEcore 2014] E 2 1 – – – 14c, 15r
EMF Profiles [Langer et al. 2012] EX 1 – – 1 – 9c, 7r (m)
FUML [OMG 2013h] E 3 2 – – 1 223c, 199a
LQN 1.0 [AtlanEcore 2014] EN 2 – – – – 12c, 40r
Matlab/ Simulink [AtlanEcore 2014] E 1 1 – – – 45c, 75r
MOF 2.4.1 [OMG 2013i] E 3 1 – 1 1 16c, 7a
OCL [OMG 2012d] S 1 – – – – 48c, 37a
SCADE [AtlanEcore 2014] E 1 1 – – – 106c, 231r
SMOF 1.0 [OMG 2013e] E 2 1 – 1 1 19c, 16r
UML2 Classes [OMG 2011g] E 3 3 – 1 1 118c, 147a
UML2 Composite Structures [OMG
2011g]

E 1 3 – 1 1 137c, 171a

multi-level technology are expected in these domains. We will illustrate how to rearchi-
tect existing solutions into multi-level solutions in Section 6.

Looking at individual repositories, the ATL zoo contains 305 meta-models, out of
which 9 are Ecore versions of OMG standards (e.g., CWM, SPEM and MARTE). In
the latter case, the tables show a reference to the standard, and we count them as
OMG standards. Out of the 296 remaining meta-models, 25 (8.4%) include at least one
occurrence of the type-object pattern. Most occurrences (70.4%) use explicit modelling,
some use enumerated types (22.2%), and only a few (7.4%) use a static approach. In
every case, a potency-based multi-level approach could have been used instead. Static
approaches are the most difficult to detect, as one has to discern whether a certain
inheritance hierarchy is incomplete and whether it makes sense to have an extensible
number of instances for the leaf classes. We were conservative in this respect. For
example, a prototypical case is SWRC, which introduces a set of incomplete hierarchies
for publications, events, people, topics and products. However, recall that the static
approach may lead to the redefinition of associations, and this is not supported by
Ecore. A similar criterion was taken to signal the occurrences of the enumerated types.

The second analysed repository, ReMoDD, is considerably smaller than the ATL zoo.
ReMoDD contains 15 meta-models, out of which 3 have some pattern occurrence (20%),
all of them in the software architecture and enterprise/process modelling domains.

Since these two repositories contain representative samples of the meta-models used
in practice, we can conclude that, even if multi-level scenarios are less common than
a pure two meta-level setting, they need to be considered for a number of particular
domains. This is especially acute in the software architecture and process modelling
domains.

We have also reviewed 116 OMG specifications, out of which 41 (35%) contain some
occurrence of the type-object pattern. This percentage is even higher if we discard those
specifications (10) that only contain CORBA interfaces but no meta-model or profile, in
which case we obtain 41 out of 106 (38.7%). Regarding the approach, 69.4% use explicit
modelling, 16.3% static inheritance, 14.3% stereotypes, and 4% enumerated types. In
this case, the identification of static approaches was easier because many meta-models
are based on UML (which supports association redefinition, a “smell” of this situation)
and sometimes they are defined as base languages expected to be subclassified. We will
further discuss this issue in Section 6.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:31

Table IV. Meta-Models in the Traceability, Data Management, Manufacturing, Software Development and other Do-
mains. The second column indicates the followed approach: S (Static Inheritance), E (Explicit Modelling), EN (Enu-
merated Types), P (Promotion), PT (Powertypes), ST (Stereotypes).

Name App. Type Dyn. Doma. Relation Elem. MM
Object Feats. Conce. Config. Classif. size

Traceability
TML [Drivalos et al. 2008] P 1 – 1 1 – 5c, 7r (m)
TmM [Espinoza and Garbajosa 2011] PT 5 – – – – 24c, 14r (m)
Data modelling and data management
CWM [OMG 2003] E 6 1 1 – 1 183c, 289r
Mining Mart (Case representation)[AtlanEcore
2014]

EN 1 – – – 1 31c, 21r

DAIS [OMG 2005a] E 3 – – – – 29c, 75a (m)
HDAIS [OMG 2005e] E 2 – – – – 13c, 11a (m)
RMS [OMG 2011c] (governamental) E 7 1 – 1 – 137c, 128a
Manufacturing and construction
Express/STEP [AtlanEcore 2014; OMG 2010] E 1 2 – – 3 185c, 299r

ifc2x3 [AtlanEcore 2014] E 1 – – – 1 699c, 592r
EN 34 – – – –

PLM [OMG 2011b] (manufacturing) E 1 1 – – 1 148c, 53a
Software reengineering and metrics
ASTM [OMG 2011e] (reverse engineering) S 1 – – 1 – 193c, 127r

KDM [OMG 2011a] (reverse engineering) S 10 – – 1 – 300c, 256r
E 1 2 – 1 –
EN 5 – – – –

Measure 2.0 [AtlanEcore 2014] (software met-
rics)

E 1 – – 1 – 8c, 11r

Metrics [AtlanEcore 2014] (software metrics) E 1 – – 1 – 6c, 1r
SMM [OMG 2012e] (software metrics) E 1 1 – – – 57c, 100r
Software development
EAI [OMG 2004b] (enterprise application E 2 – – – – 91c, 63a (m)
integration) S 1 – – – –
Mantis [AtlanEcore 2014] (bug tracking) EN 1 – – – – 10c, 16r
RAS [OMG 2005b] (reusable software assets) E 1 – – – – 36c, 57r (m)
ReqIF [OMG 2013c] (requirements) E 4 1 – 1 – 48c, 51a
Reqtify [AtlanEcore 2014] (requirements) E 1 1 – – – 11c, 13r
RequisitePro 0.1 [AtlanEcore 2014] (require-
ments)

E 1 1 – – – 10c, 9r

Software Quality Control 1.1 [AtlanEcore
2014]

E 1 – – – – 6c, 7r

UML Testing Profile [OMG 2013k] (testing) E,ST 3 1 – – – 31s, 13a
UsiXML [AtlanEcore 2014] (user interfaces) E 2 1 – – – 73c, 36r
Other Domains
Bibliographic Query Service (BQS 1.0) [OMG
2002a]

S 2 1 – – – 20c, 12r (m)

Diagram Definition [OMG 2012a] S 5 – – – – 26c, 19r
Feature Modelling Plugin [Czarnecki et al.
2005]

E 2 1 – – – 8c, 16r

HAL [AtlanEcore 2014] (bibliographic data) E 2 – – – – 42c, 16r
NEG [OMG 2002b] (electronic commerce) S 6 – – – – 81c, 45a (m)
openEHR [openEHR 2014] (health care) E 1 – 1 – – 219c, 105a

SACM [OMG 2013d] (systems assurance) S 4 – – – – 125c, 66r
E 3 – – – –

Simple Web Services Connection [AtlanEcore
2014]

S 1 – – – – 5c, 2r

SOPES [OMG 2011d] (C4/i) E 14 – – – – 740c, 1440a
SWRC 1 [AtlanEcore 2014] (bibliographic data) S 5 – – – – 55c, 68r
WebML [Ceri et al. 2009] (web engineering) E 2 – – – – 6c, 9a (m)

Compared to the ATL zoo, we observe a much higher number of occurrences of multi-
level patterns in the OMG specifications. This is mainly due to three factors: customiz-
ability, generality and size of the OMG specifications. Customizability refers to the
need to have user-defined types in models, in addition to the predefined ones: when
the user-defined types need to be instantiated, the type-object pattern comes into play.
By generality we mean that many specifications are to be used by a wide community
of interest, which leads to including extensibility elements, frequently realised using

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 J. de Lara et al.

the type-object pattern. Finally, meta-models proposed by the OMG tend to be large.
In contrast, some meta-models in the ATL zoo were toy examples. Altogether, we can
conclude that multi-level patterns are more likely to occur in large, general, extensible
modelling languages, covering many facets of a domain.

6. REARCHITECTING INTO MULTI-LEVEL SOLUTIONS, AND OPEN CHALLENGES
The previous field study makes evident that multi-level patterns occur in practice.
In this section, we illustrate how a multi-level modelling framework can be used to
address the different solutions found, and discuss the benefits this provides. In this
process, we also identify a number of challenges that multi-level modelling tools should
address in order to provide even further flexibility to the proposed solutions.

6.1. Explicit modelling approach
Explicit modelling is by far the most common approach, likely because apart from pro-
motion, it is the only one available in widely used meta-modelling frameworks like
EMF. Promotion-based solutions are more elaborate but seldom used. Usually, the re-
lation between a type and its objects is explicitly modelled using a reference, but in
some cases, identifiers (e.g., String attributes) are used instead. The next subsection
shows how to migrate a meta-model with occurrences of the type-object pattern imple-
mented using explicit modelling, into a multi-level solution.

6.1.1. Rearchitecting to multi-level. Figure 23 depicts the strategy to rearchitect a meta-
model with occurrences of the type-object pattern expressed using explicit modelling
(the original two-level solution is shown to the left, and the resulting multi-level solu-
tion to the right). The original meta-model is converted into a meta-model with po-
tency 2, and a class with potency 2 is added (DomainType) for each pair of classes
(DomainType and DomainInstance) in each type/object pattern occurrence. The class will
define the features of the type-class with potency 1 (typeFeature), and the features of
the instance-class with potency 2 (instanceFeature).

DomainType

typeFeature

DomainInstance

instanceFeature

type

1

TypeLevelClass InstanceLevelClass

type object

DomainType

typeFeature

instanceFeature

@2

@1

@1 TypeLevelClass

tr ir

tr@1

InstanceLevelClass
ir@0

adt: DomainType

typeFeature = value

adi:DomainInstance

instanceFeature = value

:type

atl: TypeLevelClass ail: InstanceLevelClass

adt: DomainType

typeFeature = value

adi: adt

instanceFeature = value

ail: InstanceLevelClass

atl: TypeLevelClass

@1

@0

(a) (b)

@(2)

:tr :ir

:tr

:ir

Fig. 23. Rearchitecting an explicit modelling approach into a multi-level solution. (a) Scheme of the type-
object pattern in the explicit modelling approach. (b) Refactored multi-level model.

Then, the rest of classes of the original meta-model need to be organized depend-
ing on their relation with DomainType and DomainInstance. The classes connected to
DomainType are added with potency 1 to the meta-model, as they only need to be used
in the intermediate meta-level. The classes connected to DomainInstance are added
with potency 2 to the meta-model, to allow their instantiation at the lowest meta-level.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:33

There are two important additional details. First, InstanceLevelClass objects are not
needed at the intermediate meta-level, but only at potency 0. To this aim, the class is
assigned a so-called leap potency [de Lara et al. 2014b] (shown between parenthesis),
which is a shortcut that permits instantiating the class directly two meta-levels below,
without instantiating it at the intermediate level. Second, the suffix @0 in the reference
ir indicates that it is a deep reference [de Lara et al. 2014b] that can connect instances
of InstanceLevelClass to instances of DomainType at level 0.

In case a class is connected to both DomainType and DomainInstance in the origi-
nal meta-model, there are several possible migration strategies. One possibility is to
assign potency 2 to such a class. Another option is to define the class in a separate
meta-model with potency 1, and declare references to DomainType and deep references
to its instances.

Altogether, rearchitecting to multi-level yields a simpler meta-model (one class and
one reference less for each occurrence of the type-object pattern), and it pays off if there
are several interconnected occurrences of the pattern, or they occur together with other
patterns, especially the dynamic features one, which is obtained “for free” in the multi-
level approach, but requires complex structures in explicit modelling. The next section
applies this strategy to an example found in our field study, and comments on other
mechanisms found in the study.

6.1.2. Examples from the field study. In the software/system architecture domain, the
type-object pattern is pervasive, typically implemented using explicit modelling.
CloudML is a prototypical example of this situation, as its meta-model in Figure 24(a)
shows. This language allows defining Artefact types equipped with ClientPort and
ServerPort types, all of which can be instantiated and deployed in NodeInstances,
which are also typed. All meta-classes inherit from WithProperties (though we only
show some inheritance relations for clarity). This allows the addition of dynamic fea-
tures to every element. At the type level, ClientPorts can be declared optional, which
is an incarnation of the relation configurator pattern.

As we discussed in Section 4.1, using a multi-level approach avoids replication of
concepts for types and instances, leading to simpler meta-models. Figure 24(b) shows
a multi-level definition for CloudML, obtained using the strategy presented in the pre-
vious subsection. Thus, the pair of classes in each occurrence of the type-object pattern
has been merged into a class with potency 2. The attributes publicAddress and id
have potency 2 because they were defined in NodeInstance. Reference destination
from ArtefactInstance to NodeInstance in the left meta-model, is converted into the
reference ndestination from Artefact to Node in the multi-level meta-model. The suf-
fix @0 indicates that ndestination is a deep reference, which can connect instances
of Artefact and Node at level 0, but not at level 1, hence preserving the semantics
given by the left meta-model. The dynamic features pattern is natively supported by
the multi-level solution: properties for types can be defined at level 1 and receive a
default value, whereas properties for instances can be defined in the instances’ types
and receive a value at level 0. Figure 25(b) shows an example for the definition of the
dynamic feature count in the artefact cons. Finally, the relation configurator pattern
in ClientPort allows setting a port to optional. This is achieved in the multi-level so-
lution by assigning a minimum cardinality 0 to the incoming required relations of
optional ports at level 1. In this way, the client port cp in Figure 25(b) is optional while
c is mandatory. This optionality is not allowed for provided ports, which we control us-
ing the OCL constraint minCardinalities. The constraint uses METADEPTH’s syntax,
where the keyword references returns the instances of a given reference [de Lara et al.
2014a]. The second OCL constraint enforces all port types declared by an artefact type
to be instantiated at most once in each artefact instance. Please note that we have

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 J. de Lara et al.

Artefact

ArtefactPort

WithProperties Property
properties

Artefact

Instance

type

ClientPort

Instance

ServerPort

Instance

required

provided

*

*

*

ArtefactPort

Instance

type

name: String

value: String

isOptional:boolean

ServerPort

Artefact ArtefactPort

Node
publicAddress: String

id: String

ClientPort

ServerPort

Binding

client

server

ndestination@0 0..1

@2

(a) (b)

type-object

destination

type-object

Binding

BindingInstance

required

provided

*

*

server

client

type

server

client

type-

object

NodeInstance
publicAddress: String

id: String

Node

destination 0..1

type

type-object

destination@1

provided

required

*

*

dynamic

features

ClientPort

relation configurator

context Artefact inv minCardinalities@1:

 self.references(“provided”).forAll(r| r.min=1)

context Artefact inv maxCardinalities@1:

 self.references(“provided”).forAll(r| r.max=1) and

 self.references(“required”).forAll(r| r.max=1)

Fig. 24. (a) Excerpt of the CloudML meta-model. (b) Multi-level meta-model for CloudML.

omitted all integrity constraints from the original meta-model in Figure 24(a), which
control the consistency of artefact ports and port instances and their optionality. It can
be observed that the resulting meta-model is much simpler than the original one (6
clabjects vs. 14 classes).

Figure 25 shows the instantiation of the meta-models in Figure 24 for the same
example, the left one being an instance of the original definition of CloudML, and the
right one of the multi-level definition. The latter solution separates types and instances
in two different meta-levels. This neat separation facilitates the reuse of the models
built at the intermediate meta-level. Moreover, it reduces the complexity the designer
has to face when building a model, as in each level he is only concerned with the instan-
tiation of elements of the upper meta-level: either types (level 1) or instances (level 0).
In contrast, this distinction is unclear when building the solution in Figure 25(a). As
explained before, the optionality of ClientPorts is controlled through cardinalities in
the multi-level solution. In addition, our intention was to declare the property count in
the artefact cons to be instantiated in all cons instances. While this cannot be achieved
in solution (a) because there is no relation between the properties declared by types
and their instances, it is natively supported in solution (b), where in addition a native
data type can be assigned to the property.

Finally, it is worth noting that, in several cases in the field study, we observed the
need for model libraries and cloning mechanisms, combined with the explicit approach.
Libraries offer a way of cloning a certain set of elements (which conceptually “belong to-
gether”) into the model. For its effective use in tools, advanced mechanisms for cloning,
referencing the original objects of the library, are required. For example, in the OMG’s
Structured Metrics Meta-model (SMM) [OMG 2012e], it is possible to define libraries
of measures like module count, lines of code, McCabe or cyclomatic complexity. Actu-
ally, the Automated Function Points (AFP) specification [OMG 2013a] is an instance
of SMM (a library). In the case of CloudML, libraries could be used to emulate the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:35

(a) (b)

cons:Artefact

isOptional=false

c:ClientPort
:required

s:ServerPort
:provided

prod:Artefact

p:ServerPort

:provided

:Property
name= “count”

value= “0”

:Binding

:server

:client

consi:

Artefact

Instance

isOptional=true

cp:ClientPort

:required

:type

ci:

ClientPort

Instance

:required

si:

ServerPort

Instance

:type

:provided

:type

:Binding

Instance :client

:type

pi:

ServerPort

Instance
:server

prodi:

Artefact

Instance

:type

provided

:type

:Property
name= “count”

value= “3”

ni:NodeInstance AC2:Node

type

:destination
publicAddress=“128.246.56.22:8080”

id=“AC2sl1”

:type

cons:Artefact

count: int = 0

s:Server

Port

:properties

:properties

c:Client

Port

pr:provided

1

rq:required

prod:Artefact

cp:ClientPort

rq1:required

1

0..1

p:ServerPort

pr1:provided 1

c2p:Binding
c:client

s:server

@1

consi:cons

count = 3

ci:c :c2p pi: p

AC2:Node

ni: AC2

prodi:prod :ndestination

publicAddress=“128.246.56.22:8080”

id=“AC2sl1”

:pr1

:s :c :rq @0

Fig. 25. (a) CloudML model. (b) Multi-level CloudML model.

instantiation of predefined artefact types with their port configurations. In the case of
multi-level solutions, a similar mechanism for the instantiation of several elements at
a time would be needed instead.

6.2. Static types approach
The static types approach yields static inheritance hierarchies. By rearchitecting into
multi-level, the static subclasses can become dynamic objects and be created at run-
time. Moreover, workarounds like reference and attribute redefinitions, which are typ-
ically unsupported by meta-modelling frameworks, can be avoided due to the dual
type/object facet of elements.

6.2.1. Rearchitecting to multi-level. Figure 26 shows how to rearchitect a static imple-
mentation of the type-object and relation configurator patterns, into a multi-level solu-
tion. A meta-model with potency 2 is created, containing the base abstract classes (e.g.,
DomainType1), though they are defined concrete. The classes declare the type-level fea-
tures with potency 1, and the instance-level features with potency 2. In this way, the
instance classes in the original meta-model (e.g., DomainInstance1) can be created in
a model with potency 1 as instances of the classes in the top-most meta-level. Finally,
the lower models remain equal in the original and the refactored systems.

6.2.2. Examples from the field study. Some OMG specifications are intended to be used
by extending from certain base meta-classes, following a static approach. This is the
case of the Diagram Definition (DD), the Semantics of Business Vocabulary and Rules
(SBVR), the Knowledge Discovery Meta-model (KDM) and the Abstract Syntax Tree
Meta-model (ASTM). All of these cases could be refactored into multi-level solutions.

The DD specification is used to define the concrete syntax of languages by static
extension of a base meta-model. The specification includes an example of extension for
the case of class diagrams. The Date-Time Vocabulary (DTV) extends SBVR to define
concepts related to date and time. In both cases, it is necessary to redefine associations
and the workarounds described in Section 4.

ASTM includes a core set of modelling elements – called the Generic Abstract Syn-
tax Meta-Model (GASTM) – common to many programming languages. Extensions

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 J. de Lara et al.

DomainType1

typeFeature1

instanceFeature1

DomainInstance1

typeFeature1 = value

DomainType1

typeFeature1

instanceFeature1

@2

di1: DomainInstance1

instanceFeature1 = value

di2:DomainInstance2

instanceFeature2 = value

:cref

DomainInstance1:

DomainType1

typeFeature1 = value

@1

@0

(a) (b)

type object

DomainType2

DomainInstance2

type object

ref

cref

{redefines

 ref}

rel. config

typeFeature2 = value

typeFeature2

instanceFeature2

DomainType2

typeFeature2

instanceFeature2
@1

ref

di1: DomainInstance1

instanceFeature1 = value

di2:DomainInstance2

instanceFeature2 = value

:cref

DomainInstance2:

DomainType2

typeFeature2 = value

cref: ref

@1

Fig. 26. Rearchitecting a static approach into a multi-level solution. (a) Scheme of the type-object and
relation configurator patterns in the static approach. (b) Refactored multi-level model.

to GASTM – called Specialized Abstract Syntax Meta-Models (SASTMs) – can be
defined for particular programming languages by extending classes of the GASTM,
like Definition, DataType and Statement. Similarly, in reverse engineering, KDM is
defined atop a core set of meta-classes: KDMEntity, KDMRelationship and KDMModel.
Then, a number of packages are defined by extending those classes: Inventory, Code,
Action, Platform, UI, Event, Data, Structure, Conceptual and Build. In order to de-
fine other extensions, the standard prescribes a way (called the Framework Exten-
sion meta-model pattern, see page 35 of [OMG 2011a]) based on naming conventions
and on a specific structure: the existence of certain base classes that extend KDMModel,
KDMEntity and KDMRelationship, and subsetting the associations among them. Fig-
ure 27(a) shows a very simplified example for the definition of the Code package
through extension. It can be observed that extending KDM requires the redefinition of
associations (see from and to), which is not possible in EMF.

(a) (b)

KDMElement

name: String

KDM

Relationship

from

to

/outbound

/inbound

* {union}

{union}*

KDMModel

/owned

element
{union}*

CodeModel
AbstractCode

Element

AbstractCode

Relationship

/owned

relation {union}*

coderelation

{subsets

ownedRelation}
*

ParameterTo

CodeItem

from {redefines

 from}

to {redefines

to}

KDMElement

name: String

KDM

Relationship

from

to

outbound

inbound

*

*

KDMModel @2

CodeModel : KDMModel @1

AbstractCode

Element:

KDMElement

CodeItem:

KDMElement

AbstractCode

Relationship:

KDMRelationship

ParameterTo:

KDMRelationship

from: from

to: to

*

{subsets ownedElement}

codeElement

Fig. 27. (a) A small excerpt of KDM (core and code packages). (b) Multi-level solution.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:37

Figure 27(b) shows an alternative solution using multi-level modelling, built using
the rearchitecting guidelines given in the previous subsection. In this solution, the
core meta-classes are defined at the higher meta-level, and the different packages
are instances of these. In this way, there is no need to resort to association redefi-
nition or association unions as in the static approach. The use of full-fledged models
at every meta-level makes also unnecessary the use of container classes like KDMModel
and CodeModel. Moreover, this solution does not rely on naming conventions like the
Framework Extension meta-model pattern, but instantiation provides a more guided
and dynamic way to specialize the KDM core. Finally, another advantage is that the
resulting model at level 1 is simpler than the one in Figure 27(a), and therefore more
likely to be simpler to understand and instantiate by end users.

In our study, we detected meta-models with rigid inheritance hierarchies which
could be rearchitected in a multi-level setting to gain flexibility and extensibility ca-
pabilities. This is the case of markup languages which contain a fixed set of markings
(e.g., KML or HTML), and meta-models for bibliographic data with fixed sets of docu-
ment kinds, publication venue kinds, and so on. The multi-level solution would refactor
the language definition in two levels, and provision a library with standard concepts
as instances of the top-level definition. This library would be extensible by instantia-
tion of the top meta-level types. In the case of meta-models for markup languages, this
would be similar to the relation between the Standard Generalized Markup Language
(SGML [Goldfarb 1991]) and its applications, like the HTML.

6.3. Enumerated types approach.
The enumerated types approach is similar to the static one, but it uses an enumeration
instead of static subclasses to define the possible types. Rearchitecting to a multi-level
solution enables the dynamic creation of types, which would not need to be predefined
in the enumeration literals.

6.3.1. Rearchitecting to multi-level. The strategy to migrate into a multi-level solution is
similar to the static type approach. In this way, the enumerated type is eliminated,
and its literals are dynamically created at the meta-level below. Enumerated types do
not define features, and hence, less gain is obtained by their refactoring into a multi-
level solution. Nonetheless, the benefit is the possibility to have extensibility without
changing the meta-model, as well as richer descriptions of types.

6.3.2. Examples from the field study. We found occurrences of the enumerated types ap-
proach both in the ATL zoo and the OMG specifications. An indication for the need of
extensibility was having in the enumerate literals like “Other” or “Unknown”. A typi-
cal example is the ifc2x3 meta-model in the ATL zoo, which contains 34 occurrences
of the type-object pattern using enumerated types. This meta-model implements the
Industry Foundation Classes standard, which is heavily used in the architecture, en-
gineering and construction industry. In this particular case, the meta-model would be
simpler using a multi-level approach because each enumeration is wrapped into a con-
tainer class (e.g., the enumerate IfcBeamTypeEnum is wrapped into the container class
IfcBeamType, the type for class IfcBeam). In this way, the equivalent multi-level model
would only contain a clabject at the top meta-level, while one clabject would be created
at level 1 for each enumerate literal.

6.4. Stereotype approach
Stereotypes is a concept mostly used in UML, and hence frequently found in OMG
specifications. Rearchitecting to multi-level yields simpler specifications, and it is es-
pecially useful when the whole UML language is not needed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 J. de Lara et al.

6.4.1. Rearchitecting to multi-level. In this approach, the type-object pattern typically pro-
vides stereotypes to Class and InstanceSpecification. In the simplest case, rearchi-
tecting to multi-level consists on merging both stereotypes into a clabject with potency
2, obtaining a simpler specification. However, as stereotypes extend the UML with
domain-specific concepts, if such concepts do not have an equivalent in the multi-level
meta-modelling framework (i.e., they go beyond class/object diagrams, like elements
belonging to State machine diagrams), then such concepts should be modelled in the
multi-level solution.

6.4.2. Examples from the field study. We found several occurrences of the type-object pat-
tern using stereotypes, mostly in OMG specifications. This is natural, as the OMG
promotes the use of UML profiles in the Model-Driven Architecture. The stereotype
approach is suitable when the UML is to be reused and extended. The main draw-
back is the difficulty of documenting the type-object pattern in profiles. We identified
two ways for documentation. The first one is by providing a conceptual meta-model
that contains the explicit version of the type-object, to be used as documentation but
not for instantiation. The second one is declaring a dependency relation between the
stereotype acting as “type” and the stereotype acting as “instance”.

As an example, the Unified Profile for DoDAF and MODAF (UPDM) heavily relies
on the type-object pattern. Figure 28(a) shows a small excerpt of its definition, which
includes an occurrence of the type-object pattern for ProjectType and ActualProject.
A stereotyped dependency relation documents this fact. Figure 28(b) shows the equiva-
lent multi-level solution. While using stereotypes is the only alternative if extension of
UML is desired, it leads to more complex solutions than potency-based multi-level so-
lutions. In Figure 28(a), two stereotypes and a reference need to be explicitly declared,
and appropriate meta-classes of the UML need to be selected, while the multi-level
solution consists of one clabject.

ActualProject
«stereotype»

endDate: DateTime[0..1]

startDate: DateTime[0..1]

ProjectType
«stereotype»

InstanceSpecification
«metaclass»

{umlRole=“classifier”}
«metaconstraint»

Class
«metaclass»

Project @2

endDate: DateTime[0..1]

startDate: DateTime[0..1]

(a) (b)

Fig. 28. (a) Excerpt of the UPDM specification. (b) Multi-level solution for the excerpt.

6.5. Powertype approach
The powertype approach was mostly found in documents, but not in the analysed
repositories of artefacts. This is perhaps a sign of a still emerging tool support. Rearchi-
tecting into a potency-based multi-level approach yields simpler models and flexibility
is gained regarding deep characterization.

6.5.1. Rearchitecting to multi-level. This is done by merging both classes in the powertype
into a single class with potency 2, and assigning a suitable potency to its attributes (1
for type-level attributes, and 2 for instance-level attributes). The resulting meta-model
is simpler as it has less classes.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:39

6.5.2. Examples from the field study. In our field study, we only found powertype-based
approaches in the traceability and business/process modelling domains. Being a con-
ceptual solution, these approaches are actually implemented using some other tech-
nique. For example, the DoDaF description [DoDAF 2010] makes heavy use of the
powertype pattern, but it is implemented using stereotypes in the Unified Profile for
DoDaF and MoDaF (UPDM) OMG specification.

6.6. Further requirements for multi-level modelling tools
In this paper, we have shown that potency-based multi-level modelling provides a flex-
ible framework to build solutions that involve the type-object and related patterns,
and in this section, we have illustrated how to reorganize existing solutions into mul-
tiple levels. Since these patterns appear frequently, this should be considered a rel-
evant, useful technology. However, from the discussion in our pattern proposals and
the findings in our field study, we have identified some capabilities that still need to
be addressed by multi-level modelling tools in order to be able to tackle a wider range
of problems. As the reader may notice next, these capabilities are missing in many
general two-level modelling tools as well.

The first capability is being able to define multiple types for an element. This is a
requirement for some languages, like the UML Profile for Schedulability, Performance
and Time [OMG 2005c], where an instance can be typed by one or more types. An-
other example is the Ontology Definition Metamodel (ODM) [OMG 2009], where two
different classes may have the same set of instances, and a class may even be an in-
stance of itself. Some multi-level tools, like METADEPTH and Melanie [Atkinson et al.
2012b], allow linguistic extensions, that is, elements with no ontological typing. How-
ever, the ability of a clabject to have several ontological types is not natively supported
by any of them, having to resort to explicit modelling. This multi-type capability has
also been proposed in the context of the MOF by the “MOF support for semantic struc-
tures” (SMOF) OMG specification [OMG 2013e]. In this case, the set of possible types
is statically predefined a-priori so that they can be combined arbitrarily.

Most flexibility in multi-level modelling is obtained by the availability of built-in
meta-modelling facilities at every meta-level, like inheritance, typing or feature def-
inition. This avoids their explicit modelling. However, some particular problems may
require the use of customised, domain-specific meta-modelling facilities. For example,
one might need to restrict to single inheritance, consider domain-specific semantics for
inheritance, give a special semantics for association ends, or use a domain-specific set
of data types. Actually, having zero or multiple types for instances can be seen as a
customised meta-modelling facility. While some preliminary steps in this direction are
proposed in [Laarman and Kurtev 2009], much work is still necessary, perhaps adapt-
ing ideas from Meta-Object Protocols [Kiczales and Rivieres 1991]. Thus, we claim
that the customization of meta-modelling facilities is one of the main challenges to be
solved by multi-level modelling tool builders. This challenge is applicable to modelling
tools in general, not necessarily multi-level, though it is in this latter case where one
can obtain more benefits.

Finally, in order to improve the interoperability between two-level and multi-level
technologies, import and export facilities would be required to bridge these two tech-
nological spaces. Moreover, general mechanisms – similar to libraries – to ease instan-
tiation of multiple related elements (like a component and its defined ports), would be
useful to improve productivity in modelling.

7. RELATED WORK
This section reviews some lines of related works. First, we review works comparing
multi-level modelling to other meta-modelling approaches. Then, we look at proposals

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 J. de Lara et al.

to tackle multi-level problems besides those we have studied so far. Next, we com-
ment on meta-modelling languages supporting explicit modelling of meta-modelling
features. Last, we review model libraries and meta-modelling patterns.

7.1. Comparing multi-level and two-level modelling
Potency-based multi-level modelling was proposed in [Atkinson and Kühne 2002] as a
means to simplify system modelling, especially when this implies implementing some
variant of the type-object pattern. In our paper, we have identified further patterns
(based on the type-object) where multi-level modelling may be convenient, and analyse
their potential applicability in practice.

There are few works comparing multi-level modelling and standard 2-level mod-
elling. In [Atkinson and Kühne 2002], the authors identify some disadvantages of the
use of UML stereotypes, like the fact that it requires “meta” capabilities in current
UML CASE tools, and it introduces an additional classification mechanism (stereotyp-
ing) which contributes to vagueness of the instantiation semantics and confusion about
its interpretation. In [Atkinson and Kühne 2008], the authors compare a potency-
based multi-level solution for the type-object pattern with respect to a solution based
on powertypes and explicit modelling, for a synthetic example. They conclude that the
potency-based multi-level solution yields simpler results with less modelling elements.
Powertypes and potency-based multi-level modelling are also compared in [Eriksson
et al. 2013], where a compact representation of powertypes is proposed, analysing the
construction of modelling languages from the perspective of speech act theory.

In summary, we are not aware of existing literature investigating the occurrence of
the type-object and related patterns in practice and assessing the value of (potency-
based) multi-level modelling for MDE.

7.2. Other multi-level approaches
Approaches to multi-level meta-modelling have existed since the 1980s in knowledge-
based systems like Telos [Mylopoulos et al. 1990] and deductive object base managers
like ConceptBase [Jarke et al. 1995]. The latter implements the object model of a
Datalog-based variant of Telos, supporting instantiation chains of arbitrary depth but
not the organization of elements in models and meta-levels. Telos was used in [Dah-
chour 1998] to formalize the materialization relation, a relation between two entities
similar to the one arising in the type-object pattern. Multi-level modelling can also be
recasted in other technological spaces, like ontologies, with languages like OWL [W3C
2012].

The VPM framework [Varró and Pataricza 2003] formalizes multi-level meta-
modelling by a refinement relation. Entities are viewed both as sets (a type that de-
fines the set of its instances) and elements of a set (an instance in the set of instances
defined by its type). Thus, as in multi-level meta-modelling, an element retains both
class and instance facet. While VPM is realized in the VIATRA tool, it lacks deep char-
acterization and does not consider attributes or constraints.

In [Álvarez et al. 2001], the authors propose a nonlinear framework where the na-
ture of elements at the instance level depends on the viewpoint: they are instances
of a domain class from the domain modeller viewpoint, and instances of a meta-class
Object from the tool perspective, being possible to transform between both views. As
discussed in [Atkinson and Kühne 2002], this solution makes the instantiation rela-
tion context-dependant, and it requires replicating meta-classes Class and Object in
all meta-levels bigger than 1. In contrast, the nature of elements in multi-level mod-
elling is context-independent (i.e., clabjects have simultaneously both ontological and
linguistic types [Atkinson and Kühne 2002]) and all meta-levels share the same lin-
guistic meta-model.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:41

7.3. Multi-level modelling tools
The modelling community has made available several tools enabling multi-level mod-
elling. Next, we analyse their support for the requirements identified in Section 6.6.

METADEPTH [de Lara and Guerra 2010] is a potency-based multi-level meta-
modelling tool developed by our group. It uses a textual syntax and is integrated
with the Epsilon languages [Paige et al. 2009] for model management. Models in
METADEPTH are first-class entities and can define linguistic extensions (elements
without ontological typing) and deep references (as used in Section 6.1). We have used
METADEPTH as the technological basis of some projects. In [de Lara et al. 2014b], we
reported on its use for web engineering, for which we included in the language code
generation capabilities, and advanced meta-modelling facilities like deep references,
or leap potency. However, multiple ontological types are not allowed in METADEPTH.
Simple customizations of meta-modelling facilities, like restriction to single inheri-
tance, are possible using constraints [de Lara and Guerra 2012], but sophisticated
customizations are not supported. Compared to our previous works, the contributions
of the present paper are the following: we have identified and discussed different pat-
terns where using a multi-level technology may have benefits, we have performed an
exhaustive field study to evaluate the frequency of occurrence of such patterns in prac-
tice, and we have outlined guidelines to migrate to multi-level solutions.

MelAniE [Atkinson et al. 2012b; Atkinson et al. 2012c; Atkinson et al. 2009] is
a graphical, potency-based multi-level modelling tool based on EMF and GMF. In
MelAniE, fields can define so-called traits, like value mutability, which specifies over
how many levels the value may be changed from the default. Modelling elements must
define a level, which in METADEPTH is indicated through the potency of the model.
MelAniE supports linguistic extensions, but not multiple ontological types or cus-
tomization of meta-modelling facilities.

DeepJava [Kühne and Schreiber 2007] extends Java with the possibility to assign a
potency to Java classes, attributes and methods. It is embedded in Java and, therefore,
each element has exactly one type. Neither multiple ontological types nor customiza-
tion of meta-modelling facilities are possible.

The cross-layer modeller (XLM) [Demuth et al. 2011] supports an arbitrary number
of modelling layers by using an embedding in UML and giving semantics to instantia-
tion as OCL constraints (templatized OCL constraints for the case of the instantiation
of associations). However, XLM does not provide advanced instantiation mechanisms
like potency, optional or multiple ontological types, meta-modelling features like at-
tributes/links, inheritance, or customization of meta-modelling facilities.

Other multi-level frameworks are Nivel [Asikainen and Männistö 2009], which is
based on the weighted constraint rule language (WCRL); OMME [Volz and Jablonski
2010], which implements dual ontological/linguistic typing, deep characterization and
powertypes; the DPF workbench [Lamo et al. 2013], backed by a strong theoretical
basis but without support for attributes; the VMTS tool [Levendovszky et al. 2005],
which offers support for model transformations; or the approach in [Aschauer et al.
2009], whose main concern is the efficient navigation between meta-levels. However,
none of these frameworks support customization of meta-modelling facilities or the
definition of multiple or optional ontological types. Hence, these remain as challenges
for the multi-level modelling community.

7.4. Modelling patterns, software design patterns and libraries
This paper has proposed several modelling patterns. In general, modelling patterns are
used to document and gather knowledge about good modelling practices and to guide
the construction and refactoring of models. The MDE community is actively working on

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42 J. de Lara et al.

developing new patterns and pattern languages for modelling and meta-modelling. For
instance, some design patterns for meta-models are described in [Cho and Gray 2011],
while in [Schäfer et al. 2011], the requirements for meta-models are represented as
use case diagrams and the meta-models are evolved by applying patterns. Patterns
for domain-specific programming languages, mostly applicable to DSMLs as well, are
proposed in [Spinellis 2001]. In our case, we are interested in patterns related to multi-
level modelling and on the availability of meta-modelling facilities at the model level.

In software design, patterns related to the type-object have been proposed since the
1990s [Coad 1992; Martin et al. 1997; Yoder and Johnson 2002]. As solutions are based
on mainstream object-oriented languages, they rely on explicit modelling, hence caus-
ing replication, as we have observed in Section 4.1. Having available more advanced in-
frastructures would enable simpler solutions, as in the case of the potency-based multi-
level approach. One related pattern is the dynamic template pattern, which decouples
instances from their classes by allowing the creation of new object templates dynami-
cally, where both template and instance attributes may be added at runtime [Lyardet
1997]. While modifying clabjects at run-time is possible, being one of the advantages
of multi-level modelling, care should be taken to keep consistent the instances of the
modified clabjects. Some techniques to solve this issue are proposed in [Atkinson et al.
2012a].

On the other hand, model libraries enable the reuse of modelling solutions and im-
plementations. As acknowledged in [Herrmannsdörfer and Hummel 2010], support for
reuse in the modelling world is poor, especially for DSMLs. In [Herrmannsdörfer and
Hummel 2010], the authors propose using library concepts in order to make reuse
of models more systematic and simplify dealing with model changes. Their libraries
contain model types reusable through a cloning mechanism, following the prototype
pattern [Gamma et al. 1994]. Thus, models can import libraries and instantiate their
types, which are full copies of the type. The instantiation relation is then resolved by
name. This is an application of the type-object pattern, where the proposed solution
emulates two meta-levels (for types and instances) within one. As a consequence, the
authors have to manually encode support for the definition of classes/features/data
types and their instantiation, the emulation of inheritance within a single meta-level,
and the propagation of changes from types to instances. As previously stated, we found
several uses of libraries in our study: in the OMG’s Structured Metrics Meta-model
(SMM) [OMG 2012e], it is possible to define libraries of measures, and the Automated
Function Points (AFP) specification [OMG 2013a] is a library of SMM. However, for
the effective use of libraries in tools, advanced mechanisms for cloning, referencing
the original objects of the library, are required. Cloning is also used in [Karsai et al.
2004] to enable type reuse, atop the GME tool. In general, cloning-based approaches
make it difficult to distinguish between type level and instance level features, and
moreover, few meta-modelling frameworks support (configurable) cloning natively.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a catalogue of patterns where using multi-level tech-
nology is advantageous. These include the type-object, dynamic features, dynamic aux-
iliary domain concepts, relation configurator and element classification patterns. For
each one of them, we have discussed alternative solutions and benefits of using a
potency-based multi-level approach.

In order to assess the relevance of multi-level technology for real MDE projects, we
have studied the occurrence of these patterns in practice by analysing more than 400
meta-models, including those in the ATL zoo, the ReMoDD repository, and the OMG.
Every such occurrence indicates a possible application of multi-level technology. The
analysis has exposed some domains, like software architecture, or enterprise/process

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:43

modelling, where these patterns are pervasive, and their occurrences particularly in-
tense (many different occurrences of the patterns in the same meta-model). This sug-
gests that many problems in these domains are intrinsically multi-level. Moreover,
the high occurrence of these patterns in OMG specifications suggests the relevance
of multi-level technology for modelling significant domains. We have also presented
guidelines to rearchitect different solutions to the identified patterns into multi-level
solutions, illustrated with real examples from the field study. To conclude, we have
identified some requirements for state-of-the-art potency-based multi-level tools con-
cerning meta-model facilities.

In the future, we plan to derive semi-automatic means for refactoring plain meta-
models containing some occurrences of our patterns using explicit modelling, into
potency-based multi-level solutions. To this aim, we plan to use our METADEPTH tool,
as it provides support for model transformation. This would help in performing an em-
pirical study of the real gain obtained by refactoring existing meta-models into multi-
level solutions. Moreover, in order to improve the interoperability with widely used
frameworks, like the EMF, we will also provide flattenings of multi-level models into
two meta-levels.
Acknowledgements. We are grateful to the reviewers for their accurate and useful
suggestions, which helped to improve a previous version of the paper.

REFERENCES
José M. Álvarez, Andy Evans, and Paul Sammut. 2001. Mapping between levels in the metamodel architec-

ture. In UML’01 (LNCS), Vol. 2185. Springer, 34–46.
Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. 2009. Representation and traversal of large clab-

ject models. In MoDELS’09 (LNCS), Vol. 5795. Springer, 17–31.
Timo Asikainen and Tomi Männistö. 2009. Nivel: A metamodelling language with a formal semantics. Soft-

ware and System Modeling 8, 4 (2009), 521–549.
Colin Atkinson. 1997. Meta-modeling for distributed object environments. In EDOC. IEEE Computer Soci-

ety, 90–101.
Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012a. On-the-fly emendation of multi-level models. In

ECMFA’12 (LNCS), Vol. 7349. Springer, 194–209.
Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012b. Symbiotic general-purpose and domain-specific

languages. In ICSE’12 (New Ideas and Emerging Results track). IEEE, 1269–1272.
Colin Atkinson, Ralph Gerbig, and Christian Tunjic. 2012c. Towards multi-level aware model transforma-

tions. In ICMT’12 (LNCS), Vol. 7307. Springer, 208–223.
Colin Atkinson, Matthias Gutheil, and Bastian Kennel. 2009. A flexible infrastructure for multilevel lan-

guage engineering. IEEE Trans. Soft. Eng. 35, 6 (2009), 742–755.
Colin Atkinson, Bastian Kennel, and Björn Goß. 2010. The level-agnostic modeling language. In SLE’10

(LNCS), Vol. 6563. Springer, 266–275.
Colin Atkinson and Thomas Kühne. 2001. The essence of multilevel metamodeling. In UML’01 (LNCS), Vol.

2185. Springer, 19–33.
Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML infrastructure. ACM Trans. Model. Com-

put. Simul. 12, 4 (2002), 290–321.
Colin Atkinson and Thomas Kühne. 2003. Model-driven development: A metamodeling foundation. IEEE

Software 20, 5 (2003), 36–41.
Colin Atkinson and Thomas Kühne. 2008. Reducing accidental complexity in domain models. Software and

System Modeling 7, 3 (2008), 345–359.
AtlanEcore. 2014. AtlanEcore metamodel zoo. http://www.emn.fr/z-info/atlanmod/index.php/Ecore.

(2014).
Mario R. Barbacci and Charles B. Weinstock. 1998. Mapping MetaH into ACME. Technical Report. Software

Engineering Institute, Carnegie Mellon University, CMU/SEI-98-SR-006.
Maria Bergholtz, Paul Johannesson, and Petia Wohed. 2005. UEML: Providing requirements and extensions

for interoperability challenges. In INTEROP-ESA. 89–102.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:44 J. de Lara et al.

Stefano Ceri, Marco Brambilla, and Piero Fraternali. 2009. The history of WebML. Lessons learned from
10 years of model-driven development of web applications. In Conceptual Modeling: Foundations and
Applications (LNCS), Vol. 5600. Springer, 273–292.

Hyun Cho and Jeff Gray. 2011. Design patterns for metamodels. In SPLASH Workshops. ACM, 25–32.
CloudML. 2014. http://cloudml.org/. (2014).
Peter Coad. 1992. Object-oriented patterns. Commun. ACM 35, 9 (1992), 152–159.
Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. 2005. Formalizing cardinality-based feature

models and their specialization. Software Process: Improvement and Practice 10, 1 (2005), 7–29.
Mohamed Dahchour. 1998. Formalizing Materialization Using a Metaclass Approach. In CAiSE (LNCS),

Vol. 1413. Springer, 401–421.
Juan de Lara and Esther Guerra. 2010. Deep meta-modelling with METADEPTH. In TOOLS’10 (LNCS), Vol.

6141. Springer, 1–20. See also http://astreo.ii.uam.es/∼jlara/metaDepth.
Juan de Lara and Esther Guerra. 2012. Domain-specific textual meta-modelling languages for model driven

engineering. In ECMFA’12 (LNCS), Vol. 7349. Springer, 259–274.
Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. 2014b. Extending deep meta-

modelling for practical model-driven engineering. Comput. J. 57, 1 (2014), 36–58.
Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014a. Model-driven engineering with domain-

specific meta-modelling languages. Software and System Modeling To appear (2014), 1–31.
Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2011. Cross-layer modeler: a tool for

flexible multilevel modeling with consistency checking. In SIGSOFT FSE. ACM, 452–455.
DoDAF. 2010. The DoDAF architecture framework version 2.02. http://dodcio.defense.gov/TodayinCIO/

DoDArchitectureFramework.aspx. (2010).
Marco Dorigo and Luca Maria Gambardella. 1997. Ant colony system: a cooperative learning approach to

the traveling salesman problem. IEEE Trans. Evolutionary Computation 1, 1 (1997), 53–66.
Nikolaos Drivalos, Dimitrios S. Kolovos, Richard F. Paige, and Kiran Jude Fernandes. 2008. Engineering a

DSL for software traceability. In SLE’08 (LNCS), Vol. 5452. Springer, 151–167.
Owen Eriksson, Brian Henderson-Sellers, and Pär J. Ågerfalk. 2013. Ontological and linguistic metamod-

elling revisited: A language use approach. Information and Software Technology 55, 12 (2013), 2099 –
2124.

Angelina Espinoza and Juan Garbajosa. 2011. A study to support agile methods more effectively through
traceability. ISSE 7, 1 (2011), 53–69.

Farah Fourati. 2010. Une approche IDM de transformation exogéne de Wright vers Ada. Master’s thesis.
Ecole Nationale d’Ingenieurs de Sfax.

Jesús Gallardo, Crescencio Bravo, and Miguel A. Redondo. 2012. A model-driven development method for
collaborative modeling tools. J. Network and Computer Applications 35, 3 (2012), 1086–1105.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. 1994. Design patterns. Elements of
reusable object-oriented software. Addison Wesley.

Charles F. Goldfarb. 1991. The SGML handbook. Oxford University Press.
César González-Pérez and Brian Henderson-Sellers. 2006. A powertype-based metamodelling framework.

Software and System Modeling 5, 1 (2006), 72–90.
César González-Pérez and Brian Henderson-Sellers. 2007. Modelling software development methodologies:

A conceptual foundation. Journal of Systems and Software 80, 11 (2007), 1778–1796.
Gregory Gutin, Abraham Punnen, Alexander Barvinok, Edward Kh. Gimadi, and Anatoliy I. Serdyukov.

2002. The traveling salesman problem and its variations. (2002).
Markus Herrmannsdörfer and Benjamin Hummel. 2010. Library concepts for model reuse. Electron. Notes

Theor. Comput. Sci. 253 (September 2010), 121–134. Issue 7.
Matthias Jarke, Rainer Gallersdörfer, Manfred A. Jeusfeld, and Martin Staudt. 1995. ConceptBase - A

deductive object base for meta data management. J. Intell. Inf. Syst. 4, 2 (1995), 167–192.
Frédéric Jouault and Jean Bézivin. 2006. KM3: A DSL for metamodel specification. In FMOODS’06 (LNCS),

Vol. 4037. Springer, 171–185.
G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits. 2004. Composition and cloning in modeling

and meta-modeling. IEEE Transactions on Control Systems Technology 12, 2 (2004), 263 – 278.
Gregor Kiczales and Jim Des Rivieres. 1991. The art of the metaobject protocol. MIT Press, Cambridge, MA,

USA.
Thomas Kühne and Daniel Schreiber. 2007. Can programming be liberated from the two-level style? – Multi-

level programming with DeepJava. In OOPSLA’07. ACM, 229–244.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

When and How to Use Multi-Level Modelling A:45

Alfons Laarman and Ivan Kurtev. 2009. Ontological metamodeling with explicit instantiation. In SLE’09
(LNCS), Vol. 5969. Springer, 174–183.

Yngve Lamo, Xiaoliang Wang, Florian Mantz, Øyvind Bech, Anders Sandven, and Adrian Rutle. 2013. DPF
workbench: a multi-level language workbench for MDE. Proceedings of the Estonian Academy of Sci-
ences 62, 1 (2013), 3–15.

Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. 2012. EMF Profiles: A lightweight ex-
tension approach for EMF models. Journal of Object Technology 11, 1 (2012), 1–29.

Gilbert Laporte. 1997. Modeling and solving several classes of arc routing problems as traveling salesman
problems. Computers & Operations Research 24, 11 (1997), 1057 – 1061.

Tihamer Levendovszky, László Lengyel, Gergely Mezei, and Hassan Charaf. 2005. A systematic approach to
metamodeling environments and model transformation systems in VMTS. Electr. Notes Theor. Comput.
Sci. 127, 1 (2005), 65–75.

Fernando D. Lyardet. 1997. The dynamic template pattern. In PLOP’97. Washington University.
Robert C. Martin, Dirk Riehle, and Frank Buschmann. 1997. Pattern languages of program design 3.

Addison-Wesley.
John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis Koubarakis. 1990. Telos: Representing

knowledge about information systems. ACM Trans. Inf. Syst. 8, 4 (1990), 325–362.
James Odell. 1994. Power types. JOOP 7, 2 (1994), 8–12.
OMG. 2002a. Bibliographic Query Service Specification 1.0. http://www.omg.org/spec/BQS/1.0/. (2002).
OMG. 2002b. Negotiation Facility 1.0. http://www.omg.org/spec/NEG/1.0/. (2002).
OMG. 2003. CWM 1.1. http://www.omg.org/spec/CWM/1.1/. (2003).
OMG. 2004a. EDOC 1.0. http://www.omg.org/spec/EDOC/1.0/. (2004).
OMG. 2004b. UML Profile for EAI 1.0. http://www.omg.org/spec/EAI/1.0/. (2004).
OMG. 2005a. DAIS 1.1. http://www.omg.org/spec/DAIS/1.1/. (2005).
OMG. 2005b. RAS 2.2. http://www.omg.org/spec/RAS/2.2/. (2005).
OMG. 2005c. SPTP 1.1. http://www.omg.org/spec/SPTP/1.1/. (2005).
OMG. 2005d. UML Profile for CORBA Components 1.0. http://www.omg.org/spec/CCMP/1.0/. (2005).
OMG. 2005e. HDAIS 1.0. http://www.omg.org/spec/HDAIS/1.0/. (2005).
OMG. 2007. ITPMF 1.0. http://www.omg.org/spec/ITPMF/1.0/. (2007).
OMG. 2008a. SPEM 2.0. http://www.omg.org/spec/SPEM/2.0/. (2008).
OMG. 2008b. BPDM 1.0. http://www.omg.org/spec/BPDM/1.0/. (2008).
OMG. 2008c. QFTP 1.1. http://www.omg.org/spec/QFTP/1.1/. (2008).
OMG. 2009. ODM 1.0. http://www.omg.org/spec/ODM/1.0/. (2009).
OMG. 2010. EXPRESS 1.0. http://www.omg.org/spec/EXPRESS/1.0/. (2010).
OMG. 2011a. KDM 1.3. http://www.omg.org/spec/KDM/1.3/. (2011).
OMG. 2011b. PLM Services 2.1. http://www.omg.org/spec/PLM/2.1/. (2011).
OMG. 2011c. RMS 1.0. http://www.omg.org/spec/RMS/1.0/. (2011).
OMG. 2011d. SOPES 1.0. http://www.omg.org/spec/SOPES/1.0/. (2011).
OMG. 2011e. ASTM 1.0. http://www.omg.org/spec/ASTM/1.0/. (2011).
OMG. 2011f. MARTE 1.1. http://www.omg.org/spec/MARTE/1.1/. (2011).
OMG. 2011g. UML 2.4.1. http://www.omg.org/spec/UML/2.4.1/. (2011).
OMG. 2012a. DD 1.0. http://www.omg.org/spec/DD/1.0/. (2012).
OMG. 2012b. SoaML 1.0.1. http://www.omg.org/spec/SoaML/1.0.1/. (2012).
OMG. 2012c. SySML 1.3. http://www.omg.org/spec/SysML/1.3/. (2012).
OMG. 2012d. OCL 2.3.1. http://www.omg.org/spec/OCL/2.3.1/. (2012).
OMG. 2012e. SMM 1.0. http://www.omg.org/spec/SMM/1.0/. (2012).
OMG. 2013a. AFP 1.0 beta 2. http://www.omg.org/spec/AFP/1.0/Beta2/. (2013).
OMG. 2013b. BPMNProfile 1.0 Beta 1. http://www.omg.org/spec/BPMNProfile/1.0/Beta1/. (2013).
OMG. 2013c. ReqIF 1.1. http://www.omg.org/spec/ReqIF/1.1/. (2013).
OMG. 2013d. SACM 1.0. http://www.omg.org/spec/SACM/1.0/. (2013).
OMG. 2013e. SMOF 1.0. http://www.omg.org/spec/SMOF/1.0/. (2013).
OMG. 2013f. BPMN 2.0.1. http://www.omg.org/spec/BPMN/2.0.1/. (2013).
OMG. 2013g. CMMN 1.0 - Beta 1. http://www.omg.org/spec/CMMN/1.0/Beta1/. (2013).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:46 J. de Lara et al.

OMG. 2013h. FUML 1.1. http://www.omg.org/spec/FUML/1.1/. (2013).
OMG. 2013i. MOF 2.4.1. http://www.omg.org/spec/MOF/2.4.1/. (2013).
OMG. 2013j. UPDM 2.1. http://www.omg.org/spec/UPDM/2.1/. (2013).
OMG. 2013k. UTP 1.2. http://www.omg.org/spec/UTP/1.2/. (2013).
OMG. 2014. Summary of OMG specifications. http://www.omg.org/spec/. (2014).
openEHR. 2014. http://www.openehr.org/. (2014).
Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, and Fiona A. C. Polack. 2009.

The design of a conceptual framework and technical infrastructure for model management language
engineering. In ICECCS ’09. IEEE Computer Society, Washington, DC, USA, 162–171.

Christos H. Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization: Algorithms and com-
plexity. Dover Publications.

ReMoDD. 2014. The repository for model-driven development. http://www.cs.colostate.edu/remodd.
(2014).

Dirk Riehle, Michel Tilman, and Ralph Johnson. 2000. Dynamic object model. In PLOP’00. Washington
University Technical Report number: wucs-00-29.

G. Lawrence Sanders. 1995. Data modeling. Course Technology Ptr.
Marcos López Sanz and Esperanza Marcos. 2012. ArchiMeDeS: A model-driven framework for the specifica-

tion of service-oriented architectures. Inf. Syst. 37, 3 (2012), 257–268.
Christian Schäfer, Thomas Kuhn, and Mario Trapp. 2011. A pattern-based approach to DSL development.

In DSM’11. ACM, 39–46.
Diomidis Spinellis. 2001. Notable design patterns for domain-specific languages. Journal of Systems and

Software 56, 1 (2001), 91–99.
Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF: Eclipse Modeling Frame-

work, 2nd edition. Addison-Wesley Professional, Upper Saddle River, NJ.
UsiXML. 2014. UsiXML 1.0: USer Interface eXtended Markup Language. http://www.usixml.org. (2014).
Dániel Varró and András Pataricza. 2003. VPM: A visual, precise and multilevel metamodeling framework

for describing mathematical domains and UML. Software and System Modeling 2, 3 (October 2003),
187–210.

Markus Völter. 2013. DSL engineering - Designing, implementing and using domain-specific languages.
dslbook.org. 1–558 pages.

Markus Völter and Thomas Stahl. 2006. Model-driven software development. John Wiley & Sons.
Bernhard Volz and Stefan Jablonski. 2010. Towards an open meta modeling environment. In 10th Workshop

on Domain-Specific Modeling. ACM, New York, NY, USA, Article 17, 6 pages.
W3C. 2012. OWL 2 Web Ontology Language Document Overview. http://www.w3.org/TR/owl2-overview/.

(2012).
Michael J. Wooldridge. 2009. An introduction to multiAgent systems (2nd edition). Wiley. I–XXII, 1–461

pages.
Joseph W. Yoder and Ralph E. Johnson. 2002. The adaptive object-model architectural style. In WICSA’02

(IFIP Conference Proceedings), Vol. 224. Kluwer, 3–27.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

