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Abstract Mutation testing (MT) targets the assess-

ment of test cases by measuring their efficiency to detect

faults. This technique involves modifying the program

under test to emulate programming faults, and assess-

ing whether the existing test cases detect such muta-

tions. MT has been extensively studied since the 70’s,

and many tools have been proposed for widely used

languages like C, Java, Fortran, Ada and SQL; and for

notations like Petri-nets. However, building MT tools

is costly and error-prone, which may prevent their de-

velopment for new programming and domain-specific

(modelling) languages.

In this paper, we propose a framework called Wodel-

Test to reduce the effort to create MT tools. For this

purpose, it follows a model-driven approach by which

MT tools are synthesized from a high-level description.
This description makes use of the domain-specific lan-

guage Wodel to define and execute model mutations.

Wodel is language-independent, as it allows the cre-

ation of mutation operators for any language defined

by a meta-model. Starting from the definition of the
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mutation operators, Wodel-Test generates a MT envi-

ronment which parses the program under test into a

model, applies the mutation operators, and evaluates

the test-suite against the generated mutants, offering a

rich collection of MT metrics. We report on an evalua-

tion of the approach based on the creation of MT tools

for Java and the Atlas transformation language.

Keywords Mutation testing · Model mutation ·
Model-driven engineering · Domain-specific languages ·
Java · Model transformation

1 Introduction

Mutation testing (MT) is a software testing technique

consisting in injecting artificial faults to the program

under test to evaluate an existing test suite [21,43]. The

hypothesis is that if a test suite is good at distinguishing

a program from its mutants, then it is probably good at

discovering faults. Hence, MT is an alternative to other

techniques to evaluate the strength of a test suite, e.g.,

based on coverage [6].

MT is based on the competent programmer hypoth-

esis, which states that most software faults introduced

by experienced programmers are caused by small syn-

tactic errors [21]. MT emulates these errors in the form

of mutation operators. These are specifications of small

changes (e.g., swapping plus by minus in an arithmeti-

cal expression) which are systematically applied to the

program under test to produce a set of mutants. Then,

the test suite is applied to each mutant. If the origi-

nal program and the mutant produce different outputs

when they are executed against a test case, then the test

suite has detected the fault. The mutation score, which

is the percentage of mutants whose faults are detected,

provides a measure of the test suite quality.
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MT has been extensively studied [49,78], and MT

tools exist for widely used programming languages like

Fortran [55], Java [12,54,65], C [2,47] or SQL [91]. It

has also been applied to modelling notations with ex-

ecutable semantics, like Petri nets [27] and state ma-

chines [26,46]. Most of the times, MT tools are created

manually with no extensibility in mind, and so defining

customized sets of mutation operators is not possible.

Moreover, building a MT tool is a high investment in

terms of effort. This may hamper using MT in emerging

programming or domain-specific languages (DSLs) [92]

with a low number of users, as without automation,

building MT tools for them may not be cost-effective.

Finally, there may be further complexity in develop-

ment if the MT tool needs to tackle heterogeneous tech-

nology (e.g., a MT tool for JavaScript may need to deal

with HTML pages and CSS documents as well).

To improve this situation, we propose a novel ap-

proach for the automated construction of MT tools. Our

approach is language-independent, and so it is applica-

ble to any programming or modelling language defined

by a meta-model. We rely on a DSL to define muta-

tion operators for the target language [33,34] and use

model-driven engineering (MDE) [13] to generate a cus-

tomized MT tool for the language. To show the useful-

ness of our proposal, we present two case studies on

the development of MT tools for two very different lan-

guages: Java and the Atlas model transformation lan-

guage (ATL) [50].

In [34], we presented the Wodel DSL for model mu-

tation and its extensible development environment that

permits incorporating post-processors for different ap-

plications, like the automated generation of exercises

with auto-correction [33]. In this paper, we report on

another post-processing extension – shortly exposed in

a previous vision paper [35] and a tool demo [36] – de-

voted to the automated construction of MT tools for

any language. This way, this paper makes the following

contributions: (i) an automated approach to construct

MT tools for arbitrary languages; (ii) its realization in a

tool called Wodel-Test, which synthesizes Eclipse plu-

gins for MT; and (iii) its evaluation by means of the

creation of MT tools for Java and ATL. This evalua-

tion aims at answering two research questions (RQs):

RQ1: Does Wodel-Test allow creating MT tools

with similar capabilities to existing MT tools devel-

oped by hand?

RQ2: How effective is Wodel-Test to specify MT

tools?

Overall, the benefits of Wodel-Test are: (i) reduced

effort in creating MT tools; (ii) extensibility of the MT

tool with new mutation operators and mutant equiv-

alence criteria; and (iii) simplicity to create MT tools

that need to access heterogeneous languages.

The rest of this paper is organized as follows. First,

Section 2 provides background on MT and MDE and

introduces a running example. Next, Section 3 presents

our approach to specify MT tools, and Section 4 shows

the proposed architecture and tool support. Section 5

reports on two case studies consisting on the develop-

ment of MT tools for Java and ATL, and compares the

former tool with state-of-the-art MT tools for Java. Fi-

nally, Section 6 analyses related research and Section 7

finishes with the conclusions and future work.

2 Background

In this section, we first present the basic concepts of MT

(Section 2.1) and then introduce the main elements of

MDE using a running example (Section 2.2).

2.1 Mutation testing

The aim of MT is to assess the quality of a test suite,

that is, to measure its effectiveness with respect to its

ability to detect faults. Figure 1 describes its process.

original program

mutation
operators

mutants

test suite

alive mutants killed mutants

mutation score

additional
test cases

Figure 1: MT process.

First, given a program and a test suite, MT in-

troduces small syntactic changes in the program to

generate faulty programs called mutants. Mutants are

produced by means of mutation operators that simu-

late common faults made by competent programmers.

We distinguish between first-order mutants if they are
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obtained by applying a mutation operator once, and

higher-order mutants if they are generated by applying

mutation operators more than once.

Next, the test suite is applied to both the original

program and the mutants. If the output produced by

a mutant is different from the output produced by the

original program for some test in the suite, then the

mutant is said to be killed ; otherwise, it is alive. Some

mutants may also be equivalent to the original program,

in the sense that no possible test case can kill them. For

example, an operator that adds “+ 0” to an arithmeti-

cal expression yields an equivalent mutant, i.e., the mu-

tant is syntactically different from the original program,

but the mutation cannot be detected semantically.

The usefulness of MT is based on the coupling ef-

fect. This states that the tests able to distinguish all

programs differing from a correct one by simple errors

are so sensitive that they can also distinguish more com-

plex errors [21]. The adequacy of a test suite is given by

the mutation score, which corresponds to the ratio of

killed mutants over the total number of non-equivalent

mutants. If the mutation score is deemed low, then the

test suite should be improved with new test cases able

to kill the live mutants and consequently improve the

score.

2.2 Model-driven engineering by example

Model-driven engineering [13] is a software engineering

paradigm where models lead the development process.

Hence, models are not merely passive documentation,

but are used to describe, analyse, simulate, verify and

generate code for the final application, among other ac-

tivities. Models can be described using general-purpose

modelling languages, like the Unified Modelling Lan-

guage (UML) [74], or by means of DSLs tailored to an

area of interest.

In MDE, the abstract syntax of languages is defined

by a meta-model. This is itself a model – typically a

class diagram – that describes the language primitives,

their properties and relations. Additionally, it may con-

tain integrity constraints, often expressed with the Ob-

ject Constraint Language (OCL) [73]. Valid models are

said to conform to their meta-model if they contain

objects typed by the meta-model classes and obey the

meta-model integrity constraints. In addition to an ab-

stract syntax, languages are represented using a nota-

tion – a concrete syntax – which can be textual [92]

(more typical of programming languages) or graphi-

cal [52] (more frequent in modelling languages).

As a running example, we will be using a small sub-

set of Java, for which we will create a MT tool using

our approach. As we use MDE, we require a meta-model

for the Java language. Figure 2 shows a small excerpt of

this meta-model, taken from the model-based applica-

tion modernization tool MoDisco [15]. This meta-model

contains elements to represent Java assignments, vari-

ables, binary expressions, some literals (number, string

and null), and constructor invocations.

Assignment

operator: AssignmentKind

Expression

NullLiteralObjectCreation

lhs

Variable

name: String
method

Constructor

InfixExpression

operator: InfixKind

rightOp

leftOp

NumberLiteral

tokenValue: String

StringLiteral

tokenValue: String

Statement
expression

«enumerate»
AssignmentKind

assign
plus_assign
minus_assign
times_assign
divide_assign
…

«enumerate»
InfixKind

times
divide
remainder
plus
minus
…

rhs

name: String

Figure 2: Java meta-model excerpt (from MoDisco [15]).

Figure 3 shows an assignment in Java represented as

a model conformant to the previous meta-model (left),

and the equivalent representation in textual concrete

syntax (right). The object with type Assignment has as-

sign (“=”) as selected operator. Its lhs reference is an

object of type Variable with name “myObject”, and its

rhs reference is an ObjectCreation object that refers to the

Constructor of a class named “MyClass”.

:Assignment

operator= assign

:ObjectCreation

:Constructor

:method

:Variable

name= “myObject”

:lhs

:rhs

name= “MyClass”

...
MyClass myObject;
myObject = new MyClass();
...

abstract syntax concrete syntax

M2T transf.

T2M transf.

Figure 3: A Java model fragment (left) and its textual

representation (right).

Models are not isolated entities. As part of MDE

processes, models can be merged to homogenize dif-

ferent versions of a system, aligned to create a global

system from different views, refactored to improve their

internal structure without changing their behaviour, re-

fined into lower-level models, or transformed into other

languages, e.g., for code generation or analysis [13].

These model operations are implemented as trans-

formations which can be either model-to-model (M2M),

text-to-model (T2M), or model-to-text (M2T), being

their difference the nature of their input and output

artefacts (models or text). In the context of this work,

we are interested in T2M and M2T transformations.

T2M transformations can be used to realise reverse-

engineering processes that transform an input text into
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an output model. In Figure 3, the generation of the ab-

stract syntax model from the textual representation of

a Java program is a T2M transformation. M2T trans-

formations are used to automate software engineering

tasks like the generation of documentation, configura-

tion files or program code. In Figure 3, the synthesis of

the textual representation of a Java program from its

abstract syntax model is a M2T transformation.

3 Specifying Mutation Testing Tools

In this section, we detail our method to automate the

synthesis of MT tools for arbitrary languages. Sec-

tion 3.1 starts with an overview of our approach, and

Sections 3.2–3.4 provide the details.

3.1 Overview

Nowadays, most MT tools are created manually. How-

ever, this is costly as it implies: defining a set of proper

mutation operators for the language; transforming the

program under test into a format (e.g., bytecode, ab-

stract syntax tree) that enables the application of the

operators; applying the operators to the program ex-

haustively to create mutants of it; executing the tests

cases on the mutants; and reporting the results of the

MT process. In addition, MT tools can incorporate

advanced mutation features like detection of equiva-

lent mutants; mutant filtering [51], reduction [37], sam-

pling [96] and prioritization [51] to optimize the ex-

ecution time; automated generation of test cases to

improve the mutation score [30]; and generation and

testing using higher-order mutants [48]. Implementing

these features is challenging because they are frequently

language-specific.

Overall, all these different features that a MT tool

need to implement can be classified into language sup-

port (i.e., transforming the program under test into a

suitable internal format and vice versa), mutation sup-

port (i.e., definition of mutation operators and other ad-

vanced mutation features), and execution support (i.e.,

compiling the program, running the test cases and cal-

culating metrics). The objective of our approach is to

facilitate the construction of MT tools by providing

support to configure these three types of activities. For

this purpose, we rely on models as the internal repre-

sentation of programs; on a DSL to define mutation op-

erators over the model-representation of programs; on

extension points to configure additional mutation fea-

tures (currently, only the definition of mutant equiva-

lence criteria); and on MDE to synthesize the MT tools.

Figure 4 shows a scheme of our MDE-based ap-

proach to specify MT tools. It distinguishes two roles:

the MT tool creator and the tester. The former provides

a MT tool specification from which a MT tool is syn-

thesized. The latter uses the generated tool to perform

MT. Next, we detail the activities performed by each

role.

MT tool 
creator

Meta-
model

M2T
transf.

T2M
transf.

Language
support

Mutation
operators
(WODEL)

Mutation
support

Execution
support

Program
compilation

Test
execution

MT tool specification

MT tool

Tester

Program
under
test

Equivalence
criteria

Test
cases

Generates

input

MT report

Figure 4: Creating and using a MT tool with Wodel-

Test.

First, the MT tool creation takes place. For this pur-

pose, the MT tool creator needs to provide the following

three groups of artefacts:

– specification of language support in the MT tool.

This consists of the meta-model of the target (pro-

gramming or modelling) language, a T2M transfor-

mation to parse the textual syntax of programs into

models, and a M2T transformation to serialize the

models into text. Section 3.2 provides details on

these artefacts, and how our approach covers both

graphical and textual programming and modelling

languages.

– specification of mutation support in the MT tool.

This corresponds to the definition of the mutation

operators of interest and syntactic/semantic mu-

tant equivalence criteria. We provide a DSL called

Wodel to facilitate the definition of mutation oper-

ators [33]. Section 3.3 will describe Wodel and how

to specify equivalence criteria.

– specification of execution support in the MT tool,

that is, a description of how to compile programs

of the target language and execute test cases. Sec-

tion 3.4 will explain how to specify this part.
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Our system takes this specification as input and au-

tomatically synthesizes a MT tool tailored to the lan-

guage. The tester can use this tool by providing a pro-

gram under test and a set of test cases, and the tool

outputs different metrics including the mutation score.

Section 4 will present the functionality of the generated

MT tools.

As an example, Figure 5 illustrates the internal

working scheme of the MT tool generated for our run-

ning example. First, the Java program under test is

parsed into a model conformant to the meta-model of

Figure 2 using the specified T2M transformation. Then,

the model is mutated using the defined mutation opera-

tors, and the mutant is serialized back to textual format

using the M2T transformation. Finally, the original and

mutant programs in text format are compiled and the

test cases are executed against them.

:Assignment 

operator= assign 

:ObjectCreation 

:Constructor 

:method 

:Variable 

name= “myObject” 

:lhs 

seed model mutant model 

mutation operator 

:rhs 

name= “MyClass” 

T2M 
M2T 

program under test mutant program 

:Assignment 

operator= assign 

:Variable 

name= “myObject” 

:lhs 

:rhs 
:NullLiteral 

Figure 5: Working scheme of the MT tool for Java.

The working scheme so defined is akin to MT ap-

proaches working at the abstract syntax tree (AST)

level. However, models are not restricted to have tree

shape (models are graphs), and their concrete syntax

does not need to be textual.

3.2 Specification of language support

As mentioned above, the first set of artefacts of a

MT tool specification concerns the language support.

Specifically, since our approach relies on MDE, the MT

tool creator needs to provide the meta-model of the

target language. For the running example, this is the

meta-model shown in Figure 2.

In addition, if the programs of the language are tex-

tual source code files, the tool creator needs to pro-

vide a T2M transformation that creates a model out

of the text files, and a M2T transformation to serialize

the model into text after applying the mutation op-

erators. If the language is not textual but graphical,

there are two possibilities: if the language has separate

representations for its concrete and abstract syntax (as

in Sirius- or GMF-based graphical languages [32,85]),

then there is no need to provide any transformation as

the mapping between both syntaxes can be reused in-

stead; however, if the language only has concrete syn-

tax, then transformations to obtain the abstract syn-

tax model out of the graphical syntax, and vice versa,

should be provided. Such transformations can be either

M2M or M2T/T2M depending on the technology the

language is built in, but in any case, this does not have

any impact in the design of our architecture. Finally,

if we are working with models without concrete syn-

tax (e.g., pure models defined with the Eclipse Model-

ing Framework (EMF) [87], which only contain abstract

syntax information), then these transformations are not

needed.

The three required language-related artefacts

(meta-model and T2M/M2T transformations) may ex-

ist or else they need to be created. For modelling lan-

guages (e.g., UML, BPMN) and some custom-made

DSLs, these artefacts already exist and can be reused.

For programming languages, the situation varies. Since

MDE is a technology used for re-engineering software

projects [1], meta-models and M2T/T2M transforma-

tions for languages like languages like Java, COBOL,

C++, C# or SmallTalk are available [15,29,64]. How-

ever, if these artefacts do not exist for a given pro-

gramming language, their construction may require a

substantial amount of work. This effort can be allevi-

ated by the use of frameworks like EMFText [44] and

Xtext [92], which automate the creation of the meta-

model and M2T/T2M transformations from an EBNF

grammar of the language. For example, in the JaMoPP

re-engineering framework [45], a Java meta-model with

237 classes was created by hand, while the MT2/T2M

transformations were synthesized from an EBNF gram-

mar written in EMFText, consisting of 154 rules and

665 LOC.

3.3 Specification of mutation support

In order to specify the mutation operators, the MT tool

creator must use the Wodel DSL [34]. As an example,

Listing 1 shows a simple Wodel program that defines

a mutation operator replacing a call to a constructor

by null (CIR) [60]. Figure 5 illustrates an application

of this operator to a model.

A Wodel program has two parts: a header declaring

the language the mutations are defined for and config-

uring the mutation process, and a body containing the

definition of the mutation operators. In Listing 1, the

header goes from lines 1 to 3. Line 1 defines the mu-

tant generation mode (exhaustive), the output folder that

will contain the generated mutants (out), and the input
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1 generate exhaustive mutants in ”out/” from ”model/”
2 metamodel ”mm/java.ecore”
3 description ”Simple Wodel program”
4

5 with blocks {
6 CIR ”Replace a call to a constructor by null” {
7 a = select one Assignment where {rhs is typed ObjectCreation}
8 create NullLiteral in a→rhs
9 }

10 }

Listing 1: Wodel program defining the CIR mutation.

folder with the seed models (model). Wodel supports

two modes to generate mutants. The first one (illus-

trated in the listing) is enabled by the keyword exhaus-

tive, and generates all possible mutants of the seed mod-

els. This mode is adequate for MT. The second mode

consists in defining a maximum number of mutants,

which are generated randomly among all possible ones.

This mode can be appropriate for other mutation appli-

cations like the automated generation of exercises [33].

This maximum number is a default value that can be

modified in the resulting MT tool without the need to

regenerate the tool.

Line 2 indicates the meta-model of the language the

seed models conform to, and line 3 provides a descrip-

tion of the program, which is optional. Although not

illustrated in the listing, we have extended Wodel to

allow including the meta-model of auxiliary resources

that can be queried in the mutation process but are

not mutated. For example, the mutation operators for

a JavaScript project may need to query HTML or CSS

documents, in addition to the JavaScript program. Sec-

tion 5.2 will illustrate the use of resources.

Lines 5–10 of Listing 1 contain the body of the pro-

gram with the mutation operators. The operators can

be organized in blocks (line 5) and use the mutants

generated by other blocks as seed models, e.g., to de-

fine higher-order mutants. Lines 6–9 declare a mutation

operator named CIR composed of two statements. The

first one (line 7) stores in variable a one random As-

signment object whose reference rhs contains an object

with type ObjectCreation. Note that Assignment and Ob-

jectCreation refer to types from the Java meta-model (cf.

Figure 2), as the mutation is applied to Java programs.

The second statement (line 8) creates a new NullLiteral

object in the rhs reference of the variable a. Overall, this

program generates mutants replacing an object creation

in the right-hand side of a Java assignment by null.

Wodel provides primitives to select, create, clone,

modify, retype and delete information from models. Ta-

ble 1 illustrates these primitives using the running ex-

ample. In each case, we show a sample Wodel program

and its application to an excerpt of Java code. In par-

ticular, Wodel supports the following mutation primi-

tives:

– Object selection. Primitive select selects an object

with the given type and field values. The table shows

two examples in rows 1 and 2. In the first case, the

Wodel program selects an object of the type Assign-

ment whose rhs reference is of the type ObjectCreation.

In the second case, the program selects two objects

of the type InfixExpression having the value “+” and

“%” in their field operator.

– Object/reference creation. Primitive create creates

an object of the given type and initialises its fields.

The new object is placed inside the specified com-

position reference of an existing object, or if none is

given, Wodel selects one compatible container ob-

ject at random. This primitive is used in the first

row of Table 1 to create an object with type NullLit-

eral and store it on the rhs reference of a previously

selected Assignment object. Primitive create reference

creates a reference of the given type between two

selected objects.

– Object cloning. Cloning permits creating an object

using another one as a template. It can be used to

emulate duplication errors (e.g., redundant variable

definitions in a Java program) or to build nearly-

exact copies of complex objects (e.g., cloning a Java

method, and then changing its name). As some au-

thors have observed, it is frequent that a program

with an error includes other similar cases handled

correctly [62].

Wodel provides the primitive clone to make a shal-

low copy of an object. In the deep variant, the op-

erator clones in addition all other reachable objects

via composition references. As in the primitive for

object creation, it is possible to specify a container

reference for the clone; otherwise, the clone is stored

in a random compatible container reference. The

primitive is illustrated in row 2 of the table, where

an InfixExpression with operator “%” is deep-cloned

and stored in the rightOp reference of a previously

selected InfixExpression object.

– Reference/attribute modification. Primitive modify is

used to change the value of the fields of an object.

The table shows two examples modifying a reference

(row 3) and an attribute (row 4). In the first case,

the Wodel program modifies the rightOp reference of

an expression by assigning to it a different NumberLit-

eral object. In the second case, the program changes

the attribute operator of an InfixExpression from “+”

or “-” to “*”.

This primitive can also be used with modifiers source

and target to redirect the source or target of a refer-

ence to another object. The table shows an exam-
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Primitive Example of Wodel program Example of model mutation
1 Object

creation
// replaces a constructor call by null
a = select one Assignment

where {rhs is typed ObjectCreation}
create NullLiteral in a→rhs a: Assignment 

operator= assign 

:ObjectCreation 

:Constructor 

:method 

:Variable 

name= “ob” 

:lhs 

:rhs 

name= “Cls” 

a: Assignment 

operator= assign 
:rhs 

:NullLiteral 

:Variable 

name= “ob” 

:lhs 

Cls ob; 
ob = new Cls(); 

Cls ob; 
ob = null; 

2 Object
cloning

// replaces right operand of a ’+’ expression
// by a clone of an existing ’%’ expression
exp1 = select one InfixExpression where {operator = ’+’}
exp2 = select one InfixExpression where {operator = ’%’}
deep clone exp2 in exp1→rightOp

exp1: InfixExpression 

operator= plus 
:leftOp 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“1” 

:rightOp … 

exp2: InfixExpression 

operator= remainder 
:leftOp 

:Variable 

name=“b” 

:NumberLiteral 

tokenValue=“2” 

:rightOp 

… a + 1; 
… 
… b % 2; 

… a + b % 2; 
… 
… b % 2; 

exp1: InfixExpression 

operator= plus 
:leftOp 

:Variable 

name=“a” 

:rightOp 

: InfixExpression 

operator= remainder 

:Variable 

name=“b” 

:NumberLiteral 

tokenValue=“2” 

:rightOp 

exp2: InfixExpression 

operator= remainder 

:leftOp 

3 Reference
modifica-
tion

// modifies the numeric right operand of
// an expression by another number
exp = select one InfixExpression

where {rightOp is typed NumberLiteral}
num = select one NumberLiteral

where {self <> exp→rightOp}
modify exp with {rightOp = num}

exp: InfixExpression 

operator= plus 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“1” 

… a + 1; … a + 2; 

:leftOp :rightOp 

exp: InfixExpression 

operator= plus 

:Variable 

name=“a” 

num:NumberLiteral 

tokenValue=“2” 

:leftOp :rightOp 

4 Attribute
modifica-
tion

// modifies the operator ’+’ or ’=’ of an expression by ’*’
modify one InfixExpression

where {operator in [’+’, ’=’]}
with {operator = ’*’}

: InfixExpression 

operator= plus 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“1” 

… a + 1; … a * 1; 

:leftOp :rightOp 

: InfixExpression 

operator= times 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“1” 

:leftOp :rightOp 

5 Target
reference
modifica-
tion

// modifies a constructor call to a different one
modify target method

from one Constructor
to other Constructor :Assignment 

operator= assign 

:ObjectCreation 

:method 

:Variable 

name= “ob” 

:lhs 

:rhs 

:Constructor 

name= “Cls” 

:Constructor 

name= “Cls2” 

:Assignment 

operator= assign 

:ObjectCreation 

:method 

:Variable 

name= “ob” 

:lhs 

:rhs 

:Constructor 

name= “Cls” 

:Constructor 

name= “Cls2” 

ob = new Cls(); ob = new Cls2(); 

6 Object
retyping

// retypes a numeric literal as a string literal
retype one NumberLiteral

as StringLiteral
with {tokenValue = ’s’}

: InfixExpression 

operator= plus 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“1” 

… a + 1; … a + “s”; 

:leftOp :rightOp 

: InfixExpression 

operator= plus 

:Variable 

name=“a” 

:StringLiteral 

tokenValue=“s” 

:leftOp :rightOp 

7 Object
deletion

// removes an assignment with operator ’=’
remove one Assignment where {operator = ’=’}

:Statement 

:expression 

a = 5; ; 

: Assignment 

operator= assign 

:Variable 

name=“a” 

:NumberLiteral 

tokenValue=“5” 

:lhs :rhs 

:Statement 

Table 1: Examples of Wodel mutation primitives.

ple in row 5, where the target of a reference called

method is changed from one Constructor to a different

one.

– Object retyping. Primitive retype is used to retype

an object to one of its sibling types, preserving all

compatible attributes and references from the orig-

inal object. In the example of row 6, the operator

retypes a NumberLiteral object with value “1” to a

StringLiteral object with value “s”.

– Object/reference deletion. Primitive remove deletes

an object safely ensuring that no dangling edge

to/from the object remains. Primitive remove refer-
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ence deletes a reference of the given type between

two selected objects. The table shows an example

of object deletion in row 7, where the Wodel pro-

gram deletes an Assignment object and its contents.

As the examples show, mutation primitives may

need to select the objects to mutate. For this purpose,

Wodel offers different selection strategies: selecting a

random object, a specific object previously selected and

stored in a variable, all objects satisfying some condi-

tion, a different object to the one selected by the current

mutation, or an object of a given type. All strategies can

be parameterized with a condition on the attributes and

reference values of the selected object. For example, the

object deletion mutation statement in row 7 of Table 1

uses a random selection strategy (one Assignment) pa-

rameterized with an attribute condition (where {operator

= ‘=’}).
Instead of relying on a general-purpose program-

ming language, our approach provides the DSL Wodel

to implement the mutation operators. The advantage

is that Wodel has facilities specific to model mutation

that otherwise would need to be encoded by hand. For

example, it automatically selects an appropriate con-

tainer reference1 for the created and cloned objects; it

avoids dangling edges from/to any deleted object; it en-

sures that any generated mutant is syntactically correct

and satisfies the integrity constraints of its meta-model;

and it supports the definition of extra OCL conditions

that every mutant model is also enforced to satisfy. The

latter is useful to rule out invalid mutants, e.g., non-

executable ones. This check can be strengthened by the

developer by adding custom criteria in an extension

point aimed at checking mutant validity. Finally, an

external DSL to define mutation operators provides ex-

tensibility and customizability of the operator set, e.g.,

enabling the creation of purpose-specific operators or

operators emerging from novel language features (e.g.,

Java lambdas), as well as the removal of obsolete oper-

ators.

In addition to mutation operators, the MT tool cre-

ator can specify equivalence criteria for mutants. We

distinguish syntactic equivalence from semantic equiv-

alence, both of which are customizable. The former

include mutants that are duplicated or have equiva-

lent syntax (e.g., the mutant removes a comment or

adds an additional parenthesis pair). The latter include

checks on the model semantics or its compilation. For

example, for a Java MT tool, we may consider that

two Java mutants are equivalent if they compile to

1 Wodel is built atop EMF. In EMF, it is customary to
place all objects (except one, acting as root) inside some com-
position reference, called its container reference.

the same bytecode [56]. In DSLs that enable describ-

ing models with finite behaviour (e.g., some classes of

state-machines), we can use techniques based on lan-

guage equivalence [24]. Distinguishing equivalent mu-

tants is relevant for MT because they behave like the

original program when the test suite is applied; there-

fore, they should not be included in any measure that

estimates test effectiveness. Wodel-Test provides flex-

ibility in this respect by supporting the customization

of the equivalence criteria used in the MT tool being

defined.

3.4 Specification of execution support

The last part of the MT tool specification is the defini-

tion of how to programmatically compile the program

under test and the generated mutants, and how to ex-

ecute the test cases.

For some modelling languages (e.g., automata),

compilation might not be necessary. In such cases, there

is no need for a programmatic compilation, but the

MT process still requires the ability to execute the test

cases. Hence, the MT tool creator always needs to spec-

ify how to execute the programs against the test suites.

Overall, starting from the specification of the MT

tool (language, mutation and execution support), our

approach automatically synthesizes a tool that allows

performing MT on programs of the given language, col-

lecting the results, and calculating metrics related to

the MT process. The next section presents the architec-

ture of our supporting tool as well as the functionalities
of the synthesized MT tools.

4 Tool Support

This section details the realization of our approach in

a tool called Wodel-Test. In the following, Section 4.1

describes its architecture, and Section 4.2 shows the

functionalities of the MT tools it synthesizes.

4.1 Defining MT tools with Wodel-Test

Figure 6 shows the modular, component-based archi-

tecture of Wodel-Test consisting of a set of Eclipse

plugins [36]. It uses the Eclipse Modeling Framework

(EMF) [87] as the underlying modelling technology, and

extends the engine of the Wodel tool presented in [34]

with functionalities specific to MT (label 1). Wodel

and Wodel-Test are available at http://gomezabajo.
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github.io/Wodel/. The web page also includes instal-

lation instructions, examples, video demos, and the

source code.
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Figure 6: Architecture of Wodel-Test.

Wodel is a generic environment to define and ap-

ply model mutation operators using the DSL presented

in Section 3.3. When mutating the models, Wodel cre-

ates a registry of applied mutations that is useful for

traceability. In addition, Wodel offers three interfaces

to allow extensibility. The first one permits specify-

ing syntactic equivalence criteria. The default crite-

rion is model comparison implemented with EMFCom-

pare2, though this can be changed. The second interface

permits defining semantic equivalence criteria. For in-

stance, for the running example, we have implemented

a trivial compiler equivalence checker that compares the

binaries of the original and mutant programs for equal-

ity [56]. The last interface permits registering tools to

post-process the generated mutants. Wodel-Test (label

2) is designed as a post-processing extension of Wodel.

When building a new MT tool, defining equivalence

criteria is optional, but Wodel-Test necessarily requires

the MT tool creator to provide one or more Wodel pro-

grams with the definition of the mutation operators, as

well as to implement an interface called LanguageService-

Provider (label 3). The latter implies implementing the

following methods:

– projectToModel: This is the method to convert the arte-

fact to be mutated into an EMF model (i.e., it per-

forms a T2M transformation). In our example, we use

MoDisco [15] to convert a Java project into a model,

and provide a wizard to select the classes to include

in the MT process. The latter enables an optimisa-

tion of the T2M transformation in case of large Java

projects.

– modelToProject: This method must take care of con-

verting a model back into a domain artefact (i.e., it

2 https://www.eclipse.org/emf/compare/

performs a M2T transformation). In our example, we

use MoDisco to serialize a model conformant to the

MoDisco Java meta-model into a Java project.

– annotateMutation: This method can be used to insert

comments in the mutated code, explaining the per-

formed mutations. Wodel-Test relies on the Wodel

mutation registry to identify the applied mutations.

This way, the MT tool creator only has to identify

the meta-model class used to represent comments in

the language, and add an instance of it to the mutant

models.

– compile: This method must include the code to com-

pile the mutated artefacts.

– run: This method must encode how to run the pro-

grams against the test suite. In our running exam-

ple, we use the JUnit framework for unit testing and

dynamically call the test cases included in the test

suite.

If an EMF definition of the target language already

exists, the implementation of projectToModel and model-

ToProject is not typically needed. For interpreted lan-

guages, implementing compile is not necessary either.

Starting from this specification, Wodel-Test syn-

thesizes an Eclipse tool that implements a generic MT

process. This process first invokes projectToModel to con-

vert the program under test into a model; then, it ap-

plies the mutation operators in the specified Wodel pro-

grams; next, it calls modelToProject to convert the mu-

tant models into code; and finally, it executes the test

suite against the program and mutants by invoking com-

pile and run. In the next section, we explain the main

functionalities of the generated MT tools.

4.2 Functionality of the synthesized MT tools

The tools synthesized by Wodel-Test permit perform-

ing MT over programs written in the selected language

(Java in our running example) and their test suites. The

tester can select the mutation operators to apply in the

MT process, among the ones defined by the tool cre-

ator. This is done using a preferences window like the

one shown in Figure 7, which corresponds to the MT

tool created for Java. This window shows each block of

mutation operators (see Listing 1) in a separate group.

The results of the MT process can be visualised in

four different Eclipse views. Figure 8 shows the global

view of results after applying the MT process to a Java

project. Label 1 corresponds to the Eclipse project ex-

plorer, which contains a folder src with the Java project

under test, and one folder for each mutation operator

applied. Label 2 shows one mutant, where a comment
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Figure 7: Selection of mutation operators in the prefer-

ences window (excerpt).

below the mutated code explains the performed mu-

tation. In this case, the operator replaced “%” by “/”.

Label 3 shows the test suite. Both the test suite and the

Java project under test are standard Eclipse projects.

Label 4 shows the global view of results which reports

the mutation score; the running time of the MT process;

the number of applied and not applied mutation oper-

ators3; the number of killed, equivalent and live mu-

tants; and the number of failed and passed tests. This

information is also displayed using bar graphs with the

corresponding percentages.

The synthesized tool offers two detailed views of

results focussing on mutants (tests passed/failed) and

tests (mutants killed/alive). Figure 9 shows the mutants

view, with the results of the tests passed and failed

by each mutant. Failed tests (i.e., those that detected

at least one mutant) are shown in green, and passed

tests are shown in red. The results can be filtered to

show only the failed or the passed tests. In addition,

for each mutant, the view includes a description of the

applied mutation operators (sixth column), as well as

whether the mutant is equivalent or not according to

the syntactic and semantic equivalence criteria speci-

fied by the MT tool creator (first column). The tester is

allowed to mark any live mutant as equivalent. In such

a case, the tool automatically recalculates the statistics

of the global view discarding the equivalent mutants.

By double-clicking in the mutant path, the tool opens

the mutant program in the Eclipse editor.

3 A mutation operator may not get applied if its application
conditions do not occur in the source program, or if it always
produces incorrect programs.

Figure 8: Global view of MT results.

Figure 9: Detailed view of MT results: Tests passed and

failed by each mutant.

The second detailed view is similar, but displays the

mutants killed and left alive after executing the test

cases. Just like in the mutants view, the tester can open

the mutant files by double-clicking on their displayed

path, and filter to show only the live or killed mutants.

Finally, there is a last view with details of the mu-

tation generation process, listing the mutants that each

mutation operator generated. In this view, it is possible

to filter the applied/non-applied mutation operators.
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5 Evaluation

In this section, we evaluate our approach from the point

of view of the two user roles involved in the process: the

tester and the MT tool creator.

Regarding the tester, Section 5.1 presents an ex-

periment assessing the usefulness of the generated MT

tools. For this purpose, we compare the functionality

of the MT tool for Java developed using our approach,

with other existing Java MT tools. This comparison

aims to answer the following research question:

RQ1: Does Wodel-Test allow creating MT tools

with similar capabilities to existing MT tools devel-

oped by hand?

To assess our approach from the point of view of the

MT tool creator, Section 5.2 presents a case study de-

tailing the construction of a MT tool for the Atlas trans-

formation language (ATL) [50]. This is a rule-based lan-

guage widely used in MDE to describe model-to-model

transformations. We use it as a case study because it

has some aspects (e.g., the need to access several arte-

facts during the mutation process) that permit illustrat-

ing the full potential of Wodel-Test. Our goal with this

case study is to answer the following research question:

RQ2: How effective is Wodel-Test to specify MT

tools?

5.1 Comparison of synthesized and hand-made MT

tools for Java

In this section, our goal is to assess whether the func-

tionalities of the MT tools generated with our approach

are comparable with those available in manually devel-

oped MT tools. For this purpose, we compare Wodel-

Test/Java, which is the MT tool for Java that we have

created using Wodel-Test, with some MT tools devel-

oped for the application of MT to Java. Among them,

we consider five representative tools that have been

previously used in the literature to perform compar-

isons of MT tools [57,68]: Major [51], Javalanche [81],

PITest [17], LittleDarwin [79] and muJava [67].

We structure our comparison in three parts. First,

we look at general features of the tools (Section 5.1.1);

then, we focus on the extensibility and customizability

of mutation operators (Section 5.1.2); finally, we anal-

yse the efficiency of the MT process (Section 5.1.3).

The section concludes by answering RQ1 and discussing

threats to validity (Section 5.1.4).

5.1.1 General features

In the following, we discuss the general features of the

analysed MT tools, which are also summarised in Ta-

ble 2. We have organized the comparison along three

criteria: input to the MT process, mutant generation

process, and reporting.

Regarding the first criterion, Major, Javalanche and

LittleDarwin run from the command line; muJava has

a graphical user interface; Wodel-Test/Java is avail-

able as an Eclipse plugin; and PITest can run on the

command line but also provides plugins for integration

with Maven, Gradle, Eclipse and IntelliJ, which enables

a rich integration of MT with developer processes, in-

cluding continuous integration and reporting directly to

the version management system. All tools can perform

MT on Java projects; in addition, Major, PITest, mu-

Java and Wodel-Test/Java permit reducing the scope

to specific classes, which is useful to narrow the MT

process in the case of large projects. All tools support

test suites specified with JUnit 4. Wodel-Test/Java also

supports JUnit 4, but extending the MT tool with the

last versions of JUnit (like the current JUnit 54) or

other unit testing frameworks is possible.

Regarding mutant generation, each tool provides

its own set of predefined Java mutation operators,

and only Major and Wodel-Test permit extending this

set using DSLs (Major-Mml and Wodel respectively).

We will compare these DSLs in Section 5.1.2. Major,

Javalanche, PITest and muJava perform the mutation

at the bytecode level, while LittleDarwin and Wodel-

Test/Java apply mutations to the AST and model-

based representations of the source code. All tools work-

ing at a higher-level representation (AST, models) can
make the mutants available for their inspection. Inter-

estingly, this is also possible in most of the tools working

at the bytecode level (but Javalanche does not offer this

option). To improve the performance of the MT process,

Major, Javalanche and PITest carry out a pre-filtering

of mutants based on statement coverage, as a mutant

that is not reached and executed cannot be detected un-

der any circumstance. To avoid evaluating these uncov-

ered mutants, conditional mutation collects information

about the mutation coverage at runtime [51]. Please

note that PITest permits configuring the filtering cri-

teria using an extension point, and also includes exten-

sions points to define test prioritization policies. Finally,

another way to improve the performance is the exclu-

sion of equivalent mutants from the MT process. Only

Javalanche and Wodel-Test/Java support this mecha-

nism. Javalanche detects equivalent mutants by assess-

ing the impact of mutations on dynamic invariants. In

4 https://junit.org/junit5/
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Major Javalanche PITest LittleDarwin muJava Wodel-Test/Java
Version/Year 1.3.4/2018 0.3.6/2011 1.4.3/2018 0.2/2018 4/2015 1.0/2019
LOC Unavailable 15 638 15 804 14 746 24 243 305+framework

Input to MT process

UI Command line Command line
Command line
Tool plugins

Command line Java GUI Eclipse plugin

Scope project/class project project/class project project/class project/class

Test suite JUnit 4 JUnit 4 JUnit 4 JUnit 4 JUnit 4
JUnit 4

(customizable)

Mutant generation process
N. of operators 30 (default) 19 40 28 47 77 (default)
Op. extensibility Yes (DSL) No Yes (API) No No Yes (DSL)
Mutated artefact Bytecode Bytecode Bytecode AST Bytecode Model
Mutant source Yes No Yes Yes Yes Yes
Mutant filter Yes Yes Yes No No No
Equivalent
mutant detection

No
Yes

(dynamic inv.)
No No No

Yes
(TCE)

Reporting
Report type CSV HTML HTML HTML GUI Interactive views
N. of mutants X X X X X X
Mutation score X X X X X X
Killed/live mutants Number Number Number Number Number, list Number, list
Covered operators Number Number Number, list 7 Number, list Number, list
Mutants by class 7 7 X X X X
Mutants by test 7 7 7 7 X X
Tests by mutant 7 7 7 7 7 X

Table 2: Comparison of Java MT tools.

our case, equivalent Java mutants are detected by using

trivial compiler equivalence (TCE). Experiments per-

formed on both C and Java showed that TCE allows

reducing the number of mutants by 11% for Java and

28% for C [56]. In addition, Wodel-Test permits incor-

porating other equivalence criteria by implementing an

extension point (see Figure 6).

With respect to the output of the MT process,

Major, Javalanche, PITest and LittleDarwin produce

file-based reports; muJava provides this information in

static views; and Wodel-Test/Java can also visualise

the results on interactive Eclipse views. In addition,

PITest provides an extension point to define mutation

result listeners, which can be configured to produce re-

ports in other formats. Regarding the information pro-

duced, all tools report the number of generated mu-

tants, the mutation score, and the number of killed and

live mutants. Additionally, Wodel-Test/Java provides

a view with the list of killed and live mutants, and it

is possible to navigate to them (see Figure 9). All tools

but LittleDarwin report the number of covered muta-

tion operators (i.e., operators which produced a non-

empty set of mutants). In addition, PITest, muJava and

Wodel-Test/Java also report the list of covered oper-

ators and the mutants generated by each one of them.

PITest, LittleDarwin, muJava and Wodel-Test/Java

report the mutants generated from each class; muJava

and Wodel-Test/Java provide the information on the

mutants killed by each test; and only Wodel-Test/Java

provides the information on the tests passed or failed

by each mutant (see Figure 9).

5.1.2 Extensibility of mutation operators

To the best of our knowledge, only PITest, Major and

Wodel-Test allow extending the set of predefined muta-

tion operators. PITest provides an API for this purpose,

so that operators must be defined programmatically

with a general-programming language not designed for

mutation. Instead, Major and Wodel-Test provide ded-

icated DSLs. Listings 2 and 3 illustrate the DSLs of

both tools on the basis of the same example.

Major provides a DSL (actually a script language)

called Major-Mml to create mutation operators and

configure the mutation process. Major-Mml provides 8

mutation primitives, 7 of them to replace operators and

literals, and 1 to delete statements. These primitives

are the following: Arithmetic Operator Replacement

(AOR), Logic Operator Replacement (LOR), Shift Op-

erator Replacement (SOR), Conditional Operator Re-

placement (COR), Relational Operator Replacement

(ROR), Literal Value Replacement (LVR), Operator

Replacement Unary (ORU), and STatement Deletion
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1 // Customise replacement list for AOR
2 BIN (*) => {/, %};
3 BIN (/) => {*, %};
4 BIN (%) => {*, /};
5

6 // Customise replacement list for ROR
7 BIN (>) => {< ,<= , != , == , >=};
8 BIN (==) => {<, <= , != , > , >=};
9

10 // Invoke mutation operators
11 AOR ;
12 ROR ;

Listing 2: Major-Mml program.

1 AOR ”Arihtmetic operator replacement” {
2 modify one InfixExpression
3 where {operator=[’*’, ’/’, ’%’]}
4 with {operator=[’*’, ’/’, ’%’]}
5 }
6

7 ROR ”Relational operator replacement” {
8 modify one InfixExpression
9 where {operator=[’>’, ’==’]}

10 with {operator=[’<’,’<=’,’!=’,’==’,’>’,’>=’]}
11 }

Listing 3: Wodel program.

(STD). These primitives can be customised with a spe-

cific package, class or method of application. In addi-

tion, it is possible to define a custom replacement list

for the replacement primitives, as lines 2–4 and 7–8 of

Listing 2 show for the AOR and ROR operators.

In contrast, as we have seen in Section 3.3, Wodel is

a full-fledged DSL that enables the creation of arbitrary

mutation operators, and not just the configuration of

replacement lists. For instance, the mutation operator

presented in Listing 1 cannot be defined with Major-

Mml, as it requires identifying invocations to construc-

tors. This demonstrates the expressivity of Wodel.

5.1.3 Efficiency and efficacy

In this section, we look at efficiency (how many mu-

tants per second can Wodel-Test/Java produce?) and

efficacy (are the generated mutants appropriate for eval-

uating the test cases?). For this purpose, we perform an

experiment running a MT process over a Java library

created by a third party. Our goal is to evaluate to what

extent we are able to produce results similar to other

MT tools regarding the efficiency and efficacy of the

MT process.

In the experiment, we used the functional-matrix-

operator project5, which has 74 Java classes and 2 586

LOC, with a test-suite having 10 Java classes and 647

LOC. The experiment was performed on a PC with an

5 https://github.com/soursop/

functional-matrix-operator

Intel Core i3-2350M processor and 8GB of RAM, under

a Linux Ubuntu 16.04.6 LTS OS.

Table 3 summarizes the results. The columns show

the number of generated mutants distinguishing be-

tween killed and alive, the mutation score, the total

running time and the average time per mutant. The

measured times include the time to generate the mu-

tants and the time to execute them together.

Tool Mutants Mutation Running Per-mutant
(killed/alive) score time time

Major 1 638 (331/864) 20.21% 13h42m56s 30.14s
PITest 918 (321/597) 34.97% 1h11m20s 4.66s
LittleDarwin 439 (130/309) 29.61% 3h30m39s 28.79s
muJava 2 589 (557/2 032) 21.51% 5h30m10s 7.65s
Wodel-Test/Java 4 756 (985/3 771) 20.71% 3h24m23s 2.58s

Table 3: Application of Java MT tools to the

functional-matrix-operator project.

Regarding efficacy, the MT tools report mutation

scores ranging from 20.21% to 34.97%, being Major

and Wodel-Test/Java the ones with the lowest scores.

However, Wodel-Test/Java generated more mutants,

mainly because its replacement operators are more ex-

haustive. Whereas LittleDarwin and PITest only apply

one of the possible changes considered for replacement

operators, Wodel-Test/Java applies all of them. For ex-

ample, in the case of AOR, Wodel-Test/Java replaces

each occurrence of the arithmetic operators by the other

four, while LittleDarwin and PITest only perform a

replacement. Another reason is that Wodel-Test/Java

has the largest set of mutation operators, as it includes

all operators defined by the other tools (Appendix A

contains the complete list of operators). In any case,

note that Wodel-Test/Java allows applying a subset of

its operators (cf. Figure 7).

The table does not include the results for Javalanche

because, in spite of our best efforts, we were not able

to complete the execution for all tests. We had to ex-

clude some tests to get an execution without errors,

after which the tool generated 758 mutants and killed

75 of them, with a mutation score of about 10%.

With respect to efficiency, Wodel-Test/Java took

around 3 hours and a half to execute the whole MT

process, which is less time than Major, LittleDarwin

and muJava, but more time than PITest. Note however

that Wodel-Test/Java generated 10 times more mu-

tants than LittleDarwin, 5 times more mutants than

PITest, 3 times more mutants than Major, and 2 times

more mutants than muJava. If we look at the per-

mutant time, Wodel-Test/Java is the fastest.

Altogether, looking at the results of this experiment,

we can conclude that the Java MT tool created with
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Wodel-Test is comparable to existing MT tools regard-

ing efficacy and efficiency of the MT process.

5.1.4 Discussion and threats to validity

Section 5.1.1 shows that Wodel-Test/Java offers func-

tionality comparable to existing MT tools for Java,

and moreover, it offers a rich set of interactive views

with the results of the MT process, makes the mutated

code available for inspection, enables configuration of

the unit testing technology, and includes mechanisms

to specify equivalence criteria for mutants. In particu-

lar, we believe that Wodel-Test/Java is a better option

for MT of Java programs than the other analysed MT

tools in four scenarios: when the tester needs to have

access to the source code of the mutants, wants to be

able to reason on which mutants reduce the mutation

score and why, wants to experiment with new muta-

tion operators, or needs to implement purpose-specific

mutation operators, for instance, for security testing or

other non-functional properties.

As an estimation of development effort, the existing

MT tools developed manually required two orders of

magnitude more code than the specification of a similar

environment using Wodel-Test. However, we have to

acknowledge that a significant amount of code in those

approaches may deal with advanced optimizations like

reducing the execution time, which Wodel-Test/Java

currently neglects. Moreover, we were able to reuse the

Java meta-model and the M2T/T2M transformations

provided by MoDisco, which might not be available

when building a MT for other programming language.

One of the salient features of Wodel-Test is its ex-

tensibility, as its DSL Wodel permits defining new mu-

tation operators. PITest is also extensible, but requires

programming to define new operators. Major is also ex-

tensible by the use of a DSL, but this is less expres-

sive than Wodel due to two factors. First, Major works

at the bytecode level while Wodel works at the model

level. Second, Offutt et al. showed that a reduced set

of mutation operators is enough to produce similarly

strong test cases [75], and this set has not changed

much in subsequent works [79]. However, the new fea-

tures added to existing programming languages (e.g.,

lambdas) and the new languages appeared recently do

require the ability to develop new mutation operators.

As Table 3 shows, the MT process of Wodel-

Test/Java is as effective as the MT process performed

by the other tools (comparable mutation scores, almost

the same as Major). Moreover, its per-mutant execu-

tion time is similar to that obtained for PITest, which

works at the bytecode level, and much lower than Ma-

jor and LittleDarwin. However, Wodel-Test/Java gen-

erates more mutants than the other tools. This is be-

cause we cover all mutation operators of the other tools,

but also because the other tools apply optimizations to

reduce the number of generated mutants and be more

efficient. Such optimizations are important because a

high number of mutants can be difficult to manage by

the tester and slows down the MT process. In this re-

spect, Wodel-Test/Java supports the filtering of equiv-

alent mutants to optimize the MT process, as well as

applying just a subset of the available mutation opera-

tors. However, Wodel-Test/Java lacks other optimiza-

tion mechanisms which the other tools do incorporate.

In the future, we plan to improve Wodel-Test with

an extension point to include such optimization tech-

niques, like prioritization [51], random selection [39],

higher-order mutants [48], or reduction of mutants by

removing subsumed ones [77].

Altogether, we can answer RQ1 positively: Wodel-

Test can generate MT tools comparable to existing

tools created manually. The generated tools have ad-

vantages in terms of extensibility and customizability,

offering a rich set of interactive views with information

of the MT process.

Threats to validity. We have to mention two threats

to the validity of our results. First, we have analysed

five MT tools for Java, but there may be others with

more sophisticated functionality or better efficiency. To

mitigate this risk, the tools used in the evaluation are

well-known, state-of-the-art, reputed tools in the MT

community, which are representative of the typical MT

functionality and efficiency. Second, our evaluation only

considers one project. In the future, we plan to replicate
the experiments with further projects to increase the

confidence of our results.

5.2 Case study: Building a MT tool for ATL

This section presents a case study on the develop-

ment of a MT tool for the Atlas transformation lan-

guage (ATL) [50]. ATL is a widely used model transfor-

mation language to define model-to-model transforma-

tions. This kind of transformations translates a model

conforming to a source meta-model into another model

conforming to a target meta-model (see Figure 10).

We use ATL as a case study because despite its

popularity in MDE, it is error-prone as it is dynam-

ically typed [80]. Moreover, testing transformations is

difficult [11] because it involves the creation of input

test models and the assessment of the output models.

Input test models can be created either manually or

automatically using diverse methods such as randomly,
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Figure 10: Working scheme of ATL transformations.

covering the input meta-model, or covering the trans-

formation [42,72,83]. Hence, MT can be useful to evalu-

ate the quality of this input test set. However, there are

few publicly available tools for MT of ATL programs.

A possible reason is the cost and complexity of devel-

opment, because mutation operators need to consider

not only ATL programs but also query the source and

target meta-models. The purpose of this section is to

show how Wodel-Test facilitates the creation of a MT

tool for ATL, helping to answer RQ2.

In the remainder of this section, first, Section 5.2.1

introduces the basics of ATL. Then, Section 5.2.2 de-

scribes how to create the MT tool with Wodel-Test.

Section 5.2.3 assesses the creation process of the MT

tool. Finally, Section 5.2.4 discusses the results and

identifies possible threats.

5.2.1 The ATL language

ATL allows defining transformation programs using a

rule-based textual notation. ATL programs conform to

the ATL meta-model, and they are also typed with re-

spect to the source and target meta-models of the trans-

formation. As Figure 10 shows, meta-models conform to

Ecore, which is a meta-modelling language that follows

the Meta-Object Facility standard of the OMG [70].

Figure 11 shows the effect of executing an ATL pro-

gram which transforms a Families model into a Persons

model. The program simply creates a Male object for

each Member object playing a father or sons role within a

Family; and a Female object for each Member object play-

ing mother or daughters roles. The fullName of the created

objects is the concatenation of the firstName and last-

Name of the original objects.

ATL programs consist of declarative rules stating

how a pattern of objects in the source model is to be

translated into a pattern of objects in the target model.

As an example, Listing 4 shows an ATL program that

performs the transformation exemplified by Figure 11.

Family 

lastName: String 

Member 

firstName: String 

daughters sons father mother 

Person 

fullName: String 

Male Female 

:Family 

lastName=“Allen” 

:Member 
firstName=“John” 

:father 

:Member 

firstName=“Mary” 
:mother :Member 

firstName=“Peter” 

:sons 

:Male 

fullName=“John Allen” 

:Male 

fullName=“Peter Allen” 

:Female 

fullName=“Mary Allen” 

Families meta-model (in) 

input model 

Persons meta-model (out) 

output model 

* * 

ATL 

«conforms to» «conforms to» 

family 
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Figure 11: ATL transformation example.

1 module Families2Persons;
2 ==@path Families=/Families2Persons/Families.ecore
3 ==@path Persons=/Families2Persons/Persons.ecore
4 create OUT:Persons from IN:Families;
5

6 == Returns whether a member is a female
7 helper context Families!Member def: isFemale(): Boolean =
8 if not self.familyMother.oclIsUndefined() then true
9 else if not self.familyDaughter.oclIsUndefined() then true

10 else false endif
11 endif;
12 == Returns the family name of a member
13 helper context Families!Member def: familyName: String =
14 if not self.familyFather.oclIsUndefined() then
15 self.familyFather.lastName
16 else if not self.familyMother.oclIsUndefined() then
17 self.familyMother.lastName
18 else
19 if not self.familySon.oclIsUndefined() then
20 self.familySon.lastName
21 else self.familyDaughter.lastName endif
22 endif
23 endif;
24 == Creates a male from a family member that is a male
25 rule Member2Male {
26 from s:Families!Member (not s.isFemale())
27 to t:Persons!Male (
28 fullName <= s.firstName + ’ ’ + s.familyName
29 )
30 }
31 == Creates a female from a family member that is a female
32 rule Member2Female {
33 from s:Families!Member (s.isFemale())
34 to t:Persons!Female (
35 fullName <= s.firstName + ’ ’ + s.familyName
36 )
37 }

Listing 4: ATL program example.

Lines 2–4 of the listing indicate the input and out-

put meta-models of the transformation. The program

declares two rules in lines 25–30 (Member2Male) and 32–

37 (Member2Female). Rule Member2Male is executed for

each male Member object. Rules are generally made of a

source pattern (line 26), an optional filter constraining

the objects in the pattern (line 26, not s.isFemale()), an

output pattern with the objects to be created (line 27),
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and attribute initializers called bindings (line 28). Rule

Member2Female is similar, but matches female Member

objects and creates Female objects.

The listing also declares two helpers in lines 7–11

(isFemale) and 13–23 (familyName). Helpers are auxiliary

functions defined in the context of a meta-model class,

similar to methods and derived attributes in object-

oriented programming languages. The body of helpers

is written using OCL. In the listing, helper isFemale is

used in the rule filters, and helper familyName is used in

the bindings to initialize the attribute fullName of the

created objects.

ATL contains other features, like lazy and matched

rules, and the working scheme of bindings is more com-

plex than presented. However, this is enough to illus-

trate the main aspects of the language. We refer the

reader to [50] for more details.

5.2.2 Using Wodel-Test to build a MT tool for ATL

ATL is implemented based on EMF. Its abstract syntax

is defined by a meta-model, of which Figure 12 is a very

small excerpt. The meta-model fragment shows that the

InPattern of rules declares one or more VariableDeclarations

with a variable name and a type. This type must be an

OclModelElement from an OclModel, or in other words, a

class from the input meta-model.

VariableDeclaration 

InPatternElement 

SimpleInPatternElement 

InPattern 

1..* elements 

OclType 
type 

variableDeclaration 

OclModelElement 
OclModel 

name: String 

model 

elements 
 * 

varName: String 

Figure 12: ATL meta-model excerpt.

The ATL distribution provides a T2M transforma-

tion to parse textual ATL programs into instances of

the ATL meta-model, and a M2T transformation to

generate ATL code from an in-memory ATL model.

This way, the language support required by Wodel-Test

just reuses these two transformations.

With respect to execution support, Wodel-Test re-

quires defining how to compile the ATL programs and

how to execute the test cases. ATL programs can be

programmatically compiled into bytecode by the ATL

virtual machine. Since there is no standard unit testing

framework for ATL, we use input models of the trans-

formation as test cases. Using this approach, there is

no need to specify an explicit test oracle. Instead, for

each input model, we execute the original and mutant

transformations with the model and compare the re-

sults: if the outputs are different, then the test failed,

otherwise, it succeeded.

The last component of a MT tool specification con-

cerns the mutation support. In this case, we have used

Wodel to define the 18 mutation operators proposed

in [89]. These operators, shown in Table 4, allow the

creation, deletion and modification of rules, input pat-

tern elements, output pattern elements, rule filters and

bindings. Since the operators were originally specified

as ATL transformations [89], the table also compares

the LOC of their encoding using ATL and Wodel (in

the former case, only when available in [89]).

Concept Mutation LOC LOC
operator in Wodel in ATL

Matched Rule Addition 1 -
Deletion 1 -
Name change 1 -

In Pattern Element Addition 6 14
Deletion 1 -
Class change 4 -
Name change 1 -

Filter Addition 10 -
Deletion 1 -
Condition change 4 -

Out Pattern Element Addition 6 -
Deletion 1 6
Class change 4 -
Name change 1 -

Binding Addition 6 -
Deletion 1 3
Value change 2 -
Feature change 6 -

Table 4: Mutation operators for ATL.

As an example, Listing 5 shows the Wodel encoding

of the mutation operator that creates an input pattern

element (Appendix B contains the implementation of

all other operators). The operator needs to create a vari-

able declaration typed by an existing input meta-model

class. For this purpose, lines 3–5 declare an auxiliary re-

source named input which points to the location of the

input meta-model of the transformation, and conforms

to the Ecore meta-model. Then, the program selects one

class from the input meta-model (line 9), and creates

an input pattern element (line 12) typed by the selected

class (line 13).

Wodel ensures that all generated mutants will con-

form to the ATL meta-model. In addition, it provides

an extension point to add other criteria that any mutant

should fulfil. In this case, we have implemented this ex-

tension point to statically analyse the mutant and dis-

card it if it has typing errors that may lead to runtime

errors. To perform the analysis, we programmatically

use a static analyser for ATL called anATLyzer [80].

This ensures that the mutants will run without pro-

ducing runtime exceptions.
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1 generate 2 mutants in ”out/” from ”model/”
2 metamodel ”mm/ATL.ecore”
3 with resources from {
4 input=”mm/in”
5 metamodel=”mm/Ecore.ecore” }
6

7 with blocks {
8 cipe ”Create in pattern element” {
9 cl = select one EClass from input resources

10 p = select one InPattern
11 mod = select one OclModel in p→elements→type→model
12 ipe = create SimpleInPatternElement in p→elements with {

varName = random=string(2, 4)}
13 elem = create OclModelElement in ipe→type with {name = cl.

name, variableDeclaration = ipe}
14 modify mod with {elements += elem}
15 }
16 }

Listing 5: Wodel program implementing the mutation

operator in pattern element addition.

Finally, we have defined a domain-specific equiva-

lence criterion for ATL programs based on comparing

the bytecode of their compilation, which is serialized in

XML. Although the standard ATL virtual machine does

not optimize the bytecode, the alternative EMFTVM

does [93].

Figure 13 shows the generated MT tool for ATL,

which has a similar structure to the one developed for

Java. The ATL editor, with label 1, contains the code of

a mutant transformation. In particular, the String con-

catenation in line 35 of Listing 4 has been replaced by a

String literal in line 62 of Figure 13. Label 2 corresponds

to the package explorer, which contains a project with

the input models used as test cases, and an ATL project

with a folder for each generated mutant. Panel 3 shows

the mutants view where the live mutants are depicted

in red. Panel 4 shows the global view of MT results.

2 1 3

4

Figure 13: MT tool for ATL created with Wodel-Test.

5.2.3 Assessing the creation process of the MT tool for

ATL

Next, we assess the use of Wodel-Test to construct a

MT tool for ATL, in comparison with the technique

proposed in [89] in which we based our suite of muta-

tion operators. We analyse three aspects: (i) the defini-

tion of mutation operators, (ii) the execution control of

the mutation operators, and (iii) the specification and

provision of other functionalities useful to MT.

Definition of mutation operators. Since ATL programs

are internally represented as models, an alternative to

Wodel to define mutation operators is the use of a

general-purpose model transformation language. As we

mentioned in the previous section, in [89], the authors

propose 18 mutation operators for ATL, and implement

some of them using ATL (specifically, using so-called

higher-order ATL transformations).

Listing 6 shows the ATL program that implements

the mutation operator in pattern element addition. The

program creates an input pattern element with a non-

existing type named “Complete IPE” (line 22). Then,

another ATL program that we show in Listing 7 is

subsequently executed in refining mode6 to modify the

mutant transformation generated by the first program.

This second program retrieves a random class from the

input meta-model and replaces the “Complete IPE” lit-

eral by the class name. In contrast, the Wodel encoding

of the same mutation operator is able to read the class

name from the input meta-model, i.e., there is no need

to define two different programs for this purpose (see

Listing 5). The way to assign a name to the new pat-

tern element also differs, as the ATL program relies on a

pre-constructed name set (lines 7–8 in Listing 6), while

the Wodel program generates a random string (line 12

in Listing 5).

Mutation execution control. The ATL mutation opera-

tor in Listing 6 hard-codes the location where the oper-

ator is to be applied, in this case, in the first rule of the

seed ATL program (line 11). Instead, Wodel supports

a more declarative style to control the mutation execu-

tion process, being possible to customize the minimum

and maximum number of applications of the operator,

or execute it exhaustively at every possible location.

The tool created with Wodel-Test permits select-

ing the mutation operators to apply in the MT process.

This fine-grained control would be challenging to em-

ulate using only ATL due to its execution semantics.

This is so as ATL rules are applied exactly once at every

6 In refining mode, the input model of a transformation is
changed in-place and produced as output.
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1 module AddInPatternElement FirstRule;
2

3 create OUT : ATL refining IN : ATL;
4

5 == Sequence for giving new variable names to new
6 == pattern elements that are created
7 helper def : varNames : Sequence(String) =
8 Sequence{’a’,’aa’,’b’,’bb’,’c’,’cc’,’d’,’dd’,’e’,’ee’,’f’,’ff’,’...’};
9

10 rule AddInPatternElement {
11 from s : ATL!InPattern (ATL!Rule.allInstances()→first() = s.”rule”)

== Add SIPE only in first rule
12 to t : ATL!InPattern(
13 elements <= s.elements →append(newIPE)
14 ),
15 newIPE : ATL!SimpleInPatternElement (
16 == Give a variable name that no PatternElement has
17 varName <= thisModule.varNames→any(n |
18 ATL!PatternElement.allInstances()→collect(pe|pe.varName)

→excludes(n)),
19 type <= newOCLType
20 ),
21 == The type is composed of a model and a name: model!name
22 newOCLType : ATL!OclModelElement(
23 model <= s.elements→first().type.model,
24 name <= ’Complete IPE’
25 )
26 }

Listing 6: ATL program implementing the operator in

pattern element addition [89].

1 module SecondOrderHOT;
2

3 create OUT : ATL
4 refining IN : ATL, IN MM : IN MM, OUT MM : OUT MM;
5

6 helper def : random() : Real =
7 ”#native”!”java::util::Random”.newInstance().nextDouble();
8

9 == A StringExp is one of the types that can conform to the value part
10 == of a Binding. Since the generic mutation transformation
11 == adds ’Complete IPE’ in the value part, a StringExp is created,
12 == whose stringSymbol is ’Complete IPE’
13 rule CompleteInMMNames {
14 from s : ATL!StringExp (s.stringSymbol = ’Complete IPE’)
15 using {
16 classes : Sequence(IN MM!EClass) =
17 IN MM!EClass.allInstancesFrom(’IN MM’)→select(c |
18 not c.abstract);
19 }
20 to t : ATL!StringExp(
21 == A random class from the input model
22 stringSymbol <= classes→at((thisModule.random()*
23 classes→size()).floor()+1).name
24 )
25 do {
26 classes→at((thisModule.random()*classes→size()).
27 floor()+1).name;
28 }
29 }

Listing 7: Refining transformation to replace the literal

“Complete IPE” by an input class name [89].

possible match, and a same object cannot be matched

by two different rules because this would raise a run-

time error. As a consequence, mutation operators spec-

ified with ATL cannot be grouped in the same trans-

formation program, but need to be scattered in several

programs orchestrated either manually or by means of

a dedicated controller Java program. In the prototype

tool provided by [89], this amounts to around 520 LOC,

while implementing the LanguageServiceProvider support

for ATL in Wodel-Test has around 350 LOC.

Functionality of MT tool. Table 5 compares the MT

functionality provided by both proposals. The MT tool

generated with Wodel-Test provides the typical func-

tionalities required for an integral MT environment out-

of-the-box, including the calculation of the mutation

score, covered operators, and other useful metrics. The

prototype tool in [89] allows the generation of mutants

of ATL programs but gives no further support for MT.

Hence, there is no mechanism to detect equivalent mu-

tants, perform the MT process (i.e., execution of mu-

tants against the test cases) and report the results (not

even the mutation score). Hence, to obtain a functional

MT tool, these functionalities should be programmed

by hand, which is not required using Wodel-Test.

Troya et al. [89] Wodel-Test/ATL
Last update 2015 2019

Input to MT process
UI Command line Eclipse plugin
Scope ATL program ATL program

Test suite None
Input model

(customizable)

Mutant generation process
Implemented operators 3/18 18/18
Mutants per operator 1 All possible
Op. extensibility No Yes (DSL)
Mutated artefact Model Model
Mutant source Yes Yes
Mutant filter No No
Equivalent mutant detection No Yes (TCE)

Reporting
Report type None Interactive views
N. of mutants 7 X
Mutation score 7 X
Killed/live mutants 7 Number, list
Covered operators 7 Number, list
Mutants by ATL program 7 X
Tests by mutant 7 X
Mutants by test 7 X

Table 5: Comparison of ATL MT tools.

With respect to development effort, the Wodel-Test

specification of the MT tool for ATL consists of 327

LOC, which is comparable to the effort dedicated to

specify the MT tool for Java, which has 305 LOC. We

cannot compare with the LOC in Troya’s approach [89]

because there is no tool providing support for the MT

process.

5.2.4 Discussion and threats to validity

Even though ATL was constructed using MDE, imple-

menting their mutation operators using a DSL has ad-
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vantages with respect to using a general-purpose trans-

formation language. For example, Wodel has facilities

for object cloning (used in the matched rule addition

operator in Appendix B), retyping, assignment of ran-

dom attribute values (used in Listing 5), automated

resolution of suitable containers for new objects, check-

ing of mutant well-formedness, and access to auxiliary

resources (e.g., the input meta-model in Listing 5). It

also provides mutation execution control facilities that

would be difficult to emulate using a general-purpose

model transformation language. For instance, Wodel

permits the exhaustive application of mutation opera-

tors on every possible location, while using ATL, this

must be emulated by the use of different transforma-

tions. Moreover, our approach permits specifying mu-

tant equivalence criteria (e.g., XML-based comparison

of the ATL “bytecode”).

Another advantage of Wodel-Test is that the syn-

thesized MT tools provide rich functionality, which oth-

erwise needs to be programmed manually. Likewise, if

there is the need to change the functionality of a MT

tool created with Wodel-Test (e.g., to add mutation op-

erators that consider new target language features due

to new language versions, or modify the existing mutant

equivalence criteria), these changes can be performed at

the MT tool specification level, so that the MT tool can

be regenerated from this specification. This simplifies

the maintenance of our MT tools, as their specification

is higher-level and hence simpler to modify than the

equivalent code.

Last but not least, our MT tools are Eclipse plu-

gins, and so, they can be easily integrated with other

tools through extension points (the non-intrusive mech-

anism provided by Eclipse to permit contributing new

functionality to existing plugins). In particular, Wodel-

Test defines extension points to let developers integrate

other tools in almost every step of the MT process: val-

idation of mutant correctness, detection of equivalent

mutants, mutant compilation, etc. As an example, the

MT tool developed for ATL integrates a static analyser

to check the correctness of the generated mutants and

discard them if they may throw runtime errors.

Altogether, based on the LOC required to build MT

tools either manually or using Wodel-Test, and based

on the functionality that Wodel and Wodel-Test pro-

vide out-of-the-box, we can answer RQ2 by stating that

using Wodel-Test is more effective than building a MT

tool from scratch using a programming language or a

combination of programming and transformation lan-

guages. Moreover, the MT tools built with Wodel-Test

also have advantages in terms of maintainability and

integrability with external tools.

Threats to validity. In order to define the MT tools

for Java and ATL using Wodel-Test, we reused ex-

isting meta-models, M2T and T2M transformations.

If these artefacts were not available, building the MT

tools would have required more effort. However, as Sec-

tion 3 mentioned, some MDE re-engineering projects

have made available these artefacts for programming

languages, while they are commonly available for mod-

elling languages.

6 Related Research

MT was initially applied to source code, and hence,

catalogues of mutation operators exist for programming

languages such as Ada [76], C [2,47], C++ [19,59], For-

tran [55], Java [12,54,65] or SQL [91]. In addition, MT

has also been applied to other artefacts such as formal

specifications (e.g., finite state machines [26,46], stat-

echarts [28,88], Petri nets [27], CSP [86]) or web ser-

vices [25,63]. Consequently, a wide range of tools have

been developed to support mutation analysis for differ-

ent programming languages. Initially, these tools were

designed to deal with the MT techniques proposed in

the academic environment [18,20], but since the early

2000s, many tools aim to make MT practical [3,47,58,

66,81,90].

The relevance of MT is demonstrated by the many

kinds of software systems and application domains

where it has been applied, including web applica-

tions [69], safety-critical software [10], function block

diagrams [84], cloud and HPC environments [16], An-

droid apps [22], GUIs [5], IoT protocols [9] and memory

faults [94]. We believe that our approach may simplify

the development of MT tools for these and other appli-

cation domains.

In the remainder of this section, we review works

related to the systematic construction of MT tools, the

extensibility mechanisms devised for MT tools, and the

use of mutation within MDE.

Systematic construction of MT tools. To the best of

our knowledge, there are not many proposals to au-

tomate the systematic construction of MT tools. One

recent exception is [8], where the authors propose using

MDE to support MT of Java. Just like Wodel-Test,

they represent Java programs as models conformant to

the MoDisco meta-model and reuse the MoDisco M2T

and T2M transformations. However, they encode mu-

tation operators using the QVT-o model transforma-

tion language. That approach is only incipient as it

does not support the execution of the test cases, while

Wodel-Test is a fully developed approach that auto-

mates the whole MT process. While that work targets
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Java, Wodel-Test is generic and applicable to arbitrary

languages. Finally, that work only defines 4 mutation

operators, while Wodel-Test provides 77 mutation op-

erators that can be extended or modified using a DSL

tailored to model mutation.

Extensibility of MT tools. Some MT tools permit some

degree of customization of the mutation operators. For

example, Section 5.1.2 showed that Major [51] per-

mits configuring the replacement lists of mutation op-

erators like Arithmetic Operator Replacement (AOR).

MuCheck [61] is a MT framework for Haskell that offers

an internal DSL embedded in Haskell to develop new

mutation operators or alter existing ones. However, the

expressiveness of this DSL is limited to the modifica-

tion of values with a mutant replacement. SMutant [31]

is a mutation framework for Smalltalk, which permits

the definition of new mutation operators programmed

in Smalltalk. Overall, our contribution with respect to

this branch of works is the availability of an external

DSL specifically designed to define mutation operators

and applicable to arbitrary languages. Our DSL does

not only support specifying new operators, but also

controlling their execution policies and ensuring their

validity with regards to OCL constraints.

While the previous works are language-dependent,

the aim of Universalmutator [41] is being language-

independent. Its approach is based on the replacement

of simple regular expressions, which the tester can de-

fine. It works on unparsed text files so it does not need

a parser, which makes it language-independent. How-

ever, as the authors mention, the use of unparsed text

presents limitations on the kind of mutations the tool

is able to express. In contrast, Wodel can express com-

plex mutations and specify OCL validity criteria for the

generated mutants, as it works at the model level.

Another approach to decouple mutation from spe-

cific languages is its application at the level of byte-

code – as this allows defining mutation operators for

languages targeting the Java Virtual Machine [51] – or

its application at the intermediate representation level

(IR) of compiler architectures like LLVM [23]. Mull [23]

is a MT tool that works over IR, so it can be applied to

C, C++ and any other language that compiles to LLVM

IR, such as Rust, Swift and Objective-C. However, low-

level code like IR is optimized for execution but not for

analysis, limiting the mutation operators that can be

expressed. For example, Mull supports 4 types of sim-

ple mutations like replace arithmetical operator, negate

condition, remove void function, replace call and replace

scalar. Moreover, mutations that are possible at the IR

level may not be applicable or relevant at the source-

level (so called junk mutations [23]). Instead, our ap-

proach to language independence is based on express-

ing the language syntax as a meta-model. This allows

creating more complex mutation operators at the price

of a potentially lower efficiency.

MT within MDE. Several authors have applied MT in

the area of MDE, especially to model transformations.

For example, in [71], a collection of generic mutation

operators is defined based on the main activities in-

volved in a model transformation (navigation, filtering,

output model creation and input model modification).

In [42], the authors provide a Java framework to sim-

plify the MT of ATL transformations. The framework

incorporates many mutation operators, included the

ones used in our evaluation. However, it has to be used

programmatically and provides less functionality than

the MT tool developed with Wodel-Test (e.g., there

is no graphical user interface, detailed MT metrics, or

automatic/manual detection of equivalent mutants).

Other works propose systematic approaches for gen-

erating mutation operators either for a specific lan-

guage [53,89] or for different ones [4]. Mutation has

been applied in the context of UML [3,40]. For exam-

ple, in [3,58], the authors generate test cases for UML

state machines. These test cases are able to kill live mu-

tants and can be automatically generated. In [40] the

authors propose a set of mutation operators for UML

class diagrams. Wodel-Test could have helped in the

design of the operators, and the automation of the MT

process.

Mutation has been widely employed to evaluate

strategies to generate input models for model transfor-

mation testing. For example, in [72], the authors com-

pare techniques based on footprints, input domain cov-

erage and random generation using mutation testing. In

a same vein, [42] uses different mutation operator sets

to evaluate input model generation techniques based on

meta-model coverage, random generation, and transfor-

mation path coverage. In [83], the authors use mutation

to evaluate model generation based on partition with

respect to a random strategy. Wodel-Test can help in

automating these evaluations by enabling the creation

of mutations for this purpose.

Finally, mutation operators have also been used to

synthesize input models for transformations [7,82]. In-

terestingly, in [82] the operators are graph grammar

rules automatically derived from the meta-model being

transformed. We believe that Wodel-Test is particu-

larly useful for MT within MDE, as MDE artefacts are

typically defined by meta-models to which our approach

is readily applicable. We expect that our work can bring

MT closer to the MDE community.
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In summary, our approach is novel in that it is the

first fully working framework that automates the con-

struction of MT tools for arbitrary languages, hence

reducing the effort to create this kind of tools. Instead,

most existing MT tools have been developed by hand,

which allows their specialization but requires a high de-

velopment cost. Moreover, we provide a DSL to build

(model) mutation operators which, compared to the

mutation languages provided by manually-coded MT

tools, is more expressive, can be applied to arbitrary

languages, supports the specification of validity crite-

ria for the created mutants, and can be extended with

mechanisms for the detection of equivalent or duplicate

mutants. While MT has been applied to different MDE

artefacts, no mechanism for the systematic construction

of MT tools for such artefacts has been proposed. Our

work aims to cover this gap.

7 Conclusions and Future Work

In this paper, we have presented a model-based ap-

proach to automate the generation of MT tools for ar-

bitrary languages. The approach is based on a DSL

tailored to define mutation operators in a language-

independent way. We have shown the benefits of our

approach defining MT tools for Java and ATL.

Our mutation operators can be defined for a partic-

ular language (e.g., Java, ATL) and cannot be reused

for other languages. This is so as each language has its

own meta-model and semantics, and the mutation op-

erators need to take both into account. However, we

foresee extending our approach to allow the reuse of

generic, non-domain-specific mutation operators across

similar languages (e.g., operators defined for a C++

meta-model could be reused with a Java meta-model).

To this aim, we may apply techniques like those pro-

posed in [14]. Likewise, we also intend to extend the

Wodel DSL to support the definition of functions that

can be reused across mutation operators.

Currently, we are working on improving the tool ef-

ficiency to cope with the MT of larger programs. In the

future, we would like to perform a user study to anal-

yse to which extent users find our MT tools usable. We

are also planning to provide Wodel-Test with extension

points to support mutant filtering (e.g., based on state-

ment coverage), reduction techniques (e.g., based on

sampling), control of redundant mutants (e.g., dynamic

approximation of the disjoint mutation score [60]), or

the possibility to generate test cases from the mod-

els [95]. For the latter, we could take each live mutant

and automatically generate a test case hitting the mu-

tated line, extending in this way the initial test suite.

However, this analysis would be dependent on the pro-

gramming language (e.g., ATL [42,80]). Another option

could be to use mutation to produce variations of the

initial test suite, for which we would need to provide a

meta-model of the input to the test suite. We are also

planning to apply our approach to languages of other

paradigms, like functional [61] or dataflow-based [38].

Finally, another line of research that is worth investigat-

ing concerns the automated synthesis of M2T and T2M

transformations out of the meta-model of the targeted

language and sample instances of textual programs.
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A Java mutation operators

This appendix contains the definition of the Java mutation
operators included in [17,51,67,79,81] using Wodel.

Java
mutation

Wodel code

Replaces an
arithmetic
operator by
‘+’

modify one InfixExpression
where { operator in [’=’, ’*’, ’/’, ’%’] }
with { operator = ’+’ }

Replaces an
arithmetic
operator by
‘-’

modify one InfixExpression
where {

operator in [’+’, ’*’, ’/’, ’%’] and
leftOperand not typed StringLiteral and
rightOperand not typed StringLiteral }

with { operator = ’=’ }
Replaces an
arithmetic
operator by
‘*’

modify one InfixExpression
where {

operator in [’+’, ’=’, ’/’, ’%’] and
leftOperand not typed StringLiteral and
rightOperand not typed StringLiteral }

with { operator = ’*’ }
Replaces an
arithmetic
operator by
‘/’

modify one InfixExpression
where {

operator in [’+’, ’=’, ’*’, ’%’] and
leftOperand not typed StringLiteral and
rightOperand not typed StringLiteral }

with { operator = ’/’ }
Replaces an
arithmetic
operator by
‘%’

modify one InfixExpression
where {

operator in [’+’, ’=’, ’*’, ’/’] and
leftOperand not typed StringLiteral and
rightOperand not typed StringLiteral }

with { operator = ’%’ }
Replaces a
postfix ‘++’
operator by
‘--’

modify one PostfixExpression
where { operator = ’++’ }
with { operator = ’==’ }

Replaces a
postfix ‘--’
operator by
‘++’

modify one PostfixExpression
where { operator = ’==’ }
with { operator = ’++’ }

Replaces a
prefix ‘++’
operator by
‘--’

modify one PrefixExpression
where { operator = ’++’ }
with { operator = ’==’ }

Replaces a
prefix ‘--’
operator by
‘++’

modify one PrefixExpression
where { operator = ’==’ }
with { operator = ’++’ }

Replaces a
prefix ‘+’
operator by
‘-’

modify one PrefixExpression
where { operator = ’+’ }
with { operator = ’=’ }

Replaces a
prefix ‘-’
operator by
‘+’

modify one PrefixExpression
where { operator = ’=’ }
with { operator = ’+’ }

Replaces a
prefix ‘+’ or
‘-’ operator
by ‘--’

modify one PrefixExpression
where {

operator in [’+’, ’=’] and
operand not typed NumberLiteral }

with { operator = ’==’ }
Replaces a
prefix ‘+’ or
‘-’ operator
by ‘++’

modify one PrefixExpression
where {

operator in [’+’, ’=’] and
operand not typed NumberLiteral }

with { operator = ’++’ }
Continued on next column...
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...continued from previous column
Java
mutation

Wodel code

Replaces a
prefix ‘++’ or
’--’ operator
by ‘+’

modify one PrefixExpression
where { operator in [’++’, ’==’] }
with { operator = ’+’ }

Replaces a re-
lational oper-
ator by ‘>’

modify one InfixExpression
where { operator in [’>=’, ’<’, ’<=’, ’==’, ’!=’] }
with { operator = ’>’ }

Replaces a re-
lational oper-
ator by ‘>=’

modify one InfixExpression
where { operator in [’>’, ’<’, ’<=’, ’==’, ’!=’] }
with { operator = ’>=’ }

Replaces a re-
lational oper-
ator by ‘<’

modify one InfixExpression
where { operator in [’>’, ’>=’, ’<=’, ’==’, ’!=’] }
with { operator = ’<’ }

Replaces a re-
lational oper-
ator by ‘<=’

modify one InfixExpression
where { operator in [’>’, ’>=’, ’<’, ’==’, ’!=’] }
with { operator = ’<=’ }

Replaces a re-
lational oper-
ator by ‘==’

modify one InfixExpression
where { operator in [’>’, ’>=’, ’<’, ’<=’, ’!=’] }
with { operator = ’==’ }

Replaces a re-
lational oper-
ator by ‘!=’

modify one InfixExpression
where { operator in [’>’, ’>=’, ’<’, ’<=’, ’==’] }
with { operator = ’!=’ }

Replaces a
conditional
operator by
‘&&’

modify one InfixExpression
where { operator in [’||’, ’ˆ’] }
with { operator = ’&&’ }

Replaces a
conditional
operator by
‘||’

modify one InfixExpression
where { operator in [’&&’, ’ˆ’] }
with { operator = ’||’ }

Replaces a
conditional
operator by
‘ˆ’

modify one InfixExpression
where { operator in [’&&’, ’||’] }
with { operator = ’ˆ’ }

Replaces a
logic operator
by ‘&’

modify one InfixExpression
where { operator in [’|’, ’ˆ’] }
with { operator = ’&’ }

Replaces a
logic operator
by ‘|’

modify one InfixExpression
where { operator in [’&’, ’ˆ’] }
with { operator = ’|’ }

Replaces a
logic operator
by ‘ˆ’

modify one InfixExpression
where { operator in [’&’, ’|’] }
with { operator = ’ˆ’ }

Replaces a
shift operator
by ‘>>’

modify one InfixExpression
where { operator in [’>>>’, ’<<’] }
with { operator = ’>>’ }

Replaces a
shift operator
by ‘>>>’

modify one InfixExpression
where { operator in [’>>’, ’<<’] }
with { operator = ’>>>’ }

Replaces a
shift operator
by ‘<<’

modify one InfixExpression
where { operator in [’>>’, ’>>>’] }
with { operator = ’<<’ }

Replaces an
assignment
operator by
‘+=’

modify one Assignment
where { operator in [’==’, ’*=’, ’/=’, ’%=’] }
with { operator = ’+=’ }

Replaces an
assignment
operator by
‘-=’

modify one Assignment
where { operator in [’+=’, ’*=’, ’/=’, ’%=’] }
with { operator = ’==’ }

Replaces an
assignment
operator by
‘*=’

modify one Assignment
where { operator in [’+=’, ’==’, ’/=’, ’%=’] }
with { operator = ’*=’ }

Replaces an
assignment
operator by
‘/=’

modify one Assignment
where { operator in [’+=’, ’==’, ’*=’, ’%=’] }
with { operator = ’/=’ }

Continued on next column...

...continued from previous column
Java
mutation

Wodel code

Replaces an
assignment
operator by
‘%=’

modify one Assignment
where { operator in [’+=’, ’==’, ’*=’, ’/=’] }
with { operator = ’%=’ }

Replaces an
assignment
operator by
‘&=’

modify one Assignment
where { operator in

[’|=’, ’ˆ=’, ’>>=’, ’>>>=’, ’<<=’] }
with { operator = ’&=’ }

Replaces an
assignment
operator by
‘|=’

modify one Assignment
where { operator in

[’&=’, ’ˆ=’, ’>>=’, ’>>>=’, ’<<=’] }
with { operator = ’|=’ }

Replaces an
assignment
operator by
‘=̂’

modify one Assignment
where { operator in [’&=’, ’|=’] }
with { operator = ’ˆ=’ }

Replaces an
assignment
operator by
‘>>=’

modify one Assignment
where { operator in [’>>>=’, ’<<=’] }
with { operator = ’>>=’ }

Replaces an
assignment
operator by
‘>>>=’

modify one Assignment
where { operator in [’>>=’, ’<<=’] }
with { operator = ’>>>=’ }

Replaces an
assignment
operator by
‘<<=’

modify one Assignment
where { operator in [’>>=’, ’>>>=’] }
with { operator = ’<<=’ }

Replaces a
number by
a random
number

modify one NumberLiteral
with {tokenValue = random=int=string(0, 9)}

Deletes a
call to a void
method

remove one MethodInvocation
where { method→returnType→type

is typed PrimitiveTypeVoid }
Deletes a call
to a non-void
method

remove one MethodInvocation
where { method→returnType→type

not typed PrimitiveTypeVoid }
Replaces a
call to a con-
structor by
null

a = select one Assignment
where { rightHandSide

is typed ClassInstanceCreation }
create NullLiteral in a→rightHandSide

Deletes an as-
signment

remove one Assignment
where { rightHandSide is typed NumberLiteral }

Propagates
an argument
to a return
statement

s = select one ReturnStatement
where { expression is typed MethodInvocation }

m = select one MethodInvocation in s→expression
p = select one SingleVariableAccess in m→arguments
modify s with {expression = p}

Propagates
an argument
to the right
operand
of an infix
expression

e = select one InfixExpression
where { rightOperand is typed MethodInvocation }

m = select one MethodInvocation in e→rightOperand
p = select one SingleVariableAccess in m→arguments
modify e with { rightOperand = p }

Propagates
an argument
to the left
operand
of an infix
expression

e = select one InfixExpression
where { leftOperand is typed MethodInvocation }

m = select one MethodInvocation in e→leftOperand
p = select one SingleVariableAccess in m→arguments
modify e with { leftOperand = p }

Propagates
an argu-
ment to an
assignment

a = select one Assignment
where { rightHandSide is typed MethodInvocation }

m = select one MethodInvocation in a→rightHandSide
p = select one SingleVariableAccess in m→arguments
modify a with { rightHandSide = p }

Continued on next column...
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...continued from previous column
Java
mutation

Wodel code

Increments
number in the
right operand
of an infix
expression

e = select one InfixExpression
where { rightOperand is typed NumberLiteral }

n = select one NumberLiteral in e→rightOperand
inc = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→rightOperand

with {
leftOperand = n,
operator = ’+’,
rightOperand = inc }

Increments
number in the
left operand
of an infix
expression

e = select one InfixExpression
where { leftOperand is typed NumberLiteral }

n = select one NumberLiteral in e→leftOperand
inc = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→leftOperand

with {
leftOperand = n,
operator = ’+’,
rightOperand = inc }

Increments
number in
a return
statement

e = select one ReturnStatement
where { expression is typed NumberLiteral }

n = select one NumberLiteral in e→expression
inc = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→expression

with {
leftOperand = n,
operator = ’+’,
rightOperand = inc }

Increments
number in an
assignment

e = select one Assignment
where { rightHandSide is typed NumberLiteral }

n = select one NumberLiteral in e→rightHandSide
inc = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→rightHandSide

with {
leftOperand = n,
operator = ’+’,
rightOperand = inc }

Replaces a
boolean value
by true

modify one BooleanLiteral
where { value = false }
with { value = true }

Replaces a
boolean value
by false

modify one BooleanLiteral
where { value = true }
with { value = false }

Replaces a
number by 1

modify one NumberLiteral
where { tokenValue <> ’1’ }
with { tokenValue = ’1’ }

Replaces a
return state-
ment by
null

rt = select one ReturnStatement
create NullLiteral in rt→expression

Replaces a
number by 0

modify one NumberLiteral
where { tokenValue <> ’0’ }
with { tokenValue = ’0’ }

Replaces a
number in the
left operand
of an infix
expression by
-1

exp = select one InfixExpression
where { leftOperand is typed NumberLiteral }

modify exp with { leftOperand.tokenValue = ’1’ }
p = create PrefixExpression

with {
operator = ’=’,
operand = exp→leftOperand }

modify exp with { leftOperand = p }
Replaces a
number in the
right operand
of an infix
expression by
-1

exp = select one InfixExpression
where { rightOperand is typed NumberLiteral }

modify exp with { rightOperand.tokenValue = ’1’ }
p = create PrefixExpression

with {
operator = ’=’,
operand = exp→rightOperand }

modify exp with { rightOperand = p }
Continued on next column...

...continued from previous column
Java
mutation

Wodel code

Replaces
a number
in a return
statement by
-1

rt = select one ReturnStatement
where { expression is typed NumberLiteral }

modify rt with { expression.tokenValue = ’1’ }
p = create PrefixExpression

with {
operator = ’=’,
operand = rt→expression }

modify rt with { expression = p }
Replaces a
number in an
assignment
by -1

a = select one Assignment
where { rightHandSide is typed NumberLiteral }

modify a with { rightHandSide.tokenValue = ’1’ }
p = create PrefixExpression

with {
operator = ’=’,
operand = a→rightHandSide }

modify a with { rightHandSide = p }
Replaces a
string literal
by ‘’

modify one StringLiteral
where { escapedValue <> ’’ }
with { escapedValue = ’’ }

Deletes a
unary condi-
tional oper-
ator in an if
statement

if = select one IfStatement
where { expression is typed PrefixExpression }

pre = select one PrefixExpression in if→expression
where { operator = ’!’ }

exp = select one Expression in pre→operand
modify if with { expression = exp }

Deletes a
unary con-
ditional
operator in
a return
statement

rt = select one ReturnStatement
where { expression is typed PrefixExpression }

pre = select one PrefixExpression in rt→expression
where { operator = ’!’ }

exp = select one Expression in pre→operand
modify rt with { expression = exp }

Deletes a
unary condi-
tional oper-
ator in the
right operand
of an infix
expression

inf = select one InfixExpression
where { rightOperand is typed PrefixExpression }

pre = select one PrefixExpression in inf→rightOperand
where { operator = ’!’ }

exp = select one Expression in pre→operand
modify inf with { rightOperand = exp }

Deletes a
unary condi-
tional oper-
ator in the
left operand
of an infix
expression

inf = select one InfixExpression
where { leftOperand is typed PrefixExpression }

pre = select one PrefixExpression in inf→leftOperand
where { operator = ’!’ }

exp = select one Expression in pre→operand
modify inf with { leftOperand = exp }

Deletes one
statement

remove one Statement
where {

self not typed VariableDeclarationStatement }
Adds nega-
tion in an if
statement

if = select one IfStatement
exp = select one InfixExpression in if→expression
neg = create PrefixExpression in if→expression

with { operator = ’!’ }
par = create ParenthesizedExpression in neg→operand

with { expression = exp }
Adds nega-
tion in a
return state-
ment

rt = select one ReturnStatement
exp = select one InfixExpression in rt→expression
neg = create PrefixExpression in rt→expression

with { operator = ’!’ }
par = create ParenthesizedExpression in neg→operand

with { expression = exp }
Adds nega-
tion in the
left operand
of an infix
expression

e0 = select one InfixExpression
e1 = select one InfixExpression in e0→leftOperand
neg = create PrefixExpression in e0→leftOperand

with { operator = ’!’ }
par = create ParenthesizedExpression in neg→operand

with { expression = e1 }
Adds nega-
tion in the
right operand
of an infix
expression

e0 = select one InfixExpression
e1 = select one InfixExpression in e0→rightOperand
neg = create PrefixExpression in e0→rightOperand

with { operator = ’!’ }
par = create ParenthesizedExpression in neg→operand

with { expression = e1 }
Continued on next column...
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...concluded from previous column
Java
mutation

Wodel code

Deletes a con-
ditional state-
ment

bl = select one Block
where { statements is typed IfStatement }

if = select one IfStatement in bl→statements
modify bl with { statements += if→thenStatement }
remove if

Decrements
number in the
left operand
of an infix
expression

e = select one InfixExpression
where { leftOperand is typed NumberLiteral }

n = select one NumberLiteral in e→leftOperand
dec = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→leftOperand

with {
leftOperand = n,
operator = ’=’,
rightOperand = dec }

Decrements
number in the
right operand
of an infix
expression

e = select one InfixExpression
where { rightOperand is typed NumberLiteral }

n = select one NumberLiteral in e→rightOperand
dec = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→rightOperand

with {
leftOperand = n,
operator = ’=’,
rightOperand = dec }

Decrements
number in
a return
statement

e = select one ReturnStatement
where { expression is typed NumberLiteral }

n = select one NumberLiteral in e→expression
dec = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→expression

with {
leftOperand = n,
operator = ’=’,
rightOperand = dec }

Decrements
number in an
assignment

e = select one Assignment
where { rightHandSide is typed NumberLiteral }

n = select one NumberLiteral in e→rightHandSide
dec = deep clone n with { tokenValue = ’1’ }
create InfixExpression in e→rightHandSide

with {
leftOperand = n,
operator = ’=’,
rightOperand = dec }

B ATL mutation operators

This appendix contains the definition of the ATL mutation
operators proposed in [89] using Wodel.

ATL
mutation

Wodel code

Matched rule
addition

deep clone one MatchedRule
with { name = random=string(4, 6) }

Matched rule
deletion

remove one MatchedRule

Matched rule
name change

modify one MatchedRule
with { name = random=string(4, 6) }

In pattern
element
deletion

remove one InPatternElement

In pattern
element class
change

ie = select one SimpleInPatternElement
t = select one OclModelElement in ie→type
cl = select one EClass

from input resources
where { name <> t.name }

modify t with { name = cl.name }
Continued on next column...

...continued from previous column
ATL
mutation

Wodel code

In pattern
elem. name
change

modify one InPatternElement
with { varName = random=string(4, 6) }

Filter addi-
tion

p = select one InPattern
where { filter is typed OperatorCallExp }

oc = select one OperatorCallExp in p→filter
feat = select one OclFeature
ie = select one SimpleInPatternElement in p→elements
conj = create OperatorCallExp in p→filter

with { operationName = ’and’ }
call = create OperationCallExp in conj→ˆsource

with { operationName = feat.name }
exp = create VariableExp in call→ˆsource
modify ie with { variableExp += exp }
modify conj with { arguments += oc }
modify p with { filter += conj }

Filter dele-
tion

remove one OclExpression
where { container is typed InPattern }

Filter condi-
tion change

p = select all InPattern where { filter <> null }
oc = select one OperationCallExp in p→filter

where {operationName <> [’not’, ’and’, ’or’]}
feat = select one OclFeature

where { name <> oc.operationName }
modify oc with { operationName = feat.name }

Out pat-
tern element
addition

cl = select one EClass from output resources
p = select one OutPattern
mod = select one OclModel

in p→elements→type→model
oe = create SimpleOutPatternElement in p→elements

with { varName = random=string(2, 4) }
elem = create OclModelElement in oe→type

with { name = cl.name, variableDeclaration = oe }
modify mod with {elements += elem}

Out pat-
tern element
deletion

remove one OutPatternElement

Out pattern
element class
change

oe = select one SimpleOutPatternElement
t = select one OclModelElement in oe→type
cl = select one EClass

from output resources
where { name <> t.name }

modify t with { name = cl.name }
Out pattern
element name
change

modify one OutPatternElement
with { varName = random=string(4, 6) }

Binding addi-
tion

oe = select one SimpleOutPatternElement
type = select one OclModelElement in oe→type
cl = select one EClass

from output resources
where { name = type.name }

att = select one EAttribute in cl→eAllAttributes
b = create Binding in oe→bindings

with {
isAssignment = false,
propertyName = att.name }

create StringExp in b→value
with { stringSymbol = random=string(4, 6) }

Binding dele-
tion

remove one Binding

Binding value
change

b = select one Binding
where { value is typed OperatorCallExp }

create StringExp in b→value
with { stringSymbol = random=string(4, 6) }

Binding fea-
ture change

oe = select one SimpleOutPatternElement
type = select one OclModelElement in oe→type
cl = select one EClass

from output resources
where { name = type.name }

b = select one Binding in oe→bindings
att = select one EAttribute in cl→eAllAttributes

where { name <> b.propertyName }
modify b with { propertyName = att.name }

Continued on next column...
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...concluded from previous column
ATL
mutation

Wodel code


